JP2021038897A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2021038897A
JP2021038897A JP2019161636A JP2019161636A JP2021038897A JP 2021038897 A JP2021038897 A JP 2021038897A JP 2019161636 A JP2019161636 A JP 2019161636A JP 2019161636 A JP2019161636 A JP 2019161636A JP 2021038897 A JP2021038897 A JP 2021038897A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
condenser
expansion valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019161636A
Other languages
Japanese (ja)
Inventor
智裕 中村
Tomohiro Nakamura
智裕 中村
堀尾 好正
Yoshimasa Horio
好正 堀尾
健一 柿田
Kenichi Kakita
健一 柿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019161636A priority Critical patent/JP2021038897A/en
Publication of JP2021038897A publication Critical patent/JP2021038897A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

To provide a refrigeration cycle device accurately measuring a refrigerant temperature difference and improving accuracy in the control of a refrigerant throttle amount to enhance energy saving performance.SOLUTION: A refrigeration cycle device includes a compressor 11, a condenser 12, a throttle means 14, an evaporator 16, and a plurality of temperature sensors, namely upstream temperature sensors 21 and downstream temperature sensors detecting the temperature of a refrigerant pipe between the condenser and the throttle means. The plurality of upstream temperature sensors 21 and the plurality of downstream temperature sensors 22 are provided to the refrigerant pipe at least along a refrigerant flowing direction. Thereby, variation due to difference in refrigerant distribution in the refrigerant pipe or variation of measurement can be reduced and refrigerant temperature difference can be accurately measured. As a result, control accuracy of the refrigerant throttle amount can be improved, and refrigeration performance is maximized to improve energy saving performance.SELECTED DRAWING: Figure 3

Description

本開示は、冷媒の絞り量を可変する絞り手段を搭載した冷蔵庫等の冷凍サイクル装置に関するものである。 The present disclosure relates to a refrigerating cycle device such as a refrigerator equipped with a drawing means for varying the amount of drawing of the refrigerant.

特許文献1は、従来の絞り手段を搭載した冷凍サイクル装置の一つである冷蔵庫を開示する。この冷蔵庫は、図8の冷凍サイクル構成図に示すように、圧縮機141、凝縮器142、レシーバ143、絞り手段となる膨張弁144、キャピラリーチューブ145、蒸発器146、吸入管147、内部熱交換部148、吸入管温度センサ149を有する。そして前記吸入管温度センサ149が検出する配管温度に応じて膨張弁144により冷媒の絞り量を調節し、冷凍サイクル140の効率低下を回避して省エネルギー性を高めるようにしている。 Patent Document 1 discloses a refrigerator which is one of refrigerating cycle devices equipped with a conventional squeezing means. As shown in the refrigerating cycle configuration diagram of FIG. 8, this refrigerator includes a compressor 141, a condenser 142, a receiver 143, an expansion valve 144 as a throttle means, a capillary tube 145, an evaporator 146, a suction pipe 147, and an internal heat exchange. It has a unit 148 and a suction pipe temperature sensor 149. Then, the expansion valve 144 adjusts the throttle amount of the refrigerant according to the pipe temperature detected by the suction pipe temperature sensor 149 to avoid a decrease in efficiency of the refrigeration cycle 140 and improve energy saving.

図9は上記膨張弁144の制御を示し、冷凍サイクル140を用いて冷却する対象物(図示せず)の温度が低下して安定状態に近づき、蒸発器146から供給する冷熱が余剰となって吸入管温度センサ149で検出している吸入管147の温度が低下しR1を下回った場合、膨張弁144の絞り量を所定量増大させる。この結果、蒸発器146の蒸発温度が低下して冷媒循環量が小さくなり蒸発器146から供給する冷凍能力を低下させるとともに、吸入管147へ流出していた液冷媒を余剰冷媒としてレシーバ143に回収することで吸入管147の温度を上昇させる。 FIG. 9 shows the control of the expansion valve 144, and the temperature of the object (not shown) to be cooled by using the refrigeration cycle 140 drops and approaches a stable state, and the cold heat supplied from the evaporator 146 becomes surplus. When the temperature of the suction pipe 147 detected by the suction pipe temperature sensor 149 drops below R1, the throttle amount of the expansion valve 144 is increased by a predetermined amount. As a result, the evaporation temperature of the evaporator 146 is lowered, the amount of refrigerant circulating is reduced, the refrigerating capacity supplied from the evaporator 146 is lowered, and the liquid refrigerant flowing out to the suction pipe 147 is recovered as surplus refrigerant in the receiver 143. This raises the temperature of the suction pipe 147.

一方、吸入管147の温度が上昇してR2を上回った場合、膨張弁144の絞り量を所定量減少させる。この結果、蒸発器146の蒸発温度が上昇して冷媒循環量が大きくなり蒸発器146から供給する冷凍能力を増大させるとともにレシーバ143に回収していた余剰冷媒を蒸発器146に供給することで吸入管147の温度を下降させる。 On the other hand, when the temperature of the suction pipe 147 rises and exceeds R2, the throttle amount of the expansion valve 144 is reduced by a predetermined amount. As a result, the evaporation temperature of the evaporator 146 rises, the amount of refrigerant circulating increases, the refrigerating capacity supplied from the evaporator 146 increases, and the surplus refrigerant collected in the receiver 143 is supplied to the evaporator 146 for suction. The temperature of the tube 147 is lowered.

このように吸入管147の温度Rを検出してR1からR2の間に維持するように膨張弁144で冷媒量を制御することで、冷凍サイクル140の効率低下や圧縮機141の液圧縮による耐久性低下を回避し、冷凍能力を最大化して冷凍サイクルの省エネルギー性を高めるようにしている。 By controlling the amount of refrigerant with the expansion valve 144 so as to detect the temperature R of the suction pipe 147 and maintain it between R1 and R2 in this way, the efficiency of the refrigeration cycle 140 is reduced and the durability of the compressor 141 due to liquid compression is achieved. It avoids deterioration of sex and maximizes the refrigerating capacity to improve the energy saving of the refrigeration cycle.

特開平5−196321号公報Japanese Unexamined Patent Publication No. 5-196321

本開示は、冷媒の絞り量制御のための冷媒温度測定精度を上げて冷媒量を絞り制御することで冷冷凍能力を最大化し省エネルギー性を高めた冷凍サイクル装置を提供する。 The present disclosure provides a refrigeration cycle apparatus that maximizes the refrigerating capacity and enhances energy saving by increasing the accuracy of measuring the refrigerant temperature for controlling the amount of the refrigerant and controlling the amount of the refrigerant.

本開示における冷凍サイクル装置は、少なくとも、圧縮機と、凝縮器と、絞り手段と、蒸発器と、前記凝縮器と前記絞り手段との間の冷媒配管の温度を検知する複数の温度センサとを備え、前記複数の温度センサは、少なくとも冷媒の流れ方向に沿って前記冷媒配管に設けた構成としてある。 The refrigeration cycle apparatus in the present disclosure includes at least a compressor, a condenser, a squeezing means, an evaporator, and a plurality of temperature sensors for detecting the temperature of a refrigerant pipe between the condenser and the squeezing means. The plurality of temperature sensors are provided in the refrigerant pipe at least along the flow direction of the refrigerant.

