JP3824016B2 - refrigerator - Google Patents
refrigerator Download PDFInfo
- Publication number
- JP3824016B2 JP3824016B2 JP2005332382A JP2005332382A JP3824016B2 JP 3824016 B2 JP3824016 B2 JP 3824016B2 JP 2005332382 A JP2005332382 A JP 2005332382A JP 2005332382 A JP2005332382 A JP 2005332382A JP 3824016 B2 JP3824016 B2 JP 3824016B2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- refrigerant
- evaporator
- refrigerator
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Compressor (AREA)
Description
冷凍サイクル内の冷凍機油の圧縮機への戻り性を向上した冷蔵庫に関するものである。 The present invention relates to a refrigerator that improves the return of refrigeration oil in a refrigeration cycle to a compressor.
近年、冷蔵庫は地球環境保護の観点から更なる省エネルギー化が進むとともに、その使用性や収納性の向上が求められている。 In recent years, refrigerators are required to be further energy-saving from the viewpoint of protecting the global environment and to be improved in usability and storage.
従来のこの種の冷蔵庫は、機械室を形成する圧縮機等を冷蔵庫の庫内収納性からみて使い勝手の悪い冷蔵庫本体の天面や、もしくは冷蔵庫本体の背面上部に設置するという方法がとられていた(例えば、特許文献1参照)。 In the conventional refrigerator of this type, a compressor or the like forming a machine room is installed on the top surface of the refrigerator body, which is inconvenient in view of the storage capacity of the refrigerator, or on the upper back of the refrigerator body. (For example, see Patent Document 1).
図12は、特許文献1に記載された従来の冷蔵庫の構成を示すものである。
FIG. 12 shows a configuration of a conventional refrigerator described in
冷蔵庫本体1は、上から冷蔵室2、野菜室3、冷凍室4という構成からなり、冷蔵室2は回転扉5を有し、野菜室3は野菜室引出扉6、冷凍室4は冷凍室引出扉7を有している。この構成において、庫内ファン8と蒸発器9等からなる冷却ユニット10を、最下段の貯蔵室として収納部を形成する冷凍室4の開口部の高さ寸法と概ね同じ高さとして冷凍室4の背面後部に設置し、機械室11を形成する圧縮機12などを、冷蔵庫の庫内収納性からみて使い勝手の良くない冷蔵室2の天面、もしくは、冷蔵庫本体1の背面上部に設置している。
The refrigerator
この構成によって、機械室11の体積分が冷蔵室2と野菜室3を区画する区画壁の下側から上側に移動したことにより、各貯蔵室の内容積を一定とすると必然的に冷蔵室2と野菜室3の区画壁の位置を下方に下げることができ、野菜室3内の収納物の取り出しが容易となる。
しかしながら、上記従来の構成では、圧縮機を冷蔵庫本体の天面に、蒸発器を冷蔵庫本体の底面近傍に配設することにより、蒸発器出口と圧縮機を接続するジョイント配管の立ち上がり高さが長くなり、例えば冷蔵庫本体を構成するウレタンの熱伝導率低減や、真空断熱材の適用等により冷蔵庫本体の断熱性能が向上し、圧縮機もそれに合わせて低能力化できる為、冷媒循環量が大きく低下する。これに伴って、配管内の冷媒の流速が低下し、冷凍機油の圧縮機への戻り量が減少するといった課題があった。 However, in the above-described conventional configuration, the rising height of the joint pipe connecting the evaporator outlet and the compressor is increased by disposing the compressor on the top surface of the refrigerator body and the evaporator near the bottom surface of the refrigerator body. For example, the heat insulation performance of the refrigerator body is improved by reducing the thermal conductivity of the urethane that makes up the refrigerator body, and the application of vacuum insulation, etc., and the compressor capacity can be reduced accordingly, so the refrigerant circulation rate is greatly reduced To do. In connection with this, the flow rate of the refrigerant | coolant in piping fell, and there existed a subject that the return amount to the compressor of refrigeration oil decreased.
また、蒸発器内に滞留する冷凍機油は、圧縮機運転中以外にも蒸発器の除霜中に冷媒のサーモサイフォン効果により冷媒とともに圧縮機へと戻されるが、冷凍機油への冷媒の溶解度が小さい場合は、冷媒とともに圧縮機へと運ばれにくくなり、圧縮機への戻り量が減少するといった課題もあった。 In addition, the refrigeration oil staying in the evaporator is returned to the compressor together with the refrigerant by the thermosiphon effect of the refrigerant during the defrosting of the evaporator in addition to the operation of the compressor, but the solubility of the refrigerant in the refrigeration oil is reduced. If it is small, there is a problem that it is difficult to be carried to the compressor together with the refrigerant, and the amount of return to the compressor is reduced.
本発明は、上記従来の課題を解決するもので、冷凍サイクル内の冷凍機油の圧縮機への戻り性を向上し、圧縮機を蒸発器より上方に配設した冷凍サイクルの信頼性を向上し冷蔵庫を提供することを目的とする。 The present invention solves the above-described conventional problems, improves the return of refrigeration oil in the refrigeration cycle to the compressor, and improves the reliability of the refrigeration cycle in which the compressor is disposed above the evaporator. The object is to provide a refrigerator.
上記従来の課題を解決するために、本発明の冷蔵庫は、圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルを有し、前記圧縮機は密閉容器と前記密閉容器内に備えられた電動要素および圧縮要素を有し、前記密閉容器の内部空間は前記冷凍サイクルにおける低圧側であるとともに、R134a冷媒に比べて小さくなる単位体積当たりの冷凍能力を補うために相対的に気筒容積を大きくした炭化水素冷媒用の圧縮機であり、前記圧縮機は前記蒸発器より上方に配置され、前記冷凍サイクルには冷媒としての炭化水素と冷凍機油としての鉱油が封入され、前記蒸発器と前記圧縮機との接続配管であるサクションラインに、前記蒸発器から前記圧縮機への前記冷媒の流れ方向に対向する前記冷凍機油の重力成分の影響を緩和するような曲げ角度を有する曲げ部を複数設け、前記サクションラインを上方の前記圧縮機に向かって蛇行させたものである。 In order to solve the above-described conventional problems, a refrigerator according to the present invention has a refrigeration cycle in which a compressor, a condenser, a decompressor, and an evaporator are sequentially provided to form a series of refrigerant flow paths. A closed container and an electric element and a compression element provided in the closed container, and the internal space of the closed container is on the low pressure side in the refrigeration cycle and has a refrigeration capacity per unit volume that is smaller than that of the R134a refrigerant. In order to compensate for this, a compressor for hydrocarbon refrigerant having a relatively large cylinder volume is disposed above the evaporator, and the refrigeration cycle includes hydrocarbon as refrigerant and refrigerant oil Gravity component of the refrigerating machine oil, which is filled with mineral oil and faces a suction line, which is a connecting pipe between the evaporator and the compressor, in the refrigerant flow direction from the evaporator to the compressor Effect provided with a plurality of bent portions having a bending angle so as to mitigate, in which the suction line was meandering upward of the compressor.
これによって、冷媒として炭化水素を使用することにより、従来の冷媒が代替フロン冷媒であるR134aである場合と比べて、炭化水素の単位体積当たりの冷凍能力は従来と比較して約1/2程度まで小さくなるので、同等の冷凍能力を確保するために圧縮機の気筒容積を約2倍程度にまで大きくすることができ、これにより冷媒の体積流量が増大し、圧縮機運転時の配管内の流速が増加する。 Thus, by using hydrocarbon as the refrigerant, the refrigeration capacity per unit volume of the hydrocarbon is about ½ that of the conventional refrigerant compared to the case where the conventional refrigerant is R134a which is an alternative chlorofluorocarbon refrigerant. Therefore, in order to ensure an equivalent refrigeration capacity, the cylinder volume of the compressor can be increased to about twice, thereby increasing the volume flow rate of the refrigerant, The flow rate increases.
