JP2022101239A - 膜間差圧推測装置および散気量制御装置 - Google Patents

膜間差圧推測装置および散気量制御装置 Download PDF

Info

Publication number
JP2022101239A
JP2022101239A JP2020215696A JP2020215696A JP2022101239A JP 2022101239 A JP2022101239 A JP 2022101239A JP 2020215696 A JP2020215696 A JP 2020215696A JP 2020215696 A JP2020215696 A JP 2020215696A JP 2022101239 A JP2022101239 A JP 2022101239A
Authority
JP
Japan
Prior art keywords
input data
differential pressure
unit
estimation
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020215696A
Other languages
English (en)
Other versions
JP7547196B2 (ja
Inventor
拓之 小林
Hiroyuki Kobayashi
伸和 鈴木
Nobukazu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2020215696A priority Critical patent/JP7547196B2/ja
Priority to US18/257,084 priority patent/US20240018021A1/en
Priority to EP21910338.9A priority patent/EP4269364A1/en
Priority to PCT/JP2021/045271 priority patent/WO2022138189A1/ja
Priority to CN202180086184.6A priority patent/CN116670076A/zh
Publication of JP2022101239A publication Critical patent/JP2022101239A/ja
Application granted granted Critical
Publication of JP7547196B2 publication Critical patent/JP7547196B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/48Mechanisms for switching between regular separation operations and washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/70Control means using a programmable logic controller [PLC] or a computer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/18Time sequence of one or more process steps carried out periodically within one apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/20Operation control schemes defined by a periodically repeated sequence comprising filtration cycles combined with cleaning or gas supply, e.g. aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Ventilation (AREA)

Abstract

【課題】散気量制御の一般的考え方にとらわれることなく、適切な膜ろ過運転を行うために膜間差圧の経時変化を適切に推測する。【解決手段】推測装置(2)は、膜ろ過運転中に計測される、膜ろ過圧および散気量を含む運転データから導出される入力データを取得する入力データ取得部(21)と、回帰モデル(31)を用いて所定時間後の膜間差圧関連データを推測するとともに、入力データに含まれる膜間差圧関連データを推測された膜間差圧関連データに変更することにより入力データを更新することをN(Nは2以上の整数)回実行する処理を、入力データに含まれるデータの一部を異ならせてM(Mは2以上の整数)回実行することにより、膜間差圧のN×前記所定時間後までの経時変化についてM個の推測結果を得る推測部(23)と、を備える。【選択図】図5