本開示の冷凍サイクル装置は、冷媒配管内の冷媒分布の違いによるバラツキや測定のバラツキを低減することができ、冷媒の温度差を精度よく測定することができる。そのため、冷媒の絞り量の制御精度を向上することができ、冷凍能力を最大化して省エネルギー性を向上させることができる。 The refrigeration cycle apparatus of the present disclosure can reduce the variation due to the difference in the distribution of the refrigerant in the refrigerant pipe and the variation in the measurement, and can accurately measure the temperature difference of the refrigerant. Therefore, the control accuracy of the throttle amount of the refrigerant can be improved, the refrigerating capacity can be maximized, and the energy saving property can be improved.

実施の形態1における冷凍サイクル装置としての冷蔵庫の正面図Front view of the refrigerator as the refrigeration cycle device according to the first embodiment. 実施の形態1における冷蔵庫の縦断面図Longitudinal section of the refrigerator according to the first embodiment 実施の形態1における冷蔵庫のサイクル構成図Cycle configuration diagram of the refrigerator according to the first embodiment 実施の形態1における冷凍サイクルの膨張弁の制御方法を示した図The figure which showed the control method of the expansion valve of the refrigeration cycle in Embodiment 1. 実施の形態1における冷凍サイクルの膨張弁制御センサの出力と冷媒流速との相関を示した図The figure which showed the correlation between the output of the expansion valve control sensor of the refrigeration cycle and the refrigerant flow rate in Embodiment 1. 本発明の実施の形態1における温度センサが冷媒配管に取り付けられた状態を示す図The figure which shows the state which the temperature sensor in Embodiment 1 of this invention is attached to a refrigerant pipe. 本発明の実施の形態1における冷媒配管の断面図Sectional drawing of the refrigerant pipe in Embodiment 1 of this invention 従来の冷凍サイクル構成図Conventional refrigeration cycle configuration diagram 従来の冷凍サイクルの膨張弁の制御方法を示した図The figure which showed the control method of the expansion valve of the conventional refrigeration cycle

(本開示の基礎となった知見等)
発明者らが本開示に想到するに至った当時、家庭用冷蔵庫等の冷凍サイクル装置では地球温暖化防止の観点から温暖化係数が低い自然冷媒を使用することがほとんどであるが、使用する自然冷媒は可燃性があり、封入できる冷媒量に制限があるため、余剰冷媒を保持することが困難であった。また、冷蔵庫本体等の筐体の外郭から自然対流で放熱する凝縮器を使用するため、環境条件によって放熱能力が大きく変化し、凝縮器出口を所定の過冷却度に保つことが困難であった。そのため、家庭用冷蔵庫等の冷凍サイクル装置では吸入管温度センサ149で蒸発器146からの冷媒温度を検出して膨張弁144などの絞り手段で冷媒流量を制御していても、冷媒流量を適切に制御することが困難であった。
(Knowledge, etc. that was the basis of this disclosure)
At the time when the inventors came up with the present disclosure, most refrigeration cycle devices such as household refrigerators use natural refrigerants with a low global warming coefficient from the viewpoint of preventing global warming. Since the refrigerant is flammable and the amount of refrigerant that can be filled is limited, it is difficult to retain the surplus refrigerant. In addition, since a condenser that dissipates heat by natural convection from the outer shell of the refrigerator body or the like is used, the heat dissipation capacity changes greatly depending on the environmental conditions, and it is difficult to keep the condenser outlet at a predetermined supercooling degree. .. Therefore, in a refrigerating cycle device such as a household refrigerator, even if the suction pipe temperature sensor 149 detects the refrigerant temperature from the evaporator 146 and the refrigerant flow rate is controlled by a throttle means such as an expansion valve 144, the refrigerant flow rate is appropriately adjusted. It was difficult to control.

上記冷媒流量の適切な制御は、従来の吸入管温度センサ149の出力に基づく制御にかわって、凝縮器出口における乾き度(過冷却度)がゼロとなるように膨張弁を制御することで実現可能であるが、凝縮器出口における冷媒の乾き度を直接測定する方法は確立されていないのが現状である。そのため直接測定に代わる方法として、発明者らは凝縮器出口の冷媒温度差を測定することで間接的に冷媒の乾き度を測定できることを見出し、冷媒温度差から絞り量を制御することで冷凍能力を最大化することができることを見出した。 Appropriate control of the refrigerant flow rate is realized by controlling the expansion valve so that the degree of dryness (supercooling degree) at the outlet of the condenser becomes zero, instead of the control based on the output of the conventional suction pipe temperature sensor 149. Although it is possible, the method for directly measuring the dryness of the refrigerant at the outlet of the condenser has not been established at present. Therefore, as an alternative to direct measurement, the inventors have found that the dryness of the refrigerant can be indirectly measured by measuring the refrigerant temperature difference at the outlet of the condenser, and the refrigerating capacity is controlled by controlling the throttle amount from the refrigerant temperature difference. Found that can be maximized.

しかし、この場合、上記冷媒温度差から乾き度を推定し、精度よく制御するには、微小な冷媒温度差を測定する必要がある。従って、冷媒量や凝縮器の放熱能力に制限がある冷蔵庫等の冷凍サイクル装置において、絞り手段を用いて省エネルギー化を図るために、微小な冷媒温度差を精度よく測定することが課題となる。よって発明者らはその課題を解決すべく、本開示の主題を構成するに至った。 However, in this case, in order to estimate the dryness from the above-mentioned refrigerant temperature difference and control it accurately, it is necessary to measure a minute refrigerant temperature difference. Therefore, in a refrigerating cycle device such as a refrigerator in which the amount of refrigerant and the heat dissipation capacity of the condenser are limited, it is an issue to accurately measure a minute refrigerant temperature difference in order to save energy by using a drawing means. Therefore, the inventors have come to construct the subject matter of the present disclosure in order to solve the problem.

そこで本開示は、微小な冷媒温度差の測定精度を向上させることで、冷媒の絞り量の制御精度を向上し、冷凍能力の最大化を実現して省エネルギー性を高めた冷凍サイクル装置を提供する。 Therefore, the present disclosure provides a refrigeration cycle apparatus that improves the measurement accuracy of a minute refrigerant temperature difference, improves the control accuracy of the amount of refrigerant drawn, maximizes the refrigerating capacity, and enhances energy saving. ..

(実施の形態1)
以下、冷凍サイクル装置の実施の形態として冷蔵庫を例にして図1〜図7を用い説明する。
(Embodiment 1)
Hereinafter, a refrigerator will be described as an example of an embodiment of the refrigeration cycle apparatus with reference to FIGS. 1 to 7.