また、冷凍機油として鉱油を使用することにより、従来のR134aとエステル油との組み合わせと比較して冷媒の冷凍機油に対する溶解度が大きくなる。 Moreover, the use of mineral oil as the refrigerating machine oil increases the solubility of the refrigerant in the refrigerating machine oil as compared with the conventional combination of R134a and ester oil.
また、サクションラインを上方の前記圧縮機に向かって蛇行させて複数の曲げ部を設けることで、冷凍機油と冷媒の流れ方向に対して逆方向に働く重力成分を小さくできるので、より速やかに蒸発器から圧縮機へ冷凍機油を戻すことができる。また、サクションラインが直管であるものと比べて、サクションラインを長くすることができるので、キャピラリーとの熱交換距離を増やし、熱交換能力を向上させることで冷凍能力が増大し消費電力量を低減できる。 Further, by providing a plurality of bent portions by meandering the suction line toward the compressor above, the gravity component acting in the opposite direction to the flow direction of the refrigerating machine oil and the refrigerant can be reduced, so that evaporation can be performed more quickly. Refrigerator oil can be returned from the refrigerator to the compressor. In addition, since the suction line can be made longer compared to a straight suction line, the refrigeration capacity is increased and the power consumption is increased by increasing the heat exchange distance with the capillary and improving the heat exchange capacity. Can be reduced.
本発明の冷蔵庫は、圧縮機運転時の配管内の冷媒の体積流量を増加させることにより、冷凍機油が立ち上がり配管を上昇するのに十分な流速を確保でき、蒸発器から圧縮機への冷凍機油の戻り量を大きくすることで冷蔵庫の信頼性を向上することができる。 In the refrigerator of the present invention, by increasing the volume flow rate of the refrigerant in the pipe during operation of the compressor, a sufficient flow rate can be secured for the refrigerating machine oil to rise up the pipe, and the refrigerating machine oil from the evaporator to the compressor can be secured. Increasing the return amount of the refrigerator can improve the reliability of the refrigerator.
また、冷媒の冷凍機油に対する溶解度が大きくなる冷凍機油を用いることにより、除霜時においてもサーモサイフォン効果を利用して冷媒とともに蒸発器から圧縮機への冷凍機油の戻り量大きくすることで冷蔵庫の信頼性を向上することができる。 In addition, by using refrigeration oil that increases the solubility of the refrigerant in the refrigeration oil, it is possible to increase the return amount of the refrigeration oil from the evaporator to the compressor together with the refrigerant using the thermosiphon effect even during defrosting. Reliability can be improved.
請求項1に記載の発明は、圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルを有し、前記圧縮機は密閉容器と前記密閉容器内に備えられた電動要素および圧縮要素を有し、前記密閉容器の内部空間は前記冷凍サイクルにおける低圧側であるとともに、R134a冷媒に比べて小さくなる単位体積当たりの冷凍能力を補うために相対的に気筒容積を大きくした炭化水素冷媒用の圧縮機であり、前記圧縮機は前記蒸発器より上方に配置され、前記冷凍サイクルには冷媒としての炭化水素と冷凍機油としての鉱油が封入され、前記蒸発器と前記圧縮機との接続配管であるサクションラインに、前記蒸発器から前記圧縮機への前記冷媒の流れ方向に対向する前記冷凍機油の重力成分の影響を緩和するような曲げ角度を有する曲げ部を複数設け、前記サクションラインを上方の前記圧縮機に向かって蛇行させたものである。
The invention according to
これによって、圧縮機の単位時間当たりの排気量がR134a等と比べて増大し、冷媒の単位時間当たりの体積流量が増大するので、圧縮機から吐出された冷凍機油が圧縮機へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで、冷凍機油内に冷媒が溶け込むことで冷凍機油の粘度を低下させることができ、蒸発器から圧縮機への冷凍機油の戻り量をより増加できる。 As a result, the amount of exhaust per unit time of the compressor increases as compared with R134a and the like, and the volume flow rate per unit time of the refrigerant increases, so that the refrigeration oil discharged from the compressor is sufficient for returning to the compressor. The flow rate in the piping can be secured and the solubility of the refrigerant in the refrigerating machine oil is increased, so that the viscosity of the refrigerating machine oil can be lowered by the refrigerant dissolving in the refrigerating machine oil, and the evaporator to the compressor. The amount of refrigerating machine oil returned can be further increased.
また、密閉容器の内部空間が冷凍サイクルにおける高圧側である場合と比較して、圧縮機から冷凍サイクル内へ吐出される冷凍機油の量を押さえることができ、冷凍機油の戻り性に関わる冷媒配管中の冷凍機油の滞留絶対量を低減でき、圧縮機内の冷凍機油不足による、圧縮機の損傷等の危険性をさらに低減できる。 Also, compared to the case where the internal space of the sealed container is on the high-pressure side in the refrigeration cycle, the amount of refrigeration oil discharged from the compressor into the refrigeration cycle can be suppressed, and the refrigerant piping related to the returnability of the refrigeration oil The stagnation absolute amount of refrigeration oil in the compressor can be reduced, and the risk of damage to the compressor due to the shortage of refrigeration oil in the compressor can be further reduced.
また、サクションラインを上方の前記圧縮機に向かって蛇行させて複数の上記曲げ部を設けることで、冷凍機油と冷媒の流れ方向に対して逆方向に働く重力成分を小さくできるので、より速やかに蒸発器から圧縮機へ冷凍機油を戻すことができる。また、サクションラインが直管であるものと比べて、サクションラインを長くすることができるので、キャピラリーとの熱交換距離を増やし、熱交換能力を向上させることで冷凍能力が増大し消費電力量を低減できる。 Further, by providing a plurality of the bent portions by meandering the suction line toward the compressor above, the gravity component acting in the opposite direction to the flow direction of the refrigerating machine oil and the refrigerant can be reduced, so that it can be performed more quickly. Refrigerator oil can be returned from the evaporator to the compressor. In addition, since the suction line can be made longer compared to a straight suction line, the refrigeration capacity is increased and the power consumption is increased by increasing the heat exchange distance with the capillary and improving the heat exchange capacity. Can be reduced.
請求項2に記載の発明は、請求項1に記載の発明において、蒸発器と前記圧縮機との接続配管であるサクションラインの立ち上がり途中に、鉛直下方向に曲げた曲げ部に続くトラップ部を設けたものであり、サクションライン内を立ち上がった冷凍機油はトラップ部直前に鉛直下方向に落下するので、重力加速度の影響により冷凍機油の流速は増大し、流速が増大した状態で圧縮機まで再びサクションライン内を立ち上がるので、より確実に蒸発器から圧縮機へ冷凍機油を戻すことができる。
The invention according to
請求項3に記載の発明は、請求項1または2に記載の発明において、前記減圧器をキャピラリーとし、曲げ部を設けた前記サクションラインと熱交換的に接触させたものであり、キャピラリーとの熱交換距離を長くすることが容易となり、蒸発器の冷凍能力が増大し消費電力量を低減できる。
請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、前記圧縮機は冷蔵庫本体の天面の一部に配置されたものであり、蒸発器から圧縮機への冷媒の帰還経路の立ち上がり距離が大となる場合にも圧縮機から吐出された冷凍機油が圧縮機へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで蒸発器から圧縮機への冷凍機油の戻り性を改善して冷蔵庫の信頼性を確保することが可能となる。
The invention according to
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the compressor is disposed on a part of the top surface of the refrigerator body, and the evaporator to the compressor. Even when the rising distance of the return path of the refrigerant to the refrigerant becomes large, it is possible to ensure a sufficient flow rate in the pipe so that the refrigeration oil discharged from the compressor returns to the compressor, and the solubility of the refrigerant in the refrigeration oil It is possible to improve the returnability of the refrigerating machine oil from the evaporator to the compressor to ensure the reliability of the refrigerator.