Description

本発明は、被処理水中に浸漬して配置された分離膜の膜面散気を行いながら分離膜を透過した処理水を得る膜ろ過処理において適用される膜間差圧推測装置等に関する。
特許文献1には、膜ろ過処理に使用する分離膜に対する散気量を制御する制御時刻において、或る過去の時点からの膜間差圧の変化量、変化率または上昇速度に基づき、事前に設定した閾値や有機物濃度から選定した目標上昇速度と比較し、散気量を決定する技術が開示されている。具体的には、算出した膜間差圧の上昇速度が目標上昇速度より大きい場合は、散気量を増加させて膜間差圧の上昇速度の抑制を図る技術が開示されている。
特許第6342101号
膜ろ過運転における散気量制御では、「分離膜の状態が悪い場合は、散気量を増加させることにより膜間差圧の上昇速度を抑制する」との考え方が一般的である。これに対し、本願出願人は、膜ろ過運転の状況によっては、散気量を減少させることにより膜間差圧の上昇速度が抑制される場合があり、また、散気量を増加させることにより膜間差圧が上昇したりファウリングが発生したりする場合があることを見出した。すなわち、散気量と膜間差圧との関係に対する一般的考え方は必ずしも常に正しいとは限らないことを見出した。
本発明の一態様は、散気量制御の一般的考え方にとらわれることなく、適切な膜ろ過運転を行うために膜間差圧の経時変化を適切に推測する膜間差圧推測装置などを提供することを目的としている。
上記の課題を解決するために、本発明の一態様に係る膜間差圧推測装置は、被処理水中に浸漬して配置された分離膜と、前記分離膜の膜面散気を行う散気装置とを備え、前記散気装置により前記膜面散気を行いながら前記分離膜を透過した処理水を得る膜分離装置にて行われる膜ろ過運転中に計測される、膜ろ過圧および散気量を含む運転データから導出される入力データを取得する入力データ取得部と、前記入力データを説明変数とし、当該入力データに対応付けられた所定時間後の前記分離膜の膜間差圧に関する膜間差圧関連データを目的変数とする回帰モデルを用いて前記所定時間後の前記膜間差圧関連データを推測するとともに、前記入力データに含まれる前記膜間差圧関連データを前記推測された膜間差圧関連データに変更することにより前記入力データを更新することをN(Nは2以上の整数)回実行する処理を、前記入力データに含まれるデータの一部を異ならせてM(Mは2以上の整数)回実行することにより、前記膜間差圧のN×前記所定時間後までの経時変化についてM個の推測結果を得る推測処理を実行する推測部と、を備える。
前記の構成によれば、回帰分析による膜間差圧の長期的な推測を、当該入力データの一部を変更しながら繰り返すシミュレーションを実行し、M個の推測結果を得ることができる。M個の推測結果は、それぞれ、入力データの一部が異なるため、膜間差圧の経時変化が異なる推測結果となる。よって、膜間差圧推測装置のユーザは、M個の推測結果から適切なものを選択し、当該推測結果に基づき膜ろ過運転を行うことができる。
また、上記推測処理においては、入力データの様々のパターンでシミュレーションを実行可能であるから、「分離膜の状態が悪ければ散気量を増加して膜間差圧の上昇を抑制する」という一般的考え方に沿わない状況をも考慮した適切な膜ろ過運転を実現することができる。
また、本発明の一態様に係る膜間差圧推測装置では、前記膜ろ過運転は、間欠運転であり、前記入力データは、運転期間と当該運転期間に続く休止期間とから成る単位期間における前記運転データから導出され、前記入力データ取得部は、前記単位期間のL(Lは1以上の整数)倍の周期で前記入力データを取得し、前記推測部は、前記入力データ取得部が前記入力データを取得する毎に、前記推測処理を実行してもよい。
前記の構成によれば、単位期間のL倍の周期で推測処理を実行するので、当該周期毎にM個の推測結果を得ることができる。よって、膜間差圧推測装置のユーザは、当該周期の都度、最適な推測結果を選択することができるため、長期的に適切な膜ろ過運転を継続することができる。
また、本発明の一態様に係る膜間差圧推測装置は、前記推測部が推測した前記経時変化の各々について、膜間差圧が予め設定された上限値に達するまでの時期を特定する時期特定部をさらに備えてもよい。
前記の構成によれば、M個の推測結果のそれぞれについて、分離膜の薬洗が必要となる時期(換言すれば、分離膜の寿命)を特定することができる。これにより、膜間差圧推測装置のユーザは、M個の推測結果から、分離膜の寿命が適切となるものを選択し、当該推測結果に基づき膜ろ過運転を行うことができる。
また、本発明の一態様に係る膜間差圧推測装置は、前記特定された時期に至るまでの、前記膜ろ過運転にかかる運転コストを算出するコスト算出部をさらに備えてもよい。
前記の構成によれば、M個の推測結果のそれぞれについて、薬洗までにかかる運転コストを算出することができる。これにより、膜間差圧推測装置のユーザは、M個の推測結果から、運転コストが適切となるものを選択し、当該推測結果に基づき膜ろ過運転を行うことができる。
また、本発明の一態様に係る膜間差圧推測装置は、前記M個の推測結果のうち、前記時期特定部が特定した前記時期が予め定められた時期条件を満たすものを特定する特定部をさらに備えてもよい。
前記の構成によれば、M個の推測結果から、予め定められた時期条件を満たす推測結果を特定するので、ユーザが適切な推測結果を選択する手間を低減することができる。
また、本発明の一態様に係る膜間差圧推測装置は、前記M個の推測結果のうち、前記コスト算出部が算出した前記運転コストが予め定められたコスト条件を満たすものを特定する特定部をさらに備えてもよい。
前記の構成によれば、M個の推測結果から、予め定められたコスト条件を満たす推測結果を特定するので、ユーザが適切な推測結果を選択する手間を低減することができる。
また、本発明の一態様に係る膜間差圧推測装置は、前記M個の推測結果のうち、前記時期特定部が特定した前記時期が予め定められた時期条件を満たし、かつ、前記コスト算出部が算出した前記運転コストが予め定められたコスト条件を満たすものを特定する特定部をさらに備えてもよい。
前記の構成によれば、M個の推測結果から、予め定められた時期条件およびコスト条件を満たす推測結果を特定するので、ユーザが適切な推測結果を選択する手間を低減することができる。
また、本発明の一態様に係る膜間差圧推測装置では、前記コスト算出部は、前記特定された時期に至るまでの前記散気装置による散気にかかるエネルギーのコストと、前記分離膜の薬洗にかかるコストとの合計を前記運転コストとして算出してもよい。
前記の構成によれば、エネルギーのコストと薬洗にかかるコストとを考慮した運転コストを算出できる。
また、本発明の一態様に係る散気量制御装置では、前記入力データは、前記散気装置の散気量に関する散気量関連データを含み、前記膜間差圧推測装置が特定した推測結果の推測に用いた前記入力データに含まれる前記散気量関連データを取得する散気量取得部を備え、取得した散気量関連データに基づき散気するように前記散気装置を制御してもよい。
前記の構成によれば、散気装置の散気量を、膜間差圧推測装置の推測結果に基づき制御することができる。また、当該散気量は、条件を満たす推測結果の推測に用いた入力データに含まれる散気量関連データに基づくので、ユーザの望む散気量での散気を実現することができる。
本発明の各態様に係る膜間差圧推測装置と、散気量制御装置とは、コンピュータによって実現してもよく、この場合には、コンピュータを前記膜間差圧推測装置および前記散気量制御装置が備える各部(ソフトウェア要素)として動作させることにより前記膜間差圧推測装置および前記散気量制御装置をコンピュータにて実現させる前記膜間差圧推測装置および前記散気量制御装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
本発明の一態様によれば、散気量制御の一般的考え方にとらわれることなく、適切な膜ろ過運転を行うために膜間差圧の経時変化を適切に推測することができる。
本発明の一実施形態に係る膜間差圧推測システムの概要を示す図である。 運転データから導出される入力データの一具体例を示す図である。 図1に示す推測装置が実行する推測処理の概要を示す図である。 図1に示す膜分離装置が実行する膜ろ過運転中に計測される膜ろ過圧の経時変化を示す図である。 図1に示す回帰モデル生成装置、推測装置および散気量制御装置の要部構成の一例を示すブロック図である。 図5に示す推測装置が実行する推測処理および図5に示す散気量制御装置が実行する散気量制御処理の流れの一例を示すフローチャートである。 散気量制御処理の具体例を示す図である。
<分離膜の膜間差圧推測システムの概要>
図1は、本実施形態に係る分離膜の膜間差圧推測システム100の概要を示す図である。膜間差圧推測システム100は、機械学習により生成される回帰モデルを用いて膜ろ過運転に用いられる分離膜93の膜間差圧の経時変化を推測したうえで、推測結果に応じて分離膜93へ供給する散気量を制御するシステムである。膜間差圧の詳細については後述する。
膜間差圧推測システム100は、回帰モデル生成装置1、推測装置2(膜間差圧推測装置)、記憶装置3、運転データ取得装置4、入力データ算出装置5、散気量制御装置8、および膜分離装置90を含み、また、記憶装置7を含んでもよい。
なお、回帰モデル生成装置1、推測装置2、記憶装置3、運転データ取得装置4、入力データ算出装置5、および記憶装置7の実装方法および所在は限定されるものではないが、好ましい典型例としては、運転データ取得装置4および散気量制御装置8はPLC(Programmable Logic Controller)として実装され、推測装置2、入力データ算出装置5、および記憶装置7はエッジコンピューティングであり、回帰モデル生成装置1および記憶装置3はクラウドコンピューティングである。
(膜分離装置90)
膜分離装置90は、被処理水中に対し分離膜を用いたろ過を行い、分離膜を透過した処理水を得る膜ろ過運転を行う装置である。当該処理水は、ろ過により不純物質が除去された被処理水と表現することもできる。
膜分離装置90は、膜分離槽91、分離膜93、散気管94、散気装置95、ろ過水配管96およびろ過ポンプ97を含む。膜分離槽91は、被処理水92を貯留する。分離膜93は、被処理水92中に浸漬して配置され、被処理水92をろ過する。ろ過水配管96は、分離膜93を介して膜分離槽91に接続され、被処理水92が分離膜93によりろ過された処理水を流通する。ろ過ポンプ97は、ろ過水配管96を介して分離膜93に接続され、処理水を流出させる。散気装置95は、分離膜93に付着した不純物質を剥離するための空気を供給する。換言すれば、散気装置95は分離膜93の膜面散気を行う。散気管94は、分離膜93の真下に配置され、散気装置95から供給された空気により、分離膜93の下方から上方に向かって流れる気泡を供給する。
膜分離槽91は、膜分離槽91へ流入する被処理水92を受け入れて貯留できればよく、コンクリート、ステンレスまたは樹脂などの水漏れしない材質で形成されていればよい。また、膜分離槽91の構造は、水漏れしない構造であればよい。
分離膜93は、中空糸膜や平膜などの固体と液体とを分離可能な膜であればよい。分離膜93としては、例えば、逆浸透(RO:Reverse Osmosis)膜、ナノろ過(NF:Nano Filtration)膜、限外ろ過(UF:Ultra Filtration)膜、精密ろ過(MF:Micro Filtration)膜などが挙げられるが、これに限定されない。
散気管94は気泡を供給できる能力があればよく、その材質としては、ガラス、ステンレス、焼結金属または樹脂などを使用することができる。散気装置95は、ブロワなどの空気を圧送できる装置であればよい。
(運転データ取得装置4)
運転データ取得装置4は、各種センサ等を用いて、膜ろ過運転中に計測される運転データを取得し、当該運転データを入力データ算出装置5へ送信する。本実施形態に係る運転データは、少なくとも、膜ろ過圧、散気量、水温および経過時間を含む。膜ろ過圧は、例えば、分離膜93とろ過ポンプ97との間のろ過水配管96に配置された圧力計から取得される。散気量は、散気装置95が供給する空気量であり散気装置95から直接取得される。水温は、被処理水92の水温であり、膜分離槽91に貯留された被処理水92内に配置された温度計から取得される。経過時間は、分離膜93の薬洗を行った時点からの経過時間であり、タイマから取得される。当該タイマは、薬洗が行われるたびに経過時間をリセットするものであり、配置位置は特に限定されない。当該タイマは、運転データ取得装置4にアプリケーションとして設けられていてもよい。また、当該タイマは、入力データ算出装置5と通信可能に接続されてもよいし、入力データ算出装置5にアプリケーションとして設けられていてもよい。この例の場合、入力データ算出装置5は、経過時間を、運転データ取得装置4を介さずに取得する。なお、上記リセットは、膜間差圧推測システム100のユーザが手動で行ってもよい。
また、薬洗とは、膜ろ過処理により汚染された分離膜93を、薬剤を用いて洗浄することを指す。
また、運転データはこの例に限定されない。例えば、運転データは膜ろ過流量を含んでいてもよい。膜ろ過流量は、例えば、ろ過水配管96に配置された流量計から取得される。
(入力データ算出装置5)
入力データ算出装置5は、受信した運転データから、回帰モデル生成装置1および推測装置2へ入力するための入力データを導出する。入力データは、運転データの特徴量を表すデータであり、運転データそのものである場合と、運転データに演算を施して得られる場合とがある。そして、回帰モデルを生成するフェーズでは、入力データ算出装置5は、算出した入力データを回帰モデル生成装置1へ直接送信するか、または、入力データを格納するための記憶装置7へ送信する。一方、膜間差圧を推測するフェーズでは、入力データ算出装置5は、算出した入力データを推測装置2へ送信する。なお、入力データの詳細については後述する。
(回帰モデル生成装置1)
回帰モデル生成装置1は、受信した入力データを入力とした機械学習により、膜間差圧を推測するための回帰モデルを生成し、記憶装置3に記憶する。回帰モデル生成の詳細については後述する。
(推測装置2)
推測装置2は、記憶装置3に記憶された回帰モデルにアクセスし、当該回帰モデルを用いて、入力データ算出装置5から受信した入力データから、膜間差圧の経時変化を推測する。当該経時変化の推測の詳細については後述する。
(散気量制御装置8)
散気量制御装置8は、推測装置2による推測結果に応じて散気装置95の散気量のレベル(以下、単に「散気量レベル」と表記する)を決定し、決定した散気量レベルで散気するように散気装置95を制御する。散気量制御の詳細については後述する。
(入力データの具体例)
図2は、運転データから導出される入力データの一具体例を示す図である。入力データ算出装置5は、運転データである膜ろ過圧から、一例として、膜ろ過圧の分散を算出する。膜ろ過圧の分散は、膜ろ過運転の或るサイクル(以下、「注目サイクル」と表記する)における膜ろ過圧の分散である。なお、膜ろ過運転のサイクルの詳細については後述する。
膜間差圧(TMP:Trans Membrane Pressure)は、分離膜93における、被処理水92側にかかる圧力と、処理水側にかかる圧力との差分である。膜間差圧の変動速度(以下、単に「変動速度」と表記する場合がある)は、注目サイクルにおける所定時点からの所定期間(以下、「P」と表記する)における膜間差圧の傾き(ΔTMP/ΔT)として算出される。なお、Pは数時間から数日の間で適宜選択される。一例として、変動速度は、Pにおける膜間差圧の経時変化における回帰モデル(直線回帰)の傾きとして算出されてもよい。このとき、変動速度は、負の値をとらないものとしてもよい。
また、入力データ算出装置5は、運転データである散気量から、一例として散気量の積算値を算出する。散気量の積算値(以下、積算散気量と表記する)は、Pにおける散気量の積算値であり、一例として、Pにおける散気量の積分値として算出される。
入力データは、図2に示すように、Pが異なる複数の変動速度および積算散気量を含んでいてもよい。図2の例において、Pはそれぞれ、直近1時間、直近3時間および直近24時間である。
また、入力データ算出装置5は、運転データである水温から、一例として水温の平均値を算出する。水温の平均値は、注目サイクルにおける水温の平均値である。経過時間は、運転データに含まれる経過時間そのものである。
なお、入力データは図2の例に限定されない。入力データは例えば、膜ろ過圧から算出されるデータとして、膜ろ過圧の最大値、膜ろ過圧の最小値、膜ろ過圧の標準偏差値、膜ろ過圧の平均値、膜間差圧、膜間差圧の変動速度、膜間差圧の変動量、および膜間差圧の変動率を含んでいてもよい。
膜ろ過圧の最大値は、注目サイクルにおける膜ろ過圧の最大値である。膜ろ過圧の最小値は、注目サイクルにおける膜ろ過圧の最小値である。膜ろ過圧の標準偏差値は、注目サイクルにおける膜ろ過圧の標準偏差値である。膜ろ過圧の平均値は、注目サイクルにおける膜ろ過圧の平均値である。
また、入力データは例えば、膜間差圧の変動量や変動率を含んでいてもよい。膜間差圧の変動量(以下、単に「変動量」と表記する場合がある)は、Pにおける変動量を指す。一例として、変動量は、所定時点におけるTMPの値と、Pが経過した時点におけるTMPの値との差分として算出される。膜間差圧の変動率(以下、単に「変動率」と表記する場合がある)は、Pにおける変動率を指す。一例として、変動率は、変動速度を膜間差圧で除算することにより算出される(ΔTMP/(TMP×ΔT))。
また、入力データは例えば、散気量から算出されるデータとして、散気量の平均値を含んでいてもよい。散気量の平均値は、注目サイクルにおける散気量の平均値である。
また、入力データは例えば、膜ろ過流量から算出されるデータとして、膜ろ過流量の平均値および膜ろ過流量の積算値を含んでいてもよい。膜ろ過流量の平均値は、注目サイクルにおける膜ろ過流量の平均値である。膜ろ過流量の積算値は、Pにおける膜ろ過流量の積算値であり、一例として、Pにおける平均膜ろ過流量の積分値として算出される。
なお、図示していないが、入力データには、入力データの導出元である運転データが取得された時刻を示す時刻情報が対応付けられていてもよい。
また、入力データは、各種運転データからPに基づいて算出したデータとして、変動速度および積算散気量以外のデータを含んでいてもよい。例えば、入力データは、Pにおける水温の平均値を含んでいてもよい。
<推測処理の概要>
本実施形態に係る膜間差圧の推測処理(以下、単に「推測処理」と表記する)では、回帰分析による長期的な推測を、パラメータを変えながら繰り返すシミュレーションを行う。
〔処理1〕図3は、推測処理の概要を示す模式図である。図3を参照しながら、まず、回帰分析による長期的な推測について概説する。
本実施形態の回帰分析は、入力データ算出装置5または記憶装置7から得られる入力データを説明変数とし、入力データに対応付けられた時刻から所定のn時間後(nは正の整数)の分離膜93の膜間差圧に関するデータ(以下、「膜間差圧関連データ」と表記する)を目的変数とするものである。膜間差圧関連データとは、一例として、上述した膜間差圧そのもの、膜間差圧の変動速度、膜間差圧の変動量、および膜間差圧の変動率、の少なくともいずれかである。なお、本実施形態では、膜間差圧関連データは上記変動速度であるものとする。この回帰分析により、散気量の現在値を維持したときのn時間後の膜間差圧を推測する処理を行う。そして、推測されたn時間後の変動速度を用いて入力データのうちの変動速度を更新したデータ(以下、「更新データ」と表記する。)を生成し、更新データについて再び回帰分析を行う。この処理をN回繰り返す(Nは2以上の整数)。つまり、「回帰分析によりn時間後の変動速度を推測するとともに、入力データに含まれる変動速度をn時間後の膜間差圧関連データに変更することにより入力データを更新する」という処理を、N回実行する。
具体的には、繰り返しの1回目として、入力データを説明変数とした回帰分析により、入力データに対応付けられた時刻からn時間後の変動速度を推測したうえで、当該変動速度を用いて入力データのうちの変動速度を更新した更新データU(1,1)を生成する。
繰り返しのX回目として(Xは2以上N未満の整数)、更新データU(1,X-1)を説明変数とした回帰分析により、入力データに対応付けられた時刻からX×n時間後の変動速度を推測したうえで、当該変動速度を用いて更新データU(1,X-1)のうちの変動速度を更新した更新データU(1,X)を生成する。
繰り返しのN回目として、更新データU(1,N-1)を説明変数とした回帰分析により、入力データに対応付けられた時刻からN×n時間後の変動速度を推測する。当該変動速度を用いて更新データU(1,N-1)のうちの変動速度を更新した更新データU(1,N)を生成してもよい。
以上により、入力データに対応付けられた時刻からn時間後、2n時間後、・・・N×n時間後の、合計N個の膜間差圧を推測する。以上により、散気量の現在値を維持したときのN×n時間後までの膜間差圧の経時変化を推測する。
〔処理2〕次に、入力データのうち散気量に関するデータ(データの一部、以下、「散気量関連データ」と表記する)を変更したデータ(以下、「シミュレーションデータ」と表記する)を用いて、上記処理1を行う。散気量関連データとは、上述した散気量、散気量の平均値および散気量の積算値の少なくともいずれかである。なお、本実施形態では、散気量関連データは散気量であるものとする。この処理を、散気量を変えながらM回行う(Mは2以上の整数)。つまり、互いに異なるM個のデータ(入力データ、および、M-1個のシミュレーションデータ)に対して、上記処理1を行う。つまり、処理2では、上記処理1を、入力データに含まれるデータの一部を異ならせてM回実行することにより、膜間差圧のN×n時間後までの経時変化についてM個の推測結果を得る。
M回中の1回目の処理は、入力データに対する上記処理1であり、具体的には上述したとおりである。
M回中のY回目の処理として(Yは2以上M以下の整数)、入力データのうち散気量を変更したシミュレーションデータSに対して上記処理1を行う。具体的には、上記処理1における繰り返しの1回目として、シミュレーションデータSを説明変数とした回帰分析により、シミュレーションデータSに対応付けられた時刻からn時間後の変動速度を推測したうえで、当該変動速度を用いてシミュレーションデータSのうちの変動速度を更新した更新データU(Y,1)を生成する。上記処理1における繰り返しのX回目として、更新データU(Y,X-1)を説明変数とした回帰分析により、シミュレーションデータSに対応付けられた時刻からX×n時間後の変動速度を推測したうえで、当該変動速度を用いて更新データU(Y,X-1)のうちの変動速度を更新した更新データU(Y,X)を生成する。上記処理1における繰り返しのN回目として、更新データU(Y,N-1)を説明変数とした回帰分析により、シミュレーションデータSに対応付けられた時刻からN×n時間後の変動速度を推測する。
以上の処理1および処理2を行うことにより、M個の散気量の各々について、散気量の現在値を維持したときのN×n時間後までの膜間差圧の経時変化を推測することができる。
<膜ろ過運転のサイクル>
図4は、膜分離装置90が実行する膜ろ過運転中に計測される膜ろ過圧の経時変化を示す図である。図4を用いて、膜ろ過運転のサイクルについて説明する。膜ろ過運転のサイクルは、膜ろ過運転を実行する運転期間(例えば約5分)と、当該運転期間に続く、膜ろ過運転を実行しない休止期間(例えば約1分)とから成る。膜ろ過運転は、このサイクルが繰り返されて成る間欠運転である。なお、本明細書では、膜ろ過運転のサイクルを「単位期間」と表記する場合がある。
膜間差圧推測システム100では、一例として、休止期間において、運転データ取得装置4が運転期間中に取得した運転データを用いて、入力データ算出装置5が入力データを導出することが好ましく、これに続けて、推測装置2が膜間差圧の経時変化を推測し、その推測結果に応じて散気装置95を制御することが好ましい。膜間差圧推測システム100では、この一連の処理を周期的に実行する。具体的には、推測装置2は、単位期間のL(Lは1以上の整数)倍の周期(以下、「単位周期」と表記する)で入力データ算出装置5から入力データを取得し、入力データを取得する毎に上述した推測処理を実行する。これにより、膜間差圧推測システム100では、単位周期の休止期間毎に、膜間差圧の経時変化を推測したうえで、散気装置95の散気量を適切に制御することができる。なお、Lの典型値は「1」である。つまり、推測装置2は、毎回の休止期間において、入力データ算出装置5から入力データを取得し、上述した推測処理を実行することが好ましい。
<各装置の要部構成>
図5は、本実施形態に係る回帰モデル生成装置1、推測装置2および散気量制御装置8の要部構成の一例を示すブロック図である。
(回帰モデル生成装置1)
回帰モデル生成装置1は制御部10を備えている。制御部10は、回帰モデル生成装置1の各部を統括して制御するものであり、一例として、プロセッサおよびメモリにより実現される。この例において、プロセッサは、ストレージ(不図示)にアクセスし、ストレージに格納されているプログラム(不図示)をメモリにロードし、当該プログラムに含まれる一連の命令を実行する。これにより、制御部10の各部が構成される。
当該各部として、制御部10は、入力データ取得部11、対応付け部12および回帰モデル生成部13を含む。
入力データ取得部11は、入力データ算出装置5または記憶装置7から入力データを取得し、取得した入力データを対応付け部12へ出力する。
対応付け部12は、入力データの各々に、当該入力データに対応付けられた時刻からn時間後の変動速度を対応付ける。nの値は例えば12または24であるが、この例に限定されない。
対応付け部12は、n時間後の変動速度が対応付けられた入力データを、回帰モデル生成部13へ出力する。なお、n時間後の変動速度がまだ存在しないことにより、変動速度が対応付けられなかった入力データは、変動速度が取得可能となるまで対応付け部12に保持されればよい。
回帰モデル生成部13は、入力データを説明変数とし、n時間後の変動速度を目的変数とする回帰モデル31を生成し、記憶装置3へ格納する。
(推測装置2)
推測装置2は制御部20および出力部27を備えている。制御部20は、推測装置2の各部を統括して制御するものであり、一例として、プロセッサおよびメモリにより実現される。この例において、プロセッサは、ストレージ(不図示)にアクセスし、ストレージに格納されているプログラム(不図示)をメモリにロードし、当該プログラムに含まれる一連の命令を実行する。これにより、制御部20の各部が構成される。
当該各部として、制御部20は、入力データ取得部21、アクセス部22、寿命特定部24(時期特定部)、コスト算出部25および推測結果選択部26(特定部)を含む。
入力データ取得部21は、単位周期が経過する毎に入力データ算出装置5から入力データを取得し、アクセス部22へ出力する。当該入力データは、直近の膜ろ過運転において計測された運転データから導出されたものであることが好ましい。
アクセス部22は、記憶装置3に記憶された回帰モデル31にアクセスする。アクセス部22は、推測部23を含む。
推測部23は、アクセス部22がアクセスした回帰モデル31を用いて、入力データ取得部21から取得された入力データを用いた推測処理を行う。具体的には、推測部23は、まず、上述した処理1を行う。具体的には、推測部23は、アクセス部22がアクセスした回帰モデル31に、入力データ取得部21が取得した入力データを入力することにより、回帰モデル31からn時間後の変動速度を取得する。続いて、推測部23は、取得されたn時間後の変動速度を用いて入力データを更新した更新データを回帰モデル31に入力することにより、回帰モデル31から2n時間後の変動速度を取得する。この処理をN回繰り返し、N×n時間後までの変動速度を取得する。
そして、推測部23は、上述した処理2を行う。具体的には、推測部23は、入力データとシミュレーションデータについて、上述した処理1による回帰モデル31を用いた推測を行い、各々について、N×n時間後までの変動速度を取得する。これにより、推測部23は、N×n時間後までの膜間差圧の経時変化について、M個の推測結果を得ることができる。推測部23は、M個の推測結果の各々に、推測元の入力データまたはシミュレーションデータを対応付けて寿命特定部24へ出力する。以降、推測結果と、入力データまたはシミュレーションデータとの組み合わせを、「推測データ」と表記する場合がある。
寿命特定部24は、推測部23が推測したM個の推測結果、すなわち、M個の膜間差圧の経時変化について、分離膜93の寿命を特定する。ここで寿命とは、分離膜93の膜間差圧が予め設定された上限値に達するまでの時期であり、換言すれば、分離膜93の薬洗が必要となる時期である。当該上限値は、例えば12kPaであるが、これに限定されない。一例として、寿命特定部24は、各推測データに含まれる膜間差圧の経時変化において、膜間差圧が上限値に到達した時点を分離膜93の寿命として特定する。寿命特定部24は、特定した寿命の各々を、特定元の推測データに対応付けてコスト算出部25へ出力する。
コスト算出部25は、分離膜93の寿命に至るまでの、膜ろ過運転にかかる運転コストを算出する。すなわち、コスト算出部25は、M個の推測データについて、上記運転コストを算出する。
ここで運転コストとは、上記寿命に至るまでの散気装置95による散気にかかるエネルギーのコストと、上記寿命に至った分離膜93の薬洗にかかるコストとの合計である。薬洗にかかるコストとは、薬洗に用いる薬品の仕入れ費と、薬洗を行う作業員の人件費とを含む。
コスト算出部25は、M個の推測データの各々について、分離膜93の寿命に至るまでの単位膜ろ過流量あたりの散気量を算出する。一例として、コスト算出部25は、各推測データに含まれる入力データまたはシミュレーションデータに含まれる散気量および積算散気量と、各推測データに対応付けられた寿命とから、分離膜93が寿命に至った時点での散気量の合計値を算出する。続いて、コスト算出部25は、算出した各合計値を、分離膜93が寿命に至るまでの総膜ろ過流量で除算することにより、単位膜ろ過流量あたりの散気量を算出する。当該総膜ろ過流量は、例えば、単位時間あたりの膜ろ過流量をあらかじめ特定しておき、当該膜ろ過流量に、分離膜93が寿命に至るまでの時間を乗算することで算出することができる。
続いて、コスト算出部25は、算出した単位膜ろ過流量あたりの散気量(以下、単に「散気量」と表記する)から、単位膜ろ過流量あたりの消費電力を算出する。一例として、コスト算出部25は、算出した散気量に、所定値である単位散気量あたりの消費電力を乗算することにより、単位膜ろ過流量あたりの消費電力を算出する。
続いて、コスト算出部25は、算出した単位膜ろ過流量あたりの消費電力(以下、単に「消費電力」と表記する)から、単位膜ろ過流量あたりの電気代を算出する。当該電気代が、上述したエネルギーのコストである。一例として、コスト算出部25は、算出した消費電力に、所定値である単位消費電力あたりの電気代を乗算することにより、単位膜ろ過流量あたりの電気代を算出する。
続いて、コスト算出部25は、算出した単位膜ろ過流量あたりの電気代に、所定値である単位膜ろ過流量あたりの薬洗にかかるコストを加算することにより、運転コストを算出する。コスト算出部25は、算出した運転コストを、算出元の寿命および推測データに対応付けて推測結果選択部26へ出力する。
推測結果選択部26は、取得したM個の推測データのうち、予め定められた条件を満たすものを選択する。当該条件は、推測データに対応付けられた寿命に関する時期条件と、運転コストに関するコスト条件の少なくとも一方であり、本実施形態では、コスト条件である例を説明する。一例として、コスト条件は、「運転コストが最少」である。推測結果選択部26は、選択した推測データ、すなわち、対応付けられた運転コストが最少である推測データに含まれる入力データまたはシミュレーションデータの散気量を出力部27に出力する。
出力部27は、推測結果選択部26から取得した散気量を散気量制御装置8へ出力(送信)する通信デバイスである。
(散気量制御装置8)
散気量制御装置8は、散気量取得部81および散気量制御部82を備える。散気量取得部81は、推測装置2から受信した散気量を取得し、散気量制御部82へ出力する。
散気量制御部82は、取得した散気量に基づき散気するように散気装置95を制御する。
<推測処理および散気量制御処理の流れ>
図6は、推測装置2が実行する推測処理および散気量制御装置8が実行する散気量制御処理の流れの一例を示すフローチャートである。
入力データ取得部21は、単位周期が経過するまで待機している(S1)。単位周期が経過すると(S1でYES)、入力データ取得部21は、入力データ算出装置5から入力データを取得し(S2)。当該入力データをアクセス部22へ出力する。
アクセス部22は、入力データを取得すると、記憶装置3に記憶されている回帰モデル31へアクセスする。続いて、推測部23は、回帰分析処理を実行する(S3)。具体的には、推測部23は、アクセス部22がアクセスした回帰モデル31に、入力データ取得部21が取得した入力データを入力することにより、回帰モデル31からn時間後の変動速度を取得する。
続いて、推測部23は、回帰分析処理の実行回数である回帰分析回数がN回に到達したか否かを判定する(S4)。N回に到達していない場合(S4でNO)、推測部23は、データ更新処理を実行する(S5)。具体的には、推測部23は、取得したn時間後の変動速度を用いて、入力データのうちの変動速度を更新した更新データを生成する。そして、推測部23は、更新データを用いてS3の処理を再度実行する。なお、これ以降のS3の処理の実行対象は、直近のS5の処理で生成した更新データである。つまり、推測部23は、生成した更新データを回帰モデル31へ入力する。推測部23は、S4の処理において回帰分析回数がN回に到達したと判定するまで、S5の処理と、これに続くS3の処理との実行を繰り返す。回帰分析回数がN回に到達すると、推測部23は、入力データについて、散気量の現在値を維持したときのN×n時間後までの変動速度を取得することとなる。
回帰分析回数がN回に到達した場合(S4でYES)、推測部23は、シミュレーションデータの生成回数がM-1回に到達したか否かを判定する(S6)。なお、S6に初めて達したときは、当該生成回数は0回であるため、推測部23は、当該生成回数がM-1回に到達していないと判定する。
シミュレーションデータの生成回数がM-1回に到達していない場合(S6でNO)、推測部23は、シミュレーションデータ生成処理を実行する(S7)。具体的には、推測部23は、入力データのうちの散気量を変更し、シミュレーションデータを生成する。そして、推測部23は、生成したシミュレーションデータに対してS3からS5までの処理を実行する。これにより、推測部23は、生成したシミュレーションデータについて、散気量の現在値を維持したときのN×n時間後までの変動速度を取得する。また、推測部23は、S6の処理においてシミュレーションデータの生成回数がM-1回に到達したと判定するまで、S7の処理と、これに続くS3からS5までの処理との実行を繰り返す。当該生成回数がM-1回に到達すると、推測部23は、N×n時間後までの変動速度を、M個取得することとなる。
シミュレーションデータの生成回数がM-1回に到達した場合(S6でYES)、推測部23は、N×n時間後までの変動速度の各々から、膜間差圧の経時変化を生成する。そして、推測部23は、(A)入力データ、(B)入力データに基づき推測されたN×n時間後までの膜間差圧の経時変化、(C)シミュレーションデータS~S、(D)シミュレーションデータS~Sの各々に基づき推測されたN×n時間後までの膜間差圧の経時変化、を寿命特定部24に出力する。(A)および(B)の組み合わせ、並びに、(C)および(D)の組み合わせが、上述した推測データである。
続いて、寿命特定部24は、寿命特定処理を実行する(S8)。具体的には、寿命特定部24は、推測部23から取得した入力データに基づき推測された経時変化と、シミュレーションデータに基づき推測された経時変化とから、分離膜93の寿命を特定する。寿命特定部24は、特定したM個の寿命の各々を、特定元の経時変化を含む推測データに対応付けてコスト算出部25へ出力する。
続いて、コスト算出部25は、運転コスト算出処理を実行する(S9)。具体的には、コスト算出部25は、各推測データに対応付けられた寿命と、各推測データに含まれる入力データまたはシミュレーションデータに含まれる積算散気量とに基づき、運転コストを算出する。コスト算出部25は、算出したM個の運転コストの各々を、算出元の入力データまたはシミュレーションデータを含む推測データおよび寿命に対応付けて推測結果選択部26へ出力する。
続いて、推測結果選択部26は、推測結果選択処理を実行する(S10)。具体的には、推測結果選択部26は、取得したM個の推測データのうち、対応付けられた運転コストが最少である推測データを選択する。推測結果選択部26は、選択した推測データに含まれる入力データまたはシミュレーションデータの散気量を出力部27に出力する。
続いて、出力部27は、散気量出力処理を実行する(S11)。具体的には、出力部27は、推測結果選択部26が選択した散気量を散気量制御装置8へ送信する。
続いて、散気量制御装置8は、散気量制御処理を実行する(S12)。具体的には、散気量制御部82は、散気量取得部81が受信した散気量で散気するように散気装置95を制御する。ステップS12、すなわち散気量制御処理の終了後、推測処理はステップS1に戻る。
<散気量制御の具体例>
図7は、散気量制御処理の具体例を示す図である。具体的には、図7は、直近の散気量からの散気量の操作量の経時変化を示すグラフである。ここで、操作量とは、直前の単位周期における散気量と今回の単位周期における散気量との差であり、具体的には、今回の単位周期における散気量から直前のサイクルにおける散気量を減算したものである。また、当該グラフにおける点は、各単位周期における操作量である。
図7の例において、上記操作量は、-0.5、-0.1、0、0.1、0.5、1(L/min)である。負の値の操作量(-0.5および-0.1)は、直前の単位周期より散気量を減少させたことを示す。また、正の値の操作量(0.1、0.5、1)は、直前の単位周期より散気量を増加させたことを示す。なお、操作量の値はこの例に限定されない。
操作量が0とは、直前の単位周期から散気量を変更していないことを示し、また、推測装置2の推測結果選択部26が、入力データを含む推測データを選択したことを示す。また、0以外の操作量は、推測結果選択部26が、シミュレーションデータを含む推測データのいずれかを選択したことを示す。
このように、本実施形態に係る散気量制御装置8は、単位周期ごとに、推測装置2が選択した散気量に基づく散気量制御を行う。これにより、膜ろ過処理において、予め定められた条件(本実施形態では、運転コストが最少となる、との条件)を満たすように、散気量制御を行うことができる。
<効果>
以上のとおり、本実施形態に係る推測装置2は、入力データを取得する入力データ取得部21と、膜間差圧の経時変化についてM個の推測結果を得る推測処理を実行する推測部23とを備える。
この構成によれば、回帰分析による膜間差圧の長期的な推測を、入力データの一部を変更しながら繰り返すシミュレーションを実行し、M個の推測結果を得ることができる。M個の推測結果は、それぞれ、入力データの一部が異なるため、膜間差圧の経時変化が異なる推測結果となる。よって、推測装置2のユーザは、M個の推測結果から適切なものを選択し、当該推測結果に基づき膜ろ過運転を行うことができる。
また、推測処理においては、入力データの様々のパターンでシミュレーションを実行可能であるから、「分離膜の状態が悪ければ散気量を増加して膜間差圧の上昇を抑制する」という一般的考え方に沿わない状況をも考慮した適切な膜ろ過運転を実現することができる。
また、入力データ取得部21は、単位周期が経過する毎に入力データを取得し、推測部23は、入力データ取得部21が入力データを取得する毎に推測処理を実行する。
この構成によれば、単位周期が経過する毎に推測処理を実行するので、単位周期毎にM個の推測結果を得ることができる。よって、推測装置2のユーザは、単位周期の都度、最適な推測結果を選択することができるため、長期的に適切な膜ろ過運転を継続することができる。
また、推測装置2は、推測部23が推測した経時変化の各々について、分離膜93の寿命を特定する寿命特定部24をさらに備える。
この構成によれば、M個の推測結果のそれぞれについて、分離膜93の寿命を特定することができる。これにより、推測装置2のユーザは、M個の推測結果から、分離膜93の寿命が適切となるものを選択し、当該推測結果に基づき膜ろ過運転を行うことができる。
また、推測装置2は、分離膜93の寿命に至るまでの、膜ろ過運転に係る運転コストを算出するコスト算出部25をさらに備える。
この構成によれば、M個の推測結果のそれぞれについて、薬洗までにかかる運転コストを算出することができる。これにより、推測装置2のユーザは、M個の推測結果から、運転コストが適切となるものを選択し、当該推測結果に基づき膜ろ過運転を行うことができる。
また、推測装置2は、M個の推測結果のうち、コスト算出部25が算出した運転コストが予め定められたコスト条件を満たすものを選択する推測結果選択部26をさらに備える。
この構成によれば、M個の推測結果から、予め定められたコスト条件を満たす推測結果を選択するので、ユーザが適切な推測結果を選択する手間を低減することができる。
また、コスト算出部25は、分離膜93の寿命に至るまでの散気装置95による散気にかかるエネルギーのコストと、分離膜93の薬洗にかかるコストとの合計を運転コストとして算出する。
この構成によれば、エネルギーのコストと薬洗にかかるコストとを考慮した運転コストを算出できる。
また、本実施形態に係る散気量制御装置8は、推測装置2が選択した推測結果の推測元である入力データまたはシミュレーションデータに含まれる散気を受信する散気量取得部81と、当該散気量に基づき散気するように散気装置95を制御する散気量制御部82とを備える。
この構成によれば、散気装置95の散気量を、推測装置2の推測結果に基づき制御することができる。また、当該散気量は、条件を満たす推測結果の推測に用いた入力データまたはシミュレーションデータに含まれる散気量に基づくので、ユーザの望む散気量での散気を実現することができる。
推測結果選択部26が推測データの選択に用いる条件は、時期条件のみであってもよい。当該時期条件は、例えば、「分離膜93の寿命が最長」であってもよい。つまり、この例において推測結果選択部26は、M個の推測データのうち、分離膜93の寿命が最長のものを選択する。
この構成によれば、M個の推測結果から、予め定められた時期条件を満たす推測結果を特定するので、ユーザが適切な推測結果を選択する手間を低減することができる。なお、この例では、制御部20はコスト算出部25を含んでいなくてもよい。
また、推測結果選択部26が推測データの選択に用いる条件は、時期条件およびコスト条件であってもよい。この例における推測結果選択部26は、取得したM個の推測データのうち、対応付けられた寿命が予め定められた時期条件を満たし、かつ、対応付けられている運転コストが予め定められたコスト条件を満たすものを選択する。一例として、時期条件は、「寿命が所定の数値範囲内である」であり、コスト条件は、「運転コストが所定の数値範囲内である」であってもよい。これら数値範囲については、推測装置2のユーザが、望ましい数値範囲を設定すればよい。
この例において、推測結果選択部26は、時期条件を満たす寿命と、コスト条件を満たす運転コストとが対応付けられた推測データが複数ある場合、いずれか1つの推測データを選択する。一例として、推測結果選択部26は、所定の目標日数と寿命との誤差、および、所定の目標値と運転コストとの誤差の合計が最少である推測データを選択する。
この構成によれば、M個の推測結果から、予め定められた時期条件およびコスト条件を満たす推測結果を特定するので、ユーザが適切な推測結果を選択する手間を低減することができる。
推測装置2は、寿命特定部24、コスト算出部25および推測結果選択部26を備えず、これらの構成に代えて、M個の推測データを表示装置(不図示)に表示する構成を備えていてもよい。当該表示装置は、推測装置2と一体となっていてもよいし、推測装置2とは別体であってもよい。
この例において、推測装置2のユーザは、M個の推測データから1つを選択する。出力部27は、ユーザが選択した推測データに含まれる入力データまたはシミュレーションデータの散気量を散気量制御装置8へ送信する。
また、推測装置2は、寿命特定部24、コスト算出部25および推測結果選択部26に加え、出力部27を備えていなくてもよい。この例において、推測装置2のユーザは、選択した推測データに含まれる入力データまたはシミュレーションデータの散気量を散気量制御装置8に入力する。
また、コスト算出部25が算出する運転コストは、上述の例に限定されない。運転コストは例えば、エネルギーのコストそのものであってもよい。
また、入力データおよびシミュレーションデータは、散気量に代えて、あるいは、加えて、散気量の操作量を含んでいてもよい。散気量に代えて当該操作量を含む例の場合、当該操作量が、シミュレーションデータ生成処理において変更されるデータとなる。また、散気量に加えて当該操作量を含む例の場合、散気量および当該操作量が、シミュレーションデータ生成処理において変更されるデータとなる。
入力データおよびシミュレーションデータが散気量の操作量を含む例において、入力データにおける当該操作量は0である。また、シミュレーションデータにおける当該操作量は0以外の値をとる。図7の例、すなわちM=6の例の場合、各シミュレーションデータにおける当該操作量は、-0.5、-0.1、0.1、0.5および1である。
また、散気量として取り得る数値範囲が予め設定されていてもよい。換言すれば、散気量制御装置8は、当該数値範囲内で散気量を制御してもよい。この例において、散気量制御装置8が受信した散気量が、当該数値範囲の上限値を上回る、または、下限値を下回るものである場合、散気量制御装置8は、現在の散気量(すなわち、数値範囲の上限値又は下限値)を維持してもよい。
〔ソフトウェアによる実現例〕
回帰モデル生成装置1、推測装置2および散気量制御装置8の制御ブロック(特に制御部10および20、並びに、散気量制御部82)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
後者の場合、回帰モデル生成装置1、推測装置2および散気量制御装置8は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
2 推測装置(膜間差圧推測装置)
8 散気量制御装置
21 入力データ取得部
23 推測部
24 寿命特定部(時期特定部)
25 コスト算出部
26 推測結果選択部(特定部)
31 回帰モデル
90 膜分離装置
92 被処理水
93 分離膜
95 散気装置

Claims (9)

  1. 被処理水中に浸漬して配置された分離膜と、前記分離膜の膜面散気を行う散気装置とを備え、前記散気装置により前記膜面散気を行いながら前記分離膜を透過した処理水を得る膜分離装置にて行われる膜ろ過運転中に計測される、膜ろ過圧および散気量を含む運転データから導出される入力データを取得する入力データ取得部と、
    前記入力データを説明変数とし、当該入力データに対応付けられた所定時間後の前記分離膜の膜間差圧に関する膜間差圧関連データを目的変数とする回帰モデルを用いて前記所定時間後の前記膜間差圧関連データを推測するとともに、前記入力データに含まれる前記膜間差圧関連データを前記推測された膜間差圧関連データに変更することにより前記入力データを更新することをN(Nは2以上の整数)回実行する処理を、前記入力データに含まれるデータの一部を異ならせてM(Mは2以上の整数)回実行することにより、前記膜間差圧のN×前記所定時間後までの経時変化についてM個の推測結果を得る推測処理を実行する推測部と、を備える膜間差圧推測装置。
  2. 前記膜ろ過運転は、間欠運転であり、
    前記入力データは、運転期間と当該運転期間に続く休止期間とから成る単位期間における前記運転データから導出され、
    前記入力データ取得部は、前記単位期間のL(Lは1以上の整数)倍の周期で前記入力データを取得し、
    前記推測部は、前記入力データ取得部が前記入力データを取得する毎に、前記推測処理を実行する、請求項1に記載の膜間差圧推測装置。
  3. 前記推測部が推測した前記経時変化の各々について、膜間差圧が予め設定された上限値に達するまでの時期を特定する時期特定部をさらに備える、請求項1または2に記載の膜間差圧推測装置。
  4. 前記特定された時期に至るまでの、前記膜ろ過運転にかかる運転コストを算出するコスト算出部をさらに備える、請求項3に記載の膜間差圧推測装置。
  5. 前記M個の推測結果のうち、前記時期特定部が特定した前記時期が予め定められた時期条件を満たすものを特定する特定部をさらに備える、請求項3に記載の膜間差圧推測装置。
  6. 前記M個の推測結果のうち、前記コスト算出部が算出した前記運転コストが予め定められたコスト条件を満たすものを特定する特定部をさらに備える、請求項4に記載の膜間差圧推測装置。
  7. 前記M個の推測結果のうち、前記時期特定部が特定した前記時期が予め定められた時期条件を満たし、かつ、前記コスト算出部が算出した前記運転コストが予め定められたコスト条件を満たすものを特定する特定部をさらに備える、請求項4に記載の膜間差圧推測装置。
  8. 前記コスト算出部は、前記特定された時期に至るまでの前記散気装置による散気にかかるエネルギーのコストと、前記分離膜の薬洗にかかるコストとの合計を前記運転コストとして算出する、請求項4に記載の膜間差圧推測装置。
  9. 前記入力データは、前記散気装置の散気量に関する散気量関連データを含み、
    請求項5から7のいずれか1項に記載の膜間差圧推測装置が特定した推測結果の推測に用いた前記入力データに含まれる前記散気量関連データを取得する散気量取得部を備え、
    取得した散気量関連データに基づき散気するように前記散気装置を制御する散気量制御装置。
JP2020215696A 2020-12-24 2020-12-24 膜間差圧推測装置および散気量制御装置 Active JP7547196B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020215696A JP7547196B2 (ja) 2020-12-24 2020-12-24 膜間差圧推測装置および散気量制御装置
US18/257,084 US20240018021A1 (en) 2020-12-24 2021-12-09 Transmembrane pressure difference inference device and diffused air amount control device
EP21910338.9A EP4269364A1 (en) 2020-12-24 2021-12-09 Transmembrane pressure difference inference device and diffused air amount control device
PCT/JP2021/045271 WO2022138189A1 (ja) 2020-12-24 2021-12-09 膜間差圧推測装置および散気量制御装置
CN202180086184.6A CN116670076A (zh) 2020-12-24 2021-12-09 膜间差压推测装置以及散气量控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020215696A JP7547196B2 (ja) 2020-12-24 2020-12-24 膜間差圧推測装置および散気量制御装置

Publications (2)

Publication Number Publication Date
JP2022101239A true JP2022101239A (ja) 2022-07-06
JP7547196B2 JP7547196B2 (ja) 2024-09-09

Family

ID=82157787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020215696A Active JP7547196B2 (ja) 2020-12-24 2020-12-24 膜間差圧推測装置および散気量制御装置

Country Status (5)

Country Link
US (1) US20240018021A1 (ja)
EP (1) EP4269364A1 (ja)
JP (1) JP7547196B2 (ja)
CN (1) CN116670076A (ja)
WO (1) WO2022138189A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122570A1 (ja) * 2022-12-09 2024-06-13 株式会社クボタ 膜洗浄風量制御システム、膜洗浄風量制御方法および膜洗浄風量制御プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286567A (ja) * 1997-04-16 1998-10-27 Nkk Corp 膜分離方法
JP4497406B2 (ja) 2004-07-06 2010-07-07 オルガノ株式会社 浸漬型膜モジュールの洗浄方法及び洗浄装置
JP5841473B2 (ja) 2012-03-28 2016-01-13 株式会社クボタ 膜分離装置の運転方法及び膜分離装置
KR101542617B1 (ko) 2012-12-03 2015-08-06 삼성에스디아이 주식회사 분리막 세정 시스템 및 이를 이용한 분리막 세정 방법
JP6342101B1 (ja) 2017-03-23 2018-06-13 三菱電機株式会社 膜分離装置および膜分離方法
JP7378972B2 (ja) 2019-06-12 2023-11-14 東芝インフラシステムズ株式会社 膜処理制御システム及び膜処理制御方法
CN110668562B (zh) 2019-10-25 2022-05-13 中信环境技术(广州)有限公司 实时消除膜生物反应器污染的控制方法、系统及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122570A1 (ja) * 2022-12-09 2024-06-13 株式会社クボタ 膜洗浄風量制御システム、膜洗浄風量制御方法および膜洗浄風量制御プログラム

Also Published As

Publication number Publication date
WO2022138189A1 (ja) 2022-06-30
JP7547196B2 (ja) 2024-09-09
EP4269364A1 (en) 2023-11-01
US20240018021A1 (en) 2024-01-18
CN116670076A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2021246393A1 (ja) 学習モデル生成装置、推測装置および散気量制御装置
WO2022138189A1 (ja) 膜間差圧推測装置および散気量制御装置
JP6523854B2 (ja) 最適制御装置、最適制御方法、コンピュータプログラム及び最適制御システム
JP2013202472A (ja) 膜分離装置の運転方法及び膜分離装置
JP6479277B1 (ja) 散気量制御システム及び散気量制御方法
JP5034326B2 (ja) 膜ろ過予測方法、及び膜ろ過予測プログラム
CN108279719B (zh) 温度控制方法及装置
KR101125318B1 (ko) 수처리공정에 이용되는 오존주입률 결정장치 및 방법
JP6250388B2 (ja) 運転条件演算装置及びこれを備えた水処理システム
JP5841473B2 (ja) 膜分離装置の運転方法及び膜分離装置
US11790325B2 (en) Operation support device and operation support method
KR101269253B1 (ko) 생물막반응조의 막 세정 시기 예측 방법 및 시스템
JP6288319B1 (ja) 水処理装置の運転方法
WO2024122570A1 (ja) 膜洗浄風量制御システム、膜洗浄風量制御方法および膜洗浄風量制御プログラム
JP2019104000A (ja) Mbrプラントの管理装置、mbrプラントの洗浄薬液発注システム及びmbrプラントの薬液発注方法
JP7214576B2 (ja) 洗浄風量制御システム及び洗浄風量制御装置
JP3565818B2 (ja) 膜濾過装置の処理水供給方法を決定する方法及びその装置
JP7378972B2 (ja) 膜処理制御システム及び膜処理制御方法
JP2016097342A (ja) 時期管理装置、時期管理方法、時期算出装置、およびプログラム
JP5034337B2 (ja) 膜ろ過装置の運転条件の決定方法、およびそれを用いた膜ろ過装置の運転方法
CN114585591B (zh) 水处理装置设计支援装置以及水处理装置设计支援方法
JP2007108020A (ja) 流入量演算プログラム、流入量演算装置および流入量演算方法
Paul Investigation of a MBR membrane fouling model based on time series analysis system identification methods
CN117205640A (zh) 净水设备滤芯堵塞监测方法、系统、电子设备及存储介质
Haugen Model-based PID tuning with Skogestad’s method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240828

R150 Certificate of patent or registration of utility model

Ref document number: 7547196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150