JP3724503B1 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3724503B1
JP3724503B1 JP2004376064A JP2004376064A JP3724503B1 JP 3724503 B1 JP3724503 B1 JP 3724503B1 JP 2004376064 A JP2004376064 A JP 2004376064A JP 2004376064 A JP2004376064 A JP 2004376064A JP 3724503 B1 JP3724503 B1 JP 3724503B1
Authority
JP
Japan
Prior art keywords
compressor
refrigerator
refrigerant
evaporator
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004376064A
Other languages
Japanese (ja)
Other versions
JP2006003062A (en
Inventor
義人 木村
哲哉 斎藤
竜也 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004376064A priority Critical patent/JP3724503B1/en
Application granted granted Critical
Publication of JP3724503B1 publication Critical patent/JP3724503B1/en
Publication of JP2006003062A publication Critical patent/JP2006003062A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

【課題】圧縮機への冷凍機油の戻り性を向上した冷蔵庫を提供すること。
【解決手段】圧縮機132の排気容量を変化させる排気容量制御手段133を備えた制御手段とを有し、圧縮機132は冷蔵庫本体100の天面部もしくは背面上部に配設し、冷媒として炭化水素を、冷凍機油として鉱油を用いた冷凍サイクルを有したことにより、圧縮機132の単位時間当たりの排気量が増大し、冷媒の単位時間当たりの体積流量が増大するので、圧縮機132から吐出された冷凍機油が圧縮機132へ戻るのに十分な配管内の流速を確保することができる。
【選択図】図9
An object of the present invention is to provide a refrigerator having improved refrigerating machine oil return performance to a compressor.
And a control means having an exhaust capacity control means 133 for changing the exhaust capacity of the compressor 132. The compressor 132 is disposed on the top surface or the upper back of the refrigerator main body 100, and is used as a refrigerant as a refrigerant. Therefore, since the amount of exhaust gas per unit time of the compressor 132 increases and the volumetric flow rate per unit time of the refrigerant increases, the refrigerant 132 is discharged from the compressor 132. It is possible to ensure a sufficient flow velocity in the pipe for the refrigerating machine oil to return to the compressor 132.
[Selection] Figure 9

Description

冷凍サイクル内の冷凍機油の圧縮機への戻り性を向上した冷蔵庫に関するものである。   The present invention relates to a refrigerator that improves the return of refrigeration oil in a refrigeration cycle to a compressor.

近年、冷蔵庫は地球環境保護の観点から更なる省エネルギー化が進むとともに、その使用性や収納性の向上が求められている。   In recent years, refrigerators are required to be further energy-saving from the viewpoint of protecting the global environment and to be improved in usability and storage.

従来のこの種の冷蔵庫は、機械室を形成する圧縮機等を冷蔵庫の庫内収納性からみて使い勝手の悪い冷蔵庫本体の天面や、もしくは冷蔵庫本体の背面上部に設置するという方法がとられていた(例えば、特許文献1参照)。   In the conventional refrigerator of this type, a compressor or the like forming a machine room is installed on the top surface of the refrigerator body, which is inconvenient in view of the storage capacity of the refrigerator, or on the upper back of the refrigerator body. (For example, see Patent Document 1).

図12は、特許文献1に記載された従来の冷蔵庫の構成を示すものである。   FIG. 12 shows a configuration of a conventional refrigerator described in Patent Document 1. As shown in FIG.

冷蔵庫本体1は、上から冷蔵室2、野菜室3、冷凍室4という構成からなり、冷蔵室2は回転扉5を有し、野菜室3は野菜室引出扉6、冷凍室4は冷凍室引出扉7を有している。この構成において、庫内ファン8と蒸発器9等からなる冷却ユニット10を、最下段の貯蔵室として収納部を形成する冷凍室4の開口部の高さ寸法と概ね同じ高さとして冷凍室4の背面後部に設置し、機械室11を形成する圧縮機12などを、冷蔵庫の庫内収納性からみて使い勝手の良くない冷蔵室2の天面、もしくは、冷蔵庫本体1の背面上部に設置している。   The refrigerator main body 1 is composed of a refrigerator compartment 2, a vegetable compartment 3, and a freezer compartment 4 from above. The refrigerator compartment 2 has a rotary door 5, the vegetable compartment 3 is a vegetable compartment drawer door 6, and the freezer compartment 4 is a freezer compartment. A drawer door 7 is provided. In this configuration, the cooling unit 10 including the internal fan 8, the evaporator 9, and the like is set to a height that is substantially the same as the height of the opening of the freezing chamber 4 that forms a storage unit as the lowermost storage chamber. The compressor 12 and the like forming the machine room 11 are installed on the top surface of the refrigerator room 2 which is not convenient in view of the storage capacity of the refrigerator, or on the upper rear part of the refrigerator body 1. Yes.

この構成によって、機械室11の体積分が冷蔵室2と野菜室3を区画する区画壁の下側から上側に移動したことにより、各貯蔵室の内容積を一定とすると必然的に冷蔵室2と野菜室3の区画壁の位置を下方に下げることができ、野菜室3内の収納物の取り出しが容易となる。
特開平11−183014号公報
With this configuration, the volume of the machine room 11 has moved from the lower side to the upper side of the partition wall that partitions the refrigerator room 2 and the vegetable room 3, so that the internal volume of each storage room is inevitably constant. And the position of the partition wall of the vegetable compartment 3 can be lowered | hung below, and the taking-out of the storage thing in the vegetable compartment 3 becomes easy.
JP-A-11-183014

しかしながら、上記従来の構成では、圧縮機を冷蔵庫本体の天面に、蒸発器を冷蔵庫本体の底面近傍に配設することにより、蒸発器出口と圧縮機を接続するジョイント配管の立ち上がり高さが長くなり、例えば冷蔵庫本体を構成するウレタンの熱伝導率低減や、真空断熱材の適用等により冷蔵庫本体の断熱性能が向上し、圧縮機もそれに合わせて低能力化できる為、冷媒循環量が大きく低下する。これに伴って、配管内の冷媒の流速が低下し、冷凍機油の圧縮機への戻り量が減少するといった課題があった。   However, in the above-described conventional configuration, the rising height of the joint pipe connecting the evaporator outlet and the compressor is increased by disposing the compressor on the top surface of the refrigerator body and the evaporator near the bottom surface of the refrigerator body. For example, the heat insulation performance of the refrigerator body is improved by reducing the thermal conductivity of the urethane that makes up the refrigerator body, and the application of vacuum insulation, etc., and the compressor capacity can be reduced accordingly, so the refrigerant circulation rate is greatly reduced To do. In connection with this, the flow rate of the refrigerant | coolant in piping fell, and there existed a subject that the return amount to the compressor of refrigeration oil decreased.

また、蒸発器内に滞留する冷凍機油は、圧縮機運転中以外にも蒸発器の除霜中に冷媒のサーモサイフォン効果により冷媒とともに圧縮機へと戻されるが、冷凍機油への冷媒の溶解度が小さい場合は、冷媒とともに圧縮機へと運ばれにくくなり、圧縮機への戻り量が減少するといった課題もあった。   In addition, the refrigeration oil staying in the evaporator is returned to the compressor together with the refrigerant by the thermosiphon effect of the refrigerant during the defrosting of the evaporator in addition to the operation of the compressor, but the solubility of the refrigerant in the refrigeration oil is reduced. If it is small, there is a problem that it is difficult to be carried to the compressor together with the refrigerant, and the amount of return to the compressor is reduced.

本発明は、上記従来の課題を解決するもので、冷凍サイクル内の冷凍機油の圧縮機への戻り性を向上し、圧縮機を蒸発器より上方に配設した冷凍サイクルの信頼性を向上し冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, improves the return of refrigeration oil in the refrigeration cycle to the compressor, and improves the reliability of the refrigeration cycle in which the compressor is disposed above the evaporator. The object is to provide a refrigerator.

上記従来の課題を解決するために、本発明の冷蔵庫は、圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルと、前記圧縮機の排気容量を変化させる排気容量制御手段を備えた制御手段とを有し、前記圧縮機は密閉容器と前記密閉容器内に備えられた電動要素および圧縮要素を有し、前記密閉容器の内部空間は前記冷凍サイクルにおける低圧側であるとともに、代替フロン冷媒のR134aに比べて小さくなる単位体積当たりの冷凍能力を補うために相対的に気筒容積を大きくした炭化水素冷媒用の圧縮機であり、前記凝縮器は主たる凝縮器と冷蔵庫本体のパネルに配設された凝縮配管と冷蔵庫本体の開口前面周囲に配設された結露防止用配管とを備え、前記圧縮機は冷蔵庫本体の天面の一部に設置されて前記蒸発器より上方に配置され、前記主たる凝縮器は前記蒸発器より下方に配置され、前記冷凍サイクルには冷媒としての炭化水素と冷凍機油としての鉱油が封入され、前記排気容量制御手段によって前記圧縮機の排気量が可変となるものである。 In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a compressor, a condenser, a decompressor, and an evaporator in order to form a series of refrigerant flow paths, and an exhaust capacity of the compressor. A control means having an exhaust capacity control means for changing the pressure, the compressor has a sealed container, an electric element and a compression element provided in the sealed container, and the internal space of the sealed container is the refrigeration A compressor for a hydrocarbon refrigerant that is on the low pressure side in the cycle and has a relatively large cylinder volume in order to compensate for the refrigeration capacity per unit volume that is smaller than R134a of an alternative chlorofluorocarbon refrigerant. A main condenser and a condensation pipe arranged on the panel of the refrigerator main body and a condensation prevention pipe arranged around the front face of the opening of the refrigerator main body, and the compressor is installed on a part of the top surface of the refrigerator main body. Te Arranged from serial evaporator above, the main condenser is disposed below the evaporator, the mineral oil as the refrigeration cycle and hydrocarbons as a refrigerant the refrigeration oil is sealed, the by the exhaust capacity control means The displacement of the compressor is variable.

冷媒として炭化水素を使用することにより、例えば従来の冷媒が代替フロン冷媒であるR134aである場合と比べて、炭化水素の単位体積当たりの冷凍能力は従来と比較して約1/2程度まで小さくなるので、同等の冷凍能力を確保するために圧縮機の気筒容積を約2倍程度にまで大きくすることができ、これにより冷媒の体積流量が増大し、圧縮機運転時の配管内の流速が増加する。   By using hydrocarbons as the refrigerant, for example, the refrigeration capacity per unit volume of the hydrocarbon is reduced to about ½ compared with the conventional case, compared with the case where the conventional refrigerant is R134a which is an alternative chlorofluorocarbon refrigerant. Therefore, the cylinder volume of the compressor can be increased to about twice in order to ensure the same refrigeration capacity, thereby increasing the volume flow rate of the refrigerant, and the flow rate in the piping during the compressor operation is increased. To increase.

また、冷凍機油として鉱油を使用することにより、従来のR134aとエステル油との組み合わせと比較して冷媒の冷凍機油に対する溶解度が大きくなる。   Moreover, the use of mineral oil as the refrigerating machine oil increases the solubility of the refrigerant in the refrigerating machine oil as compared with the conventional combination of R134a and ester oil.

また、圧縮機の排気容量を変化させる排気容量制御手段によって圧縮機の排気量が可変となることにより、低排気量制御時には圧縮機からの冷媒吐出に伴う冷凍機油持ち出し量を低減し、かつ冷凍サイクル中に持ち出された一部冷凍機油に対しては冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用で圧縮機への戻り性を向上させることができる。   Also, by making the displacement of the compressor variable by the displacement control means that changes the displacement of the compressor, the amount of refrigerating machine oil brought out due to refrigerant discharge from the compressor can be reduced and the amount of refrigeration can be reduced. For some refrigerating machine oil taken out during the cycle, the return to the compressor can be improved by using a mineral oil that is compatible with the refrigerant flow rate enhancement by the hydrocarbon conversion of the refrigerant.

本発明の冷蔵庫は、圧縮機運転時の配管内の流速を増加させることにより、冷凍機油が立ち上がり配管を上昇するのに十分な流速を確保でき、蒸発器から圧縮機への冷凍機油の戻り量を大きくすることで冷蔵庫の信頼性を向上することができる。   The refrigerator of the present invention can secure a sufficient flow rate for the refrigeration oil to rise and rise through the piping by increasing the flow rate in the piping during compressor operation, and the return amount of the refrigeration oil from the evaporator to the compressor The reliability of the refrigerator can be improved by increasing the size.