請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明に加えて、前記冷蔵庫本体に温度帯の異なる複数の貯蔵室を設け、前記蒸発器の少なくとも一部が前記貯蔵室のうち最下部の貯蔵室の後方に位置するように配設したものである。
In addition to the invention according to any one of
これによって、蒸発器が冷蔵庫本体の下部近傍に配置されることで、蒸発器から圧縮機への冷媒の帰還経路の立ち上がり距離が大となる場合にも圧縮機から吐出された冷凍機油が圧縮機へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで蒸発器から圧縮機への冷凍機油の戻り性を改善して冷蔵庫の信頼性を確保することが可能となる。 As a result, the evaporator is disposed near the lower portion of the refrigerator body, so that the refrigerating machine oil discharged from the compressor is also compressed when the rising distance of the return path of the refrigerant from the evaporator to the compressor becomes large. Ensuring sufficient flow velocity in the piping to return to the compressor, and increasing the solubility of the refrigerant in the refrigeration oil improves the return of the refrigeration oil from the evaporator to the compressor and ensures the reliability of the refrigerator It becomes possible to do.
また、圧縮機運転時に高温となる圧縮機から蒸発器を遠ざけることにより、高温部からの排熱影響による蒸発器の冷却ロスを低減でき、蒸発器の冷凍能力を最大限に利用できるので消費電力量を低減できる。 In addition, by moving the evaporator away from the compressor that becomes hot when the compressor is operating, the cooling loss of the evaporator due to the exhaust heat effect from the high temperature part can be reduced, and the refrigeration capacity of the evaporator can be used to the maximum, so power consumption The amount can be reduced.
請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明において、前記圧縮機の排気容量を変化させる排気容量制御手段を備えた制御手段を有し、前記排気容量制御手段によって前記圧縮機の排気量が可変となることにより、低排気量制御時には圧縮機からの冷媒吐出に伴う冷凍機油持ち出し量を低減し、かつ冷凍サイクル中に持ち出された一部冷凍機油に対しては冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用で圧縮機への戻り性を向上させることができる。
The invention according to
請求項7に記載の発明は、請求項6に記載の発明において、前記排気容量制御手段によって、圧縮機起動時に所定時間、強制的に通常制御時よりも大きい排気容量で運転させることにより、圧縮機の起動時に高い回転数で起動するので、停止中の冷媒への冷凍機油溶け込みにより吐出油量が最も多くなり、かつ給油条件が最も悪い摺動開始時に確実な配管内冷媒流速を確保することで冷凍機油の循環性を確保することができる。
According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the exhaust capacity control means compresses the compressor by forcibly operating at a larger exhaust capacity than during normal control for a predetermined time when the compressor is started. Since the machine starts at a high speed when the machine starts, the amount of discharged oil is maximized due to the refrigerating machine oil blending into the stopped refrigerant, and a reliable refrigerant flow rate in the pipe is ensured at the start of sliding where the lubrication conditions are worst. Thus, the circulation of the refrigerating machine oil can be ensured.
以下、本発明の実施の形態について、図面を参照しながら説明するが、背景技術の従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional examples of the background art or the embodiments described above, and detailed descriptions thereof are omitted. To do. The present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の概略図を示すものであり、図2は同実施の形態における冷媒と冷凍機油の溶解度曲線図である。
(Embodiment 1)
FIG. 1 shows a schematic diagram of the refrigerator in
冷蔵庫本体1には、比較的高温の区画である冷蔵室2が上方部に、比較的低温の区画である冷凍室4が下方部に配設されており、所謂ボトムフリーザーの形態を有している。冷蔵室2および冷凍室4は例えばウレタンのような断熱材で周囲と断熱して構成されている。また、食品等の収納物の出し入れは図示しない断熱ドアを介して行われる。
The refrigerator
冷蔵室2は冷蔵保存のために通常1〜5℃で設定されているが、保鮮性向上のため若干低めの温度、例えば−3〜0℃で設定されることもあり、収納物によって、使用者が自由に上記のような温度設定を切り替えることを可能としている場合もある。また、ワインや根野菜等の保鮮のために、例えば10℃前後の若干高めの温度設定とする場合もある。
The
冷凍室4は冷凍保存のために通常−22〜−18℃で設定されているが、保鮮性向上のためより低温の温度、例えば−30〜−25℃で設定されることもある。
The
冷蔵庫本体1の上面に機械室11が構成されており、機械室11の底面は第一の天面部13と、冷蔵庫外箱の背面14側の第一の天面部13より低い位置に設けた第二の天面部15とで段差状に構成されている。凝縮器16は第一の天面部13の上方空間部に、圧縮機12は第二の天面部15の上方空間部に配設されており、凝縮器16と圧縮機12とを覆う樹脂製のカバーである機械室カバー17がビス等で冷蔵庫本体1に固定されている。
A
ここで、蒸発器9は冷凍室4の後方に配置されているので、圧縮機12と蒸発器9の高さ方向の関係は、冷蔵庫本体1の天面の一部に圧縮機12が配置され下部近傍の一部に蒸発器9が配置される関係となり、蒸発器9から圧縮機12への冷凍サイクル内での冷媒の帰還経路は高さ方向に相当な立ち上がり距離を有する関係となっている。
Here, since the
冷凍サイクル18は、圧縮機12と凝縮器16と減圧器であるキャピラリー19と蒸発器9とを順に備えた一連の冷媒流路から形成されている。
The
この圧縮機12はピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機である。
The
また、機械室11の区画は第一の天面部13と第二の天面部15と機械室カバー17とで構成されている。
The compartment of the
なお、冷蔵庫本体1には、三方弁や切替弁を用いる冷凍サイクル18の場合は、それらの機能部品が機械室11内に配設されている場合もある。
In the case of the
また、本実施の形態では冷凍サイクル18を構成する減圧器をキャピラリー19としたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁としてある場合もある。
In the present embodiment, the pressure reducing device constituting the
以上のように構成された冷蔵庫において、以下その動作、作用を説明する。 The operation and action of the refrigerator configured as described above will be described below.
圧縮機12の動作により吐出された高温高圧の冷媒は、凝縮器16にて冷蔵庫本体1の上方の空気と熱交換して放熱するとともに凝縮液化し、キャピラリー19に至る。その後、キャピラリー19でサクションライン20と熱交換しながら減圧されて蒸発器9に至る。
The high-temperature and high-pressure refrigerant discharged by the operation of the
冷却用ファン(図示せず)の作用により、蒸発器9内の冷媒の蒸発作用により比較的低温となった冷気は冷蔵室2と冷凍室4に流入し、それぞれの部屋の冷却が行われる。蒸発器9内で、庫内の空気と熱交換した冷媒はその後サクションライン20を通り、冷凍機油とともに圧縮機12へと吸い込まれる。
Due to the action of a cooling fan (not shown), the cool air having a relatively low temperature due to the evaporating action of the refrigerant in the
このように冷凍サイクル18を、圧縮機12を蒸発器9より上方に配設する構成とする時、特に、本実施の形態のように圧縮機12が冷蔵庫本体1の天面の一部に配置され、蒸発器が冷蔵庫本体1の下部近傍に配置されて、蒸発器9から圧縮機12への冷媒の帰還経路の立ち上がり距離が大となる場合には、圧縮機12から冷媒とともに冷凍サイクル18内に吐出され蒸発器9内の特に図示しないアキュームレーターに滞留する冷凍機油を、いかにサクションライン20を通じて圧縮機12へ戻すかが圧縮機12の信頼性にかかわる重要なポイントとなる。
Thus, when the
また、立ち上げ配管内の冷凍機油の戻り特性に関しては、冷凍機油の粘度の影響も考えられるが、配管内の冷媒の流速がより大きく依存するということが広く知られている。 Further, regarding the return characteristics of the refrigeration oil in the start-up pipe, it is widely known that the flow rate of the refrigerant in the pipe depends more greatly, although the influence of the viscosity of the refrigeration oil can be considered.