[1−1.構成]
図1は本開示の実施の形態による冷凍サイクル装置としての冷蔵庫の正面図、図2は同実施の形態1による冷蔵庫の縦断面図、図3は同実施の形態1による冷蔵庫のサイクル構成図である。
[1-1. Constitution]
FIG. 1 is a front view of a refrigerator as a refrigerating cycle device according to the embodiment of the present disclosure, FIG. 2 is a vertical sectional view of the refrigerator according to the first embodiment, and FIG. 3 is a cycle configuration diagram of the refrigerator according to the first embodiment. is there.

図1から図3に示すように、この冷蔵庫は、前方に開口する金属製(例えば鉄板)の外箱と、硬質樹脂製(例えばABS)の内箱と、前記外箱と内箱との間に発泡充填した硬質ウレタンフォーム等の断熱材とからなる断熱性の冷蔵庫本体30を備えている。冷蔵庫本体30内には、冷蔵室31、冷蔵室31の下に上段冷凍室32及びその横に並設した製氷室33と、並設した上段冷凍室32及び製氷室33の下方に下段冷凍室34、下段冷凍室34の下方に野菜室35が設けてある。そして、冷蔵室31の前面は、例えば観音開き式の扉により開閉自由に閉塞されるとともに、上段冷凍室32と製氷室33と下段冷凍室34と野菜室35の前面部は引き出し式の扉により開閉自由に閉塞される。 As shown in FIGS. 1 to 3, in this refrigerator, a metal (for example, iron plate) outer box that opens forward, an inner box made of hard resin (for example, ABS), and between the outer box and the inner box. The refrigerator body 30 has a heat insulating property and is made of a heat insulating material such as hard urethane foam filled with foam. In the refrigerator main body 30, there is a refrigerating chamber 31, an upper freezing chamber 32 arranged side by side under the refrigerating chamber 31, and an ice making chamber 33 arranged side by side, and a lower freezing chamber below the upper freezing chamber 32 and the ice making chamber 33 arranged side by side. 34. A vegetable compartment 35 is provided below the lower freezer compartment 34. The front surface of the refrigerator compartment 31 is freely opened and closed by, for example, a double door, and the front portions of the upper freezer compartment 32, the ice making chamber 33, the lower freezer compartment 34, and the vegetable compartment 35 are opened and closed by a drawer type door. It is freely blocked.

冷蔵室31は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。野菜室35は冷蔵室31と同等もしくは若干高い温度設定の2℃〜7℃に設定されており、低温にすれば葉野菜の鮮度を長期間維持することが可能である。上段冷凍室32と下段冷凍室35は冷凍保存のために通常−22から−18℃で設定されているが、冷凍保存状態の向上のために、例えば−30から−25℃の低温で設定されることもある。また、上段冷凍室32は切替室として、ダンパ機構等を用いることで、冷蔵温度帯から冷凍温度帯まで選択可能な部屋とすることもある。 The refrigerating chamber 31 is usually set at 1 to 5 ° C. with a lower limit of a temperature at which it does not freeze for refrigerated storage. The vegetable compartment 35 is set to a temperature of 2 ° C. to 7 ° C., which is the same as or slightly higher than that of the refrigerator compartment 31, and if the temperature is lowered, the freshness of the leafy vegetables can be maintained for a long period of time. The upper freezing chamber 32 and the lower freezing chamber 35 are usually set at -22 to -18 ° C for freezing storage, but are set at a low temperature of, for example, -30 to -25 ° C for improving the freezing storage state. Sometimes. Further, the upper freezing chamber 32 may be a room that can be selected from the refrigerating temperature zone to the freezing temperature zone by using a damper mechanism or the like as the switching chamber.

冷蔵庫本体30には、前記冷蔵室31、上段冷凍室32、製氷室33、下段冷凍室34、野菜室35を冷却する冷凍システム10が設けてあり、その冷凍システム10の冷媒を圧縮する能力可変型の圧縮機11が天面後部の機械室47に設けられ、冷却器となる蒸発器16が背面部の冷却室48に設けてある。 The refrigerator main body 30 is provided with a refrigerating system 10 for cooling the refrigerating room 31, the upper freezing room 32, the ice making room 33, the lower freezing room 34, and the vegetable room 35, and the ability of the refrigerating system 10 to compress the refrigerant is variable. A mold compressor 11 is provided in the machine room 47 at the rear of the top surface, and an evaporator 16 serving as a cooler is provided in the cooling room 48 at the back surface.

上記冷凍システム10の冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンを使用している。この炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。これにより従来に比して冷媒充填量を低減でき、低コストであると共に、可燃性冷媒が万が一に漏洩した場合の漏洩量が少なくなり安全性をより向上できる。 As the refrigerant of the refrigeration system 10, isobutane, which is a flammable refrigerant having a small global warming potential, is used from the viewpoint of protecting the global environment. This hydrocarbon, isobutane, has a specific gravity about twice that of air at room temperature and atmospheric pressure (at 2.04 and 300K). As a result, the amount of refrigerant charged can be reduced as compared with the conventional case, the cost is low, and the amount of leakage in the unlikely event that the flammable refrigerant leaks is reduced, so that safety can be further improved.

次に、上記冷凍システム10の構成を、図3を用いて説明する。 Next, the configuration of the refrigeration system 10 will be described with reference to FIG.

冷凍システム10は、圧縮機11、凝縮器12、ドライヤ13、絞り手段となる膨張弁14、キャピラリーチューブ15、蒸発器16、アキュームレータ17、吸入管18、内部熱交換部19を接続して構成してある。また、この冷凍システム10には、微小抵抗20、上流温度センサ21及び下流温度センサ22からなる膨張弁制御センサ23が設けてある。 The refrigeration system 10 is configured by connecting a compressor 11, a condenser 12, a dryer 13, an expansion valve 14 as a throttle means, a capillary tube 15, an evaporator 16, an accumulator 17, a suction pipe 18, and an internal heat exchange unit 19. There is. Further, the refrigeration system 10 is provided with an expansion valve control sensor 23 including a minute resistor 20, an upstream temperature sensor 21, and a downstream temperature sensor 22.

上記膨張弁制御センサ23を構成する微小抵抗20は、長さ250mmの細径管からなり、直列配置された微小抵抗20、膨張弁14、キャピラリーチューブ15の全抵抗の約5%に相当する抵抗を有する。全抵抗に対する微小抵抗20の比率は、1〜20%が望ましい。1%未満では内部を流れる冷媒の状態変化を測定することが困難となる。20%超では内部熱交換部19の熱交換が不十分となり、冷凍システムの効率が低下する。なお、上記全抵抗に対する微小抵抗20の比率は、それぞれの抵抗を同じ内径のキャピラリーチューブ15で代替した時の長さの比率で示したものである。 The microresistor 20 constituting the expansion valve control sensor 23 is composed of a small diameter tube having a length of 250 mm, and is a resistor corresponding to about 5% of the total resistance of the microresistors 20, the expansion valve 14, and the capillary tube 15 arranged in series. Has. The ratio of the minute resistance 20 to the total resistance is preferably 1 to 20%. If it is less than 1%, it becomes difficult to measure the state change of the refrigerant flowing inside. If it exceeds 20%, the heat exchange of the internal heat exchange unit 19 becomes insufficient, and the efficiency of the refrigeration system decreases. The ratio of the minute resistance 20 to the total resistance is shown by the ratio of the length when each resistance is replaced with the capillary tube 15 having the same inner diameter.