また、冷媒の冷凍機油に対する溶解度が大きくなる冷凍機油を用いることにより、除霜時においてもサーモサイフォン効果を利用して冷媒とともに蒸発器から圧縮機への冷凍機油の戻り量大きくすることで冷蔵庫の信頼性を向上することができる。   In addition, by using refrigeration oil that increases the solubility of the refrigerant in the refrigeration oil, it is possible to increase the return amount of the refrigeration oil from the evaporator to the compressor together with the refrigerant using the thermosiphon effect even during defrosting. Reliability can be improved.

請求項1に記載の発明は、圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルと、前記圧縮機の排気容量を変化させる排気容量制御手段を備えた制御手段とを有し、前記圧縮機は密閉容器と前記密閉容器内に備えられた電動要素および圧縮要素を有し、前記密閉容器の内部空間は前記冷凍サイクルにおける低圧側であるとともに、代替フロン冷媒のR134aに比べて小さくなる単位体積当たりの冷凍能力を補うために相対的に気筒容積を大きくした炭化水素冷媒用の圧縮機であり、前記凝縮器は主たる凝縮器と冷蔵庫本体のパネルに配設された凝縮配管と冷蔵庫本体の開口前面周囲に配設された結露防止用配管とを備え、前記圧縮機は冷蔵庫本体の天面の一部に設置されて前記蒸発器より上方に配置され、前記主たる凝縮器は前記蒸発器より下方に配置され、前記冷凍サイクルには冷媒としての炭化水素と冷凍機油としての鉱油が封入され、前記排気容量制御手段によって前記圧縮機の排気量が可変となるもので、圧縮機の単位時間当たりの排気量がR134a等と比べて増大し、冷媒の単位時間当たりの体積流量が増大するので、圧縮機から吐出された冷凍機油が圧縮機へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで、冷凍機油内に冷媒が溶け込むことで冷凍機油の粘度を低下させることができ、蒸発器から圧縮機への冷凍機油の戻り量をより増加できる。 The invention according to claim 1 is a refrigeration cycle comprising a compressor, a condenser, a decompressor and an evaporator in order to form a series of refrigerant flow paths, and an exhaust capacity control means for changing the exhaust capacity of the compressor. And the compressor has a sealed container and an electric element and a compression element provided in the sealed container, and the internal space of the sealed container is on the low pressure side in the refrigeration cycle. , A compressor for hydrocarbon refrigerant having a relatively large cylinder volume in order to compensate for the refrigerating capacity per unit volume, which is smaller than that of R134a as an alternative chlorofluorocarbon refrigerant, and the condenser includes a main condenser and a refrigerator main body. A condensation pipe arranged on the panel and a condensation prevention pipe arranged around the front face of the opening of the refrigerator main body, the compressor being installed on a part of the top surface of the refrigerator main body and above the evaporator Arranged The main condenser is disposed below the evaporator, the refrigeration cycle is mineral oil encapsulation of the hydrocarbon and the refrigerator oil as a coolant, and an exhaust amount of the compressor by the exhaust capacity control means variable As a result, the displacement of the compressor per unit time increases compared to R134a and the like, and the volume flow rate per unit time of the refrigerant increases, so that the refrigeration oil discharged from the compressor returns to the compressor. By ensuring sufficient flow velocity in the piping and increasing the solubility of the refrigerant in the refrigeration oil, the viscosity of the refrigeration oil can be reduced by melting the refrigerant into the refrigeration oil. The amount of refrigerating machine oil returned to can be further increased.

さらに、排気容量制御手段によって圧縮機の排気量が可変となることにより、低排気量制御時には圧縮機からの冷媒吐出に伴う冷凍機油持ち出し量を低減し、かつ冷凍サイクル中に持ち出された一部冷凍機油に対しては冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用で圧縮機への戻り性を向上させることができる。   Furthermore, by making the displacement of the compressor variable by means of the exhaust capacity control means, the amount of refrigeration oil taken out due to refrigerant discharge from the compressor is reduced during low displacement control, and part of the refrigeration cycle is taken out For the refrigerating machine oil, the return to the compressor can be improved by using a mineral oil that is compatible with the refrigerant flow rate enhancement by hydrocarbon conversion of the refrigerant.

請求項2に記載の発明は、請求項1に記載の発明において、冷蔵庫本体底部に前記主たる凝縮器を配置したことにより、一般的な室内温度分布からみて、相対的に室内上部より温度の低い室内下部の比較的低温の空気と熱交換でき、さらに小型化が可能となる。これにより、さらに高圧配管での液冷媒滞留量を低減できるので、高圧配管中の液冷媒と混ざり合った冷凍機油の量を低減でき、冷凍機油の循環性を向上させることができる。 The invention according to claim 2 is the invention according to claim 1, wherein the main condenser is arranged at the bottom of the refrigerator main body, so that the temperature is relatively lower than the upper part of the room in view of the general indoor temperature distribution. Heat can be exchanged with relatively cool air at the lower part of the room, and further downsizing is possible. Thereby, since the amount of liquid refrigerant staying in the high-pressure pipe can be further reduced, the amount of refrigerating machine oil mixed with the liquid refrigerant in the high-pressure pipe can be reduced, and the circulation performance of the refrigerating machine oil can be improved.

請求項3に記載の発明は、請求項1または2に記載の発明において、冷蔵庫本体の上部に冷蔵室、下部に冷凍室を形成し、前記冷凍室の後方に前記蒸発器を配置したことにより、蒸発器から圧縮機への冷媒の帰還経路の立ち上がり距離が大となる場合にも冷蔵庫の信頼性を充分に確保することが可能となり、冷蔵庫本体に温度体の異なる複数の貯蔵室を設けた場合に、蒸発器を最上段の貯蔵室以外の貯蔵室に設けることが可能となり、圧縮機の運転時に高温となる圧縮機や凝縮器等から蒸発器を遠ざけることにより、高温部からの排熱影響による蒸発器の冷却ロスを低減でき、蒸発器の冷凍能力を最大限に利用できるので消費電力量を低減できる。 According to a third aspect of the present invention, in the first or second aspect of the present invention, a refrigerator compartment is formed in the upper part of the refrigerator body, a freezer compartment is formed in the lower part, and the evaporator is arranged behind the freezer compartment. Even when the rising distance of the return path of the refrigerant from the evaporator to the compressor becomes large, it is possible to sufficiently ensure the reliability of the refrigerator, and the refrigerator body is provided with a plurality of storage chambers with different temperature bodies In some cases, it is possible to install the evaporator in a storage room other than the uppermost storage room, and by removing the evaporator from the compressor or condenser that becomes hot during the operation of the compressor, exhaust heat from the high temperature part The cooling loss of the evaporator due to the influence can be reduced and the refrigeration capacity of the evaporator can be utilized to the maximum, so that the power consumption can be reduced.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、冷蔵庫本体の上部に前記圧縮機を冷却するファンを、下部に主たる凝縮器を冷却するファンをそれぞれ設けたことにより、主たる凝縮器は一般的な室内温度分布からみて、相対的に室内上部より温度の低い室内下部の比較的低温の空気と強制的な熱交換ができ、さらに小型化が可能となる。これにより、さらに高圧配管での液冷媒滞留量を低減できるので、高圧配管中の液冷媒と混ざり合った冷凍機油の量を低減でき、冷凍機油の循環性を向上させることができるThe invention according to claim 4 is the invention according to any one of claims 1 to 3 , wherein a fan for cooling the compressor is provided at the upper part of the refrigerator body, and a fan for cooling the main condenser is provided at the lower part. By providing it, the main condenser can be forcibly exchanged heat with relatively cool air in the lower part of the room, which is relatively cooler than the upper part of the room, in view of the general indoor temperature distribution, and further downsizing is possible. Become. Thereby, since the amount of liquid refrigerant staying in the high-pressure pipe can be further reduced, the amount of refrigerating machine oil mixed with the liquid refrigerant in the high-pressure pipe can be reduced, and the circulation performance of the refrigerating machine oil can be improved .

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、排気容量制御手段を備えた制御手段と庫内温度検知手段とを設け、前記庫内温度検知手段の検知情報による所定のタイミングで前記圧縮機の排気容量制御を行い冷凍サイクルの冷媒循環流速を増加させたことにより、必要時に同時に冷凍機油の循環性を確保することができる。 According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects , a control means having an exhaust capacity control means and an internal temperature detection means are provided, and the internal temperature detection means By controlling the exhaust capacity of the compressor at a predetermined timing based on the detected information and increasing the refrigerant circulation flow rate of the refrigeration cycle, it is possible to ensure the circulation of the refrigeration oil at the same time as necessary.

請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明において、前記排気容量制御手段によって、圧縮機起動時に所定時間、強制的に通常排気量よりも大きい排気容量で運転させることにより、圧縮機の起動時に高い回転数で起動するので、停止中の冷媒への冷凍機油溶け込みにより吐出油量が最も多くなり、かつ給油条件が最も悪い摺動開始時に確実な配管内冷媒流速を確保することで冷凍機油の循環性を確保することができる。 The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the exhaust capacity control means forcibly increases a displacement larger than a normal displacement for a predetermined time when the compressor is started. Because the compressor starts up at a high speed when starting up the compressor, the amount of discharged oil is maximized by the refrigerating machine oil blending into the stopped refrigerant, and reliable piping at the start of sliding where the oiling conditions are worst By ensuring the internal refrigerant flow rate, the circulation of the refrigerating machine oil can be ensured.

以下、本発明の実施の形態について、図面を参照しながら説明するが、背景技術の従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional examples of the background art or the embodiments described above, and detailed descriptions thereof are omitted. To do. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の概略図を示すものであり、図2は同実施の形態における冷媒と冷凍機油の溶解度曲線図である。
(Embodiment 1)
FIG. 1 shows a schematic diagram of a refrigerator in Embodiment 1 of the present invention, and FIG. 2 is a solubility curve diagram of refrigerant and refrigerating machine oil in the same embodiment.

冷蔵庫本体1には、比較的高温の区画である冷蔵室2が上方部に、比較的低温の区画である冷凍室4が下方部に配設されており、所謂ボトムフリーザーの形態を有している。冷蔵室2および冷凍室4は例えばウレタンのような断熱材で周囲と断熱して構成されている。また、食品等の収納物の出し入れは図示しない断熱ドアを介して行われる。   The refrigerator main body 1 is provided with a refrigerator compartment 2 which is a relatively high temperature compartment in the upper part and a freezer compartment 4 which is a relatively low temperature compartment in the lower part, and has a so-called bottom freezer configuration. Yes. The refrigerator compartment 2 and the freezer compartment 4 are configured to be insulated from the surroundings with a heat insulating material such as urethane. Moreover, taking in and out of stored items such as food is performed through a heat insulating door (not shown).

冷蔵室2は冷蔵保存のために通常1〜5℃で設定されているが、保鮮性向上のため若干低めの温度、例えば−3〜0℃で設定されることもあり、収納物によって、使用者が自由に上記のような温度設定を切り替えることを可能としている場合もある。また、ワインや根野菜等の保鮮のために、例えば10℃前後の若干高めの温度設定とする場合もある。   The refrigerator compartment 2 is usually set at 1 to 5 ° C. for refrigerated storage, but may be set at a slightly lower temperature, for example, −3 to 0 ° C. for improving the freshness, and may be used depending on the stored items. In some cases, a person can freely switch the temperature setting as described above. In addition, in order to preserve wine, root vegetables, etc., the temperature may be set slightly higher, for example, around 10 ° C.

冷凍室4は冷凍保存のために通常−22〜−18℃で設定されているが、保鮮性向上のためより低温の温度、例えば−30〜−25℃で設定されることもある。   The freezer compartment 4 is usually set at −22 to −18 ° C. for frozen storage, but may be set at a lower temperature, for example −30 to −25 ° C., for improving freshness.

冷蔵庫本体1の上面に機械室11が構成されており、機械室11の底面は第一の天面部13と、冷蔵庫外箱の背面14側の第一の天面部13より低い位置に設けた第二の天面部15とで段差状に構成されている。凝縮器16は第一の天面部13の上方空間部に、圧縮機12は第二の天面部15の上方空間部に配設されており、凝縮器16と圧縮機12とを覆う樹脂製のカバーである機械室カバー17がビス等で冷蔵庫本体1に固定されている。   A machine room 11 is formed on the upper surface of the refrigerator body 1, and the bottom surface of the machine room 11 is provided at a position lower than the first top surface part 13 and the first top surface part 13 on the back surface 14 side of the refrigerator outer box. The second top surface portion 15 is formed in a step shape. The condenser 16 is disposed in the upper space portion of the first top surface portion 13, and the compressor 12 is disposed in the upper space portion of the second top surface portion 15, and is made of a resin that covers the condenser 16 and the compressor 12. A machine room cover 17 as a cover is fixed to the refrigerator main body 1 with screws or the like.