しかしながら、冷媒の流速を確保するために圧縮機12の気筒容積を大きくしたり、圧縮機12の回転数を上げたりして、冷凍能力を増大することによって冷媒の流速を確保しようとすると蒸発器9の蒸発温度低下を招き、圧縮機12の圧縮比が大きくなり消費電力量が増大するので、これらの手段で解決することは困難であった。
However, when the refrigerant flow rate is increased by increasing the cylinder capacity of the
そこで、本実施の形態では冷凍サイクル18の冷媒として炭化水素系冷媒である例えばイソブタンを使用している。
Therefore, in the present embodiment, for example, isobutane which is a hydrocarbon refrigerant is used as the refrigerant of the
(表1)にイソブタンと、従来の代替フロン冷媒である例えばR134aとの−30℃の飽和液における物性値を示す。 (Table 1) shows physical properties in a saturated liquid of −30 ° C. of isobutane and a conventional alternative chlorofluorocarbon refrigerant such as R134a.
(表1)に示すように、イソブタンの単位体積当たりの冷凍能力が520.8kJであるのに対して、従来の代替フロン冷媒であるR134aの単位体積当たりの冷凍能力は971.6kJとなり、イソブタンはR134aと比較すると単位体積当たりの冷凍能力が約1/2である。よって、圧縮機12の冷凍能力を従来のR134aと同等とするために、圧縮機12の気筒容積は約2倍程度にまで大きくなり、圧縮機12の単位時間当たりのピストン押しのけ量も同様に約2倍程度まで増大する。すなわち、冷媒の単位時間当たりの体積流量が増大するので、圧縮機12運転時の配管内の流速が2倍程度まで増加する。
As shown in Table 1, the refrigeration capacity per unit volume of isobutane is 520.8 kJ, whereas the refrigeration capacity per unit volume of R134a, which is a conventional alternative chlorofluorocarbon refrigerant, is 971.6 kJ. Compared with R134a, the refrigerating capacity per unit volume is about ½. Therefore, in order to make the refrigeration capacity of the
また、自然冷媒であるCO2の単位体積当たりの冷凍能力は11258.5kJとなり、イソブタンはCO2と比較すると単位体積当たりの冷凍能力が約1/20である。よって、圧縮機12の冷凍能力をCO2と同等とするために、圧縮機12の気筒容積は約20倍程度にまで大きくなり、圧縮機12の単位時間当たりのピストン押しのけ量も同様に約20倍程度まで増大する。すなわち、冷媒の単位時間当たりの体積流量が増大するので、圧縮機12運転時の配管内の流速が20倍程度まで増加する。
Moreover, the refrigerating capacity per unit volume of CO2, which is a natural refrigerant, is 11258.5 kJ, and isobutane has a refrigerating capacity per unit volume of about 1/20 compared with CO2. Therefore, in order to make the refrigerating capacity of the
これにより、圧縮機12を蒸発器9の上方に配設した場合においても、蒸発器9内に滞留した冷凍機油を速やかに圧縮機12へ戻すことが可能となり、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性を低減できる。
As a result, even when the
また、蒸発器9内に滞留した冷媒は、除霜用ヒーター(図示せず)の作用により蒸発器9の除霜を行う際にも、冷媒のサーモサイフォン効果により冷媒とともに圧縮機12へと戻される。しかしながら、圧縮機12を蒸発器9の上方に配設し、立ち上げ配管であるサクションライン20の全長が長くなる場合は特に、冷凍機油への冷媒の溶解度が小さいと冷媒とともに圧縮機12へと運ばれる冷凍機油の戻り量が減少するといった課題もあった。
In addition, the refrigerant staying in the
そこで、冷凍サイクル18の冷凍機油としてはイソブタンと相溶性がいい鉱油を使用している。
Therefore, mineral oil having good compatibility with isobutane is used as the refrigerating machine oil of the
図2は、従来の例えばR134aとエステル油を組み合わせた場合と、本実施の形態のイソブタンと鉱油を組み合わせた場合との溶解度曲線を比較したものである。横軸は蒸発器9内の冷媒の温度(蒸発温度)であり、縦軸は冷凍機油に溶け込む冷媒の溶解度(質量%)である。これによれば蒸発器9内の蒸発温度の上昇に伴っていずれの場合も溶解度は大きくなるが、その差は蒸発温度が高くなるほど広がることがわかる。通常蒸発器9の除霜は、蒸発器9に付着した霜の融解後、安全を見越して蒸発器9が約10℃となるまで行われる。そこで、蒸発器9の温度が10℃であるポイントで比較すると、イソブタンと鉱油を組み合わせた場合の溶解度はR134aとエステル油を組み合わせた従来の場合と比較して約50%程度まで大きくなる。
FIG. 2 compares the solubility curves of the conventional case of combining R134a and ester oil with the case of combining the isobutane and mineral oil of the present embodiment. The horizontal axis represents the temperature of the refrigerant in the evaporator 9 (evaporation temperature), and the vertical axis represents the solubility (mass%) of the refrigerant dissolved in the refrigerating machine oil. According to this, the solubility increases in any case as the evaporation temperature in the
これにより、圧縮機12を蒸発器9の上方に配設し、立ち上げ配管であるサクションライン20の全長が長くなる場合でも、除霜時に冷媒のサーモサイフォン効果を利用して冷媒とともに蒸発器9から圧縮機12へ戻る冷凍機油の戻り量を増加できる。
Thus, even when the
なお、圧縮機が内部高圧型場合は密閉容器の内部空間に散霧している冷凍機油が吐出冷媒と共に圧縮機外へ吐出される為、本実施の形態の圧縮機12は内部低圧型とし、これによって、圧縮機12から冷凍サイクル18内へ吐出される冷凍機油の量を押さえることができるので、冷凍機油の戻り性に関わる冷媒配管中の冷凍機油の滞留絶対量を低減でき、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減でき、さらに冷媒配管中の滞留冷凍機油による蒸発器9や凝縮器16などの熱交換器の効率低下を抑制することもできる。
In addition, when the compressor is an internal high pressure type, since the refrigeration oil sprayed in the internal space of the sealed container is discharged out of the compressor together with the discharge refrigerant, the
また、冷蔵庫本体1を構成する例えばウレタンの熱伝導率低減や、真空断熱材の適用等により冷蔵庫本体1の断熱性能が向上し、圧縮機12を低能力化する必要性が生じた場合でも、上述のように、イソブタンと鉱油と内部低圧型圧縮機12の組み合わせにより、圧縮機12内に必要な冷凍機油を確保することが容易となる。
Moreover, even if the heat insulation performance of the refrigerator
また、本実施の形態においては、圧縮機としてピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機を用いている為、回転式圧縮機と比較してピストンとシリンダ間のクリアランスを比較的高い精度で管理することが可能である。よって、ピストンとシリンダ間をシールする為に冷凍機油を多量に用いなくても充分なシール性を確保することができ、シリンダを経由して吐出される冷媒と共に吐出される冷凍機油の量も低減することができるので、圧縮機から吐出される冷凍機油の量を低減でき、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減できる。
In this embodiment, since the reciprocating compressor that compresses the refrigerant by reciprocating the piston in the cylinder is used as the compressor, the piston and the cylinder are separated from each other in comparison with the rotary compressor. Can be managed with relatively high accuracy. Therefore, sufficient sealing performance can be secured without using a large amount of refrigerating machine oil to seal between the piston and the cylinder, and the amount of refrigerating machine oil discharged together with the refrigerant discharged through the cylinder is also reduced. Therefore, the amount of refrigerating machine oil discharged from the compressor can be reduced, and the risk of damage to the
なお、イソブタンと鉱油と内部低圧型圧縮機の組み合わせによる上述の効果により、圧縮機12を蒸発器9の上方に配設した場合の、圧縮機12と蒸発器9の距離を遠ざけても、例えば本実施の形態のように圧縮機12が冷蔵庫本体1の天面の一部に配置され、蒸発器が冷蔵庫本体1の下部近傍に配置されて、蒸発器9から圧縮機12への冷媒の帰還経路の立ち上がり距離が大となる場合にも冷蔵庫の信頼性を充分に確保することが可能となる。
Even if the distance between the
これにより、冷蔵庫本体1に温度体の異なる複数の貯蔵室を設けた場合に、蒸発器9を最上段の貯蔵室以外の貯蔵室に設けることが可能となり、圧縮機12の運転時に高温となる圧縮機12や凝縮器16等から蒸発器9を遠ざけることにより、高温部からの排熱影響による蒸発器9の冷却ロスを低減でき、蒸発器9の冷凍能力を最大限に利用できるので消費電力量を低減できる。
As a result, when a plurality of storage chambers having different temperature bodies are provided in the refrigerator
(実施の形態2)
図3、図4、図5は、本発明の実施の形態2における冷蔵庫の概略図を示すものである。なお、実施の形態1と同一構成については同一符号を付す。
(Embodiment 2)
3, 4 and 5 show schematic views of the refrigerator in the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as
なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。 As in the above-described embodiment, as the refrigerant, for example, isobutane is used as the hydrocarbon-based refrigerant, and the refrigerating machine oil is filled with mineral oil that is compatible with isobutane.