ここで、上記膨張弁制御センサ23を構成する上流温度センサ21及び下流温度センサ22は、冷媒の流れ方向に沿って前記冷媒配管に設けてあり、この例では図6に示すように、管周りに複数設置してある(図6では上流温度センサ21のみを示しているが、図示しない微小抵抗20の下流側部分も同様に複数の下流流温度センサ22が設けられている)。そして、上記上流温度センサ21及び下流温度センサ22は、微小抵抗20の内部を流れる冷媒の状態変化に応じて変化する微小抵抗20の上流側と下流側の温度を測定し、その温度差が設定温度差に近づくように膨張弁14の絞り量を可変し、冷凍システム10を所定の状態に制御する構成となっている。 Here, the upstream temperature sensor 21 and the downstream temperature sensor 22 constituting the expansion valve control sensor 23 are provided in the refrigerant pipe along the flow direction of the refrigerant, and in this example, as shown in FIG. 6, around the pipe. (Although only the upstream temperature sensor 21 is shown in FIG. 6, a plurality of downstream flow temperature sensors 22 are also provided in the downstream portion of the minute resistor 20 (not shown)). Then, the upstream temperature sensor 21 and the downstream temperature sensor 22 measure the temperature on the upstream side and the downstream side of the minute resistance 20 that changes according to the state change of the refrigerant flowing inside the minute resistance 20, and the temperature difference is set. The expansion valve 14 has a variable throttle amount so as to approach the temperature difference, and the refrigeration system 10 is controlled to a predetermined state.

なお、上記冷凍システム10において、ドライヤ13は、冷凍システム10内を循環する冷媒を乾燥するものであり、液冷媒と効率よく接触するために凝縮器12の下流に配置している。 In the refrigeration system 10, the dryer 13 dries the refrigerant circulating in the refrigeration system 10, and is arranged downstream of the condenser 12 in order to efficiently contact the liquid refrigerant.

また、アキュームレータ17は、安定状態における余剰冷媒を貯留するものであり、蒸発器16と略同一の温度に保持するために蒸発器16の下流に配置してある。冷凍システム10を用いて冷却する対象物(図示せず)の温度が上昇すると、アキュームレータ17に貯留される余剰冷媒量が減少して冷凍システム10内の冷媒循環量が増大することで冷凍能力を増加させる。一般に、冷蔵庫本体30等の筐体の外郭から自然対流で放熱する家庭用冷蔵庫など環境条件によって放熱能力が大きく変化する冷凍システムでは、レシーバを用いて冷凍システムの高圧側に余剰冷媒を貯留することができないので、本実施の形態1のように、アキュームレータ17を用いて冷凍システムの低圧側に余剰冷媒を貯留する。また、アキュームレータ17に貯留する余剰冷媒量は冷凍システム内の全冷媒量の10〜30%程度としてあり、比較的少量で冷凍能力を調整する機能が得られるので、全冷媒量を抑制するために有効である。 Further, the accumulator 17 stores the surplus refrigerant in the stable state, and is arranged downstream of the evaporator 16 in order to keep the temperature substantially the same as that of the evaporator 16. When the temperature of the object (not shown) to be cooled by the refrigerating system 10 rises, the amount of excess refrigerant stored in the accumulator 17 decreases and the amount of refrigerant circulating in the refrigerating system 10 increases, thereby increasing the refrigerating capacity. increase. Generally, in a freezing system such as a household refrigerator that radiates heat by natural convection from the outer shell of a housing such as the refrigerator body 30, a receiver is used to store excess refrigerant on the high pressure side of the freezing system. Therefore, as in the first embodiment, the accumulator 17 is used to store the surplus refrigerant on the low pressure side of the refrigeration system. Further, the amount of excess refrigerant stored in the accumulator 17 is about 10 to 30% of the total amount of refrigerant in the refrigeration system, and a function of adjusting the refrigerating capacity can be obtained with a relatively small amount. It is valid.

また、膨張弁14とキャピラリーチューブ15を直列に配置して、冷凍システム10の絞りを構成することにより、キャピラリーチューブ15と吸入管18との間で熱交換する内部熱交換部19を実現することができ、吸入管18内を還流する低温冷媒のエンタルピーを回収して冷凍システム10の効率を向上することができる。 Further, by arranging the expansion valve 14 and the capillary tube 15 in series to form the throttle of the refrigerating system 10, the internal heat exchange unit 19 that exchanges heat between the capillary tube 15 and the suction tube 18 is realized. The enthalpy of the low-temperature refrigerant that circulates in the suction pipe 18 can be recovered to improve the efficiency of the freezing system 10.

[1−2.動作]
以上のように構成された冷蔵庫について、以下その作用、動作について、図3〜5を用いて説明する。
[1-2. motion]
The operation and operation of the refrigerator configured as described above will be described below with reference to FIGS. 3 to 5.

本冷蔵庫は、冷却運転を行う際には、膨張弁14の絞り量を最小、即ち膨張弁14での冷媒循環量が最大となるようにし、圧縮機11を運転する。圧縮機11で圧縮された冷媒は凝縮器12で放熱して凝縮した後、ドライヤ13で乾燥される。そして、膨張弁制御センサ23を通過した後、膨張弁14とキャピラリーチューブ15で減圧され、その後、蒸発器16に供給されて蒸発し、吸入管18を介して圧縮機11へ還流する。このとき、蒸発器16で発生する冷熱を利用して冷却が行われる。 When performing the cooling operation, the refrigerator operates the compressor 11 by minimizing the throttle amount of the expansion valve 14, that is, maximizing the amount of refrigerant circulating in the expansion valve 14. The refrigerant compressed by the compressor 11 dissipates heat in the condenser 12, condenses it, and then dries it in the dryer 13. Then, after passing through the expansion valve control sensor 23, the pressure is reduced by the expansion valve 14 and the capillary tube 15, and then the pressure is reduced by being supplied to the evaporator 16 to evaporate and return to the compressor 11 via the suction pipe 18. At this time, cooling is performed using the cold heat generated by the evaporator 16.

ここで、膨張弁14の絞り量を最小とし圧縮機11を運転した状態で、対象物(図示せず)の温度が低下して安定状態に近づくと、凝縮器12の出口冷媒は2相状態(望ましくは、乾き度3〜10重量%)となる。これは、冷却する対象物(図示せず)の温度が上昇して、アキュームレータ17に貯留される余剰冷媒量が減少し冷凍システム10内の冷媒循環量が増大した場合でも、凝縮器12の出口冷媒が過冷却とならないように、直列配置された微小抵抗20、膨張弁14及びキャピラリーチューブ15の全抵抗と冷凍システム10内の全冷媒量を設計しているためである。 Here, when the temperature of the object (not shown) drops and approaches a stable state while the compressor 11 is operated with the throttle amount of the expansion valve 14 minimized, the outlet refrigerant of the condenser 12 is in a two-phase state. (Preferably, the dryness is 3 to 10% by weight). This means that even if the temperature of the object to be cooled (not shown) rises, the amount of excess refrigerant stored in the accumulator 17 decreases, and the amount of refrigerant circulating in the refrigerating system 10 increases, the outlet of the condenser 12 This is because the total resistance of the micro resistance 20, the expansion valve 14, and the capillary tube 15 arranged in series and the total amount of the refrigerant in the refrigerating system 10 are designed so that the refrigerant does not become supercooled.

一般に、筐体の外郭から自然対流で放熱する家庭用冷蔵庫など環境条件によって放熱能力が大きく変化する冷凍システムにおいて、凝縮器の出口冷媒が過冷却になるように設計すると、環境条件によって放熱能力が増大した際に冷凍システム内のほぼすべての冷媒が凝縮器に滞留して、冷媒循環量が異常に低下する懸念が生じる。また、環境条件によって放熱能力が減少した際に凝縮器で凝縮できなかった余剰冷媒がアキュームレータ17に貯留しきれなくなって吸入管18から圧縮機11へ還流することで、圧縮機11の耐久性が低下する懸念が生じる。 Generally, in a freezing system such as a household refrigerator that dissipates heat by natural convection from the outer shell of the housing, if the outlet refrigerant of the condenser is designed to be overcooled, the heat dissipation capacity will increase depending on the environmental conditions. When the amount is increased, almost all the refrigerant in the refrigeration system stays in the condenser, and there is a concern that the amount of refrigerant circulation is abnormally reduced. Further, when the heat dissipation capacity is reduced due to environmental conditions, the surplus refrigerant that could not be condensed by the condenser cannot be stored in the accumulator 17 and is returned from the suction pipe 18 to the compressor 11, so that the durability of the compressor 11 is improved. There is a concern that it will decline.

そのため、本開示の冷凍システム10では前記したように、凝縮器12の出口冷媒が過冷却とならないよう、直列配置された微小抵抗20、膨張弁14及びキャピラリーチューブ15の全抵抗と冷凍システム10内の全冷媒量を設計しているのである。 Therefore, in the refrigeration system 10 of the present disclosure, as described above, the total resistance of the minute resistors 20, the expansion valve 14, and the capillary tube 15 arranged in series and the inside of the refrigeration system 10 so that the outlet refrigerant of the condenser 12 does not become supercooled. The total amount of refrigerant in the above is designed.

2相状態となった前記凝縮器12からの冷媒は、膨張弁制御センサ23の微小抵抗20を通過する際、上流温度センサ21と下流温度センサ22で微小抵抗20の上流側と下流側の温度が検出される。そして、上記膨張弁制御センサ23が測定した微小抵抗20前後の温度差が所定値あるいは、膨張弁14の絞り量を最小に保った安定状態に比べて所定量変化するように、膨張弁14の絞り量を制御する。その結果、凝縮器12の出口冷媒の乾き度が減少していき、冷凍効果が増大して冷凍システム10の効率を向上することができる。 When the refrigerant from the condenser 12 in the two-phase state passes through the minute resistance 20 of the expansion valve control sensor 23, the temperatures of the upstream side and the downstream side of the minute resistance 20 are measured by the upstream temperature sensor 21 and the downstream temperature sensor 22. Is detected. Then, the expansion valve 14 is changed so that the temperature difference around the minute resistance 20 measured by the expansion valve control sensor 23 changes by a predetermined value or a predetermined amount as compared with the stable state in which the throttle amount of the expansion valve 14 is kept to the minimum. Control the aperture amount. As a result, the dryness of the outlet refrigerant of the condenser 12 is reduced, the freezing effect is increased, and the efficiency of the freezing system 10 can be improved.

次に、図4及び図5に基づいて上記膨張弁14の基本制御方法について説明する。 Next, the basic control method of the expansion valve 14 will be described with reference to FIGS. 4 and 5.

図4の横軸は膨張弁14の絞り量に応じて発生する圧力損失であり、縦軸は膨張弁制御センサ23が測定する微小抵抗20の前後の温度差Sである。 The horizontal axis of FIG. 4 is the pressure loss generated according to the throttle amount of the expansion valve 14, and the vertical axis is the temperature difference S before and after the minute resistor 20 measured by the expansion valve control sensor 23.

前記したように、膨張弁14の絞り量を最小とし圧縮機11を運転した状態で、冷凍システム10を用いて冷却する対象物(図示せず)の温度が低下して安定状態に近づくと、凝縮器12の出口冷媒は2相状態となる。このとき、膨張弁制御センサ23の出力はS0を示す。そして、膨張弁制御センサ23の出力がS2を下回るように膨張弁14の絞り量を増加させる。この結果、凝縮器12の出口冷媒の乾き度が減少していき、冷凍効果が増大して冷凍システム10の効率を向上する。 As described above, when the temperature of the object (not shown) to be cooled by the refrigerating system 10 decreases and approaches a stable state while the compressor 11 is operated with the throttle amount of the expansion valve 14 minimized, The outlet refrigerant of the compressor 12 is in a two-phase state. At this time, the output of the expansion valve control sensor 23 indicates S0. Then, the throttle amount of the expansion valve 14 is increased so that the output of the expansion valve control sensor 23 is lower than S2. As a result, the dryness of the outlet refrigerant of the condenser 12 is reduced, the freezing effect is increased, and the efficiency of the freezing system 10 is improved.

一方、凝縮器12の出口冷媒の乾き度が減少し続け、膨張弁制御センサ23の出力がS1を下回った場合、膨張弁14の絞り量を減少させる。この結果、膨張弁制御センサ23の出力がS1からS2を示す状態に安定させることができる。膨張弁制御センサ23の出力に下限値S1を設けたのは、膨張弁14を絞り過ぎると凝縮器12の出口冷媒が過冷却状態となり、冷凍システム10内のほぼすべての冷媒が凝縮器12に滞留して、冷媒循環量が異常に低下する懸念が生じるためである。このような場合、冷却能力が不足し、冷蔵庫としては鈍冷となる恐れがあるため避ける必要があるのである。 On the other hand, when the dryness of the outlet refrigerant of the condenser 12 continues to decrease and the output of the expansion valve control sensor 23 falls below S1, the throttle amount of the expansion valve 14 is reduced. As a result, the output of the expansion valve control sensor 23 can be stabilized in a state indicating S1 to S2. The reason why the lower limit value S1 is provided for the output of the expansion valve control sensor 23 is that when the expansion valve 14 is throttled too much, the outlet refrigerant of the condenser 12 becomes supercooled, and almost all the refrigerant in the refrigeration system 10 is sent to the condenser 12. This is because there is a concern that the amount of refrigerant circulating will be abnormally reduced due to the stagnation. In such a case, the cooling capacity is insufficient and the refrigerator may become dull, so it is necessary to avoid it.

図5の横軸は、図4の縦軸と同じ膨張弁制御センサ23が測定する微小抵抗20の前後の温度差Sであり、図5の縦軸は、微小抵抗20内を通過する冷媒の流速Vである。 The horizontal axis of FIG. 5 is the temperature difference S before and after the minute resistor 20 measured by the expansion valve control sensor 23, which is the same as the vertical axis of FIG. 4, and the vertical axis of FIG. 5 is the vertical axis of FIG. The flow velocity V.

前記したように、膨張弁制御センサ23の出力がS0を示した状態から膨張弁14の絞り量を増加させると、凝縮器12の出口冷媒の乾き度が減少して微小抵抗20内を通過する冷媒の流速Vが遅くなり、結果として、膨張弁制御センサ23の出力がS0からS2へ低下する。同様に、膨張弁14の絞り量を調整して膨張弁制御センサ23の出力がS1からS2を示す状態に安定させると、凝縮器12の出口冷媒の乾き度がゼロ近傍(望ましくは、乾き度0〜1重量%)で安定し、冷媒の流速Vが最小値近傍で安定するものである。これは、冷凍システム10が安定状態では冷媒循環量が略一定となるので、凝縮器12の出口冷媒が液相になると微小抵抗20内を通過する冷媒の流速Vが略最小となるとともに、凝縮器12の出口冷媒の乾き度が増加するに従い、微小抵抗20内を通過する冷媒の流速Vが増加するためである。また、一般に、液相に対する気相の比容積は50倍程度と大きいため、乾き度が0〜10重量%の微小抵抗20内を通過する冷媒の流速Vの変化量が大きく、特にこの範囲では膨張弁制御センサ23による凝縮器12の出口冷媒の状態を測定しやすいといえる。 As described above, when the throttle amount of the expansion valve 14 is increased from the state where the output of the expansion valve control sensor 23 indicates S0, the dryness of the outlet refrigerant of the condenser 12 decreases and passes through the minute resistor 20. The flow velocity V of the refrigerant becomes slow, and as a result, the output of the expansion valve control sensor 23 decreases from S0 to S2. Similarly, when the throttle amount of the expansion valve 14 is adjusted to stabilize the output of the expansion valve control sensor 23 so as to indicate S1 to S2, the dryness of the outlet refrigerant of the condenser 12 is close to zero (preferably the dryness). It is stable at 0 to 1% by weight), and the flow velocity V of the refrigerant is stable near the minimum value. This is because the amount of refrigerant circulation is substantially constant when the refrigeration system 10 is in a stable state, so that when the outlet refrigerant of the condenser 12 becomes a liquid phase, the flow velocity V of the refrigerant passing through the minute resistor 20 becomes substantially minimum and condensation occurs. This is because the flow velocity V of the refrigerant passing through the minute resistor 20 increases as the dryness of the outlet refrigerant of the vessel 12 increases. Further, in general, since the specific volume of the gas phase with respect to the liquid phase is as large as about 50 times, the amount of change in the flow velocity V of the refrigerant passing through the minute resistor 20 having a dryness of 0 to 10% by weight is large, especially in this range. It can be said that it is easy to measure the state of the outlet refrigerant of the condenser 12 by the expansion valve control sensor 23.

このように膨張弁制御センサ23の出力、つまり上流温度センサ21と下流温度センサ22が検知する検知温度差に応じてこれが設定温度差に近づくように膨張弁14の絞り量を制御することにより、凝縮器12の出口冷媒の乾き度をゼロ近傍(望ましくは、乾き度0〜1重量%)で安定させ、冷凍効果を増大して冷凍システム10の効率を向上することができる。 By controlling the throttle amount of the expansion valve 14 so as to approach the set temperature difference according to the output of the expansion valve control sensor 23, that is, the detection temperature difference detected by the upstream temperature sensor 21 and the downstream temperature sensor 22. The dryness of the outlet refrigerant of the condenser 12 can be stabilized near zero (desirably 0 to 1% by weight of dryness), the refrigerating effect can be increased, and the efficiency of the refrigerating system 10 can be improved.

つまり、上述した冷蔵庫本体30は、微小抵抗20とその前後の温度差を測定する温度センサからなる膨張弁制御センサ23を用いて凝縮器出口の乾き度をゼロに近づけるように膨張弁14を制御することにより、凝縮器出口にレシーバを有しない冷凍システムにおいて膨張弁14を用いて冷凍能力を最大化することができ、高効率な冷却運転を行うことができる。 That is, the above-mentioned refrigerator main body 30 controls the expansion valve 14 so that the dryness of the condenser outlet approaches zero by using the expansion valve control sensor 23 including the minute resistance 20 and the temperature sensor that measures the temperature difference before and after the minute resistance 20. By doing so, the refrigerating capacity can be maximized by using the expansion valve 14 in the refrigerating system having no receiver at the outlet of the condenser, and highly efficient cooling operation can be performed.

ここで本実施の形態では、上記膨張弁制御センサ23上流温度センサ21及び下流温度センサ22は、管周りに複数設置して当該複数の温度センサで測定した値をもとに冷媒温度を算出検知するので、上流温度及び下流温度を精度よく測定でき、冷媒温度差の測定精度を向上することができる。よって、膨張弁の絞り量を精度よく制御することができる。 Here, in the present embodiment, a plurality of the expansion valve control sensor 23 upstream temperature sensor 21 and downstream temperature sensor 22 are installed around the pipe, and the refrigerant temperature is calculated and detected based on the values measured by the plurality of temperature sensors. Therefore, the upstream temperature and the downstream temperature can be measured with high accuracy, and the measurement accuracy of the refrigerant temperature difference can be improved. Therefore, the throttle amount of the expansion valve can be controlled with high accuracy.

(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。
(Other embodiments)
As described above, the first embodiment has been described as an example of the technology disclosed in the present application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made.

そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be illustrated below.

実施の形態1では、微小抵抗20は細径管で構成しているが、これはキャピラリーチューブで構成してもよい。キャピラリーチューブは柔軟性があり、加工も容易にできるため、配管を取付ける際の作業性を向上することができる。また、微小抵抗20は、図7に示すように、冷媒配管81の内部に冷媒配管81の内径よりも小さいオリフィス板82を設置することで構成してもよい。これによって、微小抵抗20を省スペースで構成することができる。 In the first embodiment, the microresistor 20 is composed of a small diameter tube, but this may be composed of a capillary tube. Since the capillary tube is flexible and can be easily processed, workability when installing the pipe can be improved. Further, as shown in FIG. 7, the minute resistor 20 may be configured by installing an orifice plate 82 smaller than the inner diameter of the refrigerant pipe 81 inside the refrigerant pipe 81. As a result, the minute resistor 20 can be configured in a space-saving manner.