ここで、蒸発器9は冷凍室4の後方に配置されているので、圧縮機12と蒸発器9の高さ方向の関係は、冷蔵庫本体1の天面の一部に圧縮機12が配置され下部近傍の一部に蒸発器9が配置される関係となり、蒸発器9から圧縮機12への冷凍サイクル内での冷媒の帰還経路は高さ方向に相当な立ち上がり距離を有する関係となっている。   Here, since the evaporator 9 is disposed behind the freezer compartment 4, the height relationship between the compressor 12 and the evaporator 9 is such that the compressor 12 is disposed on a part of the top surface of the refrigerator body 1. The evaporator 9 is disposed in a part of the vicinity of the lower portion, and the refrigerant return path in the refrigeration cycle from the evaporator 9 to the compressor 12 has a relationship of having a considerable rising distance in the height direction. .

冷凍サイクル18は、圧縮機12と凝縮器16と減圧器であるキャピラリー19と蒸発器9とを順に備えた一連の冷媒流路から形成されている。   The refrigeration cycle 18 is formed of a series of refrigerant flow paths that include a compressor 12, a condenser 16, a capillary 19 that is a decompressor, and an evaporator 9 in order.

この圧縮機12はピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機である。   The compressor 12 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder.

また、機械室11の区画は第一の天面部13と第二の天面部15と機械室カバー17とで構成されている。   The compartment of the machine room 11 includes a first top surface part 13, a second top surface part 15, and a machine room cover 17.

なお、冷蔵庫本体1には、三方弁や切替弁を用いる冷凍サイクル18の場合は、それらの機能部品が機械室11内に配設されている場合もある。   In the case of the refrigeration cycle 18 using a three-way valve or a switching valve, the functional parts may be disposed in the machine room 11 in the refrigerator body 1.

また、本実施の形態では冷凍サイクル18を構成する減圧器をキャピラリー19としたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁としてある場合もある。   In the present embodiment, the pressure reducing device constituting the refrigeration cycle 18 is the capillary 19, but there may be an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor.

以上のように構成された冷蔵庫において、以下その動作、作用を説明する。   The operation and action of the refrigerator configured as described above will be described below.

圧縮機12の動作により吐出された高温高圧の冷媒は、凝縮器16にて冷蔵庫本体1の上方の空気と熱交換して放熱するとともに凝縮液化し、キャピラリー19に至る。その後、キャピラリー19でサクションライン20と熱交換しながら減圧されて蒸発器9に至る。   The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 12 exchanges heat with the air above the refrigerator main body 1 in the condenser 16 to dissipate heat, condense and liquefy, and reach the capillary 19. Thereafter, the pressure is reduced by the capillary 19 while exchanging heat with the suction line 20, and the vapor reaches the evaporator 9.

冷却用ファン(図示せず)の作用により、蒸発器9内の冷媒の蒸発作用により比較的低温となった冷気は冷蔵室2と冷凍室4に流入し、それぞれの部屋の冷却が行われる。蒸発器9内で、庫内の空気と熱交換した冷媒はその後サクションライン20を通り、冷凍機油とともに圧縮機12へと吸い込まれる。   Due to the action of a cooling fan (not shown), the cool air having a relatively low temperature due to the evaporating action of the refrigerant in the evaporator 9 flows into the refrigerating room 2 and the freezing room 4 to cool the respective rooms. In the evaporator 9, the refrigerant that has exchanged heat with the air in the cabinet passes through the suction line 20 and is sucked into the compressor 12 together with the refrigerator oil.

このように冷凍サイクル18を、圧縮機12を蒸発器9より上方に配設する構成とする時、特に、本実施の形態のように圧縮機12が冷蔵庫本体1の天面の一部に配置され、蒸発器が冷蔵庫本体1の下部近傍に配置されて、蒸発器9から圧縮機12への冷媒の帰還経路の立ち上がり距離が大となる場合には、圧縮機12から冷媒とともに冷凍サイクル18内に吐出され蒸発器9内の特に図示しないアキュームレーターに滞留する冷凍機油を、いかにサクションライン20を通じて圧縮機12へ戻すかが圧縮機12の信頼性にかかわる重要なポイントとなる。   Thus, when the refrigeration cycle 18 is configured such that the compressor 12 is disposed above the evaporator 9, the compressor 12 is disposed on a part of the top surface of the refrigerator main body 1 as in the present embodiment. When the evaporator is arranged near the lower part of the refrigerator main body 1 and the rising distance of the return path of the refrigerant from the evaporator 9 to the compressor 12 becomes large, the refrigerant enters the refrigeration cycle 18 together with the refrigerant from the compressor 12. An important point related to the reliability of the compressor 12 is how to return the refrigeration oil discharged in the evaporator 9 and staying in an accumulator (not shown) in the evaporator 9 to the compressor 12 through the suction line 20.

また、立ち上げ配管内の冷凍機油の戻り特性に関しては、冷凍機油の粘度の影響も考えられるが、配管内の冷媒の流速がより大きく依存するということが広く知られている。   Further, regarding the return characteristics of the refrigeration oil in the start-up pipe, it is widely known that the flow rate of the refrigerant in the pipe depends more greatly, although the influence of the viscosity of the refrigeration oil can be considered.

しかしながら、冷媒の流速を確保するために圧縮機12の気筒容積を大きくしたり、圧縮機12の回転数を上げたりして、冷凍能力を増大することによって冷媒の流速を確保しようとすると蒸発器9の蒸発温度低下を招き、圧縮機12の圧縮比が大きくなり消費電力量が増大するので、これらの手段で解決することは困難であった。   However, when the refrigerant flow rate is increased by increasing the cylinder capacity of the compressor 12 or increasing the rotation speed of the compressor 12 in order to ensure the refrigerant flow rate, and increasing the refrigeration capacity, the evaporator 9 causes a decrease in the evaporation temperature, and the compression ratio of the compressor 12 increases and the amount of power consumption increases. Therefore, it has been difficult to solve by these means.

そこで、本実施の形態では冷凍サイクル18の冷媒として炭化水素系冷媒である例えばイソブタンを使用している。   Therefore, in the present embodiment, for example, isobutane which is a hydrocarbon refrigerant is used as the refrigerant of the refrigeration cycle 18.

(表1)にイソブタンと、従来の代替フロン冷媒である例えばR134aとの−30℃の飽和液における物性値を示す。   (Table 1) shows physical properties in a saturated liquid of −30 ° C. of isobutane and a conventional alternative chlorofluorocarbon refrigerant such as R134a.

Figure 0003724503
Figure 0003724503

(表1)に示すように、イソブタンの単位体積当たりの冷凍能力が520.8kJであるのに対して、従来の代替フロン冷媒であるR134aの単位体積当たりの冷凍能力は971.6kJとなり、イソブタンはR134aと比較すると単位体積当たりの冷凍能力が約1/2である。よって、圧縮機12の冷凍能力を従来のR134aと同等とするために、圧縮機12の気筒容積は約2倍程度にまで大きくなり、圧縮機12の単位時間当たりのピストン押しのけ量も同様に約2倍程度まで増大する。すなわち、冷媒の単位時間当たりの体積流量が増大するので、圧縮機12運転時の配管内の流速が2倍程度まで増加する。   As shown in Table 1, the refrigeration capacity per unit volume of isobutane is 520.8 kJ, whereas the refrigeration capacity per unit volume of R134a, which is a conventional alternative chlorofluorocarbon refrigerant, is 971.6 kJ. Compared with R134a, the refrigerating capacity per unit volume is about ½. Therefore, in order to make the refrigeration capacity of the compressor 12 equivalent to that of the conventional R134a, the cylinder volume of the compressor 12 is increased to about twice, and the displacement of the piston per unit time of the compressor 12 is also about the same. It increases to about 2 times. That is, since the volume flow rate of the refrigerant per unit time increases, the flow velocity in the pipe during the operation of the compressor 12 increases to about twice.

また、自然冷媒であるCO2の単位体積当たりの冷凍能力は11258.5kJとなり、イソブタンはCO2と比較すると単位体積当たりの冷凍能力が約1/20である。よって、圧縮機12の冷凍能力をCO2と同等とするために、圧縮機12の気筒容積は約20倍程度にまで大きくなり、圧縮機12の単位時間当たりのピストン押しのけ量も同様に約20倍程度まで増大する。すなわち、冷媒の単位時間当たりの体積流量が増大するので、圧縮機12運転時の配管内の流速が20倍程度まで増加する。   Moreover, the refrigerating capacity per unit volume of CO2, which is a natural refrigerant, is 11258.5 kJ, and isobutane has a refrigerating capacity per unit volume of about 1/20 compared with CO2. Therefore, in order to make the refrigerating capacity of the compressor 12 equivalent to CO2, the cylinder volume of the compressor 12 is increased to about 20 times, and the displacement of the piston per unit time of the compressor 12 is also about 20 times as well. Increases to a degree. That is, since the volume flow rate of the refrigerant per unit time increases, the flow velocity in the pipe during the operation of the compressor 12 increases to about 20 times.

これにより、圧縮機12を蒸発器9の上方に配設した場合においても、蒸発器9内に滞留した冷凍機油を速やかに圧縮機12へ戻すことが可能となり、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性を低減できる。   As a result, even when the compressor 12 is disposed above the evaporator 9, the refrigeration oil staying in the evaporator 9 can be quickly returned to the compressor 12, and the refrigeration oil in the compressor 12 is insufficient. Therefore, the risk of damage to the compressor 12 can be reduced.

また、蒸発器9内に滞留した冷媒は、除霜用ヒーター(図示せず)の作用により蒸発器9の除霜を行う際にも、冷媒のサーモサイフォン効果により冷媒とともに圧縮機12へと戻される。しかしながら、圧縮機12を蒸発器9の上方に配設し、立ち上げ配管であるサクションライン20の全長が長くなる場合は特に、冷凍機油への冷媒の溶解度が小さいと冷媒とともに圧縮機12へと運ばれる冷凍機油の戻り量が減少するといった課題もあった。   In addition, the refrigerant staying in the evaporator 9 is returned to the compressor 12 together with the refrigerant by the thermosiphon effect of the refrigerant even when the evaporator 9 is defrosted by the action of a defrosting heater (not shown). It is. However, especially when the compressor 12 is arranged above the evaporator 9 and the suction line 20 as the start-up pipe is long, the refrigerant 12 is brought into the compressor 12 together with the refrigerant when the solubility of the refrigerant in the refrigerating machine oil is small. There was also a problem that the return amount of the refrigerating machine oil to be transported decreased.

そこで、冷凍サイクル18の冷凍機油としてはイソブタンと相溶性がいい鉱油を使用している。   Therefore, mineral oil having good compatibility with isobutane is used as the refrigerating machine oil of the refrigeration cycle 18.

図2は、従来の例えばR134aとエステル油を組み合わせた場合と、本実施の形態のイソブタンと鉱油を組み合わせた場合との溶解度曲線を比較したものである。横軸は蒸発器9内の冷媒の温度(蒸発温度)であり、縦軸は冷凍機油に溶け込む冷媒の溶解度(質量%)である。これによれば蒸発器9内の蒸発温度の上昇に伴っていずれの場合も溶解度は大きくなるが、その差は蒸発温度が高くなるほど広がることがわかる。通常蒸発器9の除霜は、蒸発器9に付着した霜の融解後、安全を見越して蒸発器9が約10℃となるまで行われる。そこで、蒸発器9の温度が10℃であるポイントで比較すると、イソブタンと鉱油を組み合わせた場合の溶解度はR134aとエステル油を組み合わせた従来の場合と比較して約50%程度まで大きくなる。   FIG. 2 compares the solubility curves of the conventional case of combining R134a and ester oil with the case of combining the isobutane and mineral oil of the present embodiment. The horizontal axis represents the temperature of the refrigerant in the evaporator 9 (evaporation temperature), and the vertical axis represents the solubility (mass%) of the refrigerant dissolved in the refrigerating machine oil. According to this, the solubility increases in any case as the evaporation temperature in the evaporator 9 increases, but the difference increases as the evaporation temperature increases. Usually, the defrosting of the evaporator 9 is performed until the evaporator 9 reaches about 10 ° C. in anticipation of safety after the frost adhering to the evaporator 9 is melted. Therefore, when compared at a point where the temperature of the evaporator 9 is 10 ° C., the solubility when isobutane and mineral oil are combined is increased to about 50% as compared with the conventional case where R134a and ester oil are combined.