図3において、圧縮機12と蒸発器9を接続するサクションライン20に曲げ部21を設けている。曲げ部21の曲げ角度を鉛直上方向に対してθ度とすると、サクションライン20内の蒸発器9から圧縮機12に帰還する冷媒の流れ方向に対向する冷凍機油の重力成分の影響はCOSθを乗じた分だけ小さくなるので、より速やかに蒸発器9から圧縮機12へ冷凍機油を戻すことができる。
In FIG. 3, a bending
また、冷凍サイクル18において蒸発器9内の冷媒のエンタルピーを増大する目的で、サクションライン20とキャピラリー19は例えば半田等により所定の距離を接触させ、熱交換させた構成としているが、曲げ部21を設けることによりサクションライン20の距離を長くすることができるので、キャピラリー19との熱交換距離を長くすることが容易となり、蒸発器9の冷凍能力が増大し消費電力量を低減できる。
Further, in order to increase the enthalpy of the refrigerant in the
なお、図4に示すように、サクションライン20に複数の曲げ部21を設け、サクションライン20を圧縮機12に向かって蛇行させた構成とすると、さらに曲げ角度θを小さくできるので、より速やかに蒸発器9から圧縮機12へ冷凍機油を戻すことができる。
As shown in FIG. 4, if the
また、サクションライン20の距離をさらに長くすることができるので、キャピラリー19との熱交換距離もさらに長くすることができ、蒸発器9の冷凍能力が増大し消費電力量を低減できる。
Further, since the distance of the
なお、図5に示すように、サクションライン20に鉛直下方向に管の一部をU字やS字などに曲げたトラップ部22を設けると、サクションライン20内を流れた冷凍機油は曲げ部21にて鉛直下方向に落下するので、重力加速度の影響により冷凍機油の流速は増大する。その後、トラップ部22を経て、流速が増大した状態で圧縮機12まで再びサクションライン20内を立ち上げるので、より確実に蒸発器9から圧縮機12へ冷凍機油を戻すことができる。
In addition, as shown in FIG. 5, if the
(実施の形態3)
図6は、本発明の実施の形態3における冷蔵庫の概略図を示すものである。なお、実施の形態1と同一構成については同一符号を付す。
(Embodiment 3)
FIG. 6 shows a schematic diagram of the refrigerator in the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as
なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。 As in the above-described embodiment, as the refrigerant, for example, isobutane is used as the hydrocarbon-based refrigerant, and the refrigerating machine oil is filled with mineral oil that is compatible with isobutane.
冷蔵庫本体1には、比較的高温の区画である冷蔵室2が上方部に、比較的低温の区画である冷凍室4が下方部に配設されており、冷蔵室2内の例えば背面側に冷蔵室2の冷却を行う冷蔵室冷却用蒸発器23が、冷凍室4内の例えば背面側に冷凍室4の冷却を行う冷凍室冷却用蒸発器24が配設されている。また、冷凍サイクル18内において、冷蔵室冷却用蒸発器23は冷凍室冷却用蒸発器24より上流側に配設されており、冷蔵室冷却用蒸発器23の出口部と冷凍室冷却用蒸発器24の入口部はジョイント配管25で接続されている。
The
それぞれの貯蔵室の冷却を専用の蒸発器で行うことにより、貯蔵室間の臭い移りの防止、冷蔵室冷却用蒸発器23の高蒸発温度化に伴う圧縮機12の効率向上による消費電力量の低減、さらには冷蔵室2内の高湿度化などが可能となるが、蒸発器の配管ボリュームが増えるために、蒸発器内に滞留する冷凍機油も増加し、特に圧縮機12内をそれぞれの蒸発器より上方に配設する場合には圧縮機12内の冷凍機油が不足するといった危険性もある。
By cooling each storage room with a dedicated evaporator, the odor transfer between the storage rooms is prevented, and the efficiency of the
冷凍サイクル18内で上流側となる冷蔵室冷却用蒸発器23を、冷凍サイクル18内で下流側となるに冷凍室用蒸発器24より冷蔵庫本体1内で上方に配設することにより、冷凍機油を重力方向に逆らわずに冷蔵室冷却用蒸発器23から冷凍室冷却用蒸発器24へ送ることができるので、速やかに圧縮機12へ冷凍機油を戻すことができる。
Refrigerator oil is provided in the refrigerator
また、上記構成に加えてジョイント配管25にトラップ部を設けず、直管と曲がり角度θ2を90度以上180度以下にすることにより、圧縮機12内から冷凍サイクル18内に吐出され冷蔵室冷却用蒸発器23の特に出口部に滞留する冷凍機油を速やかに冷凍室冷却用蒸発器24へ送ることができる。
In addition to the above configuration, the
これにより、冷蔵室冷却用蒸発器23内に滞留する冷凍機油の量を最小限に押さえることが可能となり、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減できる。
As a result, the amount of refrigerating machine oil staying in the
なお、本実施の形態では最上段の貯蔵室を冷蔵室2としたが、冷凍室4を最上段とするトップフリーザータイプの冷蔵庫においても、冷凍サイクル18内で冷凍室冷却用蒸発器24を冷蔵室冷却用蒸発器23より上流側に配設し、冷凍室冷却用蒸発器24と冷蔵室冷却用蒸発器23の接続配管にトラップ部を設けない構成とすることにより同様の効果が得られる。
In this embodiment, the uppermost storage chamber is the
また、冷蔵室冷却用蒸発器23および冷凍室冷却用蒸発器24を、入口部から出口部までの経路で立ち上がり部のない上方から下方に向かって冷媒が流れる配管構成とすると、蒸発器内の冷媒の流れに対向する冷凍機油の重力影響はなくなるので、冷凍機油の流速が上がり、さらに速やかにそれぞれの蒸発器内に滞留する冷凍機油を圧縮機12へ戻すことができる。
Further, if the refrigerator for cooling
(実施の形態4)
図7は、本発明の実施の形態4における冷蔵庫の概略図を示すものであり、図8は同実施の形態における配管構成概略図である。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 4)
FIG. 7 shows a schematic diagram of the refrigerator in the fourth embodiment of the present invention, and FIG. 8 is a schematic diagram of a piping configuration in the same embodiment. In addition, the same code | symbol is attached | subjected about the same structure as background art.
