WO2019159826A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2019159826A1
WO2019159826A1 PCT/JP2019/004524 JP2019004524W WO2019159826A1 WO 2019159826 A1 WO2019159826 A1 WO 2019159826A1 JP 2019004524 W JP2019004524 W JP 2019004524W WO 2019159826 A1 WO2019159826 A1 WO 2019159826A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expansion valve
temperature
refrigerator
air
Prior art date
Application number
PCT/JP2019/004524
Other languages
French (fr)
Japanese (ja)
Inventor
堀尾 好正
境 寿和
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019159826A1 publication Critical patent/WO2019159826A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Definitions

  • the present disclosure relates to a refrigerator equipped with an expansion valve with a variable throttle amount.
  • FIG. 8 is a configuration diagram of a conventional refrigeration system 140.
  • FIG. 9 is a diagram illustrating a method for controlling the expansion valve 144 of the conventional refrigeration system 140.
  • the refrigeration system 140 includes a compressor 141, a condenser 142, a receiver 143, an expansion valve 144, a capillary tube 145, an evaporator 146, an intake pipe 147, an internal heat exchange unit 148, And an intake pipe temperature sensor 149.
  • the receiver 143 stores the refrigerant circulating in the refrigeration system 140 in a liquid state.
  • the amount of the refrigerant in the liquid state in the receiver 143 that is, the amount of the liquid refrigerant fluctuates by changing the throttle of the expansion valve 144.
  • coolant inside the condenser 142 and the evaporator 146 is maintained appropriately.
  • the degree of supercooling of the refrigerant flowing into the expansion valve 144 is kept constant (including substantially constant).
  • the expansion valve 144 and the capillary tube 145 are arranged in series, whereby the throttle of the refrigeration system 140 is configured. Therefore, the internal heat exchanging part 148 for exchanging heat between the capillary tube 145 and the suction pipe 147 is realized. Thereby, the enthalpy of the low-temperature refrigerant
  • the suction pipe temperature sensor 149 detects the temperature of the suction pipe 147 after passing through the internal heat exchange unit 148. Based on the temperature detected by the suction pipe temperature sensor 149, the throttle amount of the expansion valve 144 is varied.
  • the compressor 141 When the refrigeration system 140 is operated and the cooling operation is performed, the compressor 141 operates (operates).
  • the refrigerant compressed in the compressor 141 dissipates heat and condenses in the condenser 142 and is stored in the receiver 143.
  • the liquid refrigerant stored in the receiver 143 that is, the liquid refrigerant is decompressed in the expansion valve 144 and the capillary tube 145.
  • the decompressed liquid refrigerant is supplied to the evaporator 146 to evaporate, and is supplied (refluxed) to the compressor 141 through the suction pipe 147.
  • cooling is performed by utilizing the cold heat generated in the evaporator 146, that is, latent heat.
  • the horizontal axis in FIG. 9 indicates the value of the pressure loss generated according to the throttle amount of the expansion valve 144.
  • the vertical axis in FIG. 9 indicates the value of the temperature R of the suction pipe 147 detected by the suction pipe temperature sensor 149.
  • the cold heat generated in the evaporator 146 becomes redundant.
  • the temperature R of the suction pipe 147 decreases and the temperature R of the suction pipe 147 falls below R1
  • the throttle amount of the expansion valve 144 is controlled, and the throttle of the expansion valve 144 is controlled.
  • the amount increases by a predetermined amount. Thereby, the evaporation temperature of the refrigerant in the evaporator 146 is lowered, and the circulation amount of the refrigerant is reduced.
  • the cold heat generated in the evaporator 146 that is, the refrigerating capacity in the evaporator 146 is reduced. Further, the liquid refrigerant that has flowed out of the receiver 143 to the suction pipe 147 is stored in the receiver 143 as surplus refrigerant. As a result, the temperature R of the suction pipe 147 increases.
  • the throttle amount of the expansion valve 144 is controlled, and the throttle amount of the expansion valve 144 decreases by a predetermined amount.
  • the evaporation temperature of the refrigerant in the evaporator 146 rises, and the circulation amount of the refrigerant increases. Therefore, the cold heat generated in the evaporator 146, that is, the refrigerating capacity in the evaporator 146 increases. Further, excess refrigerant stored in the receiver 143 is supplied to the evaporator 146. As a result, the temperature R of the suction pipe 147 decreases.
  • the temperature R of the suction pipe 147 is maintained between the temperature R1 and the temperature R2 in FIG. Thereby, the fall of the efficiency of the refrigerating system 140 and the fall of the durability of the compressor 141 are suppressed.
  • the expansion valve is desirably controlled so that the degree of dryness of the refrigerant at the outlet of the condenser, that is, the downstream side of the condenser, that is, the degree of supercooling becomes zero.
  • a refrigeration system included in a home refrigerator or the like that uses a condenser that dissipates heat by natural convection from the outer casing of the refrigerator has a large change in heat dissipation capacity depending on environmental conditions. For this reason, it is difficult to keep the outlet of the condenser at a predetermined degree of supercooling. When the degree of supercooling at the outlet of the condenser approaches zero, the gas phase component of the refrigerant at the outlet of the condenser is reduced.
  • the present disclosure solves the above-described problem, and provides a refrigerator in which the temperature slip generated at the outlet of the condenser is reduced by reducing the influence of remaining air, and the efficiency and energy saving performance of the refrigeration cycle is improved.
  • the purpose is to do.
  • the refrigerator of the present disclosure includes a compressor, an expansion valve, a condenser, an evaporator, and an air removal unit.
  • the dryness of the refrigerant flowing downstream of the condenser in the refrigeration cycle including the compressor, the expansion valve, the condenser, the evaporator, and the air removing unit is controlled by the throttle amount of the expansion valve.
  • the air removal unit is disposed upstream or downstream of the expansion valve in the refrigeration cycle, and removes air mixed in the refrigerant circulating in the refrigeration cycle.
  • the air remaining in the refrigeration cycle is removed by the air removal unit, that is, held by the air removal unit. Therefore, the influence of residual air is reduced, and the temperature slip that occurs between the outlet of the condenser, that is, between the condenser and the evaporator, is reduced. Thereby, the efficiency and energy saving performance of the refrigeration cycle are improved.
  • a refrigerator can be provided.
  • FIG. 1 is a front view of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 2 is a vertical cross-sectional view of the refrigerator in the embodiment of the present disclosure.
  • FIG. 3 is a configuration diagram of the refrigerator refrigeration system according to the embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a method for controlling the expansion valve of the refrigeration system according to the embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating a correlation between the output of the expansion valve control sensor of the refrigeration system and the refrigerant flow rate in the embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating a method for controlling the expansion valve of the refrigerator in the embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the gas receiver of the refrigerator in the embodiment of the present disclosure.
  • FIG. 8 is a configuration diagram of a conventional refrigeration system.
  • FIG. 9 is a diagram illustrating a method for controlling an expansion valve of a conventional refrigeration system.
  • the refrigerator in the first disclosure includes a compressor, an expansion valve, a condenser, an evaporator, and an air removal unit.
  • the dryness of the refrigerant flowing downstream of the condenser in the refrigeration cycle including the compressor, the expansion valve, the condenser, the evaporator, and the air removing unit is controlled by the throttle amount of the expansion valve.
  • the air removal unit is disposed upstream or downstream of the expansion valve in the refrigeration cycle, and removes air mixed in the refrigerant circulating in the refrigeration cycle.
  • the air remaining in the refrigeration cycle is removed (held) by the air removal unit.
  • the influence on the temperature slip by the air of the exit of a condenser is suppressed. Therefore, the efficiency of the refrigeration cycle is improved and the energy saving performance is improved.
  • the air removal unit is arranged upstream of the expansion valve in the refrigeration cycle.
  • the air remaining in the refrigeration cycle is removed by the air removal unit.
  • the influence on the temperature slip by the air of the exit of a condenser is suppressed. Therefore, the efficiency of the refrigeration cycle is improved and the energy saving performance is improved.
  • the air removing unit is disposed at a position where the refrigerant flowing downstream of the condenser flows from top to bottom in the refrigeration cycle.
  • the air removal unit is a gas receiver.
  • the gas receiver includes a hollow closed receiver main body, an inlet pipe inserted from one end of the receiver main body so that the tip is disposed inside the receiver main body, and an outlet pipe arranged at the other end of the receiver main body. Including.
  • the air when air remains in the refrigeration cycle, the air is mixed into the refrigerant compressed by the compressor.
  • a refrigerant mixed with an incompressible gas such as air
  • the input of the compressor that is, the power consumption of the compressor is smaller than when a refrigerant not mixed with an incompressible gas is compressed.
  • the energy increases, that is, the energy efficiency decreases.
  • the refrigerant is sealed after the inside of the refrigeration cycle is evacuated to a predetermined degree of vacuum before the refrigerant is sealed during production in the factory.
  • vacuuming is performed within a limited time and it is difficult to remove air adhering to the inside of the refrigeration cycle piping, air may remain in the refrigeration cycle. is there.
  • the gas receiver slightly isolates (removes) the air remaining in the refrigeration cycle from the refrigeration cycle. Thereby, the refrigerator operates in a state close to vacuum. Therefore, it becomes possible to cool with high efficiency without consuming unnecessary power. For this reason, a refrigerator with high energy-saving property can be provided.
  • the gas receiver is arranged in the refrigeration cycle in a state where one end is up and the other end is down.
  • the gas receiver exposes the refrigerant flowing out from the front end portion of the inlet pipe and flowing into the refrigerant inlet portion of the outlet pipe inside the receiver body. Then, the air mixed in the refrigerant is separated from the refrigerant, and the separated air is stored inside the receiver body, thereby removing the air mixed in the refrigerant circulating in the refrigeration cycle.
  • the gas receiver isolates the air remaining in the refrigeration cycle slightly from the refrigeration cycle. Thereby, the refrigerator operates in a state close to vacuum. Therefore, it becomes possible to cool with high efficiency without consuming unnecessary power. For this reason, a refrigerator with high energy-saving property can be provided.
  • the refrigerator according to the seventh disclosure is the refrigerator according to the fourth or fifth disclosure, wherein the gas receiver is disposed between the front end portion of the inlet pipe and the refrigerant inflow portion of the outlet pipe and removes air mixed in the refrigerant. Further included.
  • the gas receiver further includes a mesh that is disposed between the front end portion of the inlet pipe and the inlet portion of the refrigerant in the outlet pipe and removes air mixed in the refrigerant. .
  • a refrigerator according to a ninth disclosure is the refrigerator according to any one of the first to eighth disclosures, wherein the refrigerator is disposed downstream of the condenser and upstream of the minute resistor, and detects the upstream temperature of the minute resistor.
  • An upstream temperature sensor, and a downstream temperature sensor that is arranged downstream of the minute resistor and detects the downstream temperature of the minute resistor.
  • the value of the temperature difference between the temperature detected by the upstream temperature sensor and the temperature detected by the downstream temperature sensor is compared with a predetermined value set in advance, and the expansion valve is controlled so that the temperature difference value approaches the predetermined value.
  • the expansion valve throttle amount is minimum. Thereafter, the temperature between the temperature detected by the upstream temperature sensor and the temperature detected by the downstream temperature sensor is set to a predetermined value that is set based on the state of the outlet of the condenser that is predicted when the throttle amount of the expansion valve is minimum.
  • the expansion valve is controlled so that the expansion amount of the expansion valve is gradually reduced so that the difference approaches.
  • the expansion amount of the expansion valve is controlled so that the dryness of the refrigerant, which changes according to the operating state of the refrigerator, approaches zero.
  • the aperture amount changes. For this reason, optimization of the refrigerating capacity of the refrigerator is realized with high accuracy. Therefore, energy saving of the refrigerator is realized, and a decrease in the durability of the compressor is suppressed.
  • the predetermined value is corrected based on the difference between the temperature difference value and the predetermined value in the ninth disclosure, and the expansion valve is controlled based on the corrected predetermined value.
  • the difference between the temperature difference, that is, the temperature detected by the upstream temperature sensor and the temperature detected by the downstream temperature sensor is ⁇ T1
  • the target temperature difference that is, the temperature difference when no air remains in the refrigerant
  • T2 the temperature difference when no air remains in the refrigeration cycle
  • ⁇ T1 ⁇ T2
  • the dryness of the refrigerant that is, the temperature difference approaches zero.
  • ⁇ T1 is high in advance, and ⁇ T1> ⁇ T2. After the dryness reaches zero, the refrigerant is supercooled.
  • the temperature at the outlet of the condenser decreases.
  • the cooling capacity of a refrigerating cycle falls.
  • the temperature difference ⁇ T1 is compared with the temperature difference ⁇ T2, and the predetermined temperature difference ⁇ T2 that is the target value is corrected based on the divergence temperature that is the difference between ⁇ T1 and ⁇ T2.
  • the expansion amount of the expansion valve is corrected based on the corrected predetermined temperature difference, so that an excessive increase in the expansion amount of the expansion valve due to the influence of residual air is suppressed, and the refrigerant is overcooled. It is suppressed.
  • FIG. 1 is a front view of the refrigerator 30 in the present embodiment.
  • FIG. 2 is a longitudinal sectional view of the refrigerator 30 in the present embodiment.
  • FIG. 3 is a configuration diagram of the refrigeration system 10 of the refrigerator 30 in the present embodiment.
  • a direction relatively close to the installation surface of the refrigerator 30 is a lower side, and a direction relatively far from the installation surface of the refrigerator 30 is an upper side. That is, the vertical direction in the state in FIG. In the state where the refrigerator 30 is installed, the direction in which the door of the refrigerator 30 opens and closes is the front, and the opposite side of the front is the rear. Further, when the refrigerator 30 is viewed from the front, the left is on the left and the right is on the right. That is, it is set as the left-right direction in the state in FIG.
  • the refrigerator 30 includes a refrigerating room 31 provided in the upper part of the refrigerating machine 30, an upper freezer room 32 provided below the refrigerating room 31, and an upper stage freezing unit below the refrigerating room 31.
  • a refrigerating room 31 provided in the upper part of the refrigerating machine 30, an upper freezer room 32 provided below the refrigerating room 31, and an upper stage freezing unit below the refrigerating room 31.
  • the refrigerator compartment 31 includes a metal (for example, iron plate) outer box (not shown), a hard resin (for example, ABS) inner box (not shown), an outer box and an inner box, which are opened forward.
  • a rigid urethane foam (not shown) filled in between.
  • a drawer-type door (not shown) is provided to be openable and closable.
  • a double door (not shown) is provided so that it can be opened and closed.
  • the refrigerator compartment 31 is set so that, for example, the internal temperature is 1 ° C. to 5 ° C. for refrigerated storage.
  • the vegetable room 35 is set so that the internal temperature is 2 ° C. to 7 ° C., which is the same temperature as the internal temperature of the refrigerator compartment 31 or slightly higher than the internal temperature of the refrigerator 30.
  • the upper freezer compartment 32 and the lower freezer compartment 35 are set so that, for example, the internal temperature is ⁇ 22 ° C. to ⁇ 18 ° C. for frozen storage.
  • the internal temperatures of the upper freezer chamber 32 and the lower freezer chamber 35 may be set, for example, from ⁇ 30 ° C. to ⁇ 25 ° C.
  • the inside of the refrigerator compartment 31 and the inside of the vegetable compartment 35 are set to a positive temperature, it is also called a refrigerator temperature zone. Since the inside of the upper freezing chamber 32, the inside of the lower freezing chamber 34, and the inside of the ice making chamber 33 are set to minus temperatures, they are also called freezing temperature zones. Note that the upper freezer compartment 32 may be a switching room by using a damper mechanism or the like, for example, and a refrigeration temperature zone and a freezing temperature zone may be selectable.
  • the top surface of the refrigerator 30 is provided with a stepped recess from the front surface of the refrigerator 30 toward the rear surface.
  • a machine room 47 is provided in the stepped recess of the refrigerator 30.
  • the stepped recess of the refrigerator 30 includes a first top surface portion 37 and a second top surface portion 38.
  • the refrigeration system 10 includes a compressor 11 disposed in a machine room 47, a condenser 12, a dryer 13 that removes moisture from the refrigerant, a heat radiating pipe (not shown), an expansion valve 14, and a capillary.
  • the tube 15, the evaporator 16, the accumulator 17, the suction pipe 18, and the internal heat exchange unit 19 are included.
  • the refrigeration system 10 further includes a minute resistance 20 and an expansion valve control sensor 23 (detection means) including an upstream temperature sensor 21 and a downstream temperature sensor 22.
  • a refrigerant is enclosed in the refrigeration system 10 and a cooling operation is performed.
  • the refrigeration system 10 is also referred to as a refrigeration cycle.
  • a flammable refrigerant is generally used as the refrigerant sealed in the refrigeration system 10 for environmental protection.
  • isobutane which is a flammable refrigerant with a low global warming potential, is used from the viewpoint of global environmental conservation.
  • Isobutane is a hydrocarbon and has a specific gravity (eg, 2.04) that is about twice that at normal temperature (eg, 300 K) and atmospheric pressure (eg, 1013 hPa) compared to air.
  • the dryer 13 dries the refrigerant circulating in the refrigeration system 10. In order for the liquid refrigerant and the dryer 13 to contact efficiently, the dryer 13 is disposed downstream of the condenser 12.