これにより、圧縮機12を蒸発器9の上方に配設し、立ち上げ配管であるサクションライン20の全長が長くなる場合でも、除霜時に冷媒のサーモサイフォン効果を利用して冷媒とともに蒸発器9から圧縮機12へ戻る冷凍機油の戻り量を増加できる。   Thus, even when the compressor 12 is disposed above the evaporator 9 and the entire length of the suction line 20 as a start-up pipe becomes long, the thermosiphon effect of the refrigerant is used together with the refrigerant during the defrosting. The amount of refrigerating machine oil returning to the compressor 12 can be increased.

なお、圧縮機が内部高圧型場合は密閉容器の内部空間に散霧している冷凍機油が吐出冷媒と共に圧縮機外へ吐出される為、本実施の形態の圧縮機12は内部低圧型とし、これによって、圧縮機12から冷凍サイクル18内へ吐出される冷凍機油の量を押さえることができるので、冷凍機油の戻り性に関わる冷媒配管中の冷凍機油の滞留絶対量を低減でき、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減でき、さらに冷媒配管中の滞留冷凍機油による蒸発器9や凝縮器16などの熱交換器の効率低下を抑制することもできる。   In addition, when the compressor is an internal high pressure type, since the refrigeration oil sprayed in the internal space of the sealed container is discharged out of the compressor together with the discharge refrigerant, the compressor 12 of the present embodiment is an internal low pressure type, As a result, the amount of refrigerating machine oil discharged from the compressor 12 into the refrigerating cycle 18 can be suppressed, so that the absolute amount of refrigerating machine oil remaining in the refrigerant pipe related to the returnability of the refrigerating machine oil can be reduced. It is possible to further reduce the risk of damage to the compressor 12 due to the shortage of refrigeration oil inside, and also to suppress the efficiency reduction of the heat exchanger such as the evaporator 9 and the condenser 16 due to the staying refrigeration oil in the refrigerant pipe. it can.

また、冷蔵庫本体1を構成する例えばウレタンの熱伝導率低減や、真空断熱材の適用等により冷蔵庫本体1の断熱性能が向上し、圧縮機12を低能力化する必要性が生じた場合でも、上述のように、イソブタンと鉱油と内部低圧型圧縮機12の組み合わせにより、圧縮機12内に必要な冷凍機油を確保することが容易となる。   Moreover, even if the heat insulation performance of the refrigerator main body 1 is improved by, for example, reducing the thermal conductivity of urethane constituting the refrigerator main body 1 or applying a vacuum heat insulating material, and the need to reduce the capacity of the compressor 12 arises, As described above, the combination of isobutane, mineral oil, and internal low-pressure compressor 12 makes it easy to secure the necessary refrigerating machine oil in the compressor 12.

また、本実施の形態においては、圧縮機としてピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機を用いている為、回転式圧縮機と比較してピストンとシリンダ間のクリアランスを比較的高い精度で管理することが可能である。よって、ピストンとシリンダ間をシールする為に冷凍機油を多量に用いなくても充分なシール性を確保することができ、シリンダを経由して吐出される冷媒と共に吐出される冷凍機油の量も低減することができるので、圧縮機から吐出される冷凍機油の量を低減でき、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減できる。   In this embodiment, since the reciprocating compressor that compresses the refrigerant by reciprocating the piston in the cylinder is used as the compressor, the piston and the cylinder are separated from each other in comparison with the rotary compressor. Can be managed with relatively high accuracy. Therefore, sufficient sealing performance can be secured without using a large amount of refrigerating machine oil to seal between the piston and the cylinder, and the amount of refrigerating machine oil discharged together with the refrigerant discharged through the cylinder is also reduced. Therefore, the amount of refrigerating machine oil discharged from the compressor can be reduced, and the risk of damage to the compressor 12 due to the shortage of refrigerating machine oil in the compressor 12 can be further reduced.

なお、イソブタンと鉱油と内部低圧型圧縮機の組み合わせによる上述の効果により、圧縮機12を蒸発器9の上方に配設した場合の、圧縮機12と蒸発器9の距離を遠ざけても、例えば本実施の形態のように圧縮機12が冷蔵庫本体1の天面の一部に配置され、蒸発器が冷蔵庫本体1の下部近傍に配置されて、蒸発器9から圧縮機12への冷媒の帰還経路の立ち上がり距離が大となる場合にも冷蔵庫の信頼性を充分に確保することが可能となる。   Even if the distance between the compressor 12 and the evaporator 9 when the compressor 12 is disposed above the evaporator 9 due to the above-described effect by the combination of isobutane, mineral oil, and the internal low-pressure compressor, for example, As in the present embodiment, the compressor 12 is arranged on a part of the top surface of the refrigerator main body 1, the evaporator is arranged near the lower part of the refrigerator main body 1, and the refrigerant returns from the evaporator 9 to the compressor 12. Even when the rising distance of the path becomes large, the reliability of the refrigerator can be sufficiently ensured.

これにより、冷蔵庫本体1に温度体の異なる複数の貯蔵室を設けた場合に、蒸発器9を最上段の貯蔵室以外の貯蔵室に設けることが可能となり、圧縮機12の運転時に高温となる圧縮機12や凝縮器16等から蒸発器9を遠ざけることにより、高温部からの排熱影響による蒸発器9の冷却ロスを低減でき、蒸発器9の冷凍能力を最大限に利用できるので消費電力量を低減できる。   As a result, when a plurality of storage chambers having different temperature bodies are provided in the refrigerator main body 1, the evaporator 9 can be provided in a storage chamber other than the uppermost storage chamber, and the temperature becomes high during operation of the compressor 12. By moving the evaporator 9 away from the compressor 12, the condenser 16, etc., the cooling loss of the evaporator 9 due to the effect of exhaust heat from the high temperature part can be reduced, and the refrigeration capacity of the evaporator 9 can be utilized to the maximum, so that power consumption The amount can be reduced.

(実施の形態2)
図3、図4、図5は、本発明の実施の形態2における冷蔵庫の概略図を示すものである。なお、実施の形態1と同一構成については同一符号を付す。
(Embodiment 2)
3, 4 and 5 show schematic views of the refrigerator in the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as Embodiment 1. FIG.

なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。   As in the above-described embodiment, as the refrigerant, for example, isobutane is used as the hydrocarbon-based refrigerant, and the refrigerating machine oil is filled with mineral oil that is compatible with isobutane.

図3において、圧縮機12と蒸発器9を接続するサクションライン20に曲げ部21を設けている。曲げ部21の曲げ角度を鉛直上方向に対してθ度とすると、サクションライン20内の蒸発器9から圧縮機12に帰還する冷媒の流れ方向に対向する冷凍機油の重力成分の影響はCOSθを乗じた分だけ小さくなるので、より速やかに蒸発器9から圧縮機12へ冷凍機油を戻すことができる。   In FIG. 3, a bending portion 21 is provided in a suction line 20 that connects the compressor 12 and the evaporator 9. When the bending angle of the bending portion 21 is θ degrees with respect to the vertically upward direction, the influence of the gravity component of the refrigerating machine oil facing the refrigerant flow direction returning from the evaporator 9 in the suction line 20 to the compressor 12 is COSθ. Since it is reduced by the multiplied amount, the refrigeration oil can be returned from the evaporator 9 to the compressor 12 more quickly.

また、冷凍サイクル18において蒸発器9内の冷媒のエンタルピーを増大する目的で、サクションライン20とキャピラリー19は例えば半田等により所定の距離を接触させ、熱交換させた構成としているが、曲げ部21を設けることによりサクションライン20の距離を長くすることができるので、キャピラリー19との熱交換距離を長くすることが容易となり、蒸発器9の冷凍能力が増大し消費電力量を低減できる。   Further, in order to increase the enthalpy of the refrigerant in the evaporator 9 in the refrigeration cycle 18, the suction line 20 and the capillary 19 are in contact with each other at a predetermined distance by, for example, solder or the like, and the heat exchange is performed. Since it is possible to increase the distance of the suction line 20, it is easy to increase the heat exchange distance with the capillary 19, the refrigeration capacity of the evaporator 9 is increased, and the power consumption can be reduced.

なお、図4に示すように、サクションライン20に複数の曲げ部21を設け、サクションライン20を圧縮機12に向かって蛇行させた構成とすると、さらに曲げ角度θを小さくできるので、より速やかに蒸発器9から圧縮機12へ冷凍機油を戻すことができる。   As shown in FIG. 4, if the suction line 20 is provided with a plurality of bent portions 21 and the suction line 20 meanders toward the compressor 12, the bending angle θ can be further reduced, so that it can be made more quickly. Refrigerating machine oil can be returned from the evaporator 9 to the compressor 12.

また、サクションライン20の距離をさらに長くすることができるので、キャピラリー19との熱交換距離もさらに長くすることができ、蒸発器9の冷凍能力が増大し消費電力量を低減できる。   Further, since the distance of the suction line 20 can be further increased, the heat exchange distance with the capillary 19 can be further increased, the refrigeration capacity of the evaporator 9 can be increased, and the power consumption can be reduced.

なお、図5に示すように、サクションライン20に鉛直下方向に管の一部をU字やS字などに曲げたトラップ部22を設けると、サクションライン20内を流れた冷凍機油は曲げ部21にて鉛直下方向に落下するので、重力加速度の影響により冷凍機油の流速は増大する。その後、トラップ部22を経て、流速が増大した状態で圧縮機12まで再びサクションライン20内を立ち上げるので、より確実に蒸発器9から圧縮機12へ冷凍機油を戻すことができる。   In addition, as shown in FIG. 5, if the trap part 22 which bent a part of pipe | tube into the U shape, S shape, etc. was provided in the suction line 20 vertically downward, the refrigerating machine oil which flowed in the suction line 20 will be a bending part. Since it falls vertically downward at 21, the flow velocity of the refrigerating machine oil increases due to the influence of the gravitational acceleration. After that, since the inside of the suction line 20 is started up again to the compressor 12 through the trap portion 22 in a state where the flow rate is increased, the refrigerating machine oil can be more reliably returned from the evaporator 9 to the compressor 12.

(実施の形態3)
図6は、本発明の実施の形態3における冷蔵庫の概略図を示すものである。なお、実施の形態1と同一構成については同一符号を付す。
(Embodiment 3)
FIG. 6 shows a schematic diagram of the refrigerator in the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as Embodiment 1. FIG.

なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。   As in the above-described embodiment, as the refrigerant, for example, isobutane is used as the hydrocarbon-based refrigerant, and the refrigerating machine oil is filled with mineral oil that is compatible with isobutane.

冷蔵庫本体1には、比較的高温の区画である冷蔵室2が上方部に、比較的低温の区画である冷凍室4が下方部に配設されており、冷蔵室2内の例えば背面側に冷蔵室2の冷却を行う冷蔵室冷却用蒸発器23が、冷凍室4内の例えば背面側に冷凍室4の冷却を行う冷凍室冷却用蒸発器24が配設されている。また、冷凍サイクル18内において、冷蔵室冷却用蒸発器23は冷凍室冷却用蒸発器24より上流側に配設されており、冷蔵室冷却用蒸発器23の出口部と冷凍室冷却用蒸発器24の入口部はジョイント配管25で接続されている。   The refrigerator body 1 is provided with a refrigerating chamber 2 that is a relatively high temperature compartment in the upper portion and a freezer compartment 4 that is a relatively low temperature compartment in the lower portion. A refrigerating room cooling evaporator 23 that cools the refrigerating room 2 is provided, and a freezing room cooling evaporator 24 that cools the freezing room 4 is disposed, for example, on the back side in the freezing room 4. In the refrigeration cycle 18, the refrigerator for cooling the refrigerator compartment 23 is disposed upstream of the evaporator 24 for cooling the refrigerator compartment, and the outlet of the evaporator 23 for refrigerator cooling and the evaporator for cooling the refrigerator compartment are disposed. 24 inlet portions are connected by a joint pipe 25.