図7と図8において冷蔵庫本体100はABSなどの樹脂体を真空成型した内箱101とプリコート鋼板などの金属材料を用いた外箱102とで構成された空間に発泡充填する断熱体103を注入してなる断熱壁を備えている。断熱体103は、例えば硬質ウレタンフォームやフェノールフォームやスチレンフォームなどが用いられる。発泡材としてはハイドロカーボン系のシクロペンタンを用いると、温暖化防止の観点でさらによい。
7 and 8, the refrigerator
冷蔵庫本体100は複数の断熱区画に区分されており上部を回転扉式、下部を引出し式とする構成をとってある。上から冷蔵室104、引出し式の野菜室105と引出し式の冷凍室106となっている。各断熱区画にはそれぞれ断熱扉がガスケット109を介して設けられている。上から冷蔵室回転扉110、野菜室引出し扉111、冷凍室引出し扉112である。また、冷蔵室回転扉110には扉ポケット111が収納スペースとして設けられており、庫内には複数の収納棚113が設けられてある。また冷蔵室104の最下部には貯蔵ケース114が設けてある。
The refrigerator
また、冷蔵庫本体100は、第一の天面部115と奥部を低く凹ませた第二の天面部116を設けてあり機械室117を構成してある。
Further, the refrigerator
冷凍サイクルは第二の天面部116に弾性支持して配設した圧縮機118と、圧縮機118と近傍に設けた機械室ファン119と、冷蔵庫本体100下部に設けた凝縮器120と、凝縮機120近傍に設けた凝縮器ファン121と減圧器であるキャピラリー122と、水分除去を行うドライヤ(図示せず)と、野菜室105と冷凍室106の背面で、冷却ファン123を近傍に配置して設けた蒸発器124と、吸入配管125とを環状に接続して構成されている。
The refrigeration cycle includes a
また、冷媒は炭化水素系の冷媒、例えばイソブタンを用い、圧縮機118内にはイソブタンと相溶性のある鉱油が封入されている。
Further, a hydrocarbon-based refrigerant such as isobutane is used as the refrigerant, and a mineral oil compatible with isobutane is enclosed in the
機械室117はビスなどで固定された機械室カバー126が第一の天面部116より高い位置に設けられており、圧縮機118や機械室ファン119などを収納している。カバー部との天面高さの差を利用して、第一の天面部116上部と連通させる開口部(図示せず)を機械室カバー126に備え放熱風路を構成している。
The
配管構成は圧縮機118より吐出した後、側面パネルにアルミテープなどで熱交換可能に配設して、底部の凝縮器120へと接続される。さらに凝縮器120を出た後、冷蔵庫本体100の開口前面周囲を経て、反対側面に配設して機械室117に戻り、ドライヤ(図示せず)を経て、キャピラリー122と接続される。
After discharging from the
キャピラリー122と吸入配管125は、概ね同等の長さの銅管であり、端部を残して中央部を熱交換可能にはんだ付けされている。キャピラリー122は減圧のため内部流動抵抗が大きい細径の銅管が用いられており、その内径は0.6ミリから1.0ミリ程度で長さと組み合わせて、調節して減圧量を設計する。吸入配管125は圧力損失を低減するために大径の銅管が用いられており、その外径は標準的管寸法である6.35ミリから7.94ミリ程度で低コストに設計されている。
The capillary 122 and the
また熱交換部の長さを確保するために、蛇行させてコンパクトにまとめて、冷蔵室104の背面に蛇行部がくるようにして、内箱101と外箱102との中間に接触しないように配置され断熱体103に埋設される。キャピラリー122と吸入配管125は、一方の端部を内箱101の野菜室105後方位置から突き出して蒸発器124と接続されており、また他方の端部を機械室117に突き出して圧縮機118などと接続されている。
Further, in order to ensure the length of the heat exchange unit, the meandering unit is compacted and compactly arranged so that the meandering unit comes to the back of the
また、庫内は蒸発器124で冷却された冷気を分配するダンパ127を備えた風路128により冷気が分配されて温度調節が行われる。
In addition, the cool air is distributed by an
さらに、蒸発器124の下方には除霜ヒータ129が設けられており、その下方には除霜水を受けて外部排出するドレン130が設けてある。冷蔵庫本体100の外部でドレン130の下方には蒸発皿131が設けてあり、除霜時の排水が集められる。
Further, a
蒸発皿131は凝縮器120の後方に配置されており、凝縮器ファン121により凝縮器120を通過した高温空気が蒸発皿131表面を通風するので、除霜水を乾燥させることができる。
The evaporating
各室の温度設定は、冷蔵室104が冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されており、貯蔵ケース114は肉魚などの保鮮性向上のため比較的低めの温度、例えば−3〜0℃で設定される。貯蔵ケースは冷蔵室104の室内下方に配置されているので、冷却風路の開口面積で冷却量の調節を行うことで冷蔵室104より低温とすることが容易であり、専用のダンパを用いないこともある。
The temperature setting of each room is normally set at 1 to 5 ° C. with the lower limit of the temperature at which the
野菜室105は冷蔵室104と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。凍らない程度で低温にするほど葉野菜の鮮度を長期間維持することが可能である。また、野菜室105は、冷却風路の開口面積で冷却量の調節を行い、専用のダンパを設けないこともある。
The
冷凍室106は冷凍保存のために通常−22〜−18℃で設定されているが、冷凍保存状態の向上のために、例えば−30や−25℃の低温で設定されることもある。
The
以上のように構成された冷蔵庫において、その動作、作用を説明する。 The operation | movement and effect | action are demonstrated in the refrigerator comprised as mentioned above.
庫内の温度は設定された所定の温度に応じて冷却運転がなされる。 Cooling operation is performed according to the set predetermined temperature.
まず圧縮機118の動作により吐出された高温高圧の冷媒は、凝縮器ファン121により冷蔵庫本体100の下方の比較的低温の空気で空冷される凝縮器120と冷蔵庫本体100の周囲に配設された配管とにより放熱されるとともに凝縮液化し、キャピラリー122に至る。その後、キャピラリー122で吸入配管125と熱交換しながら減圧されて低温低圧の冷媒が蒸発器124に至る。
First, the high-temperature and high-pressure refrigerant discharged by the operation of the
冷却用ファン123の動作により、低温となった蒸発器124と熱交換した低温冷気は庫内と断熱された冷却ダクト128とダンパ127によって吐出口(図示せず)から、各室に分配されて温度調節が行われる。庫内に吐出された冷気は戻り風路(図示せず)で再度、蒸発器124へと導かれ循環する構成となっている。
Due to the operation of the cooling
蒸発器124で、庫内の空気と熱交換した冷媒は、その後吸入配管125を通り、圧縮機118へと吸い込まれる。このとき、圧縮機118内に封入された圧縮機摺動部潤滑性確保のための冷凍機油は冷媒と相溶性を持ち、共に配管内を循環しているので、圧縮機118を冷蔵庫本体の上方に配設する場合、冷凍機油の循環性を確保することが信頼性に係る重要なポイントとなるが、冷媒としてイソブタンを用いることにより、運転時の配管内ガス流速を増加させて冷凍機油の循環性を向上させることができる。さらに相溶性のある鉱油を用いることで、相変化により液冷媒や二相冷媒においても冷凍機油の循環性が向上する。
The refrigerant that has exchanged heat with the air in the cabinet by the
さらに、圧縮機118と離れた場所に凝縮器120を配置することで、高温となる圧縮機118の熱影響を受けることがないので、配管長を短くしての小型化が可能である。またさらに圧縮機118と離れて、底面に凝縮器120を配置することで、比較的低温の空気と熱交換でき、さらに小型化が可能となる。これは通常、冷蔵庫の設置空間にも温度ばらつきがあり、天井に近いほど高温となっているからである。また、近年の気密性の高い住宅においては、この温度差がより顕著となっている。また、通常冷蔵庫が設置されるキッチン環境においては調理機器の影響により、さらに顕著な温度差が生じている。
Furthermore, by disposing the
また、本実施の形態のように冷凍室106が冷蔵庫本体100の下部に配置された所謂ボトムフリーザータイプの冷蔵庫においては、冷凍室106と凝縮器120とを隣接させるために熱伝導による底面の温度低下からも凝縮器120の小型化が可能となる。
Further, in the so-called bottom freezer type refrigerator in which the
凝縮器120の配管長小型化により、高圧配管での液冷媒滞留量を低減できるので、高圧配管中の液冷媒と混ざり合った冷凍機油の量を低減でき、冷凍機油の循環性を向上させることができる。
By reducing the pipe length of the
なお、上述の内容は凝縮器120の小型化によって滞留冷凍機油の絶対量低減による冷凍機油の循環性向上の観点で述べたが、主たる凝縮器120を特に、冷蔵庫本体100の底面に設置して蒸発器124より低い配置とし、他の凝縮配管(例えば、冷蔵庫本体外郭の結露防止用配管など)の経路を長く、かつ立ち上がり配管を多用する場合などには、外気温度の低い冬季や夜間などの条件下で液冷媒量が増え混ざり合った冷凍機油の粘度増大も相まって循環性が低下するケースが考えられるが、このような条件が重なった場合においても、冷媒として炭化水素系のイソブタン等を用いることにより、運転時の配管内流速を大きく増強させることができるので、この流速の増強に併せて冷媒と混ざり合う鉱油である冷凍機油の循環性を確保することができるものである。
In addition, although the above-mentioned content was described in the viewpoint of the improvement of the circulation property of refrigerating machine oil by reducing the absolute amount of stagnant refrigerating machine oil by downsizing the
なお、今回は3ドアタイプのレイアウトについて述べたが、4ドアや5ドアなどの多ドアタイプであっても、同様の効果が得られるものである。 Although the three-door layout has been described this time, the same effect can be obtained even with a multi-door type such as a 4-door or 5-door.