[1−3.効果等]
以上のように、本実施の形態において、この冷蔵庫は、圧縮機と、凝縮器と、絞り手段と、蒸発器と、前記凝縮器と前記絞り手段との間の冷媒配管の温度を検知する複数の温度センサとを備え、前記複数の温度センサは、少なくとも冷媒の流れ方向に沿って配置してあるから、冷媒配管内の冷媒分布の違いによるバラツキや測定のバラツキを低減することができ、冷媒の温度差を精度よく測定することができる。そのため、冷媒の絞り量の制御精度を向上することができ、冷凍能力を最大化して省エネルギー性を向上させることができる。
[1-3. Effect, etc.]
As described above, in the present embodiment, the refrigerator detects the temperature of the compressor, the condenser, the squeezing means, the evaporator, and the refrigerant pipe between the condenser and the squeezing means. Since the plurality of temperature sensors are arranged at least along the flow direction of the refrigerant, it is possible to reduce the variation due to the difference in the distribution of the refrigerant in the refrigerant pipe and the variation in the measurement. The temperature difference can be measured accurately. Therefore, the control accuracy of the throttle amount of the refrigerant can be improved, the refrigerating capacity can be maximized, and the energy saving property can be improved.

また、上記温度センサは、前記冷媒配管の管周りに複数設置しているので、冷媒の温度分布が均一でない場合でも冷媒配管の管周りに複数設置した温度センサの検知温度をもとにより正確な冷媒温度を求めることができる。よって、冷媒温度差の測定精度を向上させてより冷凍能力の最大化を図り、省エネルギー性を高めることができる。 Further, since a plurality of the temperature sensors are installed around the pipe of the refrigerant pipe, even if the temperature distribution of the refrigerant is not uniform, it is more accurate based on the detection temperature of the plurality of temperature sensors installed around the pipe of the refrigerant pipe. The refrigerant temperature can be obtained. Therefore, it is possible to improve the measurement accuracy of the refrigerant temperature difference, further maximize the refrigerating capacity, and improve the energy saving.

また、前記複数の温度センサのうち上流温度センサを前記絞り手段の上流近傍に配置しているので、冷媒の凝縮が完了し、冷媒が一番液に近く乾き度が小さいポイントの冷媒の状態を検知することができる。これによって、凝縮器出口の冷媒の乾き度を精度よく推定することができ、冷媒の絞り量をより精度よく制御できて、省エネルギー性を高めることができる。 Further, since the upstream temperature sensor is arranged in the vicinity of the upstream of the throttle means among the plurality of temperature sensors, the state of the refrigerant at the point where the refrigerant is closest to the liquid and the dryness is small is determined. Can be detected. As a result, the dryness of the refrigerant at the outlet of the condenser can be estimated accurately, the amount of the refrigerant squeezed can be controlled more accurately, and energy saving can be improved.

また、前記温度センサを設ける冷媒配管は、前記凝縮器配管よりも径が小さいものとしており、これによって、冷媒配管を通過する冷媒の流速が上昇し、圧力損失が増加するため、冷媒配管の上流から下流に移動する際に生じる温度降下が大きくなる。これにより、冷媒配管の上流と下流に温度差が確実に生じ、冷媒配管の上流と下流の温度差測定を容易に行うことができる。そして、検知した冷媒温度差により、凝縮器出口の冷媒の乾き度を推定することができ、冷媒の絞り量制御を最適化して、省エネルギー性を高めることができる。 Further, the refrigerant pipe provided with the temperature sensor has a smaller diameter than the condenser pipe, which increases the flow velocity of the refrigerant passing through the refrigerant pipe and increases the pressure loss, so that the upstream side of the refrigerant pipe is increased. The temperature drop that occurs when moving downstream from is large. As a result, a temperature difference is surely generated between the upstream and the downstream of the refrigerant pipe, and the temperature difference between the upstream and the downstream of the refrigerant pipe can be easily measured. Then, the dryness of the refrigerant at the outlet of the condenser can be estimated from the detected refrigerant temperature difference, and the control of the amount of throttle of the refrigerant can be optimized to improve energy saving.

また、前記冷媒配管は、キャピラリーチューブで構成しているから、キャピラリーチューブを通過する際に冷媒の流速が上昇し、圧力損失が増加する。このため、キャピラリーチューブの上流から下流に移動する際に冷媒に温度差が確実に生じる。これにより、冷媒配管の二点間の温度差測定を容易に行うことができる。また、キャピラリーチューブは柔軟性があるため、配管の取付作業性を向上することもできる。 Further, since the refrigerant pipe is composed of a capillary tube, the flow velocity of the refrigerant increases when passing through the capillary tube, and the pressure loss increases. Therefore, a temperature difference is surely generated in the refrigerant when moving from the upstream to the downstream of the capillary tube. This makes it possible to easily measure the temperature difference between two points of the refrigerant pipe. In addition, since the capillary tube is flexible, it is possible to improve the workability of installing the pipe.

また、前記複数の温度センサの間に位置する冷媒配管は、前記冷媒配管の内径よりも径の小さいオリフィス板を設けた構成としているから、このオリフィス板を冷媒が通過することで、圧力損失が生じ、オリフィス板の前後で温度降下が生じる。これにより、冷媒配管の二点間の温度差測定を容易に行うことができる。また、オリフィス板は冷媒配管中に設置すればよく、省スペースで設置することができる。 Further, since the refrigerant pipe located between the plurality of temperature sensors is provided with an orifice plate having a diameter smaller than the inner diameter of the refrigerant pipe, pressure loss is caused by the passage of the refrigerant through the orifice plate. It occurs, and a temperature drop occurs before and after the orifice plate. This makes it possible to easily measure the temperature difference between two points of the refrigerant pipe. Further, the orifice plate may be installed in the refrigerant pipe, and can be installed in a space-saving manner.

以上、本開示の冷凍サイクル装置についてその一実施の形態をれ増この場合をれにして説明したが、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In the above, one embodiment of the refrigeration cycle apparatus of the present disclosure has been described in this case, but since the above-described embodiment is for exemplifying the technique in the present disclosure, a patent claim is made. Various changes, replacements, additions, omissions, etc. can be made within the range of or equal to the above.

本開示にかかる冷凍システム装置は、絞り手段による絞り量を調節して冷凍能力を制御する冷凍サイクル装置に適用でき、絞り手段による絞り量を精度よく調節して省エネルギー性を高めることができるので、例えば、家庭用又は業務用冷蔵庫等の冷凍冷蔵応用商品はもちろん、冷凍サイクルを搭載する空調機器や厨房機器等の冷凍サイクル装置として幅広く適用できる。 The refrigerating system apparatus according to the present disclosure can be applied to a refrigerating cycle apparatus for controlling the refrigerating capacity by adjusting the amount of drawing by the drawing means, and the amount of drawing by the drawing means can be accurately adjusted to improve energy saving. For example, it can be widely applied as a refrigerating cycle device such as an air conditioner equipped with a refrigerating cycle and a kitchen device as well as a refrigerating / refrigerating application product such as a household or commercial refrigerator.