それぞれの貯蔵室の冷却を専用の蒸発器で行うことにより、貯蔵室間の臭い移りの防止、冷蔵室冷却用蒸発器23の高蒸発温度化に伴う圧縮機12の効率向上による消費電力量の低減、さらには冷蔵室2内の高湿度化などが可能となるが、蒸発器の配管ボリュームが増えるために、蒸発器内に滞留する冷凍機油も増加し、特に圧縮機12内をそれぞれの蒸発器より上方に配設する場合には圧縮機12内の冷凍機油が不足するといった危険性もある。   By cooling each storage room with a dedicated evaporator, the odor transfer between the storage rooms is prevented, and the efficiency of the compressor 12 is improved due to the higher evaporation temperature of the evaporator 23 for cooling room cooling. Although it is possible to reduce and further increase the humidity in the refrigerator compartment 2, the piping volume of the evaporator increases, so that the amount of refrigerating machine oil that accumulates in the evaporator also increases. In the case where it is disposed above the refrigerator, there is a risk that the refrigerating machine oil in the compressor 12 is insufficient.

冷凍サイクル18内で上流側となる冷蔵室冷却用蒸発器23を、冷凍サイクル18内で下流側となるに冷凍室用蒸発器24より冷蔵庫本体1内で上方に配設することにより、冷凍機油を重力方向に逆らわずに冷蔵室冷却用蒸発器23から冷凍室冷却用蒸発器24へ送ることができるので、速やかに圧縮機12へ冷凍機油を戻すことができる。   Refrigerator oil is provided in the refrigerator main body 1 by disposing the evaporator 23 for cooling the refrigerator in the refrigeration cycle 18 upstream from the evaporator 24 for the refrigerator in the downstream of the refrigeration cycle 18. Can be sent from the refrigerating room cooling evaporator 23 to the freezing room cooling evaporator 24 without reversing in the direction of gravity, so that the refrigerating machine oil can be quickly returned to the compressor 12.

また、上記構成に加えてジョイント配管25にトラップ部を設けず、直管と曲がり角度θ2を90度以上180度以下にすることにより、圧縮機12内から冷凍サイクル18内に吐出され冷蔵室冷却用蒸発器23の特に出口部に滞留する冷凍機油を速やかに冷凍室冷却用蒸発器24へ送ることができる。   In addition to the above configuration, the joint pipe 25 is not provided with a trap portion, and the straight pipe and the bending angle θ2 are set to 90 degrees or more and 180 degrees or less, so that the refrigerant is discharged from the compressor 12 into the refrigeration cycle 18 and cooled in the refrigerator. The refrigerating machine oil staying at the outlet portion of the evaporator 23 can be quickly sent to the freezer compartment cooling evaporator 24.

これにより、冷蔵室冷却用蒸発器23内に滞留する冷凍機油の量を最小限に押さえることが可能となり、圧縮機12内の冷凍機油不足による、圧縮機12の損傷等の危険性をさらに低減できる。   As a result, the amount of refrigerating machine oil staying in the evaporator 23 for refrigerating room cooling can be minimized, further reducing the risk of damage to the compressor 12 due to a shortage of refrigerating machine oil in the compressor 12. it can.

なお、本実施の形態では最上段の貯蔵室を冷蔵室2としたが、冷凍室4を最上段とするトップフリーザータイプの冷蔵庫においても、冷凍サイクル18内で冷凍室冷却用蒸発器24を冷蔵室冷却用蒸発器23より上流側に配設し、冷凍室冷却用蒸発器24と冷蔵室冷却用蒸発器23の接続配管にトラップ部を設けない構成とすることにより同様の効果が得られる。   In this embodiment, the uppermost storage chamber is the refrigeration chamber 2, but the freezer cooling evaporator 24 is refrigerated in the refrigeration cycle 18 even in a top freezer type refrigerator having the freezer compartment 4 as the uppermost stage. A similar effect can be obtained by providing the upstream side of the room cooling evaporator 23 and not providing a trap portion in the connecting pipe between the freezer cooling evaporator 24 and the refrigerator cooling air evaporator 23.

また、冷蔵室冷却用蒸発器23および冷凍室冷却用蒸発器24を、入口部から出口部までの経路で立ち上がり部のない上方から下方に向かって冷媒が流れる配管構成とすると、蒸発器内の冷媒の流れに対向する冷凍機油の重力影響はなくなるので、冷凍機油の流速が上がり、さらに速やかにそれぞれの蒸発器内に滞留する冷凍機油を圧縮機12へ戻すことができる。   Further, if the refrigerator for cooling refrigerator 23 and the evaporator for cooling freezer 24 are configured to have a piping structure in which the refrigerant flows from the upper side to the lower side without a rising part in the path from the inlet part to the outlet part, Since the effect of the gravity of the refrigerating machine oil facing the refrigerant flow is eliminated, the flow speed of the refrigerating machine oil increases, and the refrigerating machine oil staying in each evaporator can be returned to the compressor 12 more quickly.

(実施の形態4)
図7は、本発明の実施の形態4における冷蔵庫の概略図を示すものであり、図8は同実施の形態における配管構成概略図である。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 4)
FIG. 7 shows a schematic diagram of the refrigerator in the fourth embodiment of the present invention, and FIG. 8 is a schematic diagram of a piping configuration in the same embodiment. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図7と図8において冷蔵庫本体100はABSなどの樹脂体を真空成型した内箱101とプリコート鋼板などの金属材料を用いた外箱102とで構成された空間に発泡充填する断熱体103を注入してなる断熱壁を備えている。断熱体103は、例えば硬質ウレタンフォームやフェノールフォームやスチレンフォームなどが用いられる。発泡材としてはハイドロカーボン系のシクロペンタンを用いると、温暖化防止の観点でさらによい。   7 and 8, the refrigerator main body 100 injects a foam insulator 103 into a space formed by an inner box 101 obtained by vacuum molding a resin body such as ABS and an outer box 102 using a metal material such as a pre-coated steel plate. It has a heat insulation wall. As the heat insulator 103, for example, a hard urethane foam, a phenol foam, a styrene foam, or the like is used. Use of hydrocarbon-based cyclopentane as the foaming material is better from the viewpoint of preventing global warming.

冷蔵庫本体100は複数の断熱区画に区分されており上部を回転扉式、下部を引出し式とする構成をとってある。上から冷蔵室104、引出し式の野菜室105と引出し式の冷凍室106となっている。各断熱区画にはそれぞれ断熱扉がガスケット109を介して設けられている。上から冷蔵室回転扉110、野菜室引出し扉111、冷凍室引出し扉112である。また、冷蔵室回転扉110には扉ポケット111が収納スペースとして設けられており、庫内には複数の収納棚113が設けられてある。また冷蔵室104の最下部には貯蔵ケース114が設けてある。   The refrigerator main body 100 is divided into a plurality of heat-insulating sections, and has a configuration in which the upper part is a revolving door type and the lower part is a drawer type. From the top, there are a refrigerator compartment 104, a drawer-type vegetable compartment 105, and a drawer-type freezer compartment 106. Each heat insulation section is provided with a heat insulation door via a gasket 109. From the top, the refrigerator door 110, the vegetable compartment drawer door 111, and the freezer compartment drawer door 112 are shown. The refrigerating compartment revolving door 110 is provided with a door pocket 111 as a storage space, and a plurality of storage shelves 113 are provided in the cabinet. A storage case 114 is provided at the bottom of the refrigerator compartment 104.

また、冷蔵庫本体100は、第一の天面部115と奥部を低く凹ませた第二の天面部116を設けてあり機械室117を構成してある。   Further, the refrigerator main body 100 is provided with a first top surface portion 115 and a second top surface portion 116 having a recessed lower portion, and constitutes a machine room 117.

冷凍サイクルは第二の天面部116に弾性支持して配設した圧縮機118と、圧縮機118と近傍に設けた機械室ファン119と、冷蔵庫本体100下部に設けた凝縮器120と、凝縮機120近傍に設けた凝縮器ファン121と減圧器であるキャピラリー122と、水分除去を行うドライヤ(図示せず)と、野菜室105と冷凍室106の背面で、冷却ファン123を近傍に配置して設けた蒸発器124と、吸入配管125とを環状に接続して構成されている。   The refrigeration cycle includes a compressor 118 elastically supported on the second top surface portion 116, a machine room fan 119 provided in the vicinity of the compressor 118, a condenser 120 provided at the lower portion of the refrigerator main body 100, and a condenser. 120, a condenser fan 121 provided near 120, a capillary 122 serving as a pressure reducer, a dryer (not shown) for removing moisture, and a cooling fan 123 arranged near the back of the vegetable compartment 105 and the freezing compartment 106. The provided evaporator 124 and the suction pipe 125 are connected in a ring shape.

また、冷媒は炭化水素系の冷媒、例えばイソブタンを用い、圧縮機118内にはイソブタンと相溶性のある鉱油が封入されている。   Further, a hydrocarbon-based refrigerant such as isobutane is used as the refrigerant, and a mineral oil compatible with isobutane is enclosed in the compressor 118.

機械室117はビスなどで固定された機械室カバー126が第一の天面部116より高い位置に設けられており、圧縮機118や機械室ファン119などを収納している。カバー部との天面高さの差を利用して、第一の天面部116上部と連通させる開口部(図示せず)を機械室カバー126に備え放熱風路を構成している。   The machine room 117 is provided with a machine room cover 126 fixed with screws or the like at a position higher than the first top surface part 116, and houses the compressor 118, the machine room fan 119, and the like. An opening (not shown) that communicates with the upper portion of the first top surface portion 116 is provided in the machine room cover 126 using the difference in height between the top surface and the cover portion to constitute a heat radiation air passage.

配管構成は圧縮機118より吐出した後、側面パネルにアルミテープなどで熱交換可能に配設して、底部の凝縮器120へと接続される。さらに凝縮器120を出た後、冷蔵庫本体100の開口前面周囲を経て、反対側面に配設して機械室117に戻り、ドライヤ(図示せず)を経て、キャピラリー122と接続される。   After discharging from the compressor 118, the piping configuration is arranged on the side panel so that heat exchange is possible with aluminum tape or the like, and is connected to the condenser 120 at the bottom. Further, after leaving the condenser 120, it passes around the front face of the opening of the refrigerator main body 100, is disposed on the opposite side surface, returns to the machine room 117, and is connected to the capillary 122 via a dryer (not shown).

キャピラリー122と吸入配管125は、概ね同等の長さの銅管であり、端部を残して中央部を熱交換可能にはんだ付けされている。キャピラリー122は減圧のため内部流動抵抗が大きい細径の銅管が用いられており、その内径は0.6ミリから1.0ミリ程度で長さと組み合わせて、調節して減圧量を設計する。吸入配管125は圧力損失を低減するために大径の銅管が用いられており、その外径は標準的管寸法である6.35ミリから7.94ミリ程度で低コストに設計されている。   The capillary 122 and the suction pipe 125 are copper pipes having substantially the same length, and are soldered so that heat exchange is possible at the center part with the end part remaining. The capillary 122 uses a thin copper tube having a large internal flow resistance for pressure reduction, and the inner diameter is about 0.6 mm to 1.0 mm in combination with the length to adjust the pressure reduction amount. The suction pipe 125 uses a large-diameter copper pipe to reduce pressure loss, and its outer diameter is designed at a low cost with a standard pipe size of 6.35 mm to 7.94 mm. .

また熱交換部の長さを確保するために、蛇行させてコンパクトにまとめて、冷蔵室104の背面に蛇行部がくるようにして、内箱101と外箱102との中間に接触しないように配置され断熱体103に埋設される。キャピラリー122と吸入配管125は、一方の端部を内箱101の野菜室105後方位置から突き出して蒸発器124と接続されており、また他方の端部を機械室117に突き出して圧縮機118などと接続されている。   Further, in order to ensure the length of the heat exchange unit, the meandering unit is made compact in a compact manner so that the meandering unit comes to the back of the refrigerator compartment 104 so that it does not come in contact between the inner box 101 and the outer box 102. Arranged and embedded in the thermal insulator 103. One end of the capillary 122 and the suction pipe 125 protrudes from the rear position of the vegetable chamber 105 of the inner box 101 and is connected to the evaporator 124, and the other end protrudes into the machine chamber 117 and the compressor 118, etc. Connected with.

また、庫内は蒸発器124で冷却された冷気を分配するダンパ127を備えた風路128により冷気が分配されて温度調節が行われる。   In addition, the cool air is distributed by an air passage 128 provided with a damper 127 that distributes the cool air cooled by the evaporator 124 to adjust the temperature.