またなお、凝縮器120はフィンコイルやスパイラルフィンコイルやプレートコイルなどいずれでもよい。
In addition, the
(実施の形態5)
図9は、本発明の実施の形態5における冷蔵庫の概略図を示すものであり、図10は同実施の形態におけるタイムチャートである。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 5)
FIG. 9 shows a schematic diagram of the refrigerator in the fifth embodiment of the present invention, and FIG. 10 is a time chart in the same embodiment. In addition, the same code | symbol is attached | subjected about the same structure as background art.
圧縮機132は内部が低圧に保持された排気容量可変方式であるレシプロインバーターが用いられている。排気容量可変方式はインバーターで回転数を制御するレシプロの他にロータリ、スクロールなどの圧縮方式や、ストローク制御を行うリニア圧縮方式などが使われており、排気容量制御手段133によって、排気容量(冷却能力)を変化させるように制御されている。
The
なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。 As in the above-described embodiment, as the refrigerant, for example, isobutane is used as the hydrocarbon-based refrigerant, and the refrigerating machine oil is filled with mineral oil that is compatible with isobutane.
特に低圧容器型のインバータレシプロ方式では、圧縮機132内部の圧力が低いので封入された冷凍機油に冷媒が解けにくく冷媒量を削減できることや、摺動部が回転数に依存したオイルシールではないので低回転数での効率がよく、静音化と省エネに最もメリットがある。また低回転時は冷媒循環量の低減に併せて冷凍機油の吐出量が低減できるので、圧縮機132内の冷凍機油の減少を防止できる。
In particular, in the low pressure vessel type inverter reciprocating system, the pressure inside the
各室にはサーミスタなどの温度検知手段134が設けられており、制御手段135によって温度調節が行われる。 Each chamber is provided with temperature detection means 134 such as a thermistor, and the temperature is adjusted by the control means 135.
図10のタイムチャートにおいて、冷却運転安定時に、サーミスタや赤外線センサーなどの庫内温度検知手段134は庫内の温度を所定間隔で検知して、制御手段135へと情報を伝達している。 In the time chart of FIG. 10, when the cooling operation is stable, the internal temperature detection means 134 such as a thermistor or an infrared sensor detects the internal temperature at a predetermined interval and transmits information to the control means 135.
制御手段135は庫内温度に対して、冷却運転を開始させる庫内上限温度設定(high)と冷却を停止させる庫内下限温度設定(low)を持ち、庫内上限温度設定を超えて温度上昇した場合にさせる。また庫内下限温度設定を超えて温度低下した場合に制御手段135に圧縮機132を停止させるよう制御する。
The control means 135 has an internal upper limit temperature setting (high) for starting the cooling operation and an internal lower limit temperature setting (low) for stopping the cooling, and the temperature rises exceeding the internal upper limit temperature setting with respect to the internal temperature. If you do. In addition, when the temperature falls below the lower limit temperature setting in the cabinet, the
圧縮機132が停止している間、庫内温度は上昇し、(T1)において庫内温度検知手段134は庫内上限温度設定を超えることを検知する。この信号により制御手段135は、圧縮機132を動作させる。排気容量制御手段133はインバーターによる周波数可変での排気量制御、すなわち冷凍能力の可変制御であり、省エネルギー化のために、できるだけ低い回転数で圧縮機132を運転させるものである。
While the
排気容量制御手段133はまず低回転数で圧縮機132の運転を開始し、所定のタイミングで回転数を変化させていく。回転数の変化タイミングは例えば庫内上限温度設定と下限温度設定の範囲で所定の温度範囲を持ち、それぞれの温度範囲に応じた動作回転数で運転させたり、温度の変化量に応じて運転回転数を設定するなどの方法がある。いずれも負荷が大きく、冷凍能力が過不足している状態を推定して冷凍能力をマッチングさせるべく回転数の増減を行うものである。
The exhaust capacity control means 133 first starts the operation of the
(T1)において制御手段135に設けられた第一のタイマ136aのカウントが開始される。第一のタイマ136aは圧縮機132の動作中にカウントを行い、圧縮機132が停止したらカウントを中断する。(T2)において、第一のタイマ136aは所定の時間が積算経過したことをカウントアップ信号で制御手段135に情報伝達する。制御手段135は、この信号を元に排気容量制御手段133に強制的に回転数を増加させる。また第二のタイマ136bのカウントが開始され、別途定められた所定時間を積算経過した時に制御手段135にカウントアップ信号を発信する(T3)。(T3)において、排気容量制御手段133は強制的に増加させていた圧縮機132の回転数を元の状態に戻し、通常制御に戻る。圧縮機132の運転に伴い庫内温度が低下し、庫内温度検知手段134は庫内下限温度設定を超えて庫内温度が低下することを検知し(T4)、制御手段135は圧縮機132を停止させる。
At (T1), the count of the
圧縮機132の停止に伴い、庫内温度は徐々に上昇し、再度庫内上限温度設定を超えることを庫内温度検知手段134が検知する(T5)。
With the
以上の動作を繰り返すことにより、庫内温度を所定の温度に調節する。また、各室の温度調節は温度検知手段に応じて、ダンパ127の動作により冷気量を調節して行う場合もある。
By repeating the above operation, the internal temperature is adjusted to a predetermined temperature. Further, the temperature of each chamber may be adjusted by adjusting the amount of cold air by the operation of the
以上のように、排気量可変型圧縮機132を用いることで、圧縮機132の低回転化や、ランクダウンによる省エネと圧縮機の冷凍機油循環量の確保を両立することができる。
As described above, by using the
また、第一のタイマ136aと第二のタイマ136bは兼用すれば合理化できる。
Further, if the
なお、上述の観点は圧縮機132の排気量低減制御により冷媒吐出量の低減による圧縮機132からの冷凍機油の持ち出し量低減を図るものであるが、冷凍サイクルの冷媒配管長が長い場合や配管の立ち上がりを多用する場合、冬季など外気温度が低下して液冷媒の増加や冷凍機油の粘度増大の影響がある場合などの条件下においては、圧縮機132の排気量低減制御による運転を行うと、冷媒流速に配慮を施していないと、冷媒循環量の低減に伴って圧縮機132から一部持ち出された冷凍機油の戻り性が低下するケースも考えられる。
The above-mentioned viewpoint is intended to reduce the amount of refrigeration oil brought out from the
これに対して、本実施の形態においては、上述のように冷媒として炭化水素系の冷媒であるイソブタンを用いることで、低排気量条件であっても、従来に比して圧縮機132から吐出された冷凍機油が圧縮機132へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで、冷凍機油内に冷媒が溶け込むことで冷凍機油の粘度を低下させることができ、蒸発器124から圧縮機132への冷凍機油の戻り量をより増加できる。
In contrast, in the present embodiment, as described above, isobutane, which is a hydrocarbon-based refrigerant, is used as the refrigerant, so that even under low displacement conditions, the
つまり、条件によって低排気量制御による冷凍サイクル中に冷媒と共に吐出された冷凍機油の戻り性を改善する必要のあるケースに対しては、冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用が効力を発揮するものである。 In other words, for cases where it is necessary to improve the return performance of refrigeration oil discharged together with the refrigerant during the refrigeration cycle with low displacement control depending on the conditions, mineral oil compatible with the refrigerant flow rate enhancement by refrigerant hydrocarbonation The use of is effective.
以上のように、圧縮機132の低排気量制御を行う場合は、冷媒吐出に伴う冷凍機油の持ち出し低減効果と、一部の条件においては持ち出し後の冷凍機油の戻り性低下の影響とが共存する背反課題があるが、この両課題を同時に解決する手段として、冷媒の炭化水素化と相溶性のある鉱油の組み合わせ使用に加えて密閉容器内低圧型の圧縮機132の適用が有効な手段となり得る。
As described above, when low displacement control of the
すなわち、まず圧縮機132の密閉容器内を低圧型とした上で低排気量制御を行い圧縮機132からの冷媒吐出に伴う冷凍機油持ち出し量を低減し、かつ冷凍サイクル中に持ち出された一部冷凍機油に対しては冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用で圧縮機132への戻り性を向上させるものである。これにより、圧縮機132から吐出される冷凍機油の量を低減でき、圧縮機132内の冷凍機油不足による、圧縮機132の損傷等の危険性をさらに低減できるものである。
That is, first, the inside of the sealed container of the
(実施の形態6)
図11は、本発明の実施の形態6におけるタイムチャートを示すものである。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 6)
FIG. 11 shows a time chart in the sixth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。 As in the above-described embodiment, as the refrigerant, for example, isobutane is used as the hydrocarbon-based refrigerant, and the refrigerating machine oil is filled with mineral oil that is compatible with isobutane.
庫内温度検知手段134が庫内温度上限設定を検知する(T1)において制御手段135に設けられた第一のタイマ136aのカウントが開始される。排気容量制御手段133はインバーター圧縮機132の動作回転数を最大回転数として運転を開始する。第一のタイマ136aはあらかじめ設定された所定時間カウントを行い(T2)において、第一のタイマ136aはカウントアップ信号を制御手段135に情報伝達する。制御手段135は、この信号を元に排気容量制御手段133に通常運転制御に回転数を減速させる。庫内温度検知手段があらかじめ設定された温度を検知するなどして(T3、T4)圧縮機132の回転数を制御して省エネと冷却能力の両立が図られる。庫内温度検知手段134が庫内温度設定下限を検知すると(T5)、圧縮機132は制御手段135により停止される。庫内温度が上昇し再度庫内上限温度設定を超えることを庫内温度検知手段134が検知する(T6)。
When the internal temperature detection means 134 detects the internal temperature upper limit setting (T1), the count of the
以上の動作を繰り返すことで、庫内の温度調節が行われる。これにより圧縮機132の起動時に高い回転数で起動するので、停止中の冷媒への冷凍機油溶け込みにより吐出油量が最も多くなり、かつ給油条件が最も悪い摺動開始時に確実な配管内冷媒流速を確保することで冷凍機油の循環性を確保することができる。さらに停止中に冷媒に溶け込んだ状態で冷凍機油が蒸発器124に滞留するために、起動時に配管内冷媒流速を確保することで、より多くの冷凍機油を圧縮機132へと戻すことができる。
The internal temperature is adjusted by repeating the above operation. As a result, since the
なお、最大排気容量を用いることで確実な冷凍機油の循環が行われるが、電源周波数である50rps以上の回転数であれば同様の効果が得られる。 In addition, although the refrigerating machine oil is reliably circulated by using the maximum exhaust capacity, the same effect can be obtained if the rotation speed is 50 rps or more which is the power supply frequency.
以上のように、本発明に係る冷蔵庫は、圧縮機を蒸発器より上方に配設した冷凍サイクルを有する場合の圧縮機への冷凍機油の戻り性を向上できるため、圧縮機内の冷凍機油が不足するといった危険性を低減でき、家庭用冷蔵庫のみならず業務用冷蔵庫、自動販売機、その他の冷却機器を備えた貯蔵庫の冷凍サイクル構成として有用である。 As described above, the refrigerator according to the present invention can improve the returnability of the refrigerating machine oil to the compressor when it has a refrigerating cycle in which the compressor is disposed above the evaporator, so that the refrigerating machine oil in the compressor is insufficient. This is useful as a refrigeration cycle configuration of a storage unit equipped with a refrigerator for business use, a vending machine, and other cooling devices as well as a refrigerator for home use.
1,100 冷蔵庫本体
2,104 冷蔵室
4,106 冷凍室
9,124 蒸発器
11,117 機械室
12,118 圧縮機
13,115 第一の天面部
14 冷蔵庫外箱背面
15,116 第二の天面部
16,120 凝縮器
17 機械室カバー
18 冷凍サイクル
19,122 キャピラリー
20 サクションライン
21 曲げ部
22 トラップ部
23 冷蔵室冷却用蒸発器
24 冷凍室冷却用蒸発器
25 ジョイント配管
105 野菜室
119 機械室ファン
121 凝縮器ファン
123 冷却ファン
126 機械室カバー
132 排気容量可変型圧縮機(圧縮機)
133 排気容量制御手段
134 庫内温度検知手段
135 制御手段
136a 第一のタイマ
136b 第二のタイマ
DESCRIPTION OF SYMBOLS 1,100 Refrigerator body 2,104 Refrigeration room 4,106 Freezer room 9,124 Evaporator 11,117 Machine room 12,118 Compressor 13,115 First
133 Exhaust capacity control means 134 Internal temperature detection means 135 Control means 136a
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005332382A JP3824016B2 (en) | 2004-05-18 | 2005-11-17 | refrigerator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004147458 | 2004-05-18 | ||
JP2005332382A JP3824016B2 (en) | 2004-05-18 | 2005-11-17 | refrigerator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004359446A Division JP4396504B2 (en) | 2004-05-18 | 2004-12-13 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006064377A JP2006064377A (en) | 2006-03-09 |
JP3824016B2 true JP3824016B2 (en) | 2006-09-20 |
Family
ID=36111005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005332382A Active JP3824016B2 (en) | 2004-05-18 | 2005-11-17 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3824016B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4844241B2 (en) * | 2006-05-31 | 2011-12-28 | 株式会社デンソー | Refrigeration cycle equipment |
-
2005
- 2005-11-17 JP JP2005332382A patent/JP3824016B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006064377A (en) | 2006-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8596084B2 (en) | Icemaker with reversible thermosiphon | |
JP2006250378A (en) | Cooling storage | |
JP6559335B2 (en) | refrigerator | |
JP2012127514A (en) | Refrigerator-freezer | |
JP3824015B2 (en) | refrigerator | |
CN102997558B (en) | Refrigerator | |
WO2006030736A1 (en) | Refrigerator | |
JP2007309585A (en) | Refrigerating device | |
JP4396504B2 (en) | refrigerator | |
JP3824016B2 (en) | refrigerator | |
JP3724503B1 (en) | refrigerator | |
JP2004324902A (en) | Freezing refrigerator | |
JP2017026210A (en) | refrigerator | |
CN100462654C (en) | Refrigerator | |
RU2330222C1 (en) | Electro refrigirator with hot meal thermos of nr yansufin | |
JP2012026645A (en) | Refrigerating device, and auger type ice making machine and showcase using the same | |
JP2005098605A (en) | Refrigerator | |
JP5475033B2 (en) | Refrigeration equipment | |
WO2020121404A1 (en) | Refrigerator | |
JP4286106B2 (en) | Freezer refrigerator | |
JP3722148B1 (en) | refrigerator | |
CN102692111B (en) | Freezer | |
JP2022125447A (en) | Refrigeration cycle device | |
KR100419154B1 (en) | Machine room structure of showcase for defrost evaporation | |
JP3626950B2 (en) | refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20060202 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20060221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060619 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3824016 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130707 Year of fee payment: 7 |