  • the accumulator 17 stores surplus refrigerant in the stable state of the refrigeration system 10. In order to maintain the same temperature (including substantially the same) as the temperature of the evaporator 16, the accumulator 17 is disposed downstream of the evaporator 16.
  • the refrigeration system 10 included in a home refrigerator or the like that uses a condenser 12 that dissipates heat by natural convection from the outer casing of the refrigerator 30 varies greatly depending on environmental conditions.
  • excess refrigerant cannot be stored on the high-pressure side of the refrigeration system 10 by the receiver. Therefore, as in the present embodiment, surplus refrigerant is stored on the low-pressure side of the refrigeration system 10 by the accumulator 17.
  • the accumulator 17 is effective for suppressing the total refrigerant amount, that is, adjusting the refrigerating capacity.
  • the throttle of the refrigeration system 10 is configured by arranging the expansion valve 14 and the capillary tube 15 in series. As a result, an internal heat exchanging section 19 for exchanging heat between the capillary tube 15 and the suction pipe 18 is realized. Therefore, the enthalpy of the low-temperature refrigerant that circulates in the suction pipe 18 is recovered, and the efficiency of the refrigeration system 10 is improved.
  • the microresistor 20 constituting the expansion valve control sensor 23 is provided downstream of the condenser 12 and is constituted by, for example, a thin tube having a length of 250 mm.
  • the minute resistance 20 has a resistance corresponding to about 5% of the total resistance of the minute resistance 20, the expansion valve 14 and the capillary tube 15 arranged in series.
  • the ratio of the minute resistance 20 to the total resistance is desirably 1% to 20%.
  • the resistance of the minute resistance 20 is a resistance corresponding to more than 20% of the total resistance, the heat exchange of the internal heat exchange unit 19 becomes insufficient, and the efficiency of the refrigeration system 10 is reduced.
  • the ratio of the minute resistance 20 to the total resistance is the length of the capillary tube 15 and the capillary when the resistance of the minute resistance 20, the expansion valve 14 and the capillary tube 15 is replaced by the capillary tube 15 having the same inner diameter. The ratio of the length of the tube 15 is shown.
  • the upstream temperature sensor 21 constituting the expansion valve control sensor 23 is arranged on the upstream side of the minute resistor 20 and detects the pipe temperature on the upstream side of the minute resistor 20.
  • the downstream temperature sensor 22 constituting the expansion valve control sensor 23 is disposed on the downstream side of the minute resistor 20 and detects the pipe temperature on the downstream side of the minute resistor 20.
  • the value of the temperature difference between the temperature detected by the upstream temperature sensor 21 and the temperature detected by the downstream temperature sensor 22, that is, the temperature difference before and after the micro resistance 20 changes according to the state change of the refrigerant flowing inside the micro resistance 20. To do.
  • the throttle amount of the expansion valve 14 is varied. Thereby, the refrigeration system 10 is controlled to a predetermined state.
  • the expansion valve control sensor 23 desirably avoids the influence of waste heat from the compressor 11 and the condenser 12.
  • the expansion valve control sensor 23 is disposed on the upstream side of the air passage.
  • the throttle amount of the expansion valve 14 is minimum, that is, the refrigerant circulation amount in the expansion valve 14 is maximum, and the compressor 11 operates (operates).
  • the refrigerant compressed in the compressor 11 dissipates heat and condenses in the condenser 12 and is then dried in the dryer 13.
  • the refrigerant dried in the dryer 13 passes through the expansion valve control sensor 23, is depressurized in the expansion valve 14 and the capillary tube 15, is supplied to the evaporator 16, is evaporated, and is compressed through the suction pipe 18. Supplied to.
  • cooling is performed by utilizing the cold heat generated in the evaporator 16, that is, latent heat.
  • the total resistance of the microresistor 20, the expansion valve 14, and the capillary tube 15 arranged in series and the total amount of refrigerant in the refrigeration system 10 are designed.
  • the refrigeration system 10 included in a home refrigerator or the like that uses a condenser 12 that dissipates heat by natural convection from the outer casing of the refrigerator 30 varies greatly depending on environmental conditions. For this reason, when the refrigerant at the outlet of the condenser 12 is designed to be supercooled, most of the refrigerant in the refrigeration system 10 stays in the condenser 12 when the heat dissipation capacity increases due to environmental conditions. There is a possibility that the circulation amount of the refrigerant will decrease.
  • the throttle amount of the expansion valve 14 is controlled so that the temperature difference between the temperature detected by the upstream temperature sensor 21 and the temperature detected by the downstream temperature sensor 22 becomes a predetermined value set in advance.
  • the throttle amount of the expansion valve 14 is controlled so that the throttle amount of the expansion valve 14 changes by a predetermined amount compared to a stable state where the throttle amount of the expansion valve 14 is minimum.
  • the horizontal axis in FIG. 4 indicates the value of the pressure loss that occurs according to the throttle amount of the expansion valve 14.
  • the vertical axis in FIG. 4 indicates the output of the expansion valve control sensor 23, that is, the value of the temperature difference S before and after the minute resistance 20 detected by the expansion valve control sensor 23.
  • the amount of throttle of the expansion valve 14 is the minimum and the compressor 11 is operating, the temperature of the object cooled by the refrigeration system 10 decreases, and the refrigeration system 10 approaches the stable state to condense.
  • the refrigerant at the outlet of the vessel 12 is in a two-phase state.
  • the output of the expansion valve control sensor 23 indicates S0.
  • the throttle amount of the expansion valve 14 is controlled so that the output of the expansion valve control sensor 23 falls below S2, and the throttle amount of the expansion valve 14 increases.
  • coolant of the exit of the condenser 12 reduces. Therefore, the refrigeration effect of the refrigeration system 10 is increased, and the efficiency of the refrigeration system 10 is improved.
  • the horizontal axis indicates the output of the expansion valve control sensor 23, that is, the value of the temperature difference S before and after the minute resistance 20 detected by the expansion valve control sensor 23, similarly to the vertical axis in FIG. 4.
  • the vertical axis in FIG. 5 indicates the value of the flow velocity V of the refrigerant passing through the minute resistor 20.
  • the circulation amount of the refrigerant is constant (including substantially constant) in a stable state. For this reason, when the dryness of the refrigerant at the outlet of the condenser 12 decreases and the refrigerant at the outlet of the condenser 12 becomes a liquid phase, the flow velocity V of the refrigerant passing through the minute resistor 20 is the minimum (substantially minimum). Included). Further, when the dryness of the refrigerant at the outlet of the condenser 12 increases, the flow velocity V of the refrigerant passing through the minute resistor 20 increases.
  • the specific volume of the gas phase is about 50 times the specific volume of the liquid phase. Therefore, the amount of change in the flow velocity V of the refrigerant having a dryness of 0 wt% to 10 wt% passing through the minute resistor 20 is large. In particular, when the dryness is in the range of 0 wt% to 10 wt%, the state of the refrigerant at the outlet of the condenser 12 by the expansion valve control sensor 23 is easily detected.
  • a highly efficient cooling operation is performed by performing the above control as basic control.
  • the expansion valve 14 is controlled based on the detection result of the expansion valve control sensor 23.
  • the flow rate of the refrigerant may be controlled based on the temperature difference generated by the pressure difference of the minute resistor 20.
  • the same control is possible for a switching valve for switching the refrigerant flow path.
  • the flow rate of the refrigerant is controlled by selecting a flow path that is switched according to the output range of the expansion valve control sensor 23.
  • the refrigerant may be circulated to capillaries having different resistance values due to different inner diameters, lengths, and the like at the end of the switched flow path.
  • the refrigerator 30 is shipped in a state where the refrigerant is sealed and the piping is sealed after vacuuming is performed during production in the factory.
  • the actual age of the refrigerator 30 used by the user is 10 years or more.
  • the usage state of the refrigerator 30 in the market that is, the usage state of the refrigerator 30 used by the user is a maintenance-free state except for cleaning of dust and the like.
  • the evacuation is performed until the degree of vacuum in the refrigeration system 10 reaches a predetermined degree of vacuum.
  • the performance of the vacuum equipment that realizes evacuation in the factory and the attachment / detachment of the refrigerator 30 and the vacuum equipment affect the amount of air remaining in the refrigeration system 10.
  • the air remaining in the refrigeration system 10 circulates in the cooling pipe together with the refrigerant during operation of the refrigerator 30.
  • the air is mixed into the refrigerant compressed in the compressor 11.
  • a refrigerant mixed with an incompressible gas such as air is compressed
  • the input of the compressor increases as compared with the case where a refrigerant not mixed with an incompressible gas is compressed. It becomes.
  • Refrigerator 30 operates based on FIG. 4 and FIG.
  • the output value of the expansion valve control sensor 23 depends on the effect of air remaining in the refrigeration system 10 when no air remains in the refrigeration system 10 and when air remains in the refrigeration system 10. In this case, an error occurs in the output value of the expansion valve control sensor 23.
  • T is the output temperature difference detected by the expansion valve control sensor 23, that is, the output of the temperature difference between the temperature detected by the upstream temperature sensor 21 and the temperature detected by the downstream temperature sensor 22.
  • the output actually detected by the expansion valve control sensor 23 is T1.
  • a predetermined output to be aimed at that is, an output detected by the expansion valve control sensor 23 when air does not remain in the refrigerant is T0.
  • T1 T0.
  • the throttle amount of the expansion valve 14 is controlled and the throttle amount of the expansion valve 14 increases, the output temperature difference detected by the expansion valve control sensor 23 approaches zero.
  • T1 is high in advance due to temperature slip, and T1> T0.
  • the refrigerant After the output temperature difference detected by the expansion valve control sensor 23 reaches zero, the refrigerant is supercooled. Therefore, when the throttle amount of the expansion valve 14 is controlled and the throttle amount of the expansion valve 14 continues to increase, the temperature at the outlet of the condenser 12 decreases. Thereby, the cooling capacity of the refrigeration system 10 decreases. Furthermore, since the temperature of the condenser 12 falls, the surface temperature of the refrigerator 30 falls and the surface temperature of the refrigerator 30 may become below a dew point temperature. As a result, not only energy increase occurs, but quality deterioration such as surface condensation may occur. In the supercooled state, the refrigerant mainly stays in the condenser 12.
  • the amount of the refrigerant circulating in the refrigeration system 10 is insufficient, and the refrigeration system 10 is difficult to cool. Further, the temperature at the inlet of the evaporator 16 is extremely lowered. Therefore, the actual output T1 detected by the expansion valve control sensor 23 is compared with the target predetermined output T0, and the predetermined value T0 that is the target value is obtained based on the deviation temperature that is the difference between T1 and T0. Will be corrected. Further, by correcting the throttle amount of the expansion valve 14, an excessive increase in the throttle amount of the expansion valve 14 due to the influence of residual air is suppressed, and the refrigerant is suppressed from being overcooled.
  • Degradation of quality such as condensation due to a decrease in the cooling capacity of 10 and a decrease in the condensation temperature of the refrigerant is suppressed. Furthermore, even when air remains, the throttle amount of the expansion valve 14 is controlled so that the dryness of the refrigerant approaches zero. Thereby, the refrigerator 30 with high energy-saving property, ie, high energy efficiency, is provided.
  • the compressor 11 may be continuously operated such that the rotation speed of the compressor 11 is constant or is known in advance. This is because the state change of the refrigerator 30 is small and the difference between T1 and T0 is easily detected.
  • the temperature at the outlet of the evaporator 16 is rapidly increased and supercooled due to an excessive increase in the amount of expansion of the expansion valve 14. Is detected, the output value of the expansion valve control sensor 23 is further corrected.
  • the gas receiver shown in FIG. 7 is provided so that residual air does not recirculate into the refrigeration system 10.
  • the gas receiver 24 is disposed in the refrigeration system 10 downstream of the condenser 12 and upstream of the upstream temperature sensor 21. That is, in the refrigeration system 10, the outlet of the condenser 12, the gas receiver 24, the expansion valve control sensor 23, the expansion valve 14, the dryer 13, and the capillary tube 15 are arranged in this order. In other words, the gas receiver 24 is disposed upstream of the expansion valve 14 in the refrigeration system 10.
  • the gas receiver 24 includes a hollow closed receiver body 25, an inlet pipe 26, an outlet pipe 28, and an internal mesh 29 disposed between the inlet pipe 26 and the outlet pipe 28.
  • the gas receiver 24 is disposed at a position where the refrigerant flowing in the flow direction from top to bottom, that is, the refrigerant flowing downstream of the condenser 12 flows from top to bottom.
  • the inlet pipe 26 has an inlet pipe tip 27.
  • the inlet pipe 26 is inserted from the upper part of the gas receiver 24, that is, from the upper part of the receiver body 25 so that the inlet pipe distal end portion 27 is disposed inside the receiver body 25.
  • the outlet pipe 28 is disposed below the gas receiver 24, that is, below the receiver body 25.
  • the refrigerant flows out from the inlet pipe tip portion 27 and flows into the outlet pipe inflow portion 40 of the outlet pipe 28. At this time, the refrigerant is exposed inside the receiver body 25.
  • the internal volume of the gas receiver 24, that is, the receiver body 25 is about 20 mL as a space from the inlet pipe tip 27 to the inner upper end of the receiver body 25. This is about 2% of the internal space of the piping excluding the compressor 11 constituting the refrigeration system 10. Furthermore, when the gas receiver 24 is arranged, it is small and space saving is realized. Furthermore, the amount of residual air at the time of shipment from the factory is generally about 1%, and is considered to be within about 2% even if variation is considered.
  • the internal volume of the receiver body 25 is not limited to about 20 mL, and may be an internal volume of about 50 mL or less, for example.
  • the refrigerant is exposed inside the receiver body 25. For this reason, residual air having a relatively low specific gravity with respect to the refrigerant is separated from the refrigerant and stored in the upper space of the gas receiver 24. Thereby, the air mixed in the refrigerant circulating in the refrigeration system 10 is removed. That is, the residual air is separated from the refrigerant by the gas receiver 24 being arranged, and is stored in the upper space of the gas receiver 24. Thereby, the refrigeration system 10 can be operated in a state close to a vacuum. Therefore, cooling is performed with high efficiency without consuming unnecessary power. For this reason, the refrigerator 30 with high energy-saving property is provided.
  • the gas receiver 24 is arranged so that the flow direction of the refrigerant is simply from top to bottom.
  • the gas receiver 24 may be arranged in the refrigeration system 10 in a state in which the flow direction of the refrigerant is from the top to the bottom in the vertical direction, that is, the inlet pipe tip 27 is the top and the outlet pipe inflow part 40 is the bottom. . Thereby, residual air is effectively stored.
  • an internal mesh 29 is provided between the inlet pipe 26 and the outlet pipe 28, that is, between the inlet pipe tip 27 and the outlet pipe inflow portion 40 that is the refrigerant inflow portion of the outlet pipe 28.
  • the internal mesh 29 separates liquid refrigerant passing through the internal mesh 29 and residual air.
  • the residual air having a lighter specific gravity than the refrigerant is efficiently stored (held) in the space above the receiver body 25.
  • the size of the mesh of the internal mesh 29 is, for example, ⁇ 0.16 mm, which is relatively fine. Therefore, impurities mixed in the refrigerant passing through the gas receiver 24 are removed.
  • a dryer 13 or a strainer may be used instead of the gas receiver 24.
  • the dryer 13 it is necessary to consider the amount of the molecular sieve of the desiccant retained inside.
  • the cost of the refrigerator 30 decreases due to the shared use of parts.
  • the gas receiver 24 is disposed on the upstream side of the expansion valve 14.
  • the gas receiver 24 may be disposed on the downstream side of the expansion valve 14.
  • the expansion valve 14 is controlled after the refrigerant circulates to such an extent that the residual air is sufficiently stored, and the residual air is sufficiently stored, as compared with the case where the expansion valve 14 is arranged upstream. It is necessary to ensure the capacity of the gas receiver 24 to the extent.
  • an accumulator 17 may be used instead of the gas receiver 24.
  • the operation of the compressor 11 is stopped.
  • the refrigerant moves from the high pressure condenser 12 to the low pressure evaporator 16.
  • the accumulator 17 becomes full. Therefore, it is necessary to increase the capacity of the accumulator 17 so that an excessive amount of refrigerant and residual air can be stored.
  • the accumulator 17 needs to be arranged so that the residual air once stored does not leak out at the inlet and outlet piping positions of the accumulator 17.
  • the refrigerator 30 may be evacuated again after the refrigerator 30 is evacuated and the refrigerant is sealed and the refrigerator 30 is operated. Thereby, the amount of residual air adsorbed on the piping of the refrigerator 30 is reduced. For this reason, the degree of vacuum of the refrigerator 30 is relatively higher than when the evacuation is not performed again. Therefore, the output of the expansion valve control sensor 23 is detected with high accuracy. For this reason, the expansion valve 14 is adjusted more accurately. Therefore, the refrigerator 30 with high energy-saving property is provided.
  • the minute resistor 20 is a thin tube having a length of 250 mm, and has a resistance of about 5% of the total resistance of the minute resistor 20, the expansion valve 14 and the capillary tube 15 arranged in series.
  • a microresistor 20 is used.
  • the resistance of the minute resistor 20 may be about 1% to 20% of the total resistance. In this case, the same effect can be obtained even if the minute resistor 20 is constituted by a small diameter tube or a minute orifice.
  • the refrigerator 30 uses the expansion valve control sensor 23 including the upstream temperature sensor 21 and the downstream temperature sensor 22 that detects the minute resistance 20 and the temperature difference before and after the minute resistor 20.