さらに、蒸発器124の下方には除霜ヒータ129が設けられており、その下方には除霜水を受けて外部排出するドレン130が設けてある。冷蔵庫本体100の外部でドレン130の下方には蒸発皿131が設けてあり、除霜時の排水が集められる。   Further, a defrost heater 129 is provided below the evaporator 124, and a drain 130 for receiving defrost water and discharging it to the outside is provided below the defrost heater 129. An evaporating dish 131 is provided outside the refrigerator main body 100 and below the drain 130 to collect drainage during defrosting.

蒸発皿131は凝縮器120の後方に配置されており、凝縮器ファン121により凝縮器120を通過した高温空気が蒸発皿131表面を通風するので、除霜水を乾燥させることができる。   The evaporating dish 131 is disposed behind the condenser 120, and the high-temperature air that has passed through the condenser 120 by the condenser fan 121 passes through the surface of the evaporating dish 131, so that the defrosted water can be dried.

各室の温度設定は、冷蔵室104が冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されており、貯蔵ケース114は肉魚などの保鮮性向上のため比較的低めの温度、例えば−3〜0℃で設定される。貯蔵ケースは冷蔵室104の室内下方に配置されているので、冷却風路の開口面積で冷却量の調節を行うことで冷蔵室104より低温とすることが容易であり、専用のダンパを用いないこともある。   The temperature setting of each room is normally set at 1 to 5 ° C. with the lower limit of the temperature at which the refrigerator compartment 104 is not frozen for refrigerated storage, and the storage case 114 is relatively low for improving the freshness of meat fish and the like. The temperature is set at, for example, -3 to 0 ° C. Since the storage case is disposed below the refrigerator compartment 104, it is easy to make the temperature lower than that of the refrigerator compartment 104 by adjusting the amount of cooling with the opening area of the cooling air passage, and no dedicated damper is used. Sometimes.

野菜室105は冷蔵室104と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。凍らない程度で低温にするほど葉野菜の鮮度を長期間維持することが可能である。また、野菜室105は、冷却風路の開口面積で冷却量の調節を行い、専用のダンパを設けないこともある。   The vegetable room 105 is often set to a temperature setting of 2 ° C. to 7 ° C. that is the same as or slightly higher than that of the refrigerator room 104. It is possible to maintain the freshness of leafy vegetables for a long period of time as the temperature is lowered so as not to freeze. Moreover, the vegetable compartment 105 adjusts the amount of cooling with the opening area of a cooling air path, and may not provide a dedicated damper.

冷凍室106は冷凍保存のために通常−22〜−18℃で設定されているが、冷凍保存状態の向上のために、例えば−30や−25℃の低温で設定されることもある。   The freezer compartment 106 is normally set at −22 to −18 ° C. for frozen storage, but may be set at a low temperature of −30 or −25 ° C., for example, to improve the frozen storage state.

以上のように構成された冷蔵庫において、その動作、作用を説明する。   The operation | movement and effect | action are demonstrated in the refrigerator comprised as mentioned above.

庫内の温度は設定された所定の温度に応じて冷却運転がなされる。   Cooling operation is performed according to the set predetermined temperature.

まず圧縮機118の動作により吐出された高温高圧の冷媒は、凝縮器ファン121により冷蔵庫本体100の下方の比較的低温の空気で空冷される凝縮器120と冷蔵庫本体100の周囲に配設された配管とにより放熱されるとともに凝縮液化し、キャピラリー122に至る。その後、キャピラリー122で吸入配管125と熱交換しながら減圧されて低温低圧の冷媒が蒸発器124に至る。   First, the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 118 is disposed around the refrigerator main body 100 and the condenser 120 that is air-cooled by the condenser fan 121 with relatively low-temperature air below the refrigerator main body 100. The heat is dissipated by the piping and is condensed and liquefied to reach the capillary 122. Thereafter, the pressure is reduced by the capillary 122 while exchanging heat with the suction pipe 125, and the low-temperature and low-pressure refrigerant reaches the evaporator 124.

冷却用ファン123の動作により、低温となった蒸発器124と熱交換した低温冷気は庫内と断熱された冷却ダクト128とダンパ127によって吐出口(図示せず)から、各室に分配されて温度調節が行われる。庫内に吐出された冷気は戻り風路(図示せず)で再度、蒸発器124へと導かれ循環する構成となっている。   Due to the operation of the cooling fan 123, the low-temperature cold air exchanged heat with the evaporator 124 having a low temperature is distributed from the discharge port (not shown) to each chamber by the cooling duct 128 and the damper 127 insulated from the inside of the refrigerator. Temperature adjustment is performed. The cool air discharged into the refrigerator is again guided to the evaporator 124 through a return air passage (not shown) and circulated.

蒸発器124で、庫内の空気と熱交換した冷媒は、その後吸入配管125を通り、圧縮機118へと吸い込まれる。このとき、圧縮機118内に封入された圧縮機摺動部潤滑性確保のための冷凍機油は冷媒と相溶性を持ち、共に配管内を循環しているので、圧縮機118を冷蔵庫本体の上方に配設する場合、冷凍機油の循環性を確保することが信頼性に係る重要なポイントとなるが、冷媒としてイソブタンを用いることにより、運転時の配管内ガス流速を増加させて冷凍機油の循環性を向上させることができる。さらに相溶性のある鉱油を用いることで、相変化により液冷媒や二相冷媒においても冷凍機油の循環性が向上する。   The refrigerant that has exchanged heat with the air in the cabinet by the evaporator 124 is then sucked into the compressor 118 through the suction pipe 125. At this time, the refrigerating machine oil for ensuring the lubricity of the sliding portion of the compressor enclosed in the compressor 118 is compatible with the refrigerant and circulates in the piping. In order to improve the circulation of the refrigerating machine oil, it is important to ensure the circulation of the refrigerating machine oil. However, by using isobutane as the refrigerant, the gas flow rate in the pipe during operation is increased to circulate the refrigerating machine oil. Can be improved. Further, by using a compatible mineral oil, the circulation of the refrigerating machine oil is improved even in a liquid refrigerant or a two-phase refrigerant due to a phase change.

さらに、圧縮機118と離れた場所に凝縮器120を配置することで、高温となる圧縮機118の熱影響を受けることがないので、配管長を短くしての小型化が可能である。またさらに圧縮機118と離れて、底面に凝縮器120を配置することで、比較的低温の空気と熱交換でき、さらに小型化が可能となる。これは通常、冷蔵庫の設置空間にも温度ばらつきがあり、天井に近いほど高温となっているからである。また、近年の気密性の高い住宅においては、この温度差がより顕著となっている。また、通常冷蔵庫が設置されるキッチン環境においては調理機器の影響により、さらに顕著な温度差が生じている。   Furthermore, by disposing the condenser 120 at a location away from the compressor 118, it is not affected by the heat of the compressor 118 that becomes high temperature, so that the pipe length can be reduced and the size can be reduced. Further, by disposing the condenser 120 on the bottom surface away from the compressor 118, heat exchange with relatively low-temperature air can be achieved, and further miniaturization becomes possible. This is because there is usually temperature variation in the refrigerator installation space, and the closer to the ceiling, the higher the temperature. Moreover, this temperature difference is more prominent in recent highly airtight houses. Further, in a kitchen environment where a refrigerator is usually installed, a more remarkable temperature difference is generated due to the influence of cooking equipment.

また、本実施の形態のように冷凍室106が冷蔵庫本体100の下部に配置された所謂ボトムフリーザータイプの冷蔵庫においては、冷凍室106と凝縮器120とを隣接させるために熱伝導による底面の温度低下からも凝縮器120の小型化が可能となる。   Further, in the so-called bottom freezer type refrigerator in which the freezer compartment 106 is arranged at the lower part of the refrigerator main body 100 as in the present embodiment, the bottom surface temperature due to heat conduction is used in order to make the freezer compartment 106 and the condenser 120 adjacent to each other. The condenser 120 can be downsized even from the drop.

凝縮器120の配管長小型化により、高圧配管での液冷媒滞留量を低減できるので、高圧配管中の液冷媒と混ざり合った冷凍機油の量を低減でき、冷凍機油の循環性を向上させることができる。   By reducing the pipe length of the condenser 120, the amount of liquid refrigerant in the high-pressure pipe can be reduced, so the amount of refrigeration oil mixed with the liquid refrigerant in the high-pressure pipe can be reduced, and the circulation of the refrigeration oil can be improved. Can do.

なお、上述の内容は凝縮器120の小型化によって滞留冷凍機油の絶対量低減による冷凍機油の循環性向上の観点で述べたが、主たる凝縮器120を特に、冷蔵庫本体100の底面に設置して蒸発器124より低い配置とし、他の凝縮配管(例えば、冷蔵庫本体外郭の結露防止用配管など)の経路を長く、かつ立ち上がり配管を多用する場合などには、外気温度の低い冬季や夜間などの条件下で液冷媒量が増え混ざり合った冷凍機油の粘度増大も相まって循環性が低下するケースが考えられるが、このような条件が重なった場合においても、冷媒として炭化水素系のイソブタン等を用いることにより、運転時の配管内流速を大きく増強させることができるので、この流速の増強に併せて冷媒と混ざり合う鉱油である冷凍機油の循環性を確保することができるものである。   In addition, although the above-mentioned content was described in the viewpoint of the improvement of the circulation property of refrigerating machine oil by reducing the absolute amount of stagnant refrigerating machine oil by downsizing the condenser 120, the main condenser 120 is installed especially on the bottom surface of the refrigerator main body 100. If it is placed lower than the evaporator 124 and the length of other condensing pipes (for example, pipes for preventing dew condensation on the outer wall of the refrigerator body) is long and a lot of rising pipes are used, Under some conditions, the amount of liquid refrigerant increases and the viscosity of mixed refrigeration oil increases, which may lead to a decrease in circulation. Even when such conditions overlap, hydrocarbon-based isobutane is used as the refrigerant. Therefore, it is possible to greatly increase the flow velocity in the pipe during operation, and to ensure the circulation of the refrigeration oil, which is a mineral oil that mixes with the refrigerant in accordance with the increase in the flow velocity. It is what it is.

なお、今回は3ドアタイプのレイアウトについて述べたが、4ドアや5ドアなどの多ドアタイプであっても、同様の効果が得られるものである。   Although the three-door layout has been described this time, the same effect can be obtained even with a multi-door type such as a 4-door or 5-door.

またなお、凝縮器120はフィンコイルやスパイラルフィンコイルやプレートコイルなどいずれでもよい。   In addition, the condenser 120 may be a fin coil, a spiral fin coil, a plate coil, or the like.

(実施の形態5)
図9は、本発明の実施の形態5における冷蔵庫の概略図を示すものであり、図10は同実施の形態におけるタイムチャートである。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 5)
FIG. 9 shows a schematic diagram of the refrigerator in the fifth embodiment of the present invention, and FIG. 10 is a time chart in the same embodiment. In addition, the same code | symbol is attached | subjected about the same structure as background art.

圧縮機132は内部が低圧に保持された排気容量可変方式であるレシプロインバーターが用いられている。排気容量可変方式はインバーターで回転数を制御するレシプロの他にロータリ、スクロールなどの圧縮方式や、ストローク制御を行うリニア圧縮方式などが使われており、排気容量制御手段133によって、排気容量(冷却能力)を変化させるように制御されている。   The compressor 132 uses a reciprocal inverter that is a variable exhaust capacity system whose interior is maintained at a low pressure. In addition to the reciprocating system that controls the number of revolutions with an inverter, the variable displacement system uses a compression system such as rotary and scroll, and a linear compression system that performs stroke control. The exhaust capacity control means 133 controls the exhaust capacity (cooling). Is controlled to change).

なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。   As in the above-described embodiment, as the refrigerant, for example, isobutane is used as the hydrocarbon-based refrigerant, and the refrigerating machine oil is filled with mineral oil that is compatible with isobutane.

特に低圧容器型のインバータレシプロ方式では、圧縮機132内部の圧力が低いので封入された冷凍機油に冷媒が解けにくく冷媒量を削減できることや、摺動部が回転数に依存したオイルシールではないので低回転数での効率がよく、静音化と省エネに最もメリットがある。また低回転時は冷媒循環量の低減に併せて冷凍機油の吐出量が低減できるので、圧縮機132内の冷凍機油の減少を防止できる。   In particular, in the low pressure vessel type inverter reciprocating system, the pressure inside the compressor 132 is low, so that the refrigerant is difficult to dissolve in the enclosed refrigeration oil, and the amount of refrigerant can be reduced, and the sliding part is not an oil seal depending on the rotational speed. It is efficient at low speed and has the most merit in terms of noise reduction and energy saving. Further, at the time of low rotation, since the discharge amount of the refrigerating machine oil can be reduced along with the reduction of the refrigerant circulation amount, the refrigerating machine oil in the compressor 132 can be prevented from decreasing.

