JP4684067B2 - Cooling storage - Google Patents

Cooling storage Download PDF

Info

Publication number
JP4684067B2
JP4684067B2 JP2005283140A JP2005283140A JP4684067B2 JP 4684067 B2 JP4684067 B2 JP 4684067B2 JP 2005283140 A JP2005283140 A JP 2005283140A JP 2005283140 A JP2005283140 A JP 2005283140A JP 4684067 B2 JP4684067 B2 JP 4684067B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerator
freezer
refrigerant pipe
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005283140A
Other languages
Japanese (ja)
Other versions
JP2007093110A (en
Inventor
清 片貝
均史 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005283140A priority Critical patent/JP4684067B2/en
Publication of JP2007093110A publication Critical patent/JP2007093110A/en
Application granted granted Critical
Publication of JP4684067B2 publication Critical patent/JP4684067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷媒としてCOを採用した冷凍冷蔵庫等の冷却貯蔵庫に関するものである。 The present invention relates to a cooling storage such as a refrigerator-freezer that employs CO 2 as a refrigerant.

従来より家庭用冷凍冷蔵庫においては、断熱箱体にて本体を構成し、この本体の奥方下部(又は奥方上部)に機械室を構成すると共に、この機械室内に冷凍回路の一部を構成する圧縮機を設置している。   Conventionally, in a refrigerator-freezer for home use, a main body is constituted by a heat insulating box, a machine room is formed at the back lower part (or upper part of the back) of the main body, and a part of the refrigeration circuit is formed inside the machine room. A machine is installed.

この圧縮機の吐出側には凝縮器、減圧装置(一般的にはキャピラリーチューブ)、蒸発器(冷却器)等が順次環状に配管接続され、周知の冷凍回路を構成している。   A condenser, a pressure reducing device (generally a capillary tube), an evaporator (cooler), and the like are sequentially connected in an annular manner on the discharge side of the compressor to constitute a known refrigeration circuit.

そして、圧縮機が運転されると、圧縮機から吐出された高温高圧の冷媒は凝縮器に流入しそこで放熱して凝縮液化される。凝縮液化された冷媒は、キャピラリーチューブで減圧された後に蒸発器に流入し、そこで蒸発して周囲から熱を吸収することにより冷却作用を発揮すると共に、蒸発器を出た冷媒は元の圧縮機に吸い込まれる循環を繰り返す。   When the compressor is operated, the high-temperature and high-pressure refrigerant discharged from the compressor flows into the condenser, where it dissipates heat and is condensed and liquefied. The condensed and liquefied refrigerant is decompressed by the capillary tube and then flows into the evaporator, where it evaporates and absorbs heat from the surroundings to exert a cooling action, and the refrigerant exiting the evaporator is the original compressor Repeated circulation inhaled.

冷蔵庫の本体開口縁には複数の扉が取り付けられており、庫内が冷却されると本体開口縁も冷却されるので、外気と接触すると結露等が発生する。   A plurality of doors are attached to the main body opening edge of the refrigerator, and when the inside of the refrigerator is cooled, the main body opening edge is also cooled, so that condensation occurs when it comes into contact with the outside air.

そこで、この冷凍冷蔵庫の開口縁部に結露防止用の加熱手段を設けている。   Therefore, heating means for preventing condensation is provided at the opening edge of the refrigerator-freezer.

この開口縁部の加熱手段としては、凝縮器の一部として作用する高温の高圧側冷媒配管を配設するのが一般的である。つまり、圧縮機から吐出された高温高圧の冷媒により本体開口縁部を加熱して結露の発生を防止している(特許文献1,2,3参照)。尚、全ての本体開口縁部に高圧側冷媒配管を配設するのが好ましいが、配設が困難な部分には、高圧側冷媒配管の代わりに電気ヒータを配置している(特許文献4参照)。   As the heating means for the opening edge, a high-temperature high-pressure refrigerant pipe that acts as a part of the condenser is generally provided. That is, the main body opening edge is heated by the high-temperature and high-pressure refrigerant discharged from the compressor to prevent the occurrence of condensation (see Patent Documents 1, 2, and 3). In addition, although it is preferable to arrange | position high pressure side refrigerant | coolant piping to all the main body opening rim | edge parts, the electric heater is arrange | positioned instead of the high pressure side refrigerant | coolant piping in the part where arrangement | positioning is difficult (refer patent document 4). ).

このような構成であれば、凝縮器の一部として作用する高温の高圧側冷媒配管が結露防止用の加熱手段も兼ねているので、消費電力、冷凍冷蔵庫のコンパクト化等において有利である。   With such a configuration, the high-temperature high-pressure refrigerant pipe that acts as a part of the condenser also serves as a heating means for preventing condensation, which is advantageous in terms of power consumption, downsizing of the refrigerator-freezer, and the like.

ところで、冷凍冷蔵庫の冷凍回路の冷媒としては、R134又はR600a(炭化水素のイソブタン)が一般的であるが、この冷媒として、COを採用することが提案されている(特許文献5参照)。
特開2002−107044号公報 特開平10−300319号公報 特開2001−12841号公報 特開平10−332249号公報 特開2004−85106号公報
By the way, R134 or R600a (hydrocarbon isobutane) is generally used as a refrigerant in a refrigeration circuit of a refrigerator-freezer, and it has been proposed to employ CO 2 as this refrigerant (see Patent Document 5).
JP 2002-107044 A Japanese Patent Laid-Open No. 10-300319 JP 2001-12841 A JP-A-10-332249 JP 2004-85106 A

CO2を冷媒として採用し、この冷凍回路の圧縮機から吐出された高温高圧の冷媒を凝縮器の一部として作用する高圧側冷媒配管に流し、この高圧側冷媒配管を結露防止用として本体開口縁部に配設したところ、本体開口縁部の温度がバラついて良好に加熱できないという問題が生じた。   CO2 is used as a refrigerant, and the high-temperature and high-pressure refrigerant discharged from the compressor of this refrigeration circuit is allowed to flow through a high-pressure side refrigerant pipe that acts as a part of the condenser. As a result, there was a problem that the temperature of the opening edge of the main body varied and could not be heated satisfactorily.

従来の冷媒であるR600a採用した冷凍冷蔵庫では、高圧側冷媒配管内の冷媒は気液2相の飽和状態であり、気体が多くの潜熱(転移熱、気化熱、蒸発熱)を持っているため、高圧側冷媒配管外に熱を放出しても、高圧側冷媒配管内の冷媒の温度はあまり変化せず本体開口縁部を一様に暖めることができたものと推察される。   In the refrigerator / refrigerator employing the conventional refrigerant R600a, the refrigerant in the high-pressure refrigerant pipe is in a gas-liquid two-phase saturated state, and the gas has a lot of latent heat (transition heat, heat of vaporization, heat of evaporation). Even when heat is released to the outside of the high-pressure side refrigerant pipe, the temperature of the refrigerant in the high-pressure side refrigerant pipe does not change so much, and it is assumed that the opening edge of the main body can be uniformly heated.