  • the expansion valve 14 is controlled so as to keep the outlet state substantially constant.
  • the gas receiver 24 is disposed upstream of the expansion valve 14, and the air mixed in the refrigerant circulating in the refrigeration system 10 is removed by the gas receiver 24. Thereby, the influence of the residual air on the temperature slip at the outlet of the condenser 12 is suppressed.
  • the result of the temperature difference detected by the expansion valve control sensor 23 is compared with a target temperature difference that is a predetermined value, and the predetermined value is corrected based on the difference temperature between the detected temperature difference and the predetermined value.
  • the expansion valve 14 is controlled based on the corrected predetermined value.
  • operates with the highly efficient refrigerating system 10 from which a dryness becomes zero can provide the refrigerator 30 with high energy saving property.
  • This disclosure can be applied to all frozen and refrigerated products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

This refrigerator comprises: a compressor (11); an expansion valve (14); a condenser (12); an evaporator (16); and an air removal unit (24). In a refrigeration cycle (10) configured to include the compressor (11), the expansion valve (14), the condenser (12), the evaporator (16), and the air removal unit (24), the dryness of a refrigerant that flows downstream of the condenser (12) is controlled by a narrowing amount of the expansion valve (14). The air removal unit (24) is disposed upstream or downstream of the expansion valve (14) in the refrigeration cycle (10), and removes air which has mixed with the refrigerant that circulates through the refrigeration cycle (10).

Description

冷蔵庫refrigerator
 本開示は、絞り量が可変である膨張弁を搭載した冷蔵庫に関するものである。 The present disclosure relates to a refrigerator equipped with an expansion valve with a variable throttle amount.
 省エネルギーの観点から、絞り量が可変である膨張弁を搭載した冷凍システムおよび冷蔵庫がある。 From the viewpoint of energy saving, there are refrigeration systems and refrigerators equipped with expansion valves with variable throttling amounts.
 以下、図面を参照しながら、従来の冷凍システムを説明する。 Hereinafter, a conventional refrigeration system will be described with reference to the drawings.
 図8は、従来の冷凍システム140の構成図である。図9は、従来の冷凍システム140の膨張弁144の制御方法を示した図である。 FIG. 8 is a configuration diagram of a conventional refrigeration system 140. FIG. 9 is a diagram illustrating a method for controlling the expansion valve 144 of the conventional refrigeration system 140.
 図8において、冷凍システム140は、圧縮機141と、凝縮器142と、レシーバ143と、膨張弁144と、キャピラリーチューブ145と、蒸発器146と、吸入管147と、内部熱交換部148と、吸入管温度センサ149とを有する。 In FIG. 8, the refrigeration system 140 includes a compressor 141, a condenser 142, a receiver 143, an expansion valve 144, a capillary tube 145, an evaporator 146, an intake pipe 147, an internal heat exchange unit 148, And an intake pipe temperature sensor 149.
 レシーバ143は、冷凍システム140内を循環する冷媒を液状態で貯留する。レシーバ143内の液状態の冷媒の量、すなわち液冷媒量は、膨張弁144の絞りが可変されることにより変動する。これにより、凝縮器142の内部および蒸発器146の内部の冷媒の量は、適正に維持される。また、膨張弁144に流入する冷媒の過冷却度は、一定(略一定を含む)に保たれる。 The receiver 143 stores the refrigerant circulating in the refrigeration system 140 in a liquid state. The amount of the refrigerant in the liquid state in the receiver 143, that is, the amount of the liquid refrigerant fluctuates by changing the throttle of the expansion valve 144. Thereby, the quantity of the refrigerant | coolant inside the condenser 142 and the evaporator 146 is maintained appropriately. Further, the degree of supercooling of the refrigerant flowing into the expansion valve 144 is kept constant (including substantially constant).
 膨張弁144とキャピラリーチューブ145とが直列に配置されることにより、冷凍システム140の絞りが構成される。したがって、キャピラリーチューブ145と吸入管147とを熱交換する内部熱交換部148が実現される。これにより、吸入管147内を還流する低温の冷媒のエンタルピーが回収される。したがって、冷凍システム140の効率が向上する。 The expansion valve 144 and the capillary tube 145 are arranged in series, whereby the throttle of the refrigeration system 140 is configured. Therefore, the internal heat exchanging part 148 for exchanging heat between the capillary tube 145 and the suction pipe 147 is realized. Thereby, the enthalpy of the low-temperature refrigerant | coolant which recirculates the inside of the suction pipe 147 is collect | recovered. Therefore, the efficiency of the refrigeration system 140 is improved.
 吸入管温度センサ149は、内部熱交換部148を通過した後の吸入管147の温度を検知する。吸入管温度センサ149が検知する温度に基づいて、膨張弁144の絞り量が可変される。 The suction pipe temperature sensor 149 detects the temperature of the suction pipe 147 after passing through the internal heat exchange unit 148. Based on the temperature detected by the suction pipe temperature sensor 149, the throttle amount of the expansion valve 144 is varied.
 以上のように構成された従来の冷凍システム140について、以下、その動作を説明する。 The operation of the conventional refrigeration system 140 configured as described above will be described below.
 冷凍システム140が稼動して冷却運転が行われる場合、圧縮機141が動作(運転)する。圧縮機141において圧縮された冷媒は、凝縮器142において放熱して凝縮し、レシーバ143に貯留される。レシーバ143に貯留された液状態の冷媒、すなわち液冷媒は、膨張弁144とキャピラリーチューブ145とにおいて減圧される。減圧された液冷媒は、蒸発器146に供給されて蒸発し、吸入管147を介して圧縮機141へ供給(還流)される。このとき、蒸発器146において発生する冷熱、すなわち潜熱が利用されることにより、冷却が行われる。 When the refrigeration system 140 is operated and the cooling operation is performed, the compressor 141 operates (operates). The refrigerant compressed in the compressor 141 dissipates heat and condenses in the condenser 142 and is stored in the receiver 143. The liquid refrigerant stored in the receiver 143, that is, the liquid refrigerant is decompressed in the expansion valve 144 and the capillary tube 145. The decompressed liquid refrigerant is supplied to the evaporator 146 to evaporate, and is supplied (refluxed) to the compressor 141 through the suction pipe 147. At this time, cooling is performed by utilizing the cold heat generated in the evaporator 146, that is, latent heat.
 冷凍システム140により冷却される対象物(図示せず)の温度が低下して、冷凍システム140が安定状態に近づくと、蒸発器146において発生する冷熱は余剰となる。蒸発器146において発生する冷熱が余剰となった場合、蒸発できなかった液冷媒は、吸入管147内に混入する。これにより、吸入管147の温度は低下する。このとき、内部熱交換部148により、吸入管147内を還流する低温の冷媒のエンタルピーが回収された後においても、吸入管147の温度は十分に上昇しない。したがって、吸入管147の温度は、蒸発器146の温度に近づいていく。このとき、蒸発器146において発生する余剰の冷熱は、圧縮機141に還流する。これにより、冷凍システム140の効率は低下する。蒸発器146において発生する余剰の冷熱が圧縮機141に還流する状態が持続した場合、液冷媒が圧縮機141に還流する。したがって、圧縮機141の耐久性が低下する可能性がある。液冷媒が圧縮機141に還流することを抑制するために、吸入管温度センサ149が検知する温度に基づいて、膨張弁144の絞り量が制御される。 When the temperature of an object (not shown) cooled by the refrigeration system 140 decreases and the refrigeration system 140 approaches a stable state, the cold heat generated in the evaporator 146 becomes redundant. When the cold heat generated in the evaporator 146 becomes excessive, the liquid refrigerant that could not be evaporated is mixed in the suction pipe 147. As a result, the temperature of the suction pipe 147 decreases. At this time, even after the enthalpy of the low-temperature refrigerant that circulates in the suction pipe 147 is collected by the internal heat exchange unit 148, the temperature of the suction pipe 147 does not rise sufficiently. Therefore, the temperature of the suction pipe 147 approaches the temperature of the evaporator 146. At this time, surplus cold heat generated in the evaporator 146 is returned to the compressor 141. As a result, the efficiency of the refrigeration system 140 decreases. When the state where the excessive cold heat generated in the evaporator 146 is returned to the compressor 141 continues, the liquid refrigerant is returned to the compressor 141. Therefore, the durability of the compressor 141 may be reduced. In order to suppress the liquid refrigerant from returning to the compressor 141, the throttle amount of the expansion valve 144 is controlled based on the temperature detected by the suction pipe temperature sensor 149.
 次に、図9に基づいて、従来の冷凍システム140の膨張弁の制御方法について説明する。 Next, a method for controlling the expansion valve of the conventional refrigeration system 140 will be described with reference to FIG.
 図9における横軸は、膨張弁144の絞り量に応じて発生する圧力損失の値を示す。図9における縦軸は、吸入管温度センサ149が検知する吸入管147の温度Rの値を示す。 The horizontal axis in FIG. 9 indicates the value of the pressure loss generated according to the throttle amount of the expansion valve 144. The vertical axis in FIG. 9 indicates the value of the temperature R of the suction pipe 147 detected by the suction pipe temperature sensor 149.
 上述の通り、冷凍システム140により冷却される対象物(図示せず)の温度が低下して、冷凍システム140が安定状態に近づくと、蒸発器146において発生する冷熱は余剰となる。蒸発器146において発生する冷熱が余剰となり、吸入管147の温度Rが低下して、吸入管147の温度RがR1を下回った場合、膨張弁144の絞り量は制御され、膨張弁144の絞り量が所定量増大する。これにより、蒸発器146における冷媒の蒸発温度が低下して、冷媒の循環量が小さくなる。したがって、蒸発器146において発生する冷熱、すなわち蒸発器146における冷凍能力が低下する。また、レシーバ143から吸入管147へ流出していた液冷媒が、余剰冷媒としてレシーバ143に貯留される。これにより、吸入管147の温度Rが上昇する。 As described above, when the temperature of an object (not shown) cooled by the refrigeration system 140 decreases and the refrigeration system 140 approaches a stable state, the cold heat generated in the evaporator 146 becomes redundant. When the cold heat generated in the evaporator 146 becomes excessive, the temperature R of the suction pipe 147 decreases and the temperature R of the suction pipe 147 falls below R1, the throttle amount of the expansion valve 144 is controlled, and the throttle of the expansion valve 144 is controlled. The amount increases by a predetermined amount. Thereby, the evaporation temperature of the refrigerant in the evaporator 146 is lowered, and the circulation amount of the refrigerant is reduced. Therefore, the cold heat generated in the evaporator 146, that is, the refrigerating capacity in the evaporator 146 is reduced. Further, the liquid refrigerant that has flowed out of the receiver 143 to the suction pipe 147 is stored in the receiver 143 as surplus refrigerant. As a result, the temperature R of the suction pipe 147 increases.
 一方、吸入管147の温度Rが上昇して、吸入管147の温度RがR2を上回った場合、膨張弁144の絞り量は制御され、膨張弁144の絞り量が所定量減少する。これにより、蒸発器146における冷媒の蒸発温度が上昇して、冷媒の循環量が大きくなる。したがって、蒸発器146において発生する冷熱、すなわち蒸発器146における冷凍能力が増大する。また、レシーバ143に貯留されていた余剰冷媒が蒸発器146に供給される。これにより、吸入管147の温度Rが下降する。 On the other hand, when the temperature R of the suction pipe 147 rises and the temperature R of the suction pipe 147 exceeds R2, the throttle amount of the expansion valve 144 is controlled, and the throttle amount of the expansion valve 144 decreases by a predetermined amount. Thereby, the evaporation temperature of the refrigerant in the evaporator 146 rises, and the circulation amount of the refrigerant increases. Therefore, the cold heat generated in the evaporator 146, that is, the refrigerating capacity in the evaporator 146 increases. Further, excess refrigerant stored in the receiver 143 is supplied to the evaporator 146. As a result, the temperature R of the suction pipe 147 decreases.
 膨張弁144の絞り量が制御されることにより、吸入管147の温度Rは、図9における温度R1と温度R2との間に維持される。これにより、冷凍システム140の効率の低下および圧縮機141の耐久性の低下が抑制される。 By controlling the throttle amount of the expansion valve 144, the temperature R of the suction pipe 147 is maintained between the temperature R1 and the temperature R2 in FIG. Thereby, the fall of the efficiency of the refrigerating system 140 and the fall of the durability of the compressor 141 are suppressed.
特開平5-196321号公報Japanese Patent Laid-Open No. 5-196321
 膨張弁は、凝縮器の出口、すなわち凝縮器の下流側における冷媒の乾き度、すなわち過冷却度がゼロとなるように制御されることが望ましい。しかし、冷蔵庫の筐体の外郭から自然対流により放熱する凝縮器を使用する家庭用冷蔵庫などに含まれる冷凍システムは、環境条件によって放熱能力が大きく変化する。このため、凝縮器の出口を所定の過冷却度に保つことは困難である。凝縮器の出口における過冷却度がゼロに近づくことは、凝縮器の出口における冷媒の気相成分が減少することである。このとき、冷媒の気相成分が減少すると共に、冷凍システムの配管内に実際に残留している空気の影響が大きくなる。したがって、凝縮器の出口において、大きな温度すべり、すなわち沸点と露点との温度差が生じる。 The expansion valve is desirably controlled so that the degree of dryness of the refrigerant at the outlet of the condenser, that is, the downstream side of the condenser, that is, the degree of supercooling becomes zero. However, a refrigeration system included in a home refrigerator or the like that uses a condenser that dissipates heat by natural convection from the outer casing of the refrigerator has a large change in heat dissipation capacity depending on environmental conditions. For this reason, it is difficult to keep the outlet of the condenser at a predetermined degree of supercooling. When the degree of supercooling at the outlet of the condenser approaches zero, the gas phase component of the refrigerant at the outlet of the condenser is reduced. At this time, the gas phase component of the refrigerant decreases, and the influence of the air actually remaining in the piping of the refrigeration system increases. Therefore, a large temperature slip occurs at the outlet of the condenser, that is, a temperature difference between the boiling point and the dew point occurs.
 本開示は、上記の課題を解決するもので、残留する空気の影響を低減することにより、凝縮器の出口において発生する温度すべりが低減され、冷凍サイクルの効率および省エネ性能が向上する冷蔵庫を提供することを目的とする。 The present disclosure solves the above-described problem, and provides a refrigerator in which the temperature slip generated at the outlet of the condenser is reduced by reducing the influence of remaining air, and the efficiency and energy saving performance of the refrigeration cycle is improved. The purpose is to do.
 上記目的を達成するために、本開示の冷蔵庫は、圧縮機と、膨張弁と、凝縮器と、蒸発器と、空気除去部と、を備える。膨張弁の絞り量により、圧縮機と膨張弁と凝縮器と蒸発器と空気除去部とを含んで構成される冷凍サイクルにおいて凝縮器の下流を流れる冷媒の乾き度が制御される。空気除去部は、冷凍サイクルにおいて、膨張弁の上流または下流に配置され、冷凍サイクルを循環する冷媒に混入した空気を除去する。 In order to achieve the above object, the refrigerator of the present disclosure includes a compressor, an expansion valve, a condenser, an evaporator, and an air removal unit. The dryness of the refrigerant flowing downstream of the condenser in the refrigeration cycle including the compressor, the expansion valve, the condenser, the evaporator, and the air removing unit is controlled by the throttle amount of the expansion valve. The air removal unit is disposed upstream or downstream of the expansion valve in the refrigeration cycle, and removes air mixed in the refrigerant circulating in the refrigeration cycle.
 これによって、冷凍サイクル内に残留している空気は、空気除去部に除去、すなわち空気除去部に保持される。したがって、残留する空気の影響が低減され、凝縮器の出口、すなわち凝縮器と蒸発器との間において発生する温度すべりが低減される。これにより、冷凍サイクルの効率および省エネ性能が向上する。 Thus, the air remaining in the refrigeration cycle is removed by the air removal unit, that is, held by the air removal unit. Therefore, the influence of residual air is reduced, and the temperature slip that occurs between the outlet of the condenser, that is, between the condenser and the evaporator, is reduced. Thereby, the efficiency and energy saving performance of the refrigeration cycle are improved.
 本開示によれば、冷凍サイクルに影響を及ぼす空気の影響を抑制できるため、膨張弁が精度よく制御され、冷凍サイクルの効率および省エネ性能が向上し、圧縮機の耐久性の低下が抑制される冷蔵庫を提供することができる。 According to the present disclosure, since the influence of air that affects the refrigeration cycle can be suppressed, the expansion valve is accurately controlled, the efficiency and energy saving performance of the refrigeration cycle are improved, and the deterioration of the durability of the compressor is suppressed. A refrigerator can be provided.
図1は、本開示の実施の形態における冷蔵庫の正面図である。FIG. 1 is a front view of a refrigerator according to an embodiment of the present disclosure. 図2は、本開示の実施の形態における冷蔵庫の縦断面図である。FIG. 2 is a vertical cross-sectional view of the refrigerator in the embodiment of the present disclosure. 図3は、本開示の実施の形態における冷蔵庫の冷凍システムの構成図である。FIG. 3 is a configuration diagram of the refrigerator refrigeration system according to the embodiment of the present disclosure. 図4は、本開示の実施の形態における冷凍システムの膨張弁の制御方法を示した図である。FIG. 4 is a diagram illustrating a method for controlling the expansion valve of the refrigeration system according to the embodiment of the present disclosure. 図5は、本開示の実施の形態における冷凍システムの膨張弁制御センサの出力と冷媒流速との相関を示した図である。FIG. 5 is a diagram illustrating a correlation between the output of the expansion valve control sensor of the refrigeration system and the refrigerant flow rate in the embodiment of the present disclosure. 図6は、本開示の実施の形態における冷蔵庫の膨張弁の制御方法を示した図である。FIG. 6 is a diagram illustrating a method for controlling the expansion valve of the refrigerator in the embodiment of the present disclosure. 図7は、本開示の実施の形態における冷蔵庫のガスレシーバの模式図である。FIG. 7 is a schematic diagram of the gas receiver of the refrigerator in the embodiment of the present disclosure. 図8は、従来の冷凍システムの構成図である。FIG. 8 is a configuration diagram of a conventional refrigeration system. 図9は、従来の冷凍システムの膨張弁の制御方法を示した図である。FIG. 9 is a diagram illustrating a method for controlling an expansion valve of a conventional refrigeration system.
 第1の開示における冷蔵庫は、圧縮機と、膨張弁と、凝縮器と、蒸発器と、空気除去部と、を備える。膨張弁の絞り量により、圧縮機と膨張弁と凝縮器と蒸発器と空気除去部とを含んで構成される冷凍サイクルにおいて凝縮器の下流を流れる冷媒の乾き度が制御される。空気除去部は、冷凍サイクルにおいて、膨張弁の上流または下流に配置され、冷凍サイクルを循環する冷媒に混入した空気を除去する。 The refrigerator in the first disclosure includes a compressor, an expansion valve, a condenser, an evaporator, and an air removal unit. The dryness of the refrigerant flowing downstream of the condenser in the refrigeration cycle including the compressor, the expansion valve, the condenser, the evaporator, and the air removing unit is controlled by the throttle amount of the expansion valve. The air removal unit is disposed upstream or downstream of the expansion valve in the refrigeration cycle, and removes air mixed in the refrigerant circulating in the refrigeration cycle.
 これによって、冷凍サイクル内に残留している空気が空気除去部により除去(保持)される。これにより、凝縮器の出口の空気による温度すべりへの影響が抑制される。したがって、冷凍サイクルの効率が向上し、省エネ性能が向上する。 Thus, the air remaining in the refrigeration cycle is removed (held) by the air removal unit. Thereby, the influence on the temperature slip by the air of the exit of a condenser is suppressed. Therefore, the efficiency of the refrigeration cycle is improved and the energy saving performance is improved.
 また、冷凍サイクルに影響を及ぼす空気の影響が抑制される。このため、膨張弁が精度よく制御され、圧縮機の耐久性の低下が抑制される。 Also, the influence of air that affects the refrigeration cycle is suppressed. For this reason, an expansion valve is controlled with a sufficient precision and the fall of the durability of a compressor is suppressed.
 第2の開示における冷蔵庫は、第1の開示において、空気除去部は、冷凍サイクルにおいて膨張弁の上流に配置される。 In the refrigerator according to the second disclosure, in the first disclosure, the air removal unit is arranged upstream of the expansion valve in the refrigeration cycle.
 これによって、冷凍サイクル内に残留している空気が空気除去部により除去される。これにより、凝縮器の出口の空気による温度すべりへの影響が抑制される。したがって、冷凍サイクルの効率が向上し、省エネ性能が向上する。 Thus, the air remaining in the refrigeration cycle is removed by the air removal unit. Thereby, the influence on the temperature slip by the air of the exit of a condenser is suppressed. Therefore, the efficiency of the refrigeration cycle is improved and the energy saving performance is improved.
 また、冷凍サイクルに影響を及ぼす空気の影響が抑制される。このため、膨張弁が精度よく制御され、圧縮機の耐久性の低下が抑制される。 Also, the influence of air that affects the refrigeration cycle is suppressed. For this reason, an expansion valve is controlled with a sufficient precision and the fall of the durability of a compressor is suppressed.
 第3の開示における冷蔵庫は、第1または第2の開示において、空気除去部は、冷凍サイクルにおいて凝縮器の下流を流れる冷媒が上から下に流れる位置に配置される。 In the refrigerator according to the third disclosure, in the first or second disclosure, the air removing unit is disposed at a position where the refrigerant flowing downstream of the condenser flows from top to bottom in the refrigeration cycle.
 これによって、冷媒に対して比重の軽い残留空気が、空気除去部に効果的に滞留する。そのため、冷凍サイクル内において、冷媒と共に空気が循環することが抑制される。したがって、非圧縮ガスである空気による冷凍サイクルの効率の低下および冷却能力の低下が抑制され、省エネ性の高い冷蔵庫を提供することができる。 Thus, residual air having a low specific gravity with respect to the refrigerant effectively stays in the air removal section. Therefore, it is suppressed that air circulates with the refrigerant in the refrigeration cycle. Therefore, a reduction in efficiency of the refrigeration cycle and a reduction in cooling capacity due to air that is an uncompressed gas are suppressed, and a refrigerator with high energy saving performance can be provided.
 第4の開示における冷蔵庫は、第1から第3のいずれか一つの開示において、空気除去部は、ガスレシーバである。ガスレシーバは、中空の閉じたレシーバ本体と、レシーバ本体の内部に先端部が配置されるようにレシーバ本体の一端部から挿入された入口配管と、レシーバ本体の他端部に配置された出口配管とを含む。 In the refrigerator according to the fourth disclosure, in any one of the first to third disclosures, the air removal unit is a gas receiver. The gas receiver includes a hollow closed receiver main body, an inlet pipe inserted from one end of the receiver main body so that the tip is disposed inside the receiver main body, and an outlet pipe arranged at the other end of the receiver main body. Including.
 一般に、冷凍サイクル内に空気が残留している場合、圧縮機によって圧縮される冷媒に空気が混入する。空気のような非圧縮性のガスが混入した冷媒が圧縮される場合、非圧縮性のガスが混入していない冷媒が圧縮される場合よりも、圧縮機の入力、すなわち圧縮機の消費電力が増加することとなり、増エネ、すなわちエネルギー効率が低下する。冷蔵庫は、工場での生産時の冷媒の封入前において、冷凍サイクル内が真空引きされ、所定の真空度となった後に、冷媒が封入される。しかし、限られた時間内にて真空引きが行われること、および、冷凍サイクルの配管の内側に付着した空気を除去することは困難であることから、空気が冷凍サイクル内に残留する可能性がある。 Generally, when air remains in the refrigeration cycle, the air is mixed into the refrigerant compressed by the compressor. When a refrigerant mixed with an incompressible gas such as air is compressed, the input of the compressor, that is, the power consumption of the compressor is smaller than when a refrigerant not mixed with an incompressible gas is compressed. The energy increases, that is, the energy efficiency decreases. In the refrigerator, the refrigerant is sealed after the inside of the refrigeration cycle is evacuated to a predetermined degree of vacuum before the refrigerant is sealed during production in the factory. However, since vacuuming is performed within a limited time and it is difficult to remove air adhering to the inside of the refrigeration cycle piping, air may remain in the refrigeration cycle. is there.
 ガスレシーバによって、僅かながらも冷凍サイクル内に残留している空気が、冷凍サイクルから隔離(除去)される。これにより、真空に近い状態において、冷蔵庫が運転する。したがって、無駄な電力が消費されることなく、高効率で冷却することが可能となる。このため、省エネ性の高い冷蔵庫を提供することができる。 The gas receiver slightly isolates (removes) the air remaining in the refrigeration cycle from the refrigeration cycle. Thereby, the refrigerator operates in a state close to vacuum. Therefore, it becomes possible to cool with high efficiency without consuming unnecessary power. For this reason, a refrigerator with high energy-saving property can be provided.
 第5の開示における冷蔵庫は、第4の開示において、ガスレシーバは、冷凍サイクルにおいて、一端部を上とし、他端部を下とした状態で配置される。 In the refrigerator according to the fifth disclosure, the gas receiver is arranged in the refrigeration cycle in a state where one end is up and the other end is down.
 これによって、冷媒に対して比重の軽い残留空気が、ガスレシーバの上部により効果的に滞留する。そのため、冷凍サイクル内において、冷媒と共に空気が循環することが抑制される。したがって、非圧縮ガスである空気による冷凍サイクルの効率の低下および冷却能力の低下が抑制され、省エネ性の高い冷蔵庫を提供することができる。 This makes it possible for the residual air having a low specific gravity with respect to the refrigerant to effectively stay in the upper part of the gas receiver. Therefore, it is suppressed that air circulates with the refrigerant in the refrigeration cycle. Therefore, a reduction in efficiency of the refrigeration cycle and a reduction in cooling capacity due to air that is an uncompressed gas are suppressed, and a refrigerator with high energy saving performance can be provided.
 第6の開示における冷蔵庫は、第4または第5の開示において、ガスレシーバは、入口配管の先端部から流出され、出口配管の冷媒の流入部に流入される冷媒をレシーバ本体の内部において露出させ、冷媒に混入した空気を冷媒から分離し、分離された空気をレシーバ本体の内部において貯留することにより、冷凍サイクルを循環する冷媒に混入した空気を除去する。 In the refrigerator according to the sixth disclosure, in the fourth or fifth disclosure, the gas receiver exposes the refrigerant flowing out from the front end portion of the inlet pipe and flowing into the refrigerant inlet portion of the outlet pipe inside the receiver body. Then, the air mixed in the refrigerant is separated from the refrigerant, and the separated air is stored inside the receiver body, thereby removing the air mixed in the refrigerant circulating in the refrigeration cycle.
 ガスレシーバによって、僅かながらも冷凍サイクル内に残留している空気が、冷凍サイクルから隔離される。これにより、真空に近い状態において、冷蔵庫が運転する。したがって、無駄な電力が消費されることなく、高効率で冷却することが可能となる。このため、省エネ性の高い冷蔵庫を提供することができる。 -The gas receiver isolates the air remaining in the refrigeration cycle slightly from the refrigeration cycle. Thereby, the refrigerator operates in a state close to vacuum. Therefore, it becomes possible to cool with high efficiency without consuming unnecessary power. For this reason, a refrigerator with high energy-saving property can be provided.
 第7の開示における冷蔵庫は、第4または第5の開示において、ガスレシーバは、入口配管の先端部と出口配管の冷媒の流入部との間に配置され、冷媒に混入した空気を除去するメッシュをさらに含む。 The refrigerator according to the seventh disclosure is the refrigerator according to the fourth or fifth disclosure, wherein the gas receiver is disposed between the front end portion of the inlet pipe and the refrigerant inflow portion of the outlet pipe and removes air mixed in the refrigerant. Further included.
 これによって、メッシュを通過する液冷媒と残留空気とが分離され、冷媒よりも相対的に比重が軽い残留空気は、レシーバ上部の空間に効率的に保持される。 This separates the liquid refrigerant passing through the mesh and the residual air, and the residual air having a lighter specific gravity than the refrigerant is efficiently retained in the space above the receiver.
 第8の開示における冷蔵庫は、第6の開示において、ガスレシーバは、入口配管の先端部と出口配管の冷媒の流入部との間に配置され、冷媒に混入した空気を除去するメッシュをさらに含む。 In the refrigerator according to the eighth disclosure, in the sixth disclosure, the gas receiver further includes a mesh that is disposed between the front end portion of the inlet pipe and the inlet portion of the refrigerant in the outlet pipe and removes air mixed in the refrigerant. .
 これによって、メッシュを通過する液冷媒と残留空気とが分離され、冷媒よりも相対的に比重が軽い残留空気は、レシーバ上部の空間に効率的に保持される。 This separates the liquid refrigerant passing through the mesh and the residual air, and the residual air having a lighter specific gravity than the refrigerant is efficiently retained in the space above the receiver.
 第9の開示における冷蔵庫は、第1から第8のいずれか一つの開示において、凝縮器の下流に配置される微小抵抗と、微小抵抗の上流に配置され、微小抵抗の前記上流の温度を検知する上流温度センサと、微小抵抗の下流に配置され、微小抵抗の前記下流の温度を検知する下流温度センサと、をさらに備える。上流温度センサが検知した温度と下流温度センサが検知した温度との温度差の値、および、予め設定された所定値が比較され、温度差の値が所定値に近づくように膨張弁が制御される。 A refrigerator according to a ninth disclosure is the refrigerator according to any one of the first to eighth disclosures, wherein the refrigerator is disposed downstream of the condenser and upstream of the minute resistor, and detects the upstream temperature of the minute resistor. An upstream temperature sensor, and a downstream temperature sensor that is arranged downstream of the minute resistor and detects the downstream temperature of the minute resistor. The value of the temperature difference between the temperature detected by the upstream temperature sensor and the temperature detected by the downstream temperature sensor is compared with a predetermined value set in advance, and the expansion valve is controlled so that the temperature difference value approaches the predetermined value. The
 圧縮機の起動時において、膨張弁の絞り量は最小である。その後、膨張弁の絞り量が最小である場合に予測される凝縮器の出口の状態に基づいて設定された所定値に、上流温度センサが検知した温度と下流温度センサが検知した温度との温度差が近づくように、膨張弁の絞り量が徐々に絞られるように、膨張弁が制御される。 When the compressor is started, the expansion valve throttle amount is minimum. Thereafter, the temperature between the temperature detected by the upstream temperature sensor and the temperature detected by the downstream temperature sensor is set to a predetermined value that is set based on the state of the outlet of the condenser that is predicted when the throttle amount of the expansion valve is minimum. The expansion valve is controlled so that the expansion amount of the expansion valve is gradually reduced so that the difference approaches.
 微小抵抗と上流温度センサと下流温度センサとにより検知された温度差に基づいて、冷蔵庫の運転状態によって変化する冷媒の乾き度がゼロに近づくように膨張弁の絞り量が制御され、膨張弁の絞り量が変化する。このため、冷蔵庫の冷凍能力の最適化が精度よく実現されるしたがって、冷蔵庫の省エネルギー化が実現され、圧縮機の耐久性の低下が抑制される。 Based on the temperature difference detected by the minute resistance, the upstream temperature sensor, and the downstream temperature sensor, the expansion amount of the expansion valve is controlled so that the dryness of the refrigerant, which changes according to the operating state of the refrigerator, approaches zero. The aperture amount changes. For this reason, optimization of the refrigerating capacity of the refrigerator is realized with high accuracy. Therefore, energy saving of the refrigerator is realized, and a decrease in the durability of the compressor is suppressed.
 第10の開示における冷蔵庫は、第9の開示において、温度差の値と所定値との差に基づいて所定値が修正され、修正された所定値に基づいて膨張弁が制御される。 In the refrigerator disclosed in the tenth disclosure, the predetermined value is corrected based on the difference between the temperature difference value and the predetermined value in the ninth disclosure, and the expansion valve is controlled based on the corrected predetermined value.
 温度差、すなわち上流温度センサが検知した温度と下流温度センサが検知した温度との差を△T1とし、狙いとする所定の温度差、すなわち冷媒に空気が残留していない場合における温度差を△T2とする。このとき、冷凍サイクル内に空気が残留していない場合は、△T1=△T2である。膨張弁の絞り量が増加するにつれて、冷媒の乾き度、すなわち温度差はゼロに近づく。一方、冷媒に残留する空気がある場合は、予め△T1が高く、△T1>△T2となる。乾き度がゼロに到達した後は、冷媒が過冷却の状態となる。したがって、膨張弁の絞り量が増加し続けると、凝縮器の出口の温度は低下する。これにより、冷凍サイクルの冷却能力は低下する。さらに、凝縮器の温度が低下するため、冷蔵庫の表面温度が低下し、冷蔵庫の表面温度は、露点温度以下となる可能性がある。その結果、増エネが生じるだけでなく、表面が結露するような品質面の低下が起こりうる。そのため、温度差△T1と温度差△T2とが比較され、△T1と△T2との差分である乖離温度に基づいて、目標値である所定の温度差△T2が修正される。さらに、修正された所定の温度差に基づいて膨張弁の絞り量が修正されることにより、残留空気の影響による膨張弁の絞り量の過剰な増加が抑制され、冷媒が過冷却となることが抑制される。 The difference between the temperature difference, that is, the temperature detected by the upstream temperature sensor and the temperature detected by the downstream temperature sensor is ΔT1, and the target temperature difference, that is, the temperature difference when no air remains in the refrigerant is Δ Let T2. At this time, if no air remains in the refrigeration cycle, ΔT1 = ΔT2. As the throttle amount of the expansion valve increases, the dryness of the refrigerant, that is, the temperature difference approaches zero. On the other hand, when there is air remaining in the refrigerant, ΔT1 is high in advance, and ΔT1> ΔT2. After the dryness reaches zero, the refrigerant is supercooled. Therefore, when the throttle amount of the expansion valve continues to increase, the temperature at the outlet of the condenser decreases. Thereby, the cooling capacity of a refrigerating cycle falls. Furthermore, since the temperature of a condenser falls, the surface temperature of a refrigerator falls and the surface temperature of a refrigerator may become below a dew point temperature. As a result, not only energy increase occurs, but quality deterioration such as surface condensation may occur. Therefore, the temperature difference ΔT1 is compared with the temperature difference ΔT2, and the predetermined temperature difference ΔT2 that is the target value is corrected based on the divergence temperature that is the difference between ΔT1 and ΔT2. Further, the expansion amount of the expansion valve is corrected based on the corrected predetermined temperature difference, so that an excessive increase in the expansion amount of the expansion valve due to the influence of residual air is suppressed, and the refrigerant is overcooled. It is suppressed.
 これによって、冷蔵庫の生産時に残留している残留空気の影響が考慮された上で、膨張弁の絞り量の過剰な増加によって発生する冷媒の過冷却化が抑制される。このため、冷蔵庫の冷却能力の低下、および冷媒の凝縮温度の低下による結露等の品質の劣化の発生が抑制される。また、冷蔵庫は、空気が残留している場合であっても、乾き度がゼロに近づくように制御される。したがって、冷蔵庫の冷凍能力の最適化が精度よく実現され、省エネ性が高い冷蔵庫を提供することができる。 This makes it possible to prevent the refrigerant from being overcooled due to an excessive increase in the amount of expansion of the expansion valve, while taking into consideration the effect of residual air remaining during the production of the refrigerator. For this reason, generation | occurrence | production of quality degradation, such as dew condensation by the fall of the cooling capacity of a refrigerator and the condensation temperature of a refrigerant | coolant, is suppressed. The refrigerator is controlled so that the dryness approaches zero even when air remains. Therefore, optimization of the refrigerating capacity of the refrigerator can be realized with high accuracy, and a refrigerator with high energy saving can be provided.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、この開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. This disclosure is not limited by this embodiment.
 図1は、本実施の形態における冷蔵庫30の正面図である。図2は、本実施の形態における冷蔵庫30の縦断面図である。図3は、本実施の形態における冷蔵庫30の冷凍システム10の構成図である。 FIG. 1 is a front view of the refrigerator 30 in the present embodiment. FIG. 2 is a longitudinal sectional view of the refrigerator 30 in the present embodiment. FIG. 3 is a configuration diagram of the refrigeration system 10 of the refrigerator 30 in the present embodiment.
 この構成において、冷蔵庫30が設置された状態にて、冷蔵庫30の設置面に相対的に近い方は下方とし、冷蔵庫30の設置面に相対的に遠い方は上方とする。すなわち、図1における状態での上下方向とする。また、冷蔵庫30が設置された状態にて、冷蔵庫30が有する扉が開閉する方向は前方とし、前方の反対側は後方とする。さらに、冷蔵庫30を前方から見て左は左方とし、右は右方とする。すなわち、図1における状態での左右方向とする。 In this configuration, in a state where the refrigerator 30 is installed, a direction relatively close to the installation surface of the refrigerator 30 is a lower side, and a direction relatively far from the installation surface of the refrigerator 30 is an upper side. That is, the vertical direction in the state in FIG. In the state where the refrigerator 30 is installed, the direction in which the door of the refrigerator 30 opens and closes is the front, and the opposite side of the front is the rear. Further, when the refrigerator 30 is viewed from the front, the left is on the left and the right is on the right. That is, it is set as the left-right direction in the state in FIG.
 なお、上述した上下方向、前後方向、および左右方向に関する定義は、あくまで当業者が本開示を十分に理解するために提供される便宜上のものであり、相対的な位置関係を示しているに過ぎない。 Note that the definitions relating to the vertical direction, the front-rear direction, and the left-right direction described above are merely for convenience provided for those skilled in the art to fully understand the present disclosure, and merely indicate a relative positional relationship. Absent.
 図1から図3に示すように、冷蔵庫30は、冷蔵庫30の上部に設けられた冷蔵室31と、冷蔵室31の下方に設けられた上段冷凍室32と、冷蔵室31の下方において上段冷凍室32と左右方向に並列に設けられた製氷室33と、本体下部に設けられた野菜室35と、左右方向に並列に設置された上段冷凍室32および製氷室33と野菜室35との間に設けられた下段冷凍室34とを有する。冷蔵室31は、前方に開口する金属製(例えば、鉄板)の外箱(図示せず)と、硬質樹脂製(例えば、ABS)の内箱(図示せず)と、外箱と内箱との間に発泡して充填された硬質ウレタンフォーム(図示せず)とにより構成される。上段冷凍室32の前面と、製氷室33の前面と、下段冷凍室34の前面と、野菜室35の前面とには、引き出し式の扉(図示せず)が開閉可能に設けられる。冷蔵室31の前面には、例えば、観音開き式の扉(図示せず)が開閉可能に設けられる。 As shown in FIG. 1 to FIG. 3, the refrigerator 30 includes a refrigerating room 31 provided in the upper part of the refrigerating machine 30, an upper freezer room 32 provided below the refrigerating room 31, and an upper stage freezing unit below the refrigerating room 31. Between the ice making chamber 33 provided in parallel with the chamber 32 in the left-right direction, the vegetable chamber 35 provided in the lower part of the main body, and the upper freezing chamber 32 and the ice making chamber 33 and the vegetable chamber 35 installed in parallel in the left-right direction. And a lower freezer compartment 34 provided in The refrigerator compartment 31 includes a metal (for example, iron plate) outer box (not shown), a hard resin (for example, ABS) inner box (not shown), an outer box and an inner box, which are opened forward. And a rigid urethane foam (not shown) filled in between. On the front face of the upper freezer compartment 32, the front face of the ice making compartment 33, the front face of the lower freezer compartment 34, and the front face of the vegetable compartment 35, a drawer-type door (not shown) is provided to be openable and closable. On the front surface of the refrigerator compartment 31, for example, a double door (not shown) is provided so that it can be opened and closed.
 冷蔵室31は、冷蔵保存のために、例えば、内部の温度が1℃から5℃となるように設定されている。野菜室35は、内部の温度が、冷蔵室31の内部の温度と同等、もしくは冷蔵庫30の内部の温度よりも若干高い温度である2℃から7℃となるように設定される。野菜室35の内部の温度を低温に設定することにより、野菜室35の内部に収容された葉野菜の鮮度が長期間維持される。上段冷凍室32と下段冷凍室35とは、冷凍保存のために、例えば、内部の温度が-22℃から-18℃となるように設定されている。しかし、冷凍保存の状態を向上するために、上段冷凍室32と下段冷凍室35との内部の温度が、例えば、-30℃から-25℃となるように設定されてもよい。 The refrigerator compartment 31 is set so that, for example, the internal temperature is 1 ° C. to 5 ° C. for refrigerated storage. The vegetable room 35 is set so that the internal temperature is 2 ° C. to 7 ° C., which is the same temperature as the internal temperature of the refrigerator compartment 31 or slightly higher than the internal temperature of the refrigerator 30. By setting the temperature inside the vegetable compartment 35 to a low temperature, the freshness of the leaf vegetables accommodated in the vegetable compartment 35 is maintained for a long time. The upper freezer compartment 32 and the lower freezer compartment 35 are set so that, for example, the internal temperature is −22 ° C. to −18 ° C. for frozen storage. However, in order to improve the frozen storage state, the internal temperatures of the upper freezer chamber 32 and the lower freezer chamber 35 may be set, for example, from −30 ° C. to −25 ° C.
 冷蔵室31の内部と野菜室35の内部とは、プラスの温度に設定されるため、冷蔵温度帯ともいう。上段冷凍室32の内部と下段冷凍室34の内部と製氷室33の内部とは、マイナスの温度に設定されるため、冷凍温度帯ともいう。なお、上段冷凍室32は、例えば、ダンパ機構等を用いることによって切替室としてもよく、冷蔵温度帯と冷凍温度帯とが選択可能であってもよい。 Since the inside of the refrigerator compartment 31 and the inside of the vegetable compartment 35 are set to a positive temperature, it is also called a refrigerator temperature zone. Since the inside of the upper freezing chamber 32, the inside of the lower freezing chamber 34, and the inside of the ice making chamber 33 are set to minus temperatures, they are also called freezing temperature zones. Note that the upper freezer compartment 32 may be a switching room by using a damper mechanism or the like, for example, and a refrigeration temperature zone and a freezing temperature zone may be selectable.
 冷蔵庫30の上面部は、冷蔵庫30の前面から後面に向かって階段状の凹部が設けられている。冷蔵庫30の階段状の凹部には、機械室47が設けられている。冷蔵庫30の階段状の凹部は、第一の天面部37と第二の天面部38とから構成されている。 The top surface of the refrigerator 30 is provided with a stepped recess from the front surface of the refrigerator 30 toward the rear surface. A machine room 47 is provided in the stepped recess of the refrigerator 30. The stepped recess of the refrigerator 30 includes a first top surface portion 37 and a second top surface portion 38.
 冷凍システム10は、機械室47に配置された圧縮機11と、凝縮器12と、冷媒の水分除去を行うドライヤ13と、放熱用の放熱パイプ(図示せず)と、膨張弁14と、キャピラリーチューブ15と、蒸発器16と、アキュームレータ17と、吸入管18と、内部熱交換部19とを有する。また、冷凍システム10は、微小抵抗20と、上流温度センサ21および下流温度センサ22からなる膨張弁制御センサ23(検知手段)とをさらに有する。冷凍システム10に冷媒が封入され、冷却運転が行われる。なお、冷凍システム10は、冷凍サイクル、ともいう。 The refrigeration system 10 includes a compressor 11 disposed in a machine room 47, a condenser 12, a dryer 13 that removes moisture from the refrigerant, a heat radiating pipe (not shown), an expansion valve 14, and a capillary. The tube 15, the evaporator 16, the accumulator 17, the suction pipe 18, and the internal heat exchange unit 19 are included. The refrigeration system 10 further includes a minute resistance 20 and an expansion valve control sensor 23 (detection means) including an upstream temperature sensor 21 and a downstream temperature sensor 22. A refrigerant is enclosed in the refrigeration system 10 and a cooling operation is performed. The refrigeration system 10 is also referred to as a refrigeration cycle.
 冷凍システム10に封入される冷媒には、近年、環境保護のために、一般的に可燃性の冷媒が用いられる。本実施の形態では、地球環境保全の観点から、地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。イソブタンは炭化水素であり、空気と比較して、常温(例えば、300K)および大気圧(例えば、1013hPa)において約2倍の比重(例えば、2.04)である。これにより、従来と比較して、冷媒の充填量が低減され、コストが低減し、安全性が向上する。 In recent years, a flammable refrigerant is generally used as the refrigerant sealed in the refrigeration system 10 for environmental protection. In the present embodiment, isobutane, which is a flammable refrigerant with a low global warming potential, is used from the viewpoint of global environmental conservation. Isobutane is a hydrocarbon and has a specific gravity (eg, 2.04) that is about twice that at normal temperature (eg, 300 K) and atmospheric pressure (eg, 1013 hPa) compared to air. Thereby, compared with the past, the filling amount of the refrigerant is reduced, the cost is reduced, and the safety is improved.
 ドライヤ13は、冷凍システム10内を循環する冷媒を乾燥する。液冷媒とドライヤ13とが効率よく接触するために、ドライヤ13は、凝縮器12の下流に配置される。 The dryer 13 dries the refrigerant circulating in the refrigeration system 10. In order for the liquid refrigerant and the dryer 13 to contact efficiently, the dryer 13 is disposed downstream of the condenser 12.
 アキュームレータ17は、冷凍システム10の安定状態における余剰冷媒を貯留する。蒸発器16の温度と同一(略同一を含む)の温度に維持するために、アキュームレータ17は、蒸発器16の下流に配置される。 The accumulator 17 stores surplus refrigerant in the stable state of the refrigeration system 10. In order to maintain the same temperature (including substantially the same) as the temperature of the evaporator 16, the accumulator 17 is disposed downstream of the evaporator 16.
 冷凍システム10によって冷却される対象物(図示せず)の温度が上昇すると、アキュームレータ17に貯留される余剰冷媒の量は減少し、冷凍システム10内の冷媒の循環量が増大する。これにより、冷凍システム10の冷凍能力が増加する。一般に、冷蔵庫30の筐体の外郭から自然対流により放熱する凝縮器12を使用する家庭用冷蔵庫などに含まれる冷凍システム10は、環境条件によって放熱能力が大きく変化する。この場合、レシーバにより冷凍システム10の高圧側において、余剰冷媒を貯留することができない。したがって、本実施の形態と同様に、アキュームレータ17によって、冷凍システム10の低圧側に余剰冷媒が貯留される。また、アキュームレータ17に貯留される余剰冷媒の量が比較的少量、例えば、冷凍システム10内の全ての冷媒の量の10%から30%程度であっても、冷凍能力を調整する機能が得られる。したがって、アキュームレータ17は、全冷媒量を抑制、すなわち冷凍能力を調整するために有効である。 When the temperature of an object (not shown) to be cooled by the refrigeration system 10 increases, the amount of excess refrigerant stored in the accumulator 17 decreases, and the amount of refrigerant circulating in the refrigeration system 10 increases. Thereby, the refrigerating capacity of the refrigerating system 10 increases. In general, the refrigeration system 10 included in a home refrigerator or the like that uses a condenser 12 that dissipates heat by natural convection from the outer casing of the refrigerator 30 varies greatly depending on environmental conditions. In this case, excess refrigerant cannot be stored on the high-pressure side of the refrigeration system 10 by the receiver. Therefore, as in the present embodiment, surplus refrigerant is stored on the low-pressure side of the refrigeration system 10 by the accumulator 17. Further, even if the amount of excess refrigerant stored in the accumulator 17 is relatively small, for example, about 10% to 30% of the amount of all refrigerants in the refrigeration system 10, the function of adjusting the refrigeration capacity can be obtained. . Therefore, the accumulator 17 is effective for suppressing the total refrigerant amount, that is, adjusting the refrigerating capacity.
 膨張弁14とキャピラリーチューブ15とが直列に配置されることにより、冷凍システム10の絞りが構成される。これにより、キャピラリーチューブ15と吸入管18とを熱交換する内部熱交換部19が実現される。したがって、吸入管18内を還流する低温の冷媒のエンタルピーが回収され、冷凍システム10の効率が向上する。 The throttle of the refrigeration system 10 is configured by arranging the expansion valve 14 and the capillary tube 15 in series. As a result, an internal heat exchanging section 19 for exchanging heat between the capillary tube 15 and the suction pipe 18 is realized. Therefore, the enthalpy of the low-temperature refrigerant that circulates in the suction pipe 18 is recovered, and the efficiency of the refrigeration system 10 is improved.
 膨張弁制御センサ23を構成する微小抵抗20は、凝縮器12の下流に設けられ、例えば、長さ250mmの細径管により構成される。微小抵抗20は、直列に配置された微小抵抗20と膨張弁14とキャピラリーチューブ15とが有する全抵抗の約5%に相当する抵抗を有する。全抵抗に対する微小抵抗20の比率は、1%から20%であることが望ましい。微小抵抗20の抵抗が全抵抗の1%未満に相当する抵抗である場合、冷凍システム10を流れる冷媒の状態変化を検知することが困難である。微小抵抗20の抵抗が全抵抗の20%超に相当する抵抗である場合、内部熱交換部19の熱交換が不十分となり、冷凍システム10の効率が低下する。ここで、全抵抗に対する微小抵抗20の比率は、キャピラリーチューブ15の長さ、および、微小抵抗20と膨張弁14とキャピラリーチューブ15とが有する抵抗を同じ内径のキャピラリーチューブ15により代替した場合のキャピラリーチューブ15の長さの比率で示したものである。 The microresistor 20 constituting the expansion valve control sensor 23 is provided downstream of the condenser 12 and is constituted by, for example, a thin tube having a length of 250 mm. The minute resistance 20 has a resistance corresponding to about 5% of the total resistance of the minute resistance 20, the expansion valve 14 and the capillary tube 15 arranged in series. The ratio of the minute resistance 20 to the total resistance is desirably 1% to 20%. When the resistance of the minute resistance 20 is a resistance corresponding to less than 1% of the total resistance, it is difficult to detect the state change of the refrigerant flowing through the refrigeration system 10. When the resistance of the minute resistance 20 is a resistance corresponding to more than 20% of the total resistance, the heat exchange of the internal heat exchange unit 19 becomes insufficient, and the efficiency of the refrigeration system 10 is reduced. Here, the ratio of the minute resistance 20 to the total resistance is the length of the capillary tube 15 and the capillary when the resistance of the minute resistance 20, the expansion valve 14 and the capillary tube 15 is replaced by the capillary tube 15 having the same inner diameter. The ratio of the length of the tube 15 is shown.
 膨張弁制御センサ23を構成する上流温度センサ21は、微小抵抗20の上流側に配置され、微小抵抗20の上流側の配管温度を検知する。膨張弁制御センサ23を構成する下流温度センサ22は、微小抵抗20の下流側に配置され、微小抵抗20の下流側の配管温度を検知する。微小抵抗20の内部を流れる冷媒の状態変化に応じて、上流温度センサ21が検知する温度と下流温度センサ22が検知する温度との温度差の値、すなわち微小抵抗20の前後の温度差が変化する。上流温度センサ21が検知する温度と下流温度センサ22が検知する温度との温度差の値に基づいて、膨張弁14の絞り量が可変される。これにより、冷凍システム10は所定の状態に制御される。 The upstream temperature sensor 21 constituting the expansion valve control sensor 23 is arranged on the upstream side of the minute resistor 20 and detects the pipe temperature on the upstream side of the minute resistor 20. The downstream temperature sensor 22 constituting the expansion valve control sensor 23 is disposed on the downstream side of the minute resistor 20 and detects the pipe temperature on the downstream side of the minute resistor 20. The value of the temperature difference between the temperature detected by the upstream temperature sensor 21 and the temperature detected by the downstream temperature sensor 22, that is, the temperature difference before and after the micro resistance 20 changes according to the state change of the refrigerant flowing inside the micro resistance 20. To do. Based on the value of the temperature difference between the temperature detected by the upstream temperature sensor 21 and the temperature detected by the downstream temperature sensor 22, the throttle amount of the expansion valve 14 is varied. Thereby, the refrigeration system 10 is controlled to a predetermined state.
 なお、膨張弁制御センサ23は、圧縮機11および凝縮器12などからの廃熱の影響を避けることが望ましい。本実施の形態では、膨張弁制御センサ23は、風路の上流側に配置されている。 Note that the expansion valve control sensor 23 desirably avoids the influence of waste heat from the compressor 11 and the condenser 12. In the present embodiment, the expansion valve control sensor 23 is disposed on the upstream side of the air passage.
 次に、冷凍システム10の基本の制御について説明する。 Next, basic control of the refrigeration system 10 will be described.
 冷凍システム10が稼動して冷却運転が行われる場合、膨張弁14の絞り量が最小、すなわち膨張弁14における冷媒の循環量が最大となり、圧縮機11が動作(運転)する。圧縮機11において圧縮された冷媒は、凝縮器12において放熱して凝縮した後、ドライヤ13において乾燥される。ドライヤ13において乾燥された冷媒は、膨張弁制御センサ23を通過した後、膨張弁14とキャピラリーチューブ15とにおいて減圧され、蒸発器16に供給されて蒸発し、吸入管18を介して圧縮機11へ供給される。このとき、蒸発器16において発生する冷熱、すなわち潜熱が利用されることにより、冷却が行われる。 When the refrigeration system 10 is operated and the cooling operation is performed, the throttle amount of the expansion valve 14 is minimum, that is, the refrigerant circulation amount in the expansion valve 14 is maximum, and the compressor 11 operates (operates). The refrigerant compressed in the compressor 11 dissipates heat and condenses in the condenser 12 and is then dried in the dryer 13. The refrigerant dried in the dryer 13 passes through the expansion valve control sensor 23, is depressurized in the expansion valve 14 and the capillary tube 15, is supplied to the evaporator 16, is evaporated, and is compressed through the suction pipe 18. Supplied to. At this time, cooling is performed by utilizing the cold heat generated in the evaporator 16, that is, latent heat.
 膨張弁14の絞り量が最小となり、圧縮機11が動作した状態において、冷凍システム10により冷却される対象物(図示せず)の温度が低下して、冷凍システム10が安定状態に近づくと、凝縮器12の出口、すなわち凝縮器12の下流側における冷媒は、2相状態(例えば、乾き度が3重量%から10重量%)となる。対象物の温度が上昇して、アキュームレータ17に貯留される余剰冷媒の量が減少し、冷凍システム10内の冷媒の循環量が増大した場合において、凝縮器12の出口における冷媒が過冷却とならないように、直列に配置された微小抵抗20と膨張弁14とキャピラリーチューブ15とが有する全抵抗および冷凍システム10内の全冷媒量が設計されている。一般に、冷蔵庫30の筐体の外郭から自然対流により放熱する凝縮器12を使用する家庭用冷蔵庫などに含まれる冷凍システム10は、環境条件によって放熱能力が大きく変化する。このため、凝縮器12の出口の冷媒が過冷却になるように設計されると、環境条件によって放熱能力が増大した場合に、冷凍システム10内のほとんどの冷媒が凝縮器12に滞留して、冷媒の循環量が低下する可能性がある。また、環境条件によって放熱能力が減少した場合に、凝縮器12において凝縮されなかった余剰冷媒が、アキュームレータ17に貯留されず、吸入管18から圧縮機11へ還流する。これにより、圧縮機11の耐久性が低下する可能性がある。 In a state where the throttle amount of the expansion valve 14 is minimized and the compressor 11 is operating, when the temperature of an object (not shown) cooled by the refrigeration system 10 decreases and the refrigeration system 10 approaches a stable state, The refrigerant at the outlet of the condenser 12, that is, the downstream side of the condenser 12 is in a two-phase state (for example, the dryness is 3 wt% to 10 wt%). When the temperature of the object rises, the amount of excess refrigerant stored in the accumulator 17 decreases, and the amount of refrigerant circulating in the refrigeration system 10 increases, the refrigerant at the outlet of the condenser 12 does not become overcooled. As described above, the total resistance of the microresistor 20, the expansion valve 14, and the capillary tube 15 arranged in series and the total amount of refrigerant in the refrigeration system 10 are designed. In general, the refrigeration system 10 included in a home refrigerator or the like that uses a condenser 12 that dissipates heat by natural convection from the outer casing of the refrigerator 30 varies greatly depending on environmental conditions. For this reason, when the refrigerant at the outlet of the condenser 12 is designed to be supercooled, most of the refrigerant in the refrigeration system 10 stays in the condenser 12 when the heat dissipation capacity increases due to environmental conditions. There is a possibility that the circulation amount of the refrigerant will decrease. Further, when the heat radiation capacity is reduced due to environmental conditions, surplus refrigerant that has not been condensed in the condenser 12 is not stored in the accumulator 17 but is returned to the compressor 11 from the suction pipe 18. Thereby, durability of the compressor 11 may fall.
 上流温度センサ21が検知する温度と下流温度センサ22が検知する温度との温度差の値が、予め設定された所定値となるように、膨張弁14の絞り量が制御される。あるいは、膨張弁14の絞り量が、膨張弁14の絞り量が最小である安定状態に比べて所定量変化するように、膨張弁14の絞り量が制御される。これにより、凝縮器12の出口の冷媒の乾き度が減少する。したがって、冷凍効果が増大して、冷凍システム10の効率が向上する。 The throttle amount of the expansion valve 14 is controlled so that the temperature difference between the temperature detected by the upstream temperature sensor 21 and the temperature detected by the downstream temperature sensor 22 becomes a predetermined value set in advance. Alternatively, the throttle amount of the expansion valve 14 is controlled so that the throttle amount of the expansion valve 14 changes by a predetermined amount compared to a stable state where the throttle amount of the expansion valve 14 is minimum. Thereby, the dryness of the refrigerant | coolant of the exit of the condenser 12 reduces. Therefore, the refrigeration effect is increased and the efficiency of the refrigeration system 10 is improved.
 次に、図4および図5に基づいて、本開示の実施の形態の冷凍システム10の膨張弁14の制御方法について説明する。 Next, a method for controlling the expansion valve 14 of the refrigeration system 10 according to the embodiment of the present disclosure will be described with reference to FIGS. 4 and 5.
 図4における横軸は、膨張弁14の絞り量に応じて発生する圧力損失の値を示す。図4における縦軸は、膨張弁制御センサ23の出力、すなわち膨張弁制御センサ23が検知する微小抵抗20の前後の温度差Sの値を示す。 The horizontal axis in FIG. 4 indicates the value of the pressure loss that occurs according to the throttle amount of the expansion valve 14. The vertical axis in FIG. 4 indicates the output of the expansion valve control sensor 23, that is, the value of the temperature difference S before and after the minute resistance 20 detected by the expansion valve control sensor 23.
 上述の通り、膨張弁14の絞り量が最小であり圧縮機11が動作した状態において、冷凍システム10により冷却される対象物の温度が低下して、冷凍システム10が安定状態に近づくと、凝縮器12の出口の冷媒は、2相状態となる。このとき、膨張弁制御センサ23の出力は、S0を示す。そして、膨張弁制御センサ23の出力がS2を下回るように、膨張弁14の絞り量は制御され、膨張弁14の絞り量は増加する。これにより、凝縮器12の出口の冷媒の乾き度は減少する。したがって、冷凍システム10の冷凍効果が増大し、冷凍システム10の効率が向上する。 As described above, when the amount of throttle of the expansion valve 14 is the minimum and the compressor 11 is operating, the temperature of the object cooled by the refrigeration system 10 decreases, and the refrigeration system 10 approaches the stable state to condense. The refrigerant at the outlet of the vessel 12 is in a two-phase state. At this time, the output of the expansion valve control sensor 23 indicates S0. Then, the throttle amount of the expansion valve 14 is controlled so that the output of the expansion valve control sensor 23 falls below S2, and the throttle amount of the expansion valve 14 increases. Thereby, the dryness of the refrigerant | coolant of the exit of the condenser 12 reduces. Therefore, the refrigeration effect of the refrigeration system 10 is increased, and the efficiency of the refrigeration system 10 is improved.
 一方、凝縮器12の出口の冷媒の乾き度が減少し、膨張弁制御センサ23の出力がS1を下回った場合、膨張弁14の絞り量は制御され、膨張弁14の絞り量は減少する。これにより、冷凍システム10は、膨張弁制御センサ23の出力がS1とS2との間において安定する。膨張弁14が制御され、膨張弁14の絞り量が増加し過ぎた場合、凝縮器12の出口の冷媒が過冷却の状態となり、冷凍システム10内のほとんどの冷媒が凝縮器12に滞留して、冷媒の循環量が低下する可能性がある。このような場合、冷凍システム10、すなわち冷蔵庫30の冷却能力が不足する可能性がある。したがって、膨張弁制御センサ23の出力には、下限値であるS1が設けられている。 On the other hand, when the dryness of the refrigerant at the outlet of the condenser 12 decreases and the output of the expansion valve control sensor 23 falls below S1, the throttle amount of the expansion valve 14 is controlled, and the throttle amount of the expansion valve 14 decreases. Thereby, as for the refrigerating system 10, the output of the expansion valve control sensor 23 is stabilized between S1 and S2. When the expansion valve 14 is controlled and the throttle amount of the expansion valve 14 increases too much, the refrigerant at the outlet of the condenser 12 becomes supercooled, and most of the refrigerant in the refrigeration system 10 stays in the condenser 12. There is a possibility that the circulation amount of the refrigerant will decrease. In such a case, the cooling capacity of the refrigeration system 10, that is, the refrigerator 30, may be insufficient. Therefore, the output of the expansion valve control sensor 23 is provided with S1, which is a lower limit value.
 図5における横軸は、図4における縦軸と同様に、膨張弁制御センサ23の出力、すなわち膨張弁制御センサ23が検知する微小抵抗20の前後の温度差Sの値を示す。図5における縦軸は、微小抵抗20内を通過する冷媒の流速Vの値を示す。 5, the horizontal axis indicates the output of the expansion valve control sensor 23, that is, the value of the temperature difference S before and after the minute resistance 20 detected by the expansion valve control sensor 23, similarly to the vertical axis in FIG. 4. The vertical axis in FIG. 5 indicates the value of the flow velocity V of the refrigerant passing through the minute resistor 20.
 上述の通り、膨張弁制御センサ23の出力がS0を示す状態から、膨張弁14の絞り量が制御され、膨張弁14の絞り量が増加した場合、凝縮器12の出口の冷媒の乾き度が減少して、微小抵抗20内を通過する冷媒の流速Vが遅くなる。これにより、膨張弁制御センサ23の出力は、S0からS2へ低下する。同様に、膨張弁14の絞り量が調整されて膨張弁制御センサ23の出力がS1からS2に安定すると、凝縮器12の出口の冷媒の乾き度がゼロ近傍(例えば、乾き度が0重量%から1重量%)において安定し、微小抵抗20内を通過する冷媒の流速Vが最小値の近傍において安定する。冷凍システム10は、安定状態において、冷媒の循環量が一定(略一定を含む)となる。このため、凝縮器12の出口の冷媒の乾き度が減少して、凝縮器12の出口の冷媒が液相になった場合、微小抵抗20内を通過する冷媒の流速Vは、最小(略最小を含む)となる。また、凝縮器12の出口の冷媒の乾き度が増加した場合、微小抵抗20内を通過する冷媒の流速Vは、増加する。 As described above, when the throttle amount of the expansion valve 14 is controlled from the state in which the output of the expansion valve control sensor 23 indicates S0 and the throttle amount of the expansion valve 14 increases, the dryness of the refrigerant at the outlet of the condenser 12 increases. It decreases and the flow velocity V of the refrigerant | coolant which passes the inside of the micro resistance 20 becomes slow. As a result, the output of the expansion valve control sensor 23 decreases from S0 to S2. Similarly, when the throttle amount of the expansion valve 14 is adjusted and the output of the expansion valve control sensor 23 is stabilized from S1 to S2, the dryness of the refrigerant at the outlet of the condenser 12 is close to zero (for example, the dryness is 0% by weight). To 1 wt%), and the flow velocity V of the refrigerant passing through the minute resistor 20 is stabilized in the vicinity of the minimum value. In the refrigeration system 10, the circulation amount of the refrigerant is constant (including substantially constant) in a stable state. For this reason, when the dryness of the refrigerant at the outlet of the condenser 12 decreases and the refrigerant at the outlet of the condenser 12 becomes a liquid phase, the flow velocity V of the refrigerant passing through the minute resistor 20 is the minimum (substantially minimum). Included). Further, when the dryness of the refrigerant at the outlet of the condenser 12 increases, the flow velocity V of the refrigerant passing through the minute resistor 20 increases.
 一般に、液相の比容積に対して、気相の比容積は50倍程度である。したがって、微小抵抗20内を通過する、乾き度が0重量%から10重量%の冷媒の流速Vの変化量は大きい。特に、乾き度が0重量%から10重量%の範囲においては、膨張弁制御センサ23による凝縮器12の出口の冷媒の状態は検知されやすい。 Generally, the specific volume of the gas phase is about 50 times the specific volume of the liquid phase. Therefore, the amount of change in the flow velocity V of the refrigerant having a dryness of 0 wt% to 10 wt% passing through the minute resistor 20 is large. In particular, when the dryness is in the range of 0 wt% to 10 wt%, the state of the refrigerant at the outlet of the condenser 12 by the expansion valve control sensor 23 is easily detected.
 本実施の形態では、上記の制御が基本制御として行われることにより、高効率な冷却運転が行われる。なお、上記の制御においては、膨張弁制御センサ23の検知結果に基づいて、膨張弁14は制御される。しかし、微小抵抗20の圧力差により発生する温度差に基づいて、冷媒の流量が制御されてもよい。例えば、冷媒の流路を切替える切替弁においても、同様の制御が可能である。この場合、膨張弁制御センサ23の出力範囲に応じて切替えられる流路が選択されることにより、冷媒の流量が制御される。このとき、切替えられた流路の先において、冷媒は、内径および長さなどが異なることにより抵抗値が異なるキャピラリーに循環されてもよい。 In this embodiment, a highly efficient cooling operation is performed by performing the above control as basic control. In the above control, the expansion valve 14 is controlled based on the detection result of the expansion valve control sensor 23. However, the flow rate of the refrigerant may be controlled based on the temperature difference generated by the pressure difference of the minute resistor 20. For example, the same control is possible for a switching valve for switching the refrigerant flow path. In this case, the flow rate of the refrigerant is controlled by selecting a flow path that is switched according to the output range of the expansion valve control sensor 23. At this time, the refrigerant may be circulated to capillaries having different resistance values due to different inner diameters, lengths, and the like at the end of the switched flow path.
 以上のように構成された冷蔵庫30について、以下、その動作および作用について説明する。 About the refrigerator 30 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 通常、冷蔵庫30は、工場での生産時において、真空引きが実施された後に、冷媒が封入され、配管が封止された状態にて出荷される。一般的に、ユーザが使用する冷蔵庫30の実使用年数は、10年以上である。市場における冷蔵庫30の使用状態、すなわちユーザに使用される冷蔵庫30の使用状態は、埃等の清掃を除き、メンテナンスフリーの状態である。工場での冷蔵庫30の真空引きにおいて、冷凍システム10内の真空度が所定の真空度になるまで、真空引きが行われる。しかし、限られた時間内で真空引きが行われること、および、冷媒運転をする前に配管の内側に吸着している空気を除去することは困難であることから、工場での真空引きの後であっても、配管に吸着したままの空気が冷凍システム10内に残留する可能性がある。また、工場での真空引きを実現する真空設備の性能、および冷蔵庫30と真空設備との脱着などが、冷凍システム10内に残留する空気の量に影響する。冷凍システム10内に残留する空気は、冷蔵庫30の運転時において、冷媒と共に冷却配管内を循環する。冷凍システム10内に空気が残留している場合、圧縮機11において圧縮される冷媒に空気が混入する。空気のような非圧縮性のガスが混入した冷媒が圧縮される場合、非圧縮性のガスが混入していない冷媒が圧縮される場合よりも、圧縮機の入力が増加することとなり、増エネとなる。さらに、気相と液相との2相が混在する凝縮器において、冷媒の流速が冷媒に混入した空気により増加する。このため、圧力損失が生じ、ドライヤの温度が低下する温度すべりが発生する。 Usually, the refrigerator 30 is shipped in a state where the refrigerant is sealed and the piping is sealed after vacuuming is performed during production in the factory. Generally, the actual age of the refrigerator 30 used by the user is 10 years or more. The usage state of the refrigerator 30 in the market, that is, the usage state of the refrigerator 30 used by the user is a maintenance-free state except for cleaning of dust and the like. In the evacuation of the refrigerator 30 at the factory, the evacuation is performed until the degree of vacuum in the refrigeration system 10 reaches a predetermined degree of vacuum. However, after evacuation at the factory, it is difficult to evacuate within a limited time, and it is difficult to remove the air adsorbed inside the piping before operating the refrigerant. Even so, there is a possibility that the air adsorbed on the pipe remains in the refrigeration system 10. In addition, the performance of the vacuum equipment that realizes evacuation in the factory and the attachment / detachment of the refrigerator 30 and the vacuum equipment affect the amount of air remaining in the refrigeration system 10. The air remaining in the refrigeration system 10 circulates in the cooling pipe together with the refrigerant during operation of the refrigerator 30. When air remains in the refrigeration system 10, the air is mixed into the refrigerant compressed in the compressor 11. When a refrigerant mixed with an incompressible gas such as air is compressed, the input of the compressor increases as compared with the case where a refrigerant not mixed with an incompressible gas is compressed. It becomes. Further, in a condenser in which two phases of a gas phase and a liquid phase are mixed, the flow rate of the refrigerant increases due to air mixed in the refrigerant. For this reason, a pressure loss occurs, and a temperature slip that reduces the temperature of the dryer occurs.
 図4および図5に基づいて冷蔵庫30は動作する。しかし、膨張弁制御センサ23の出力値は、冷凍システム10内に残留する空気の影響により、冷凍システム10内に空気が残留していない場合と、冷凍システム10内に空気が残留している場合とにおいて、膨張弁制御センサ23の出力値に誤差が生じる。 Refrigerator 30 operates based on FIG. 4 and FIG. However, the output value of the expansion valve control sensor 23 depends on the effect of air remaining in the refrigeration system 10 when no air remains in the refrigeration system 10 and when air remains in the refrigeration system 10. In this case, an error occurs in the output value of the expansion valve control sensor 23.
 ここで、膨張弁制御センサ23が検知する出力温度差、すなわち上流温度センサ21が検知する温度と下流温度センサ22が検知する温度との温度差の値の出力をTとする。このとき、膨張弁制御センサ23に実際に検知された出力をT1とする。狙いとする所定の出力、すなわち冷媒に空気が残留していない場合における膨張弁制御センサ23により検知される出力をT0とする。冷凍システム10内に空気が残留していない場合は、T1=T0である。膨張弁14の絞り量が制御され、膨張弁14の絞り量が増加するにつれて、膨張弁制御センサ23が検知する出力温度差は、ゼロに近づいていく。一方、残留空気がある場合は、温度すべりにより、予めT1は高く、T1>T0となる。膨張弁制御センサ23が検知する出力温度差がゼロに到達した後は、冷媒が過冷却の状態となる。したがって、膨張弁14の絞り量が制御され、膨張弁14の絞り量が増加し続けると、凝縮器12の出口の温度は低下する。これにより、冷凍システム10の冷却能力は低下する。さらに、凝縮器12の温度が低下するため、冷蔵庫30の表面温度が低下し、冷蔵庫30の表面温度は、露点温度以下となる可能性がある。その結果、増エネが生じるだけでなく、表面が結露するような品質面の低下が起こりうる。また、過冷却の状態において、冷媒は、主として凝縮器12に滞留している。このため、冷凍システム10内を循環する冷媒の量が不足し、冷凍システム10が冷えにくくなる。さらに、蒸発器16の入口の温度が極端に低下する。そのため、膨張弁制御センサ23が検知する実際の出力T1と、狙いとする所定の出力T0とが比較され、T1とT0との差分である乖離温度に基づいて、目標値である所定値T0が修正される。さらに、膨張弁14の絞り量が修正されることにより、残留空気の影響による膨張弁14の絞り量の過剰な増加が抑制され、冷媒が過冷却となることが抑制される。 Here, T is the output temperature difference detected by the expansion valve control sensor 23, that is, the output of the temperature difference between the temperature detected by the upstream temperature sensor 21 and the temperature detected by the downstream temperature sensor 22. At this time, the output actually detected by the expansion valve control sensor 23 is T1. A predetermined output to be aimed at, that is, an output detected by the expansion valve control sensor 23 when air does not remain in the refrigerant is T0. When air does not remain in the refrigeration system 10, T1 = T0. As the throttle amount of the expansion valve 14 is controlled and the throttle amount of the expansion valve 14 increases, the output temperature difference detected by the expansion valve control sensor 23 approaches zero. On the other hand, when there is residual air, T1 is high in advance due to temperature slip, and T1> T0. After the output temperature difference detected by the expansion valve control sensor 23 reaches zero, the refrigerant is supercooled. Therefore, when the throttle amount of the expansion valve 14 is controlled and the throttle amount of the expansion valve 14 continues to increase, the temperature at the outlet of the condenser 12 decreases. Thereby, the cooling capacity of the refrigeration system 10 decreases. Furthermore, since the temperature of the condenser 12 falls, the surface temperature of the refrigerator 30 falls and the surface temperature of the refrigerator 30 may become below a dew point temperature. As a result, not only energy increase occurs, but quality deterioration such as surface condensation may occur. In the supercooled state, the refrigerant mainly stays in the condenser 12. For this reason, the amount of the refrigerant circulating in the refrigeration system 10 is insufficient, and the refrigeration system 10 is difficult to cool. Further, the temperature at the inlet of the evaporator 16 is extremely lowered. Therefore, the actual output T1 detected by the expansion valve control sensor 23 is compared with the target predetermined output T0, and the predetermined value T0 that is the target value is obtained based on the deviation temperature that is the difference between T1 and T0. Will be corrected. Further, by correcting the throttle amount of the expansion valve 14, an excessive increase in the throttle amount of the expansion valve 14 due to the influence of residual air is suppressed, and the refrigerant is suppressed from being overcooled.
 ここで、△T=T1-T0として、△Tの値を補正値として用いることにより、膨張弁制御センサ23の基本制御の出力であるS1/S2が補正される。その結果、図6のように、Sの制御範囲の下限は、S1‘=S1+△Tとなる。また、図6のように、Sの制御範囲の上限は、S2‘=S2+△Tとなる。これによって、冷蔵庫30の生産時に残留している残留空気の影響が考慮された上で、膨張弁14の絞り量の過剰な増加により発生する冷媒の過冷却化が抑制されるこれにより、冷凍システム10の冷却能力の低下、および冷媒の凝縮温度の低下による結露等の品質の劣化が抑制される。さらに、空気が残留している場合においても、冷媒の乾き度がゼロに近づくように、膨張弁14の絞り量が制御される。これにより、高い省エネ性、すなわちエネルギー効率が高い冷蔵庫30が提供される。 Here, by using ΔT = T1−T0 and using the value of ΔT as a correction value, S1 / S2 which is the output of the basic control of the expansion valve control sensor 23 is corrected. As a result, as shown in FIG. 6, the lower limit of the control range of S is S1 ′ = S1 + ΔT. Further, as shown in FIG. 6, the upper limit of the S control range is S2 ′ = S2 + ΔT. Thereby, after taking into consideration the influence of the residual air remaining during the production of the refrigerator 30, the refrigerant is prevented from being overcooled due to an excessive increase in the throttle amount of the expansion valve 14. Degradation of quality such as condensation due to a decrease in the cooling capacity of 10 and a decrease in the condensation temperature of the refrigerant is suppressed. Furthermore, even when air remains, the throttle amount of the expansion valve 14 is controlled so that the dryness of the refrigerant approaches zero. Thereby, the refrigerator 30 with high energy-saving property, ie, high energy efficiency, is provided.
 なお、膨張弁制御センサ23が実際に検知した出力T1と、狙いとする所定の出力T0との差の算出においては、例えば、冷蔵庫30の電源投入時のプルダウン冷却時および冷蔵庫30の除霜後など、圧縮機11が、圧縮機11の回転数が一定もしくは予め把握されているような、連続運転の場合がよい。冷蔵庫30の状態変化が小さく、T1とT0との差が検出され易いためである。 In calculating the difference between the output T1 actually detected by the expansion valve control sensor 23 and the target predetermined output T0, for example, during pull-down cooling when the refrigerator 30 is turned on and after defrosting the refrigerator 30 For example, the compressor 11 may be continuously operated such that the rotation speed of the compressor 11 is constant or is known in advance. This is because the state change of the refrigerator 30 is small and the difference between T1 and T0 is easily detected.
 また、冷蔵庫30内が十分に冷却されて、冷蔵庫30の冷却運転が安定した後、膨張弁14の絞り量が過剰に増加することによる蒸発器16の出口における温度の急昇温および過冷却などを検知した場合、膨張弁制御センサ23の出力値が更に補正される。 In addition, after the inside of the refrigerator 30 is sufficiently cooled and the cooling operation of the refrigerator 30 is stabilized, the temperature at the outlet of the evaporator 16 is rapidly increased and supercooled due to an excessive increase in the amount of expansion of the expansion valve 14. Is detected, the output value of the expansion valve control sensor 23 is further corrected.
 また、本実施の形態では、残留空気が冷凍システム10内に還流しないように、図7に示すガスレシーバが配設されている。 Further, in the present embodiment, the gas receiver shown in FIG. 7 is provided so that residual air does not recirculate into the refrigeration system 10.
 ガスレシーバ24は、冷凍システム10の中において、凝縮器12の下流側、かつ、上流温度センサ21よりも上流側に配置されている。すなわち、冷凍システム10において、凝縮器12の出口と、ガスレシーバ24と、膨張弁制御センサ23と、膨張弁14と、ドライヤ13と、キャピラリーチューブ15との順で配置されている。言い換えると、ガスレシーバ24は、冷凍システム10において、膨張弁14の上流に配置されている。 The gas receiver 24 is disposed in the refrigeration system 10 downstream of the condenser 12 and upstream of the upstream temperature sensor 21. That is, in the refrigeration system 10, the outlet of the condenser 12, the gas receiver 24, the expansion valve control sensor 23, the expansion valve 14, the dryer 13, and the capillary tube 15 are arranged in this order. In other words, the gas receiver 24 is disposed upstream of the expansion valve 14 in the refrigeration system 10.
 ガスレシーバ24は、中空の閉じたレシーバ本体25と、入口パイプ26と、出口パイプ28と、入口パイプ26および出口パイプ28の間に配設された内部メッシュ29とから構成されている。ガスレシーバ24は、流れ方向を上から下、すなわち凝縮器12の下流を流れる冷媒が上から下に流れる位置に配設されている。 The gas receiver 24 includes a hollow closed receiver body 25, an inlet pipe 26, an outlet pipe 28, and an internal mesh 29 disposed between the inlet pipe 26 and the outlet pipe 28. The gas receiver 24 is disposed at a position where the refrigerant flowing in the flow direction from top to bottom, that is, the refrigerant flowing downstream of the condenser 12 flows from top to bottom.
 入口パイプ26は、入口パイプ先端部27を有する。入口パイプ26は、レシーバ本体25の内部に入口パイプ先端部27が配置されるように、ガスレシーバ24の上部、すなわちレシーバ本体25の上部から挿入される。出口パイプ28は、ガスレシーバ24の下部、すなわちレシーバ本体25の下部に配置されている。なお、ガスレシーバ24において、冷媒は、入口パイプ先端部27から流出し、出口パイプ28の出口パイプ流入部40に流入する。このとき、冷媒は、レシーバ本体25の内部において露出する。 The inlet pipe 26 has an inlet pipe tip 27. The inlet pipe 26 is inserted from the upper part of the gas receiver 24, that is, from the upper part of the receiver body 25 so that the inlet pipe distal end portion 27 is disposed inside the receiver body 25. The outlet pipe 28 is disposed below the gas receiver 24, that is, below the receiver body 25. In the gas receiver 24, the refrigerant flows out from the inlet pipe tip portion 27 and flows into the outlet pipe inflow portion 40 of the outlet pipe 28. At this time, the refrigerant is exposed inside the receiver body 25.
 本実施の形態では、ガスレシーバ24、すなわちレシーバ本体25の内部容量は、入口パイプ先端部27からレシーバ本体25の内側上端までの空間として、約20mLである。これは、冷凍システム10を構成する圧縮機11を除いた配管の内部空間の2%程度である。さらに、ガスレシーバ24が配置されるに際し、小型で省スペースが実現されるためである。さらに、工場出荷時の残留空気の量は、一般的に、約1%程度であり、バラツキが考慮されても約2%以内に収まるとされている。なお、レシーバ本体25の内部容量は、約20mLに限定されず、例えば、約50mL以下の内部容量であってもよい。 In the present embodiment, the internal volume of the gas receiver 24, that is, the receiver body 25 is about 20 mL as a space from the inlet pipe tip 27 to the inner upper end of the receiver body 25. This is about 2% of the internal space of the piping excluding the compressor 11 constituting the refrigeration system 10. Furthermore, when the gas receiver 24 is arranged, it is small and space saving is realized. Furthermore, the amount of residual air at the time of shipment from the factory is generally about 1%, and is considered to be within about 2% even if variation is considered. The internal volume of the receiver body 25 is not limited to about 20 mL, and may be an internal volume of about 50 mL or less, for example.
 冷媒は、レシーバ本体25の内部において露出する。このため、冷媒に対して相対的に比重が軽い残留空気は、冷媒から分離し、ガスレシーバ24の上部空間に貯留される。これにより、冷凍システム10を循環する冷媒に混入した空気が除去される。つまり、ガスレシーバ24が配置されることにより残留空気は、冷媒から分離され、ガスレシーバ24の上部空間に貯留される。これにより、冷凍システム10は、真空に近い状態で運転することができる。したがって、無駄な電力が消費されることなく、高効率で冷却が行われる。このため、省エネ性の高い冷蔵庫30が提供される。 The refrigerant is exposed inside the receiver body 25. For this reason, residual air having a relatively low specific gravity with respect to the refrigerant is separated from the refrigerant and stored in the upper space of the gas receiver 24. Thereby, the air mixed in the refrigerant circulating in the refrigeration system 10 is removed. That is, the residual air is separated from the refrigerant by the gas receiver 24 being arranged, and is stored in the upper space of the gas receiver 24. Thereby, the refrigeration system 10 can be operated in a state close to a vacuum. Therefore, cooling is performed with high efficiency without consuming unnecessary power. For this reason, the refrigerator 30 with high energy-saving property is provided.
 本実施の形態において、ガスレシーバ24は、冷媒の流れ方向を単に上から下とするように配設されている。しかし、ガスレシーバ24は、冷凍システム10において、冷媒の流れ方向を垂直方向に上から下、すなわち入口パイプ先端部27を上とし、出口パイプ流入部40を下とした状態で配置されてもよい。これにより、残留空気が効果的に貯留される。 In the present embodiment, the gas receiver 24 is arranged so that the flow direction of the refrigerant is simply from top to bottom. However, the gas receiver 24 may be arranged in the refrigeration system 10 in a state in which the flow direction of the refrigerant is from the top to the bottom in the vertical direction, that is, the inlet pipe tip 27 is the top and the outlet pipe inflow part 40 is the bottom. . Thereby, residual air is effectively stored.
 また、ガスレシーバ24内において、入口パイプ26と出口パイプ28の間、すなわち入口パイプ先端部27と出口パイプ28の冷媒の流入部である出口パイプ流入部40との間には、内部メッシュ29が配置されている。内部メッシュ29は、内部メッシュ29を通過する液冷媒と残留空気とを分離する。これにより、冷媒よりも相対的に比重が軽い残留空気が、レシーバ本体25の上部の空間に効率的に貯留(保持)される。さらに、内部メッシュ29のメッシュの大きさは、例えば、Φ0.16mmであり、比較的細かい。したがって、ガスレシーバ24を通過する冷媒に混入した不純物が除去される。 In the gas receiver 24, an internal mesh 29 is provided between the inlet pipe 26 and the outlet pipe 28, that is, between the inlet pipe tip 27 and the outlet pipe inflow portion 40 that is the refrigerant inflow portion of the outlet pipe 28. Has been placed. The internal mesh 29 separates liquid refrigerant passing through the internal mesh 29 and residual air. As a result, the residual air having a lighter specific gravity than the refrigerant is efficiently stored (held) in the space above the receiver body 25. Furthermore, the size of the mesh of the internal mesh 29 is, for example, Φ0.16 mm, which is relatively fine. Therefore, impurities mixed in the refrigerant passing through the gas receiver 24 are removed.
 なお、ガスレシーバ24の代わりに、ドライヤ13またはストレーナが用いられてもよい。この場合、内容量、すなわち残留空気を貯留する空間の確保のため、ドライヤ13またはストレーナの外形寸法を大きくする必要がある。特に、ドライヤ13の場合は、内部に保留する乾燥剤のモレキュラーシーブの量を考慮する必要がある。しかし、この場合、部品の兼用化により、冷蔵庫30のコストが低下する。 Note that a dryer 13 or a strainer may be used instead of the gas receiver 24. In this case, it is necessary to increase the outer dimensions of the dryer 13 or the strainer in order to secure the internal volume, that is, the space for storing the residual air. In particular, in the case of the dryer 13, it is necessary to consider the amount of the molecular sieve of the desiccant retained inside. However, in this case, the cost of the refrigerator 30 decreases due to the shared use of parts.
 なお、本実施の形態では、ガスレシーバ24は、膨張弁14の上流側に配置されている。しかし、ガスレシーバ24は、膨張弁14の下流側に配置されてもよい。この場合は、膨張弁14の上流側に配置される場合に比べ、残留空気が十分貯留される程度に冷媒が循環した後に膨張弁14が制御されること、および残留空気が十分に貯留される程度にガスレシーバ24の容量が確保されることが必要である。 In the present embodiment, the gas receiver 24 is disposed on the upstream side of the expansion valve 14. However, the gas receiver 24 may be disposed on the downstream side of the expansion valve 14. In this case, the expansion valve 14 is controlled after the refrigerant circulates to such an extent that the residual air is sufficiently stored, and the residual air is sufficiently stored, as compared with the case where the expansion valve 14 is arranged upstream. It is necessary to ensure the capacity of the gas receiver 24 to the extent.
 また、ガスレシーバ24の代わりに、アキュームレータ17が用いられてもよい。通常、冷却運転が行われ、冷蔵庫30の内部が十分に冷却されると、圧縮機11の運転は停止する。しかし、この間、冷媒は、高圧である凝縮器12から低圧である蒸発器16に移動する。このため、アキュームレータ17は、満液となる。したがって、過剰な冷媒の量と残留空気とが貯留できるように、アキュームレータ17の容量を大きくする必要がある。さらに、アキュームレータ17の入口および出口の配管の位置について、一旦貯留された残留空気が漏出しないように、アキュームレータ17が配置される必要がある。 Further, an accumulator 17 may be used instead of the gas receiver 24. Usually, when the cooling operation is performed and the inside of the refrigerator 30 is sufficiently cooled, the operation of the compressor 11 is stopped. However, during this time, the refrigerant moves from the high pressure condenser 12 to the low pressure evaporator 16. For this reason, the accumulator 17 becomes full. Therefore, it is necessary to increase the capacity of the accumulator 17 so that an excessive amount of refrigerant and residual air can be stored. Further, the accumulator 17 needs to be arranged so that the residual air once stored does not leak out at the inlet and outlet piping positions of the accumulator 17.
 なお、工場内において、冷蔵庫30が真空引きされて冷媒が封入され、冷蔵庫30が運転された後に、再度、冷蔵庫30の真空引きが行われてもよい。これにより、冷蔵庫30の配管に吸着している残留空気の量が減少する。このため、冷蔵庫30は、再度真空引きが行われない場合よりも、相対的に真空度が高くなる。したがって、膨張弁制御センサ23の出力が精度よく検出される。このため、膨張弁14は、より精度よく調整される。したがって、省エネ性の高い冷蔵庫30が提供される。 In the factory, the refrigerator 30 may be evacuated again after the refrigerator 30 is evacuated and the refrigerant is sealed and the refrigerator 30 is operated. Thereby, the amount of residual air adsorbed on the piping of the refrigerator 30 is reduced. For this reason, the degree of vacuum of the refrigerator 30 is relatively higher than when the evacuation is not performed again. Therefore, the output of the expansion valve control sensor 23 is detected with high accuracy. For this reason, the expansion valve 14 is adjusted more accurately. Therefore, the refrigerator 30 with high energy-saving property is provided.
 なお、本実施の形態では、微小抵抗20は、長さ250mmの細径管からなり、直列に配置された微小抵抗20と膨張弁14とキャピラリーチューブ15との全抵抗の約5%の抵抗を有する微小抵抗20が用いられている。しかし、微小抵抗20の有する抵抗は、全抵抗に対する比率が約1%から20%であればよい。この場合、細径管あるいは微小なオリフィスなどにより微小抵抗20が構成されても、同様の効果が得られる。 In the present embodiment, the minute resistor 20 is a thin tube having a length of 250 mm, and has a resistance of about 5% of the total resistance of the minute resistor 20, the expansion valve 14 and the capillary tube 15 arranged in series. A microresistor 20 is used. However, the resistance of the minute resistor 20 may be about 1% to 20% of the total resistance. In this case, the same effect can be obtained even if the minute resistor 20 is constituted by a small diameter tube or a minute orifice.
 以上のように、本実施の形態の冷蔵庫30は、微小抵抗20とその前後の温度差を検知する上流温度センサ21および下流温度センサ22からなる膨張弁制御センサ23を用いて、凝縮器12の出口の状態を略一定に保つように膨張弁14が制御される。本実施の形態の冷蔵庫30は、膨張弁14の上流にガスレシーバ24が配置され、冷凍システム10内を循環する冷媒に混入した空気がガスレシーバ24により除去される。これにより、残留空気による凝縮器12の出口の温度すべりへの影響が抑制される。また、膨張弁制御センサ23が検知する温度差の結果と所定値である狙いの温度差とが比較され、検知された温度差と所定値との差分の乖離温度に基づいて、所定値が修正され、修正された所定値に基づいて、膨張弁14が制御される。 As described above, the refrigerator 30 according to the present embodiment uses the expansion valve control sensor 23 including the upstream temperature sensor 21 and the downstream temperature sensor 22 that detects the minute resistance 20 and the temperature difference before and after the minute resistor 20. The expansion valve 14 is controlled so as to keep the outlet state substantially constant. In the refrigerator 30 of the present embodiment, the gas receiver 24 is disposed upstream of the expansion valve 14, and the air mixed in the refrigerant circulating in the refrigeration system 10 is removed by the gas receiver 24. Thereby, the influence of the residual air on the temperature slip at the outlet of the condenser 12 is suppressed. Further, the result of the temperature difference detected by the expansion valve control sensor 23 is compared with a target temperature difference that is a predetermined value, and the predetermined value is corrected based on the difference temperature between the detected temperature difference and the predetermined value. The expansion valve 14 is controlled based on the corrected predetermined value.
 これによって、冷凍システム10に影響を及ぼす残留空気の影響が抑制される。したがって、膨張弁14の最適制御の実現、および圧縮機11の耐久性の低下を抑制される。また、乾き度がゼロとなる高効率な冷凍システム10によって冷蔵庫30が運転することにより、省エネルギー性の高い冷蔵庫30を提供することができる。 This suppresses the influence of residual air that affects the refrigeration system 10. Therefore, the optimal control of the expansion valve 14 and the deterioration of the durability of the compressor 11 are suppressed. Moreover, the refrigerator 30 by which the refrigerator 30 drive | operates with the highly efficient refrigerating system 10 from which a dryness becomes zero can provide the refrigerator 30 with high energy saving property.
 本開示は、冷凍冷蔵商品全般に適用することができる。 This disclosure can be applied to all frozen and refrigerated products.
 10,140 冷凍システム
 11,141 圧縮機
 12,142 凝縮器
 13 ドライヤ
 14,144 膨張弁
 15,145 キャピラリーチューブ
 16,146 蒸発器
 17 アキュームレータ
 18,147 吸入管
 19,148 内部熱交換部
 20 微小抵抗
 21 上流温度センサ
 22 下流温度センサ
 23 膨張弁制御センサ
 24 ガスレシーバ
 25 レシーバ本体
 26 入口パイプ
 27 入口パイプ先端部
 28 出口パイプ
 29 内部メッシュ
 30 冷蔵庫
 40 出口パイプ流入部
 143 レシーバ
 149 吸入管温度センサ
DESCRIPTION OF SYMBOLS 10,140 Refrigeration system 11,141 Compressor 12,142 Condenser 13 Dryer 14,144 Expansion valve 15,145 Capillary tube 16,146 Evaporator 17 Accumulator 18,147 Intake pipe 19,148 Internal heat exchange part 20 Micro resistance 21 Upstream temperature sensor 22 Downstream temperature sensor 23 Expansion valve control sensor 24 Gas receiver 25 Receiver body 26 Inlet pipe 27 Inlet pipe tip 28 Outlet pipe 29 Internal mesh 30 Refrigerator 40 Outlet pipe inflow section 143 Receiver 149 Intake pipe temperature sensor

Claims (10)

  1. 圧縮機と、
    膨張弁と、
    凝縮器と、
    蒸発器と、
    空気除去部と、を備え、
    前記膨張弁の絞り量により、前記圧縮機と前記膨張弁と前記凝縮器と前記蒸発器と前記空気除去部とを含んで構成される冷凍サイクルにおいて、前記凝縮器の下流を流れる冷媒の乾き度が制御され、
    前記空気除去部は、前記冷凍サイクルにおいて前記膨張弁の上流または下流に配置され、前記冷凍サイクルを循環する前記冷媒に混入した空気を除去する、
    冷蔵庫。
    A compressor,
    An expansion valve;
    A condenser,
    An evaporator,
    An air removal unit,
    In the refrigeration cycle configured to include the compressor, the expansion valve, the condenser, the evaporator, and the air removing unit according to the throttle amount of the expansion valve, the dryness of the refrigerant flowing downstream of the condenser Is controlled,
    The air removing unit is disposed upstream or downstream of the expansion valve in the refrigeration cycle, and removes air mixed in the refrigerant circulating in the refrigeration cycle.
    refrigerator.
  2. 前記空気除去部は、前記冷凍サイクルにおいて前記膨張弁の前記上流に配置される、
    請求項1に記載の冷蔵庫。
    The air removal unit is disposed upstream of the expansion valve in the refrigeration cycle.
    The refrigerator according to claim 1.
  3. 前記空気除去部は、前記冷凍サイクルにおいて前記凝縮器の前記下流を流れる前記冷媒が上から下に流れる位置に配置される、
    請求項1または2に記載の冷蔵庫。
    The air removing unit is arranged at a position where the refrigerant flowing downstream of the condenser flows from top to bottom in the refrigeration cycle.
    The refrigerator according to claim 1 or 2.
  4. 前記空気除去部は、ガスレシーバであり、
    前記ガスレシーバは、中空の閉じたレシーバ本体と、前記レシーバ本体の内部に先端部が配置されるように前記レシーバ本体の一端部から挿入された入口配管と、前記レシーバ本体の他端部に配置された出口配管とを含む、
    請求項1から3のいずれか一項に記載の冷蔵庫。
    The air removal unit is a gas receiver,
    The gas receiver is disposed at a hollow closed receiver body, an inlet pipe inserted from one end of the receiver body so that a tip is disposed inside the receiver body, and the other end of the receiver body. Outlet pipes,
    The refrigerator according to any one of claims 1 to 3.
  5. 前記ガスレシーバは、前記冷凍サイクルにおいて、前記一端部を上とし、前記他端部を下とした状態で配置される、
    請求項4に記載の冷蔵庫。
    The gas receiver is arranged in the refrigeration cycle with the one end portion on the top and the other end portion on the bottom.
    The refrigerator according to claim 4.
  6. 前記ガスレシーバは、前記入口配管の前記先端部から流出され、前記出口配管の流入部に流入される前記冷媒を前記レシーバ本体の前記内部において露出させ、前記冷媒に混入した前記空気を前記冷媒から分離し、分離された前記空気を前記レシーバ本体の前記内部において貯留することにより、前記冷凍サイクルを循環する前記冷媒に混入した前記空気を除去する、
    請求項4または5に記載の冷蔵庫。
    The gas receiver exposes the refrigerant flowing out from the tip end portion of the inlet pipe and flowing into an inflow portion of the outlet pipe in the receiver main body, and the air mixed in the refrigerant from the refrigerant. Separating and storing the separated air inside the receiver body to remove the air mixed in the refrigerant circulating in the refrigeration cycle;
    The refrigerator according to claim 4 or 5.
  7. 前記ガスレシーバは、前記入口配管の前記先端部と前記出口配管の流入部との間に配置され、前記冷媒に混入した前記空気を除去するメッシュをさらに含む、
    請求項4または5に記載の冷蔵庫。
    The gas receiver further includes a mesh that is disposed between the distal end portion of the inlet pipe and an inflow portion of the outlet pipe and removes the air mixed in the refrigerant.
    The refrigerator according to claim 4 or 5.
  8. 前記ガスレシーバは、前記入口配管の前記先端部と前記出口配管の前記流入部との間に配置され、前記冷媒に混入した前記空気を除去するメッシュをさらに含む、
    請求項6に記載の冷蔵庫。
    The gas receiver further includes a mesh that is disposed between the front end portion of the inlet pipe and the inflow portion of the outlet pipe and removes the air mixed in the refrigerant.
    The refrigerator according to claim 6.
  9. 前記凝縮器の前記下流に配置される微小抵抗と、
    前記微小抵抗の上流に配置され、前記微小抵抗の前記上流の温度を検知する上流温度センサと、
    前記微小抵抗の下流に配置され、前記微小抵抗の前記下流の温度を検知する下流温度センサと、をさらに備え、
    前記上流温度センサが検知した前記温度と前記下流温度センサが検知した前記温度との温度差の値、および、予め設定された所定値が比較され、前記温度差の値が前記所定値に近づくように前記膨張弁が制御される、
    請求項1から8のいずれか一項に記載の冷蔵庫。
    A microresistor disposed downstream of the condenser;
    An upstream temperature sensor disposed upstream of the microresistor to detect the temperature upstream of the microresistor;
    A downstream temperature sensor disposed downstream of the microresistor and detecting the downstream temperature of the microresistor; and
    The value of the temperature difference between the temperature detected by the upstream temperature sensor and the temperature detected by the downstream temperature sensor is compared with a preset predetermined value so that the value of the temperature difference approaches the predetermined value. The expansion valve is controlled by
    The refrigerator according to any one of claims 1 to 8.
  10. 前記温度差の値と前記所定値との差に基づいて前記所定値が修正され、前記修正された所定値に基づいて前記膨張弁が制御される、
    請求項9に記載の冷蔵庫。
    The predetermined value is corrected based on the difference between the temperature difference value and the predetermined value, and the expansion valve is controlled based on the corrected predetermined value.
    The refrigerator according to claim 9.
PCT/JP2019/004524 2018-02-16 2019-02-08 Refrigerator WO2019159826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018025601A JP2019143819A (en) 2018-02-16 2018-02-16 refrigerator
JP2018-025601 2018-11-26

Publications (1)

Publication Number Publication Date
WO2019159826A1 true WO2019159826A1 (en) 2019-08-22

Family

ID=67620982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004524 WO2019159826A1 (en) 2018-02-16 2019-02-08 Refrigerator

Country Status (2)

Country Link
JP (1) JP2019143819A (en)
WO (1) WO2019159826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032481A (en) * 2019-08-26 2021-03-01 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2021038897A (en) * 2019-09-05 2021-03-11 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432810B2 (en) * 2019-11-22 2024-02-19 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141620A (en) * 1986-12-03 1988-06-14 Kanji Hayakawa Dehydrating device for refrigerator using freon
JPH01109761U (en) * 1988-01-13 1989-07-25
JPH10246521A (en) * 1997-01-06 1998-09-14 Mitsubishi Electric Corp Freezer, air conditioner and method for assembling refrigerant circuit
JP2004069295A (en) * 2003-10-02 2004-03-04 Mitsubishi Electric Corp Refrigerator using inflammable refrigerant
JP2005127566A (en) * 2003-10-22 2005-05-19 Daikin Ind Ltd Refrigerating plant constructing method and refrigerating plant
KR20120002107A (en) * 2010-06-30 2012-01-05 주식회사 두원공조 Receiver dryer for car air conditioner
JP2014223891A (en) * 2013-05-17 2014-12-04 トヨタ自動車株式会社 Temperature regulator
CN204767625U (en) * 2015-06-19 2015-11-18 贝利化学(张家港)有限公司 Gas -liquid separator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141620A (en) * 1986-12-03 1988-06-14 Kanji Hayakawa Dehydrating device for refrigerator using freon
JPH01109761U (en) * 1988-01-13 1989-07-25
JPH10246521A (en) * 1997-01-06 1998-09-14 Mitsubishi Electric Corp Freezer, air conditioner and method for assembling refrigerant circuit
JP2004069295A (en) * 2003-10-02 2004-03-04 Mitsubishi Electric Corp Refrigerator using inflammable refrigerant
JP2005127566A (en) * 2003-10-22 2005-05-19 Daikin Ind Ltd Refrigerating plant constructing method and refrigerating plant
KR20120002107A (en) * 2010-06-30 2012-01-05 주식회사 두원공조 Receiver dryer for car air conditioner
JP2014223891A (en) * 2013-05-17 2014-12-04 トヨタ自動車株式会社 Temperature regulator
CN204767625U (en) * 2015-06-19 2015-11-18 贝利化学(张家港)有限公司 Gas -liquid separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032481A (en) * 2019-08-26 2021-03-01 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2021038897A (en) * 2019-09-05 2021-03-11 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2019143819A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US20200292224A1 (en) Refrigerator and control method thereof
US10495368B2 (en) Refrigerator and operation method of the same
US6935127B2 (en) Refrigerator
WO2019159826A1 (en) Refrigerator
CN103196250B (en) Refrigerating apparatus and refrigerating unit
JP5110192B1 (en) Refrigeration equipment
CZ301186B6 (en) Vapor compression system and operating mode thereof
WO2011064927A1 (en) Refrigeration device for container
JP6388260B2 (en) Refrigeration equipment
JP2008138915A (en) Refrigerating device
JP2009236428A (en) Compression type refrigerating machine
JP2009109110A (en) Refrigeration system
JP5571429B2 (en) Gas-liquid heat exchange type refrigeration equipment
CN104508408A (en) Refrigerator
JP2012017881A (en) Refrigerator
JP5258655B2 (en) Refrigeration equipment
JP5256622B2 (en) Refrigeration equipment
JP2013122328A (en) Refrigeration device for container
KR20050063218A (en) Refrigerating cycle in direct cooling type refrigerator and method thereof
JP4568062B2 (en) refrigerator
WO2023223429A1 (en) Freezer/refrigerator
JP4684067B2 (en) Cooling storage
JP2022125447A (en) Refrigeration cycle device
JPH11142044A (en) Multiple refrigerator
JP2022125448A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754964

Country of ref document: EP

Kind code of ref document: A1