各室にはサーミスタなどの庫内温度検知手段134が設けられており、制御手段135によって温度調節が行われる。   Each chamber is provided with internal temperature detection means 134 such as a thermistor, and the temperature is adjusted by the control means 135.

図10のタイムチャートにおいて、冷却運転安定時に、サーミスタや赤外線センサーなどの庫内温度検知手段134は庫内の温度を所定間隔で検知して、制御手段135へと情報を伝達している。   In the time chart of FIG. 10, when the cooling operation is stable, the internal temperature detection means 134 such as a thermistor or an infrared sensor detects the internal temperature at a predetermined interval and transmits information to the control means 135.

制御手段135は庫内温度に対して、冷却運転を開始させる庫内上限温度設定(high)と冷却を停止させる庫内下限温度設定(low)を持ち、庫内上限温度設定を超えて温度上昇した場合にさせる。また庫内下限温度設定を超えて温度低下した場合に制御手段135に圧縮機132を停止させるよう制御する。   The control means 135 has an internal upper limit temperature setting (high) for starting the cooling operation and an internal lower limit temperature setting (low) for stopping the cooling, and the temperature rises exceeding the internal upper limit temperature setting with respect to the internal temperature. If you do. In addition, when the temperature falls below the lower limit temperature setting in the cabinet, the control unit 135 is controlled to stop the compressor 132.

圧縮機132が停止している間、庫内温度は上昇し、(T1)において庫内温度検知手段134は庫内上限温度設定を超えることを検知する。この信号により制御手段135は、圧縮機132を動作させる。排気容量制御手段133はインバーターによる周波数可変での排気量制御、すなわち冷凍能力の可変制御であり、省エネルギー化のために、できるだけ低い回転数で圧縮機132を運転させるものである。   While the compressor 132 is stopped, the internal temperature rises, and the internal temperature detecting means 134 detects that the internal upper limit temperature setting is exceeded at (T1). Based on this signal, the control unit 135 operates the compressor 132. The exhaust capacity control means 133 is an exhaust volume control with variable frequency by an inverter, that is, a variable control of the refrigerating capacity, and operates the compressor 132 at the lowest possible rotational speed for energy saving.

排気容量制御手段133はまず低回転数で圧縮機132の運転を開始し、所定のタイミングで回転数を変化させていく。回転数の変化タイミングは例えば庫内上限温度設定と下限温度設定の範囲で所定の温度範囲を持ち、それぞれの温度範囲に応じた動作回転数で運転させたり、温度の変化量に応じて運転回転数を設定するなどの方法がある。いずれも負荷が大きく、冷凍能力が過不足している状態を推定して冷凍能力をマッチングさせるべく回転数の増減を行うものである。   The exhaust capacity control means 133 first starts the operation of the compressor 132 at a low rotational speed, and changes the rotational speed at a predetermined timing. The change timing of the rotation speed has a predetermined temperature range in the range of the upper limit temperature setting and the lower limit temperature setting, for example, and it can be operated at the operation rotation speed according to each temperature range, or the operation rotation according to the temperature change amount There are methods such as setting the number. In either case, the number of revolutions is increased or decreased in order to estimate a state where the load is large and the refrigeration capacity is excessive or insufficient and to match the refrigeration capacity.

(T1)において制御手段135に設けられた第一のタイマ136aのカウントが開始される。第一のタイマ136aは圧縮機132の動作中にカウントを行い、圧縮機132が停止したらカウントを中断する。(T2)において、第一のタイマ136aは所定の時間が積算経過したことをカウントアップ信号で制御手段135に情報伝達する。制御手段135は、この信号を元に排気容量制御手段133に強制的に回転数を増加させる。また第二のタイマ136bのカウントが開始され、別途定められた所定時間を積算経過した時に制御手段135にカウントアップ信号を発信する(T3)。(T3)において、排気容量制御手段133は強制的に増加させていた圧縮機132の回転数を元の状態に戻し、通常制御に戻る。圧縮機132の運転に伴い庫内温度が低下し、庫内温度検知手段134は庫内下限温度設定を超えて庫内温度が低下することを検知し(T4)、制御手段135は圧縮機132を停止させる。   At (T1), the count of the first timer 136a provided in the control means 135 is started. The first timer 136a counts during operation of the compressor 132, and stops counting when the compressor 132 stops. At (T2), the first timer 136a informs the control means 135 by a count-up signal that the predetermined time has elapsed. Based on this signal, the control means 135 forces the exhaust capacity control means 133 to increase the rotational speed. Further, counting of the second timer 136b is started, and when a predetermined time determined separately has elapsed, a count-up signal is transmitted to the control means 135 (T3). At (T3), the exhaust capacity control means 133 returns the rotational speed of the compressor 132 that has been forcibly increased to the original state, and returns to the normal control. With the operation of the compressor 132, the internal temperature decreases, the internal temperature detection means 134 detects that the internal temperature decreases beyond the internal lower limit temperature setting (T 4), and the control means 135 detects the compressor 132. Stop.

圧縮機132の停止に伴い、庫内温度は徐々に上昇し、再度庫内上限温度設定を超えることを庫内温度検知手段134が検知する(T5)。   With the compressor 132 stopped, the internal temperature gradually rises, and the internal temperature detection means 134 detects that the internal upper limit temperature setting is exceeded again (T5).

以上の動作を繰り返すことにより、庫内温度を所定の温度に調節する。また、各室の温度調節は温度検知手段に応じて、ダンパ127の動作により冷気量を調節して行う場合もある。   By repeating the above operation, the internal temperature is adjusted to a predetermined temperature. Further, the temperature of each chamber may be adjusted by adjusting the amount of cold air by the operation of the damper 127 according to the temperature detection means.

以上のように、排気量可変型圧縮機132を用いることで、圧縮機132の低回転化や、ランクダウンによる省エネと圧縮機の冷凍機油循環量の確保を両立することができる。   As described above, by using the variable displacement compressor 132, it is possible to achieve both low rotation of the compressor 132, energy saving by rank down, and securing of the compressor refrigerating oil circulation amount.

また、第一のタイマ136aと第二のタイマ136bは兼用すれば合理化できる。   Further, if the first timer 136a and the second timer 136b are combined, it can be rationalized.

なお、上述の観点は圧縮機132の排気量低減制御により冷媒吐出量の低減による圧縮機132からの冷凍機油の持ち出し量低減を図るものであるが、冷凍サイクルの冷媒配管長が長い場合や配管の立ち上がりを多用する場合、冬季など外気温度が低下して液冷媒の増加や冷凍機油の粘度増大の影響がある場合などの条件下においては、圧縮機132の排気量低減制御による運転を行うと、冷媒流速に配慮を施していないと、冷媒循環量の低減に伴って圧縮機132から一部持ち出された冷凍機油の戻り性が低下するケースも考えられる。   The above-mentioned viewpoint is intended to reduce the amount of refrigeration oil brought out from the compressor 132 by reducing the refrigerant discharge amount by the exhaust amount reduction control of the compressor 132. However, when the refrigerant pipe length of the refrigeration cycle is long or the pipe When the start of the compressor 132 is frequently used, under the conditions such as when the outside air temperature decreases and the liquid refrigerant increases or the viscosity of the refrigeration oil increases, such as in winter, the operation of the compressor 132 with the displacement reduction control is performed. If the refrigerant flow rate is not taken into consideration, there may be a case where the returnability of the refrigerating machine oil partially taken out from the compressor 132 is reduced as the refrigerant circulation amount is reduced.

これに対して、本実施の形態においては、上述のように冷媒として炭化水素系の冷媒であるイソブタンを用いることで、低排気量条件であっても、従来に比して圧縮機132から吐出された冷凍機油が圧縮機132へ戻るのに十分な配管内の流速を確保することができるとともに冷媒の冷凍機油に対する溶解度を大きくすることで、冷凍機油内に冷媒が溶け込むことで冷凍機油の粘度を低下させることができ、蒸発器124から圧縮機132への冷凍機油の戻り量をより増加できる。   In contrast, in the present embodiment, as described above, isobutane, which is a hydrocarbon-based refrigerant, is used as the refrigerant, so that even under low displacement conditions, the compressor 132 discharges from the conventional case. It is possible to ensure a sufficient flow rate in the pipe for the refrigerating machine oil to be returned to the compressor 132 and to increase the solubility of the refrigerant in the refrigerating machine oil, so that the refrigerant melts into the refrigerating machine oil so that the viscosity of the refrigerating machine oil is increased. , And the amount of refrigerating machine oil returned from the evaporator 124 to the compressor 132 can be further increased.

つまり、条件によって低排気量制御による冷凍サイクル中に冷媒と共に吐出された冷凍機油の戻り性を改善する必要のあるケースに対しては、冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用が効力を発揮するものである。   In other words, for cases where it is necessary to improve the return performance of refrigeration oil discharged together with the refrigerant during the refrigeration cycle with low displacement control depending on the conditions, mineral oil compatible with the refrigerant flow rate enhancement by refrigerant hydrocarbonation The use of is effective.

以上のように、圧縮機132の低排気量制御を行う場合は、冷媒吐出に伴う冷凍機油の持ち出し低減効果と、一部の条件においては持ち出し後の冷凍機油の戻り性低下の影響とが共存する背反課題があるが、この両課題を同時に解決する手段として、冷媒の炭化水素化と相溶性のある鉱油の組み合わせ使用に加えて密閉容器内低圧型の圧縮機132の適用が有効な手段となり得る。   As described above, when low displacement control of the compressor 132 is performed, the effect of reducing the take-out of refrigeration oil accompanying refrigerant discharge and the effect of a decrease in the returnability of the refrigeration oil after take-out coexist in some conditions. However, as a means to solve both of these problems at the same time, in addition to the combined use of mineral oil that is compatible with hydrocarbon hydrocarbons, the application of the low-pressure compressor 132 in a sealed container is an effective means. obtain.

すなわち、まず圧縮機132の密閉容器内を低圧型とした上で低排気量制御を行い圧縮機132からの冷媒吐出に伴う冷凍機油持ち出し量を低減し、かつ冷凍サイクル中に持ち出された一部冷凍機油に対しては冷媒の炭化水素化による冷媒流速増強と相溶性のある鉱油の使用で圧縮機132への戻り性を向上させるものである。これにより、圧縮機132から吐出される冷凍機油の量を低減でき、圧縮機132内の冷凍機油不足による、圧縮機132の損傷等の危険性をさらに低減できるものである。   That is, first, the inside of the sealed container of the compressor 132 is made a low pressure type, and the low exhaust amount control is performed to reduce the amount of refrigeration oil taken out due to the refrigerant discharge from the compressor 132, and a part taken out during the refrigeration cycle For the refrigerating machine oil, the return to the compressor 132 is improved by using a mineral oil that is compatible with the refrigerant flow rate enhancement by the hydrocarbonization of the refrigerant. Thereby, the quantity of the refrigerating machine oil discharged from the compressor 132 can be reduced, and dangers, such as damage of the compressor 132 by the refrigerating machine oil shortage in the compressor 132, can further be reduced.

(実施の形態6)
図11は、本発明の実施の形態6におけるタイムチャートを示すものである。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 6)
FIG. 11 shows a time chart in the sixth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.

なお、上述の実施の形態と同様に、冷媒としては炭化水素系の冷媒として、例えばイソブタンが用いられ、冷凍機油にはイソブタンと相溶性のある鉱油が封入されている。   As in the above-described embodiment, as the refrigerant, for example, isobutane is used as the hydrocarbon-based refrigerant, and the refrigerating machine oil is filled with mineral oil that is compatible with isobutane.