しかしながら、冷媒にCOを採用した冷凍冷蔵庫では、このおゆな状況とは異なってしまう。異なる状況としては、まず、圧力が異なる。R600aの場合の一例としては、低圧側が約0.05MPa程度にあり、高圧側は約0.5MPa程度である。COの場合の一例としては、低圧側が約1.5MPa程度であり、高圧側は約8MPa程度である。 However, a refrigerator-freezer that employs CO 2 as a refrigerant is different from this traditional situation. In different situations, first the pressure is different. As an example of R600a, the low pressure side is about 0.05 MPa, and the high pressure side is about 0.5 MPa. As an example of CO 2 , the low pressure side is about 1.5 MPa, and the high pressure side is about 8 MPa.

一般に、圧力が高い雰囲気中では物質の潜熱は小さくなる。   In general, the latent heat of a substance is small in an atmosphere with high pressure.

COを採用した冷凍冷蔵庫の場合は、高圧側の冷媒は非常に圧力が高く潜熱は小さくなる上に、状態によっては、超臨界状態になることもある。この様に高圧側冷媒配管内の冷媒の潜熱は小さく、高圧側冷媒配管の周辺を一様に暖めることは非常に困難である。実際の冷凍冷蔵庫の試作においては、高圧側冷媒配管が配設された部分の温度が一様にならず、暑すぎて手で触った使用者の不興を惹起したり、熱量が足らずに結露が生じたりした。 In the case of a refrigerator-freezer that employs CO 2 , the high-pressure side refrigerant has a very high pressure and low latent heat, and depending on the state, it may be in a supercritical state. Thus, the latent heat of the refrigerant in the high-pressure side refrigerant pipe is small, and it is very difficult to uniformly warm the periphery of the high-pressure side refrigerant pipe. In actual prototypes of refrigerators and refrigerators, the temperature of the part where the high-pressure refrigerant piping is installed is not uniform, causing too much heat for the user who touches it with hands, or condensation due to insufficient heat. Has occurred.

このように、冷凍回路にCO冷媒を採用した冷凍冷蔵庫においては、冷凍回路の高圧冷媒配管を従来と同様に結露防止用と使用することは、実用上出来なかった。 Thus, in the refrigerator employing the CO 2 refrigerant in the refrigeration circuit, the use of high-pressure refrigerant pipe of the refrigeration circuit and similarly to the conventional condensation for prevention, could not practically.

本発明は一面が開口された断熱箱体にて構成された本体と、この一面側に設けられる断熱扉と、この本体に形成された機械室と、この機械室内に配置され冷凍回路の一部を形成する圧縮機と、前記圧縮機から吐出された前記冷媒を凝縮する凝縮器の一部を形成し前記断熱箱体の前記一面の開口縁部に配置される結露防止用の冷媒パイプと、前記圧縮機から吐出された前記冷媒を凝縮する凝縮器の一部を形成し蒸発皿の内部に配置される蒸発促進用の冷媒パイプとを備える冷却貯蔵庫において、前記冷凍回路の冷媒はCOであり、前記結露防止用の冷媒パイプは前記蒸発促進用の冷媒パイプよりも後段に位置し、前記結露防止用の冷媒パイプに並べて結露防止用の電気ヒータを設けこの電気ヒータの通電率に関して、除霜終了時から前記蒸発皿に溜まっている除霜水の蒸発を促進させるための所定時間は、それ以降の時間と比較して、その通電率が高く設定されていることを特徴とする。 The present invention provides a main body constituted by a heat insulating box having an opening on one side, a heat insulating door provided on the one side, a machine room formed on the main body, a part of a refrigeration circuit disposed in the machine room. And a refrigerant pipe for preventing condensation that forms a part of the condenser that condenses the refrigerant discharged from the compressor and is disposed at the opening edge of the one surface of the heat insulating box. In a cooling storage comprising a refrigerant pipe for promoting evaporation disposed in an evaporating dish and forming a part of a condenser for condensing the refrigerant discharged from the compressor, the refrigerant of the refrigeration circuit is CO 2 . The dew condensation prevention refrigerant pipe is positioned downstream of the evaporation promotion refrigerant pipe, and an electric heater for dew condensation is provided in line with the dew condensation prevention refrigerant pipe. The evaporation from the end of frost The predetermined time for accelerating the evaporation of the defrosted water accumulated in the dish is characterized in that the energization rate is set higher than the subsequent time .

更に、本発明は、この冷却貯蔵庫は冷凍室と冷蔵室を備え、前記電気ヒータは前記冷凍室の開口縁部に配設されていることを特徴とする。   Further, according to the present invention, the cooling storage is provided with a freezing room and a refrigerating room, and the electric heater is disposed at an opening edge of the freezing room.

又、本発明は、前記冷却貯蔵庫は冷凍室と冷蔵室を備え、前記電気ヒータは結露防止パイプの全周に渡って並んで設けられていることを特徴とする。   According to the present invention, the cooling storage is provided with a freezing room and a refrigerating room, and the electric heater is provided along the entire circumference of the dew condensation prevention pipe.

本発明によれば、冷凍回路にCO冷媒を採用した冷蔵庫(冷却貯蔵庫)においても、本体開口縁部を一様に暖めることが出来、結露を防止出来る。 According to the present invention, even in a refrigerator (cooling storage) that employs CO 2 refrigerant in a refrigeration circuit, the opening edge of the main body can be uniformly heated, and condensation can be prevented.

本発明は、結露防止用の冷媒パイプは前記蒸発促進用の冷媒パイプよりも後段に位置し、前記結露防止用の冷媒パイプに並べて結露防止用の電気ヒータを設けこの電気ヒータの通電率に関して、除霜終了時から前記蒸発皿に溜まっている除霜水の蒸発を促進させるための所定時間は、それ以降の時間と比較して、その通電率が高く設定したので、除霜終了時において、蒸発皿に流れ込んだ除霜水により、蒸発促進用の冷媒パイプ部分で熱が吸収され、その分だけ、結露防止用の冷媒パイプ部分での放熱熱量が不足することが生じても、この不足分を結露防止用の電気ヒータの発熱量を増加することにより補っているので結露防止の安定性を高めることができる。   According to the present invention, the refrigerant pipe for preventing condensation is located at a later stage than the refrigerant pipe for promoting evaporation, and an electric heater for preventing condensation is provided in the refrigerant pipe for preventing condensation. Since the predetermined time for promoting the evaporation of the defrosted water accumulated in the evaporating dish from the end of defrosting is set higher than the time after that, at the end of defrosting, The defrost water that has flowed into the evaporating dish absorbs heat at the refrigerant pipe portion for promoting evaporation, and even if the amount of heat released from the refrigerant pipe portion for preventing condensation is insufficient, Is compensated by increasing the amount of heat generated by the electric heater for preventing condensation, so that the stability of preventing condensation can be improved.

本発明は、一面が開口された断熱箱体にて構成された本体と、この一面側に設けられる断熱扉と、この本体に形成された機械室と、この機械室内に配置され冷凍回路の一部を形成する圧縮機と、前記圧縮機から吐出された前記冷媒を凝縮する凝縮器の一部を形成し前記断熱箱体の前記一面の開口縁部に配置される結露防止用の冷媒パイプと、前記圧縮機から吐出された前記冷媒を凝縮する凝縮器の一部を形成し蒸発皿の内部に配置される蒸発促進用の冷媒パイプとを備える冷却貯蔵庫において、前記冷凍回路の冷媒はCOであり、前記結露防止用の冷媒パイプに並べて設けられ、除霜終了時から所定期間、通電率が高く設定される結露防止用の電気ヒータを備えることを特徴とする。 The present invention relates to a main body composed of a heat-insulating box having an opening on one surface, a heat-insulating door provided on the one-surface side, a machine room formed in the main body, and a refrigeration circuit disposed in the machine room. And a refrigerant pipe for preventing condensation that forms a part of the condenser that condenses the refrigerant discharged from the compressor and is disposed at the opening edge of the one surface of the heat insulating box. In the cooling storage comprising a part of a condenser for condensing the refrigerant discharged from the compressor and disposed in the evaporating dish, the refrigerant in the refrigeration circuit is CO 2. And an electric heater for preventing condensation, which is provided side by side on the refrigerant pipe for preventing condensation and has a high energization rate for a predetermined period from the end of defrosting.

図1〜図3を参照しつつ、本発明を冷凍冷蔵庫に採用した実施例1を説明する。図1は冷凍冷蔵庫の冷凍回路等を説明するための概念図である。図2は、実施例1の冷凍冷蔵庫の制御回路を説明するための図である。図3は、実施例1の冷凍冷蔵庫の結露防止手段の配設を説明するための概略図である。   A first embodiment in which the present invention is adopted in a refrigerator-freezer will be described with reference to FIGS. FIG. 1 is a conceptual diagram for explaining a refrigeration circuit and the like of a refrigerator-freezer. FIG. 2 is a diagram for explaining a control circuit of the refrigerator-freezer according to the first embodiment. FIG. 3 is a schematic diagram for explaining the arrangement of the dew condensation preventing means of the refrigerator-freezer of the first embodiment.

図1を参照しつつ各部を説明する。図1において、1は冷凍冷蔵庫である。この冷凍冷蔵庫1は、一面に開口を備えた断熱箱体からなる本体と、この一面の開口を塞ぐ断熱扉(図示せず)を備えている。そして、断熱箱体は、仕切壁により、上部の冷蔵室Rと下部の冷凍室Fに分割されている。   Each part will be described with reference to FIG. In FIG. 1, 1 is a refrigerator-freezer. This refrigerator-freezer 1 is equipped with the main body which consists of a heat insulation box provided with the opening in one surface, and the heat insulation door (not shown) which block | closes this one surface opening. And the heat insulation box is divided | segmented into the upper refrigerator compartment R and the lower freezer compartment F by the partition wall.

2は圧縮機であり、冷凍回路の一部を形成している。この圧縮機2は2酸化炭素冷媒用の2段圧縮機である。この圧縮機2は、断熱箱体の下部に形成された機械室15内に配置される。この圧縮機2の中間段は外部凝縮器3に接続されており、この外部凝縮器3は中間段の冷媒を冷却して、再び圧縮機2に戻している。   Reference numeral 2 denotes a compressor, which forms part of the refrigeration circuit. This compressor 2 is a two-stage compressor for carbon dioxide refrigerant. This compressor 2 is arrange | positioned in the machine room 15 formed in the lower part of the heat insulation box. The intermediate stage of the compressor 2 is connected to an external condenser 3, and the external condenser 3 cools the intermediate stage refrigerant and returns it to the compressor 2 again.

圧縮機2からの冷媒は、主凝縮器4aで凝縮される。この主凝縮器4aは、放熱フィンを備えた熱交換器で構成されている。次に、冷媒は、蒸発皿28のドレン水の蒸発促進用の冷媒パイプ部分4bを介して、冷凍冷蔵庫の開口縁に沿って引き回された冷媒パイプ部分4cに流れる。この冷凍冷蔵庫1の凝縮器は、主凝縮器4a,冷媒パイプ部分4b、4cにより構成される。なお、冷媒パイプ部分4cは、この冷凍冷蔵庫の開口縁の結露防止用パイプである。   The refrigerant from the compressor 2 is condensed by the main condenser 4a. This main condenser 4a is comprised with the heat exchanger provided with the radiation fin. Next, the refrigerant flows into the refrigerant pipe portion 4c routed along the opening edge of the refrigerator-freezer through the refrigerant pipe portion 4b for promoting evaporation of drain water in the evaporating dish 28. The condenser of the refrigerator 1 includes a main condenser 4a and refrigerant pipe portions 4b and 4c. In addition, the refrigerant | coolant pipe part 4c is a pipe for dew condensation prevention of the opening edge of this refrigerator-freezer.

その後、冷媒は、冷蔵室R用と冷凍室F用に分岐される。この冷凍冷蔵庫の減圧手段は、キャピラリーチューブではなく、ステッピングモータ駆動により開度が調整される電動膨張弁を採用している。前述したようにCO2冷媒の冷凍冷蔵庫は、従来のR600aの冷媒に比べ、大きな減圧が必要であり、これをキャピラリーチューブのみで行うと、非常に長いキャピラリーチューブを冷凍冷蔵庫の断熱材中に引き廻すこととなり、現実的ではない。なお、キャピラリーチューブと膨張弁の併用も従来から提案されているが、この実施例1では、実質的には膨張弁のみで減圧している。   Thereafter, the refrigerant is branched into the refrigerator compartment R and the freezer compartment F. The decompression means of the refrigerator / freezer employs an electric expansion valve whose opening degree is adjusted by driving a stepping motor, not a capillary tube. As described above, a CO2 refrigerant refrigerator-freezer requires a large pressure reduction as compared with the conventional R600a refrigerant. If this is performed only with a capillary tube, a very long capillary tube is drawn into the insulation of the refrigerator-freezer. That's not realistic. In addition, although the combined use of a capillary tube and an expansion valve has been proposed in the past, in Example 1, the pressure is reduced substantially only by the expansion valve.

7は冷蔵室用冷却器である。冷蔵室R用の冷媒は冷媒パイプ5a及び冷蔵室用膨張弁6(冷蔵室用減圧手段)を介して冷蔵室用冷却器7に流入する。冷蔵室用膨張弁6は、冷蔵室用冷却器7での蒸発(冷却)が、良好に行われるようにその開度が制御されている。   7 is a refrigerator for a refrigerator compartment. The refrigerant for the refrigerating room R flows into the refrigerating room cooler 7 through the refrigerant pipe 5a and the refrigerating room expansion valve 6 (refrigerating room decompression means). The opening degree of the refrigerating room expansion valve 6 is controlled so that the evaporation (cooling) in the refrigerating room cooler 7 is favorably performed.

5bは冷蔵室用冷却器7からの冷媒を圧縮機2に戻す冷媒パイプである。この冷媒パイプ5bは、前記冷媒パイプ5aと接合され熱交換器5を形成しており、両者5a,5bの間で熱交換を行う。   Reference numeral 5b denotes a refrigerant pipe that returns the refrigerant from the refrigerator 7 for the refrigerator compartment to the compressor 2. The refrigerant pipe 5b is joined to the refrigerant pipe 5a to form a heat exchanger 5, and performs heat exchange between the two 5a and 5b.

10は冷凍室用冷却器である。冷凍室F用の冷媒は冷媒パイプ8a及び冷凍室用膨張弁9(冷凍室用減圧手段)を介して冷凍室用冷却器10に流入する。冷凍室用膨張弁9は、冷凍室用冷却器10での蒸発(冷却)が、良好に行われるようにその開度が制御されている。   Reference numeral 10 denotes a freezer cooler. The refrigerant for the freezer compartment F flows into the freezer compartment cooler 10 via the refrigerant pipe 8a and the freezer compartment expansion valve 9 (freezer compartment decompression means). The opening degree of the freezing chamber expansion valve 9 is controlled so that the evaporation (cooling) in the freezing chamber cooler 10 is favorably performed.

8bは冷凍室用冷却器10からの冷媒を圧縮機2に戻す冷媒パイプである。この冷媒パイプ8bは、前記冷媒パイプ8aと接合され熱交換器8を形成しており、両者8a,8bの間で熱交換を行う。   A refrigerant pipe 8 b returns the refrigerant from the freezer cooler 10 to the compressor 2. The refrigerant pipe 8b is joined to the refrigerant pipe 8a to form a heat exchanger 8, and performs heat exchange between the two 8a and 8b.

11は冷蔵室用冷却器7のための除霜用ガラス管ヒータである。12は冷凍室用冷却器10のための除霜用ガラス管ヒータである。このガラス管ヒータ11,12は、冷却器7,10の除霜時にONとなり、冷却器7,10の霜を加熱により溶かす。この時の除霜水は、それぞれ断熱材中のドレンホース(図示せず)を介して、蒸発皿28に集められる。13は逆止弁である。15は、冷凍冷蔵庫の本体下部に形成された機械室である。   Reference numeral 11 denotes a defrosting glass tube heater for the refrigerator 7 for the refrigerator compartment. Reference numeral 12 denotes a defrosting glass tube heater for the freezer cooler 10. The glass tube heaters 11 and 12 are turned ON when the coolers 7 and 10 are defrosted, and melt the frost of the coolers 7 and 10 by heating. The defrost water at this time is each collected in the evaporating dish 28 via a drain hose (not shown) in the heat insulating material. 13 is a check valve. A machine room 15 is formed in the lower part of the main body of the refrigerator-freezer.

16は外気温度センサーであり、冷凍冷蔵庫の周囲環境温度を測定している。17は冷蔵室内に設けられ冷蔵室の温度を測定する冷蔵室温度センサーである。18は冷凍室内に設けられ冷凍室の温度を測定する冷凍室温度センサーである。   Reference numeral 16 denotes an outside air temperature sensor that measures the ambient temperature of the refrigerator-freezer. Reference numeral 17 denotes a refrigerator temperature sensor that is provided in the refrigerator compartment and measures the temperature of the refrigerator compartment. Reference numeral 18 denotes a freezer temperature sensor that is provided in the freezer and measures the temperature of the freezer.

19は冷蔵室用冷却器7の入口温度を測定するR入口温度センサーである。20は冷蔵室用冷却器7の出口温度を測定するR出口温度センサーである。このR入口出口温度センサー19,20からの検出値は、冷蔵室用膨張弁6の開度制御に使用される。また、このR入口出口温度センサー19、20は、冷蔵室の除霜終了検出用の温度センサーとしても兼用されている。   Reference numeral 19 denotes an R inlet temperature sensor for measuring the inlet temperature of the refrigerator 7 for the refrigerator compartment. Reference numeral 20 denotes an R outlet temperature sensor for measuring the outlet temperature of the refrigerator 7 for the refrigerator compartment. The detected values from the R inlet / outlet temperature sensors 19 and 20 are used for opening control of the refrigerating chamber expansion valve 6. The R inlet / outlet temperature sensors 19 and 20 are also used as temperature sensors for detecting the completion of defrosting in the refrigerator compartment.

21は冷凍室用冷却器10の入口温度を測定するF入口温度センサーである。22は冷凍室用冷却器10の出口温度を測定するF出口温度センサーである。このF入口出口温度センサー21,22からの検出値は、冷凍室用膨張弁9の開度制御に使用される。また、このF入口出口温度センサー21、22は、冷凍室の除霜終了検出用の温度センサーとしても兼用されている。   Reference numeral 21 denotes an F inlet temperature sensor for measuring the inlet temperature of the freezer cooler 10. Reference numeral 22 denotes an F outlet temperature sensor for measuring the outlet temperature of the freezer cooler 10. The detected values from the F inlet / outlet temperature sensors 21 and 22 are used for opening control of the freezing chamber expansion valve 9. The F inlet / outlet temperature sensors 21 and 22 are also used as temperature sensors for detecting the completion of defrosting in the freezer compartment.

23は冷蔵室用の冷気循環ファンである。冷蔵室Rの冷却時にONされて冷蔵室用冷却器7の冷気を冷蔵室内に循環させている。   Reference numeral 23 denotes a cold air circulation fan for the refrigerator compartment. It is turned ON when the refrigerator compartment R is cooled, and the cold air in the refrigerator refrigerator 7 is circulated in the refrigerator compartment.

24は冷凍室用の冷気循環ファンである。冷凍室Fの冷却時にONされて冷凍室用冷却器10の冷気を冷凍室内に循環させている。   Reference numeral 24 denotes a cold air circulation fan for the freezer compartment. It is turned ON when the freezer compartment F is cooled, and the cold air of the freezer cooler 10 is circulated in the freezer compartment.

25は機械室内の主凝縮器4、圧縮機2、外部凝縮器3等を冷却する機械室ファンである。冷凍冷蔵庫の冷却時に圧縮機1と共にONされて機械室内を冷却する。   A machine room fan 25 cools the main condenser 4, the compressor 2, the external condenser 3 and the like in the machine room. When the refrigerator is cooled, it is turned on together with the compressor 1 to cool the machine room.

図2を参照しつつ各部を説明する。尚、図1と同一部分には同一符号を付してある。図2において、26は冷凍冷蔵庫を制御する制御回路である。29は、冷凍冷蔵庫の冷凍室の開口縁部に引き回された電気ヒータである。   Each part will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as FIG. In FIG. 2, 26 is a control circuit for controlling the refrigerator-freezer. 29 is an electric heater routed around the opening edge of the freezer compartment of the refrigerator-freezer.

次に、図3を参照しつつ、結露防止用の加熱手段4c、29の引き回しの説明をする。尚、図1、図2と同一部分には同一符号を付してある。   Next, the routing of the heating means 4c and 29 for preventing condensation will be described with reference to FIG. The same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.

図3において、4cは結露防止パイプである。この結露防止パイプ4cは、本体開口縁の下方から上方にそれぞれの扉の周縁に対応してターンしながら配設された後、冷凍冷蔵庫1の開口縁上方右側より下方に配設され開口縁に沿って機械室に戻されている。電気ヒ
ータ29は、冷凍室の周りの結露防止パイプ4cに並んで配設されている。
In FIG. 3, 4c is a dew condensation prevention pipe. The dew condensation prevention pipe 4c is disposed while turning from the lower side to the upper side of the opening edge of the main body corresponding to the peripheral edge of each door, and is then disposed below the right side above the opening edge of the refrigerator / freezer 1 and is provided at the opening edge. Along the way back to the machine room. The electric heater 29 is arranged alongside the dew condensation prevention pipe 4c around the freezer compartment.

この冷凍冷蔵庫の動作を図1及び図2を参照しつつ説明する。まず、この冷凍冷蔵庫のプルダウン冷却時の初期の動作を説明する。   The operation of this refrigerator-freezer will be described with reference to FIGS. First, the initial operation at the time of pull-down cooling of this refrigerator-freezer will be described.

冷蔵庫の購入設置後に冷凍冷蔵庫1の電源を投入すると、冷蔵庫の制御部26は、電源投入を検知するとともに、冷凍室Fの庫内温度がマイナス5℃以上であることを検知して、プルダウン冷却制御を行う。   When the refrigerator 1 is turned on after the refrigerator is purchased and installed, the refrigerator control unit 26 detects that the power is turned on, detects that the inside temperature of the freezer compartment F is minus 5 ° C. or more, and performs pull-down cooling. Take control.

つまり、圧縮機2、機械室ファン25、冷気循環ファン23,24をONし、冷凍回路をON状態とする。そして、冷凍室用膨張弁9及び冷蔵室用膨張弁6の両方を開けて、冷媒を両方に流す。圧縮機2から吐出された冷媒は、主凝縮器4で凝縮される。その後、冷蔵室R用と冷凍室F用に分岐される。冷蔵室R用の冷媒は、冷媒パイプ5a及び冷蔵室用膨張弁6(冷蔵室用減圧手段)を介して冷蔵室用冷却器7に流入する。そして、冷蔵室用冷却器7を出て、冷媒パイプ5bを介して、冷凍室側の冷媒と合流し、逆止弁13を介して圧縮機2に戻る。この冷蔵室用冷却器7へ冷媒を流入させるための冷媒パイプ5aと冷蔵室用冷却器7からの冷媒が流出するための冷媒パイプ5bは接合されて熱交換器5を形成しており、両者の間で熱交換を行う。   That is, the compressor 2, the machine room fan 25, and the cool air circulation fans 23 and 24 are turned on, and the refrigeration circuit is turned on. Then, both the freezing chamber expansion valve 9 and the refrigerating chamber expansion valve 6 are opened to allow the refrigerant to flow through both. The refrigerant discharged from the compressor 2 is condensed by the main condenser 4. Then, it branches for the refrigerator compartment R and the freezer compartment F. The refrigerant for the refrigerating room R flows into the refrigerating room cooler 7 through the refrigerant pipe 5a and the refrigerating room expansion valve 6 (refrigerating room decompression means). And it leaves the refrigerator 7 for refrigerator compartments, merges with the refrigerant | coolant of the freezer compartment side via the refrigerant | coolant pipe 5b, and returns to the compressor 2 via the non-return valve 13. FIG. The refrigerant pipe 5a for allowing the refrigerant to flow into the refrigerator for cold room 7 and the refrigerant pipe 5b for flowing out the refrigerant from the refrigerator for cold room 7 are joined to form the heat exchanger 5, Heat exchange between.

冷凍室F用の冷媒は、冷媒パイプ8a及び冷凍室用膨張弁9(冷凍室用減圧手段)を介して冷凍室用冷却器10に流入する。そして、冷凍室用冷却器10を出て、冷媒パイプ8bを介して、冷蔵室側の冷媒と合流し、逆止弁13を介して圧縮機2に戻る。この冷凍室用冷却器10へ冷媒を流入させるための冷媒パイプ8aと冷凍室用冷却器10からの冷媒が流出するための冷媒パイプ8bは接合されて熱交換器8を形成しており、両者の間で熱交換を行う。   The refrigerant for the freezer compartment F flows into the freezer compartment cooler 10 through the refrigerant pipe 8a and the freezer compartment expansion valve 9 (freezer compartment decompression means). And it leaves the refrigerator 10 for freezer compartment, merges with the refrigerant | coolant of the refrigerator compartment side via the refrigerant | coolant pipe 8b, and returns to the compressor 2 via the non-return valve 13. The refrigerant pipe 8a for allowing the refrigerant to flow into the freezer cooler 10 and the refrigerant pipe 8b for flowing out the refrigerant from the freezer cooler 10 are joined to form a heat exchanger 8. Heat exchange between.

この冷媒の流量の制御はシビアなものとなる。本実施例1では、両冷却器7,10の冷媒の入口、出口の温度差から膨張弁6,9の開放度(開度)を制御している。   The control of the flow rate of the refrigerant becomes severe. In the first embodiment, the degree of opening (opening degree) of the expansion valves 6 and 9 is controlled based on the temperature difference between the refrigerant inlet and outlet of the coolers 7 and 10.

まず、冷凍室用膨張弁9の制御は、冷凍室用冷却器10の冷媒入口と冷媒出口温度をF入口温度センサー21とF出口温度センサー22から測定し、その温度差(過熱度、スーパーヒート)を求める。そして、この温度差が、7度以下の場合、冷凍室用膨張弁9を1ステップ閉じる(絞る)。この温度差が、7度〜20度の場合、冷凍室用膨張弁9をそのままとする。この温度差が、20度以上の場合、冷凍室用膨張弁9を1ステップ開ける。   First, the freezer compartment expansion valve 9 is controlled by measuring the refrigerant inlet and refrigerant outlet temperatures of the freezer compartment cooler 10 from the F inlet temperature sensor 21 and the F outlet temperature sensor 22, and the temperature difference (superheat, superheat). ) When this temperature difference is 7 degrees or less, the freezing chamber expansion valve 9 is closed (squeezed) by one step. When this temperature difference is 7 degrees to 20 degrees, the freezer compartment expansion valve 9 is left as it is. When this temperature difference is 20 degrees or more, the freezing chamber expansion valve 9 is opened by one step.

冷蔵室用膨張弁6の制御は、冷蔵室用冷却器7の冷媒入り口と冷媒出口温度をR入口温度センサー19とR出口温度センサー20から測定し、その温度差を求める。そして、この温度差が10度以下の場合、冷蔵室用膨張弁6を1ステップ閉じる。この温度差が、10度〜25度の場合、冷蔵室用膨張弁6をそのままとする。この温度差が、25度以上の場合、冷蔵室用膨張弁6を1ステップ開ける。   Control of the refrigerating room expansion valve 6 is performed by measuring the refrigerant inlet and refrigerant outlet temperatures of the refrigerating room cooler 7 from the R inlet temperature sensor 19 and the R outlet temperature sensor 20, and obtaining the temperature difference. And when this temperature difference is 10 degrees or less, the expansion valve 6 for refrigerator compartments is closed 1 step. When the temperature difference is 10 degrees to 25 degrees, the refrigerator compartment expansion valve 6 is left as it is. When this temperature difference is 25 degrees or more, the refrigerating chamber expansion valve 6 is opened by one step.

このような制御を90分間続けた後、冷凍室Fと冷蔵室Rを20分毎に交互冷却する。   After such control is continued for 90 minutes, the freezer compartment F and the refrigerator compartment R are alternately cooled every 20 minutes.

まず、冷凍室Fの冷却を継続し、冷蔵室Rの冷却を終了するため、冷蔵室用膨張弁6を全閉し冷気循環ファン23をOFFして、冷凍室冷却器10側にのみに冷媒を流す。この時の、冷凍室用膨張弁9の制御は、まず、冷凍室用冷却器10の冷媒入り口温度と冷媒出口温度を測定し、その温度差を求める。そして、この温度差が、2度以下の場合、冷凍室用膨張弁9を1ステップ閉じる。この温度差が、2度〜10度の場合、冷凍室用膨張弁9をそのままとする。この温度差が、10度以上の場合、冷凍室用膨張弁9を1ステップ開ける。   First, in order to continue cooling of the freezer compartment F and finish cooling of the refrigerator compartment R, the refrigerator compartment expansion valve 6 is fully closed, the cold air circulation fan 23 is turned off, and the refrigerant is supplied only to the freezer compartment cooler 10 side. Shed. At this time, the freezer compartment expansion valve 9 is controlled by first measuring the refrigerant inlet temperature and the refrigerant outlet temperature of the freezer compartment cooler 10 to obtain the temperature difference. When the temperature difference is 2 degrees or less, the freezing chamber expansion valve 9 is closed by one step. When this temperature difference is 2 degrees to 10 degrees, the freezer compartment expansion valve 9 is left as it is. When this temperature difference is 10 degrees or more, the freezing chamber expansion valve 9 is opened by one step.

20分後、冷蔵室Rを冷却するため、冷凍室用膨張弁9を全閉し冷気循環ファン24をOFFし、冷気循環ファン23をONして冷蔵室用膨張弁6を所定値に開いて、冷蔵室冷却器7側にのみに冷媒を流す。この時の、冷蔵室用膨張弁6の制御は、まず、冷蔵室用冷却器7の冷媒入り口と冷媒出口温度を測定し、その温度差を求める。そして、この温度差が、2度以下の場合、冷蔵室用膨張弁6を1ステップ閉じる。この温度差が、2度〜10度の場合、冷蔵室用膨張弁6をそのままとする。この温度差が、10度以上の場合、冷蔵室用膨張弁6を1ステップ開ける。   After 20 minutes, in order to cool the refrigerator compartment R, the freezer compartment expansion valve 9 is fully closed, the cold air circulation fan 24 is turned off, the cold air circulation fan 23 is turned on, and the refrigerator compartment expansion valve 6 is opened to a predetermined value. Then, the refrigerant is allowed to flow only to the refrigerator compartment cooler 7 side. At this time, the control of the refrigerating room expansion valve 6 is performed by first measuring the refrigerant inlet and refrigerant outlet temperatures of the refrigerating room cooler 7 to obtain the temperature difference. And when this temperature difference is 2 degrees or less, the expansion valve 6 for refrigerator compartments is closed 1 step. When this temperature difference is 2 degrees to 10 degrees, the refrigerator compartment expansion valve 6 is left as it is. When this temperature difference is 10 degrees or more, the refrigerator compartment expansion valve 6 is opened by one step.

この冷凍室冷却制御と冷蔵室冷却制御を前述の如く、20分毎に交互に行う。そして、庫内の温度が目標温度まで下がれば、圧縮機2、冷気循環ファン23、24、機械室ファン25をOFFとして、膨張弁6、9を全閉状態としてプルダウン制御を終了する。   As described above, the freezer cooling control and the refrigerator cooling control are alternately performed every 20 minutes. And if the temperature in a store | warehouse | chamber falls to target temperature, the compressor 2, the cool air circulation fans 23 and 24, and the machine room fan 25 will be turned off, the expansion valves 6 and 9 will be fully closed, and pull-down control will be complete | finished.

次に通常冷却について説明する。   Next, normal cooling will be described.

冷凍室Fの温度が上昇して使用者が設定した冷凍室温度(たとえば、マイナス20度)より2℃上昇(たとえば、マイナス18度)すると、冷凍室温度センサー18により、制御回路26が、これを検知する。そして、制御回路26は、この冷凍室Fを冷却する。制御回路26は、圧縮機2、冷気循環ファン24、機械室ファン25をONし、冷凍室用膨張弁9を所定値に開けて、冷凍室冷却器10側にのみに冷媒を流す。この時の、冷凍室用膨張弁9の制御は、まず、冷凍室用冷却器10の冷媒入り口と冷媒出口温度を測定し、その温度差を求める。そして、この温度差が、1度以下の場合、冷凍室用膨張弁9を1ステップ閉じる。この温度差が、1度〜5度の場合、冷凍室用膨張弁9をそのままとする。この温度差が、5度以上の場合、冷凍室用膨張弁9を1ステップ開ける。また、この温度差が、10度以上の場合、冷凍室用膨張弁9を2ステップ開ける。冷凍室F内の温度が使用者が設定した冷凍室温度より2℃下降した温度(たとえば、マイナス22℃。)まで下がれば、圧縮機2、冷気循環ファン24、機械室ファン25をOFFとし冷凍室用膨張弁9を全閉する。   When the temperature of the freezer compartment F rises and rises by 2 ° C. (eg, minus 18 degrees) from the freezer compartment temperature set by the user (eg, minus 20 degrees), the freezer compartment temperature sensor 18 causes the control circuit 26 to Is detected. Then, the control circuit 26 cools the freezer compartment F. The control circuit 26 turns on the compressor 2, the cool air circulation fan 24, and the machine room fan 25, opens the freezer expansion valve 9 to a predetermined value, and allows the refrigerant to flow only to the freezer cooler 10 side. At this time, the freezer compartment expansion valve 9 is controlled by first measuring the refrigerant inlet and refrigerant outlet temperatures of the freezer compartment cooler 10 to obtain the temperature difference. When this temperature difference is 1 degree or less, the freezing chamber expansion valve 9 is closed by one step. When this temperature difference is 1 to 5 degrees, the freezer compartment expansion valve 9 is left as it is. When this temperature difference is 5 degrees or more, the freezing chamber expansion valve 9 is opened by one step. When this temperature difference is 10 degrees or more, the freezing chamber expansion valve 9 is opened by two steps. If the temperature in the freezer compartment F falls to a temperature that is 2 ° C. lower than the freezer compartment temperature set by the user (for example, minus 22 ° C.), the compressor 2, the cold air circulation fan 24, and the machine room fan 25 are turned off to freeze. The chamber expansion valve 9 is fully closed.

冷蔵室Rの温度が上昇して使用者が設定した冷蔵室温度(たとえば、3℃)より1℃上昇(たとえば、4℃)すると、冷蔵室温度センサー17により、制御回路26が、これを検知する。そして、制御回路26は、この冷蔵室Rを冷却する。制御回路26は、圧縮機2、冷気循環ファン23、機械室ファン25をONし、冷蔵室用膨張弁6を所定値に開ける。これにより、冷蔵室冷却器7側にのみに冷媒を流す。この時の、冷蔵室用膨張弁7の制御は、冷蔵室用冷却器7の冷媒入り口と冷媒出口温度を測定し、その温度差を求める。そして、この温度差が、1度以下の場合、冷蔵室用膨張弁6を1ステップ閉じる。この温度差が、1度〜5度の場合、冷蔵室用膨張弁6をそのままとする。この温度差が、5度以上の場合、冷蔵室用膨張弁6を1ステップ開ける。この温度差が、10度以上の場合、冷蔵室用膨張弁9を2ステップ開ける。冷蔵室R内の温度が使用者が設定した冷凍室温度より1℃下降した温度(たとえば、2℃。)まで下がれば、圧縮機2、冷気循環ファン23、機械室ファン25をOFFとし冷蔵室用膨張弁6を全閉する。   When the temperature of the refrigerator compartment R rises and rises by 1 ° C. (for example, 4 ° C.) from the refrigerator compartment temperature (for example, 3 ° C.) set by the user, the control circuit 26 detects this by the refrigerator compartment temperature sensor 17. To do. Then, the control circuit 26 cools the refrigerator compartment R. The control circuit 26 turns on the compressor 2, the cold air circulation fan 23, and the machine room fan 25, and opens the refrigerating room expansion valve 6 to a predetermined value. Thereby, a refrigerant | coolant is poured only into the refrigerator compartment cooler 7 side. At this time, the control of the refrigerating room expansion valve 7 measures the refrigerant inlet and refrigerant outlet temperatures of the refrigerating room cooler 7, and obtains the temperature difference. And when this temperature difference is 1 degree or less, the expansion valve 6 for refrigerator compartments is closed 1 step. When this temperature difference is 1 to 5 degrees, the refrigerating chamber expansion valve 6 is left as it is. When this temperature difference is 5 degrees or more, the refrigerating chamber expansion valve 6 is opened by one step. When this temperature difference is 10 degrees or more, the refrigerating chamber expansion valve 9 is opened by two steps. If the temperature in the refrigerator compartment R falls to a temperature (for example, 2 ° C.) that is 1 ° C. lower than the freezer compartment temperature set by the user, the compressor 2, the cold air circulation fan 23, and the machine compartment fan 25 are turned off and the refrigerator compartment is turned off. The expansion valve 6 is fully closed.

次に除霜運転について説明する。   Next, the defrosting operation will be described.

制御回路26は、圧縮機2の運転時間を積算処理している。そして、冷凍冷蔵庫1の冷却冷却の運転終了時に、この積算時間と予め設定してある所定時間を比較する。そして、この積算時間が所定時間を超えていると、除霜開始チェックを行う。このチェックは、冷蔵室R及び冷凍室Fの両室が、十分に冷却されていることをチェックするものであり、十分に冷却されている場合は、除霜モードとなる。なお、十分に冷却されていない(どちらかの室の温度が冷却開始温度に非常に近い)場合は、この室の冷却を強制的に開始する。
そして、この冷却の終了後、再度、前述の除霜開始チェックを行う。
The control circuit 26 integrates the operation time of the compressor 2. Then, at the end of the cooling and cooling operation of the refrigerator-freezer 1, the accumulated time is compared with a predetermined time set in advance. And when this integration time exceeds predetermined time, a defrost start check is performed. This check is to check that both the refrigerating room R and the freezing room F are sufficiently cooled. When the room is sufficiently cooled, the defrosting mode is set. If the chamber is not sufficiently cooled (the temperature of one of the chambers is very close to the cooling start temperature), the cooling of this chamber is forcibly started.
And after completion | finish of this cooling, the above-mentioned defrost start check is performed again.

除霜モードでは、ガラス管ヒータ11,12に通電して、冷却器7,10を加熱する。そして、R入口温度センサー19とR出口温度センサー20からの測定温度が、冷蔵用の除霜終了所定温度になるとガラス管ヒータ11の通電を止める。同様に、F入口温度センサー21とF出口温度センサー22からの測定温度が、冷凍用の除霜終了所定温度になるとガラス管ヒータ12の通電を止める。これにより、除霜モードを終了する。   In the defrost mode, the glass tube heaters 11 and 12 are energized to heat the coolers 7 and 10. Then, when the measured temperatures from the R inlet temperature sensor 19 and the R outlet temperature sensor 20 reach a predetermined temperature at the end of defrosting for refrigeration, the energization of the glass tube heater 11 is stopped. Similarly, energization of the glass tube heater 12 is stopped when the measured temperatures from the F inlet temperature sensor 21 and the F outlet temperature sensor 22 reach a predetermined temperature at which the defrosting for refrigeration is completed. Thereby, a defrost mode is complete | finished.

この時の除霜水は、ドレンホース(図示せず)を介して、蒸発皿28に集められ、この蒸発皿28の除霜水は、高温冷媒の冷媒パイプ4bの熱により、蒸発が促進される。   The defrost water at this time is collected in the evaporating dish 28 via a drain hose (not shown), and the defrost water in the evaporating dish 28 is accelerated by the heat of the refrigerant pipe 4b of the high-temperature refrigerant. The

次に、冷凍冷蔵庫1の開口縁の結露防止について説明する。   Next, prevention of condensation on the opening edge of the refrigerator 1 will be described.

図3の如く、冷凍冷蔵庫1の開口縁には、結露防止用パイプ4cが配設され、この内部を高温冷媒が流れるので、これにより、開口縁が加熱され結露が防止される。更に、制御回路26は、電気ヒータ29にも通電して、加熱量の不足を補っている。更に、制御回路26は、検出した外気温度に応じて、電気ヒータ29の通電量を制御している。実際には、外気温が高くなるのに応じて、電気ヒータ29の通電量を増加している。これにより、開口縁が良好に加熱され結露防止がなされる。   As shown in FIG. 3, a dew condensation prevention pipe 4c is disposed at the opening edge of the refrigerator 1 and the high-temperature refrigerant flows through the pipe, thereby preventing the dew condensation by heating the opening edge. Further, the control circuit 26 energizes the electric heater 29 to compensate for the shortage of heating amount. Furthermore, the control circuit 26 controls the energization amount of the electric heater 29 according to the detected outside air temperature. Actually, the energization amount of the electric heater 29 is increased as the outside air temperature increases. Thereby, an opening edge is heated favorably and condensation is prevented.

ところで、除霜終了時には、除霜水が蒸発皿28に流れ込んで溜まっている。従って、この蒸発皿28に配設された蒸発促進用の冷媒パイプ4bは、除霜終了時から蒸発促進期間中は、この部分において、大幅に熱量を放出する。従って、後段の結露防止用の冷媒パイプ4cにおいて、熱量が不足する。そこで、本実施例1の制御回路26は、除霜終了時から所定時間の間、電気ヒータ29の通電率を上げて(加熱量を増加させて)、この不足分を補っている。なお、この所定時間は、一定時間でもよいし、除霜モードの時間(特に、冷凍室用冷却器の除霜時間)を測定し、この時間に関連した(比例した)時間であってもよい。   By the way, at the end of the defrosting, the defrosting water flows into the evaporating dish 28 and accumulates. Accordingly, the evaporation promoting refrigerant pipe 4b disposed in the evaporating dish 28 releases a large amount of heat in this portion from the end of defrosting to the evaporation promoting period. Therefore, the amount of heat is insufficient in the refrigerant pipe 4c for preventing condensation in the latter stage. Therefore, the control circuit 26 of the first embodiment compensates for this shortage by increasing the energization rate of the electric heater 29 (increasing the heating amount) for a predetermined time from the end of defrosting. The predetermined time may be a fixed time, or may be a time related to (proportional to) this time by measuring the time in the defrost mode (in particular, the defrost time of the freezer cooler). .

なお、実施例1では家庭用の冷凍冷蔵庫について説明したが、本発明はこれに限られるものではない。また、この実施例1では、冷凍室の周りにのみ電気ヒータを配設したが、これは、結露防止パイプと同様に全周に渡ってもよいし、貯蔵室の仕切部のみに配置するようにそてもよい。   In addition, although the refrigerator-freezer for households was demonstrated in Example 1, this invention is not limited to this. In the first embodiment, the electric heater is provided only around the freezer compartment. However, this may be provided around the entire circumference in the same manner as the dew condensation prevention pipe, or only in the partition portion of the storage compartment. You may follow.

本発明の実施例1の冷凍冷蔵庫の冷凍回路の概略を説明するための図である。It is a figure for demonstrating the outline of the freezing circuit of the freezer refrigerator of Example 1 of this invention. 実施例1の冷凍冷蔵庫の各部の制御を説明するための概略回路図である。It is a schematic circuit diagram for demonstrating control of each part of the refrigerator-freezer of Example 1. FIG. 実施例1の冷凍冷蔵庫の結露防止用の加熱手段の配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the heating means for the condensation prevention of the refrigerator-freezer of Example 1. FIG.

符号の説明Explanation of symbols

1 冷凍冷蔵庫
R 冷蔵室
F 冷凍室
2 圧縮機
4b 凝縮器の一部(蒸発促進用の冷媒パイプ)
4c 凝縮器の一部(結露防止用パイプ、加熱手段)
6 冷蔵室用膨張弁
7 冷蔵室用冷却器
9 冷凍室用膨張弁
10 冷凍室用冷却器
15 機械室
26 制御回路
28 蒸発皿
29 結露防止用の電気ヒータ(加熱手段)。
DESCRIPTION OF SYMBOLS 1 Refrigerating refrigerator R Refrigerating room F Freezing room 2 Compressor 4b A part of condenser (refrigerant pipe for promoting evaporation)
4c Condenser part (condensation prevention pipe, heating means)
6 Expansion valve for refrigerator compartment 7 Cooler for refrigerator compartment 9 Expansion valve for freezer compartment 10 Cooler for freezer compartment 15 Machine room 26 Control circuit 28 Evaporating dish 29 Electric heater (heating means) for preventing dew condensation.

Claims (3)

一面が開口された断熱箱体にて構成された本体と、この一面側に設けられる断熱扉と、この本体に形成された機械室と、この機械室内に配置され冷凍回路の一部を形成する圧縮機と、前記圧縮機から吐出された前記冷媒を凝縮する凝縮器の一部を形成し前記断熱箱体の前記一面の開口縁部に配置される結露防止用の冷媒パイプと、前記圧縮機から吐出された前記冷媒を凝縮する凝縮器の一部を形成し蒸発皿の内部に配置される蒸発促進用の冷媒パイプとを備える冷却貯蔵庫において、
前記冷凍回路の冷媒はCOであり、
前記結露防止用の冷媒パイプは前記蒸発促進用の冷媒パイプよりも後段に位置し、前記結露防止用の冷媒パイプに並べて結露防止用の電気ヒータを設け、この電気ヒータの通電率に関して、除霜終了時から前記蒸発皿に溜まっている除霜水の蒸発を促進させるための所定時間は、それ以降の時間と比較して、その通電率が高く設定されていることを特徴とする冷却貯蔵庫。
A main body composed of a heat-insulating box with one side opened, a heat insulating door provided on the one side, a machine room formed in the main body, and a part of the refrigeration circuit disposed in the machine room A compressor, a refrigerant pipe for preventing condensation, which forms part of a condenser that condenses the refrigerant discharged from the compressor and is disposed at an opening edge of the one surface of the heat insulating box, and the compressor In a cooling storage comprising a refrigerant pipe for promoting evaporation that forms part of a condenser that condenses the refrigerant discharged from and is disposed inside the evaporating dish,
Refrigerant of the refrigeration circuit is CO 2,
The dew condensation prevention refrigerant pipe is positioned downstream of the evaporation promotion refrigerant pipe, and an electric heater for dew condensation is provided in line with the dew condensation prevention refrigerant pipe. The cooling storage room characterized in that a predetermined time for promoting the evaporation of the defrosted water accumulated in the evaporating dish from the end is set to have a higher energization rate than the subsequent time .
前記冷却貯蔵庫は冷凍室と冷蔵室を備え、前記電気ヒータは前記冷凍室の開口縁部に配設されていることを特徴とする請求項1に記載の冷却貯蔵庫。 The cooling storage according to claim 1, wherein the cooling storage includes a freezing room and a freezing room, and the electric heater is disposed at an opening edge of the freezing room. 前記冷却貯蔵庫は冷凍室と冷蔵室を備え、前記電気ヒータは結露防止パイプの全周に渡って配設されていることを特徴とする請求項1に記載の冷却貯蔵庫。 The cooling storage according to claim 1, wherein the cooling storage includes a freezing room and a refrigerating room, and the electric heater is disposed over the entire circumference of the dew condensation prevention pipe.
JP2005283140A 2005-09-28 2005-09-28 Cooling storage Active JP4684067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283140A JP4684067B2 (en) 2005-09-28 2005-09-28 Cooling storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283140A JP4684067B2 (en) 2005-09-28 2005-09-28 Cooling storage

Publications (2)

Publication Number Publication Date
JP2007093110A JP2007093110A (en) 2007-04-12
JP4684067B2 true JP4684067B2 (en) 2011-05-18

Family

ID=37979042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283140A Active JP4684067B2 (en) 2005-09-28 2005-09-28 Cooling storage

Country Status (1)

Country Link
JP (1) JP4684067B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420773B1 (en) * 2010-07-30 2019-03-27 LG Electronics Inc. Refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349659A (en) * 2000-06-09 2001-12-21 Matsushita Refrig Co Ltd Refrigerator
JP2004085105A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Refrigerator
JP2004116840A (en) * 2002-09-25 2004-04-15 Hoshizaki Electric Co Ltd Cooling storage shed

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252874A (en) * 1986-04-25 1987-11-04 株式会社日立製作所 Refrigerator
JPH10197122A (en) * 1997-01-08 1998-07-31 Toshiba Corp Sprit type refrigerator
JPH11166784A (en) * 1997-12-03 1999-06-22 Sharp Corp Electric refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349659A (en) * 2000-06-09 2001-12-21 Matsushita Refrig Co Ltd Refrigerator
JP2004085105A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Refrigerator
JP2004116840A (en) * 2002-09-25 2004-04-15 Hoshizaki Electric Co Ltd Cooling storage shed

Also Published As

Publication number Publication date
JP2007093110A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US5406805A (en) Tandem refrigeration system
KR100687934B1 (en) Refrigerator and controlling method for the same
US7506520B2 (en) Method for controlling operation of refrigerator
JP2007248005A (en) Refrigerator
JP2008533429A (en) Defroster for bottle cooler and method thereof
JP2005249254A (en) Refrigerator-freezer
JP6687384B2 (en) refrigerator
JP5110192B1 (en) Refrigeration equipment
JP2007093112A (en) Cooling storage
JP2009092371A (en) Chiller
KR100796452B1 (en) Heat pump and demist method
JP6872689B2 (en) refrigerator
KR101330936B1 (en) Refrigerator
KR101344559B1 (en) Refrigerator refriging indepentently
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
JP3583570B2 (en) refrigerator
JP4684067B2 (en) Cooling storage
JP2004324902A (en) Freezing refrigerator
JP2003194446A (en) Refrigerator
KR20090119092A (en) Apparatus of defrosting for maintaining fixed temperature for a refrigerator and method thereof
JP2004333092A (en) Freezer/refrigerator
JP2007093109A (en) Cooling storage
JP4702101B2 (en) Refrigerator and vending machine
JP2007093127A (en) Cooling storage box
JP2007093111A (en) Cooling storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4684067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250