10 冷凍システム
11 圧縮機
12 凝縮器
13 ドライヤ
14 膨張弁(絞り手段)
15 キャピラリーチューブ
16 蒸発器
17 アキュームレータ
18 吸入管
19 内部熱交換部
20 微小抵抗
21 上流温度センサ
22 下流温度センサ
23 膨張弁制御センサ
30 冷蔵庫本体
80 温度センサ
81 冷媒配管
82 オリフィス板
10 Refrigeration system 11 Compressor 12 Condenser 13 Dryer 14 Expansion valve (squeezing means)
15 Capillary tube 16 Evaporator 17 Accumulator 18 Suction pipe 19 Internal heat exchange part 20 Micro resistance 21 Upstream temperature sensor 22 Downstream temperature sensor 23 Expansion valve control sensor 30 Refrigerant body 80 Temperature sensor 81 Refrigerant piping 82 Orifice plate

Claims (6)

少なくとも、圧縮機と、凝縮器と、絞り手段と、蒸発器と、前記凝縮器と前記絞り手段との間の冷媒配管の温度を検知する複数の温度センサとを備え、前記複数の温度センサは、少なくとも冷媒の流れ方向に沿って前記冷媒配管に設けた冷凍サイクル装置。 At least, the compressor, the condenser, the squeezing means, the evaporator, and a plurality of temperature sensors for detecting the temperature of the refrigerant pipe between the condenser and the squeezing means are provided, and the plurality of temperature sensors are provided. , At least a refrigeration cycle device provided in the refrigerant pipe along the flow direction of the refrigerant. 前記温度センサは前記冷媒配管の管周りに複数設置した請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein a plurality of the temperature sensors are installed around the pipe of the refrigerant pipe. 前記温度センサは前記絞り手段の上流近傍に配置した請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the temperature sensor is arranged in the vicinity of the upstream of the drawing means. 前記冷媒配管は、凝縮器配管よりも径を小さくしたことを特徴とする請求項1から3のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 3, wherein the refrigerant pipe has a diameter smaller than that of the condenser pipe. 前記冷媒配管は、キャピラリーチューブで構成した請求項1から3のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 3, wherein the refrigerant pipe is composed of a capillary tube. 前記冷媒配管は、前記冷媒配管の内径よりも径の小さいオリフィス板を備えた請求項1から3のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 3, wherein the refrigerant pipe includes an orifice plate having a diameter smaller than the inner diameter of the refrigerant pipe.
JP2019161636A 2019-09-05 2019-09-05 Refrigeration cycle device Pending JP2021038897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019161636A JP2021038897A (en) 2019-09-05 2019-09-05 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019161636A JP2021038897A (en) 2019-09-05 2019-09-05 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2021038897A true JP2021038897A (en) 2021-03-11

Family

ID=74846941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161636A Pending JP2021038897A (en) 2019-09-05 2019-09-05 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2021038897A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352067U (en) * 1976-10-06 1978-05-04
JPH05196321A (en) * 1991-01-31 1993-08-06 Nippondenso Co Ltd Vaporizer and refrigeration cycle device
JPH07294042A (en) * 1994-04-26 1995-11-10 Sanyo Electric Co Ltd Refrigerator
JP2001227844A (en) * 2000-02-17 2001-08-24 Showa Denko Kk Condenser
JP2004069295A (en) * 2003-10-02 2004-03-04 Mitsubishi Electric Corp Refrigerator using inflammable refrigerant
JP2008101884A (en) * 2006-10-20 2008-05-01 Mitsubishi Heavy Ind Ltd Heat source machine, heat source system and control method of heat source machine
JP2011033235A (en) * 2009-07-30 2011-02-17 Sanden Corp Refrigerating cycle
WO2019159826A1 (en) * 2018-02-16 2019-08-22 パナソニックIpマネジメント株式会社 Refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352067U (en) * 1976-10-06 1978-05-04
JPH05196321A (en) * 1991-01-31 1993-08-06 Nippondenso Co Ltd Vaporizer and refrigeration cycle device
JPH07294042A (en) * 1994-04-26 1995-11-10 Sanyo Electric Co Ltd Refrigerator
JP2001227844A (en) * 2000-02-17 2001-08-24 Showa Denko Kk Condenser
JP2004069295A (en) * 2003-10-02 2004-03-04 Mitsubishi Electric Corp Refrigerator using inflammable refrigerant
JP2008101884A (en) * 2006-10-20 2008-05-01 Mitsubishi Heavy Ind Ltd Heat source machine, heat source system and control method of heat source machine
JP2011033235A (en) * 2009-07-30 2011-02-17 Sanden Corp Refrigerating cycle
WO2019159826A1 (en) * 2018-02-16 2019-08-22 パナソニックIpマネジメント株式会社 Refrigerator
JP2019143819A (en) * 2018-02-16 2019-08-29 パナソニックIpマネジメント株式会社 refrigerator

Similar Documents

Publication Publication Date Title
US8459052B2 (en) Refrigerant vapor compression system with flash tank receiver
JP5196452B2 (en) Transcritical refrigerant vapor compression system with charge control
US20170176083A1 (en) Refrigerator and control method thereof
US20050217292A1 (en) Refrigeration system
EP3287724B1 (en) Refrigerator
US20070220911A1 (en) Vapor compression system and method for controlling conditions in ambient surroundings
RU2011146643A (en) LOW TEMPERATURE REFRIGERATOR AND REFRIGERATED STORAGE DEVICE
CN107461874B (en) Air conditioner defrosting control method and air conditioner
CN104729190A (en) Refrigerator
JP2013228130A (en) Freezer
KR20160084321A (en) Cooling apparatus
EP2901091B1 (en) Refrigerator and method of controlling refrigerator
US9453661B2 (en) Control system for a dual evaporator refrigeration system
WO2019159826A1 (en) Refrigerator
JP2008138915A (en) Refrigerating device
US9976791B2 (en) Refrigerator and method of controlling the same
JP2009236428A (en) Compression type refrigerating machine
JP2013096614A (en) Refrigerator
JP4268931B2 (en) Refrigeration / freezing equipment and control method thereof
JP2021038897A (en) Refrigeration cycle device
KR101766466B1 (en) Non-frost high performance air source heatpump system
JP2021032481A (en) Refrigeration cycle device
JP2022125447A (en) Refrigeration cycle device
Kang et al. Effects of accumulator heat exchangers on the performance of a refrigeration system
CN111033146A (en) Expansion valve control sensor and refrigeration system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230725