庫内温度検知手段134が庫内温度上限設定を検知する(T1)において制御手段135に設けられた第一のタイマ136aのカウントが開始される。排気容量制御手段133はインバーター圧縮機132の動作回転数を最大回転数として運転を開始する。第一のタイマ136aはあらかじめ設定された所定時間カウントを行い(T2)において、第一のタイマ136aはカウントアップ信号を制御手段135に情報伝達する。制御手段135は、この信号を元に排気容量制御手段133に通常運転制御に回転数を減速させる。庫内温度検知手段があらかじめ設定された温度を検知するなどして(T3、T4)圧縮機132の回転数を制御して省エネと冷却能力の両立が図られる。庫内温度検知手段134が庫内温度設定下限を検知すると(T5)、圧縮機132は制御手段135により停止される。庫内温度が上昇し再度庫内上限温度設定を超えることを庫内温度検知手段134が検知する(T6)。   When the internal temperature detection means 134 detects the internal temperature upper limit setting (T1), the count of the first timer 136a provided in the control means 135 is started. The exhaust capacity control means 133 starts operation with the operation speed of the inverter compressor 132 as the maximum speed. The first timer 136a counts for a predetermined time set in advance (T2), and the first timer 136a transmits the count-up signal to the control means 135. Based on this signal, the control means 135 causes the exhaust capacity control means 133 to reduce the rotational speed to normal operation control. The internal temperature detection means detects the preset temperature (T3, T4), and controls the rotational speed of the compressor 132 to achieve both energy saving and cooling capacity. When the internal temperature detection means 134 detects the internal temperature setting lower limit (T5), the compressor 132 is stopped by the control means 135. The internal temperature detection means 134 detects that the internal temperature rises and exceeds the internal upper limit temperature setting again (T6).

以上の動作を繰り返すことで、庫内の温度調節が行われる。これにより圧縮機132の起動時に高い回転数で起動するので、停止中の冷媒への冷凍機油溶け込みにより吐出油量が最も多くなり、かつ給油条件が最も悪い摺動開始時に確実な配管内冷媒流速を確保することで冷凍機油の循環性を確保することができる。さらに停止中に冷媒に溶け込んだ状態で冷凍機油が蒸発器124に滞留するために、起動時に配管内冷媒流速を確保することで、より多くの冷凍機油を圧縮機132へと戻すことができる。   The internal temperature is adjusted by repeating the above operation. As a result, since the compressor 132 is started at a high rotational speed, the amount of discharged oil is maximized due to the refrigerating machine oil blending into the stopped refrigerant, and the refrigerant flow rate in the pipe is assured at the start of sliding where the lubrication conditions are worst. By ensuring this, it is possible to ensure the circulation of the refrigerating machine oil. Further, since the refrigerating machine oil stays in the evaporator 124 while being dissolved in the refrigerant during the stoppage, more refrigerating machine oil can be returned to the compressor 132 by securing the refrigerant flow rate in the pipe at the time of startup.

なお、最大排気容量を用いることで確実な冷凍機油の循環が行われるが、電源周波数である50rps以上の回転数であれば同様の効果が得られる。   In addition, although the refrigerating machine oil is reliably circulated by using the maximum exhaust capacity, the same effect can be obtained if the rotation speed is 50 rps or more which is the power supply frequency.

以上のように、本発明に係る冷蔵庫は、圧縮機を蒸発器より上方に配設した冷凍サイクルを有する場合の圧縮機への冷凍機油の戻り性を向上できるため、圧縮機内の冷凍機油が不足するといった危険性を低減でき、家庭用冷蔵庫のみならず業務用冷蔵庫、自動販売機、その他の冷却機器を備えた貯蔵庫の冷凍サイクル構成として有用である。   As described above, the refrigerator according to the present invention can improve the returnability of the refrigerating machine oil to the compressor when it has a refrigerating cycle in which the compressor is disposed above the evaporator, so that the refrigerating machine oil in the compressor is insufficient. This is useful as a refrigeration cycle configuration of a storage unit equipped with a refrigerator for business use, a vending machine, and other cooling devices as well as a refrigerator for home use.

本発明の実施の形態1における冷蔵庫の断面図Sectional drawing of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の冷媒と冷凍機油の溶解度曲線図Solubility curve diagram of refrigerant of refrigerator and refrigerating machine oil in Embodiment 1 of the present invention 本発明の実施の形態2における冷蔵庫の背面から見た正面図The front view seen from the back of the refrigerator in Embodiment 2 of this invention 本発明の実施の形態2における冷蔵庫の背面から見た正面図The front view seen from the back of the refrigerator in Embodiment 2 of this invention 本発明の実施の形態2における冷蔵庫の背面から見た正面図The front view seen from the back of the refrigerator in Embodiment 2 of this invention 本発明の実施の形態3における冷蔵庫の背面から見た断面図Sectional drawing seen from the back surface of the refrigerator in Embodiment 3 of this invention 本発明の実施の形態4における冷蔵庫の断面図Sectional drawing of the refrigerator in Embodiment 4 of this invention 本発明の実施の形態4における冷蔵庫の配管構成図Piping configuration diagram of refrigerator in embodiment 4 of the present invention 本発明の実施の形態5における冷蔵庫の断面図Sectional drawing of the refrigerator in Embodiment 5 of this invention 本発明の実施の形態5におけるタイムチャートTime chart in Embodiment 5 of the present invention 本発明の実施の形態6におけるタイムチャートTime chart in Embodiment 6 of the present invention 従来の冷蔵庫の断面図Cross-sectional view of a conventional refrigerator

符号の説明Explanation of symbols

1,100 冷蔵庫本体
2,104 冷蔵室
4,106 冷凍室
9,124 蒸発器
11,117 機械室
12,118 圧縮機
13,115 第一の天面部
14 冷蔵庫外箱背面
15,116 第二の天面部
16,120 凝縮器
17 機械室カバー
18 冷凍サイクル
19,122 キャピラリー
20 サクションライン
21 曲げ部
22 トラップ部
23 冷蔵室冷却用蒸発器
24 冷凍室冷却用蒸発器
25 ジョイント配管
105 野菜室
119 機械室ファン
121 凝縮器ファン
123 冷却ファン
126 機械室カバー
132 排気容量可変型圧縮機(圧縮機)
133 排気容量制御手段
134 庫内温度検知手段
135 制御手段
136a 第一のタイマ
136b 第二のタイマ
DESCRIPTION OF SYMBOLS 1,100 Refrigerator body 2,104 Refrigeration room 4,106 Freezer room 9,124 Evaporator 11,117 Machine room 12,118 Compressor 13,115 First top surface part 14 Back surface of refrigerator outer box 15,116 Second ceiling Surface part 16,120 Condenser 17 Machine room cover 18 Refrigeration cycle 19,122 Capillary 20 Suction line 21 Bending part 22 Trap part 23 Refrigerating room cooling evaporator 24 Freezing room cooling evaporator 25 Joint piping 105 Vegetable room 119 Machine room fan 121 Condenser fan 123 Cooling fan 126 Machine room cover 132 Exhaust capacity variable type compressor (compressor)
133 Exhaust capacity control means 134 Internal temperature detection means 135 Control means 136a First timer 136b Second timer

Claims (6)

圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルと、前記圧縮機の排気容量を変化させる排気容量制御手段を備えた制御手段とを有し、前記圧縮機は密閉容器と前記密閉容器内に備えられた電動要素および圧縮要素を有し、前記密閉容器の内部空間は前記冷凍サイクルにおける低圧側であるとともに、代替フロン冷媒のR134aに比べて小さくなる単位体積当たりの冷凍能力を補うために相対的に気筒容積を大きくした炭化水素冷媒用の圧縮機であり、前記凝縮器は主たる凝縮器と冷蔵庫本体のパネルに配設された凝縮配管と冷蔵庫本体の開口前面周囲に配設された結露防止用配管とを備え、前記圧縮機は冷蔵庫本体の天面の一部に設置されて前記蒸発器より上方に配置され、前記主たる凝縮器は前記蒸発器より下方に配置され、前記冷凍サイクルには冷媒としての炭化水素と冷凍機油としての鉱油が封入され、前記排気容量制御手段によって前記圧縮機の排気量が可変となる冷蔵庫。 A refrigeration cycle comprising a compressor, a condenser, a decompressor, and an evaporator in order to form a series of refrigerant flow paths; and a control means having an exhaust capacity control means for changing the exhaust capacity of the compressor. The compressor has a sealed container, an electric element and a compression element provided in the sealed container, and the inner space of the sealed container is on the low-pressure side in the refrigeration cycle, and compared to R134a of an alternative chlorofluorocarbon refrigerant. A compressor for a hydrocarbon refrigerant having a relatively large cylinder volume in order to compensate for a refrigeration capacity per unit volume that is reduced, and the condenser includes a main condenser and a condensation pipe disposed on a panel of the refrigerator body. and a dew condensation preventing pipe disposed in the opening front around the refrigerator body, the compressor is disposed above said evaporator is installed in a portion of the top surface of the refrigerator body, said main condenser before Is arranged from the evaporator downwardly into said refrigeration cycle is encapsulated mineral oils as the refrigerating machine oil and the hydrocarbon serving as a refrigerant, refrigerator exhaust amount of the compressor by the exhaust capacity control means is variable. 冷蔵庫本体底部に前記主たる凝縮器を配置したことを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the main condenser is arranged at the bottom of the refrigerator main body. 冷蔵庫本体の上部に冷蔵室、下部に冷凍室を形成し、前記冷凍室の後方に前記蒸発器を配置したことを特徴とする請求項1または2に記載の冷蔵庫。The refrigerator according to claim 1 or 2, wherein a refrigerator compartment is formed in the upper part of the refrigerator body, a freezer compartment is formed in the lower part, and the evaporator is arranged behind the freezer compartment. 冷蔵庫本体の上部に前記圧縮機を冷却するファンを、下部に主たる凝縮器を冷却するファンをそれぞれ設けたことを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 3, wherein a fan for cooling the compressor is provided at an upper part of the refrigerator body, and a fan for cooling a main condenser is provided at the lower part. 排気容量制御手段を備えた制御手段と庫内温度検知手段とを設け、前記庫内温度検知手段の検知情報による所定のタイミングで前記圧縮機の排気容量制御を行い冷凍サイクルの冷媒循環流速を増加させたことを特徴とする請求項1から4のいずれか一項に記載の冷蔵庫。 A control means having an exhaust capacity control means and an internal temperature detection means are provided, and the exhaust capacity of the compressor is controlled at a predetermined timing based on the detection information of the internal temperature detection means to increase the refrigerant circulation flow rate of the refrigeration cycle. The refrigerator according to any one of claims 1 to 4, wherein the refrigerator is made. 前記排気容量制御手段によって、圧縮機起動時に所定時間、強制的に通常排気量よりも大きい排気容量で運転させることを特徴とする請求項1から5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the exhaust capacity control means is forcibly operated at an exhaust capacity larger than the normal displacement for a predetermined time when the compressor is started.
JP2004376064A 2004-05-18 2004-12-27 refrigerator Expired - Fee Related JP3724503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376064A JP3724503B1 (en) 2004-05-18 2004-12-27 refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004147458 2004-05-18
JP2004376064A JP3724503B1 (en) 2004-05-18 2004-12-27 refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004359446A Division JP4396504B2 (en) 2004-05-18 2004-12-13 refrigerator

Publications (2)

Publication Number Publication Date
JP3724503B1 true JP3724503B1 (en) 2005-12-07
JP2006003062A JP2006003062A (en) 2006-01-05

Family

ID=35500465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376064A Expired - Fee Related JP3724503B1 (en) 2004-05-18 2004-12-27 refrigerator

Country Status (1)

Country Link
JP (1) JP3724503B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136082A (en) * 2015-01-05 2016-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. Cooling system

Also Published As

Publication number Publication date
JP2006003062A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US8596084B2 (en) Icemaker with reversible thermosiphon
US6327871B1 (en) Refrigerator with thermal storage
US20120047917A1 (en) MODULAR REFRIGERATOR and ICEMAKER
JP2006250378A (en) Cooling storage
JP6559335B2 (en) refrigerator
JP2012127514A (en) Refrigerator-freezer
JP3824015B2 (en) refrigerator
CN102997558B (en) Refrigerator
WO2006030736A1 (en) Refrigerator
JP4396504B2 (en) refrigerator
JP2007309585A (en) Refrigerating device
JP3824016B2 (en) refrigerator
JP3724503B1 (en) refrigerator
CN100462654C (en) Refrigerator
JP2017026210A (en) refrigerator
JP2004324902A (en) Freezing refrigerator
RU2330222C1 (en) Electro refrigirator with hot meal thermos of nr yansufin
JP2005098605A (en) Refrigerator
JP5475033B2 (en) Refrigeration equipment
JP2012026645A (en) Refrigerating device, and auger type ice making machine and showcase using the same
WO2020121404A1 (en) Refrigerator
JP4286106B2 (en) Freezer refrigerator
JP3722148B1 (en) refrigerator
CN218096771U (en) Refrigerator
JP4155335B2 (en) vending machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R151 Written notification of patent or utility model registration

Ref document number: 3724503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees