JP2022099496A - Seismic isolation braking device - Google Patents

Seismic isolation braking device Download PDF

Info

Publication number
JP2022099496A
JP2022099496A JP2020213288A JP2020213288A JP2022099496A JP 2022099496 A JP2022099496 A JP 2022099496A JP 2020213288 A JP2020213288 A JP 2020213288A JP 2020213288 A JP2020213288 A JP 2020213288A JP 2022099496 A JP2022099496 A JP 2022099496A
Authority
JP
Japan
Prior art keywords
seismic isolation
damper
braking device
coil spring
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020213288A
Other languages
Japanese (ja)
Other versions
JP7460287B2 (en
Inventor
柾治 諸沢
Masaharu Morosawa
佑一郎 新井
Yuichiro Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asunaro Aoki Construction Co Ltd
Original Assignee
Asunaro Aoki Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asunaro Aoki Construction Co Ltd filed Critical Asunaro Aoki Construction Co Ltd
Priority to JP2020213288A priority Critical patent/JP7460287B2/en
Publication of JP2022099496A publication Critical patent/JP2022099496A/en
Application granted granted Critical
Publication of JP7460287B2 publication Critical patent/JP7460287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a seismic isolation braking device capable of reducing an installation cost, having a function to minimize damage to a seismic isolation structure, which is a problem when the seismic isolation structure such as a structure or a bridge moves beyond design assumption, and further capable of exhibiting the same damping effect against external force from either the left or right direction.SOLUTION: A seismic isolation braking device 1 comprises: a dampers 3 provided with an end plate 31 and a mounting member 32 at both ends of an energy absorption member 30; an outer cylinder member 2 in which the damper is installed in a movable manner; and a stopper 20 that is provided on an inner surface near both ends of the outer cylinder member and abuts on the end plate to limit the movement of the damper. The energy absorption member is a member that can absorb energy only when a load is applied in a tensile or compressive direction, and the stopper is provided inside the end plate.SELECTED DRAWING: Figure 1

Description

本発明は、免震制動装置に関するものである。 The present invention relates to a seismic isolation braking device.

免震装置が設置された建造物や橋梁等の免震構造物であっても、設計想定レベルの応答を超える地震動である大振幅地震動が発生した場合、免震装置が過大変形し、上部構造物が擁壁等に衝突するなどして、十分に免震機能が発揮できない可能性が懸念されている。この点について日本建築学会の「免震構造設計指針」には、免震構造設計の基本的な考え方として、大振幅地震動が発生した場合に起こり得る免震構造物の損傷等に対して、安全余裕度を積極的に確保することやフェイルセーフの検討を要請することが示されている。 Even for seismic isolation structures such as buildings and bridges where seismic isolation devices are installed, if a large-oscillation seismic isolation motion that exceeds the response of the design assumption level occurs, the seismic isolation device will be excessively deformed and the superstructure There is a concern that the seismic isolation function may not be fully exerted due to an object colliding with a retaining wall or the like. Regarding this point, the "Seismic Isolation Structure Design Guideline" of the Japan Society for Architecture states that the basic concept of seismic isolation structure design is to be safe against damage to the seismic isolation structure that may occur when a large-aperture seismic motion occurs. It has been shown to actively secure a margin and request consideration of fail-safe.

これに対して、免震構造物における免震層の過大変形を抑制するために用いられる、減衰制御が可能なバネ式制震ダンパーが提案されている(特許文献1、2を参照)。これらの提案のバネ式制震ダンパーは、免震層に過大変形が生じた際、一方向に伸縮することにより地震エネルギーを吸収し、免震層の過大変形を抑制する。 On the other hand, a spring-type seismic damping damper capable of damping control, which is used to suppress excessive deformation of the seismic isolation layer in the seismic isolation structure, has been proposed (see Patent Documents 1 and 2). These proposed spring-type seismic dampers absorb seismic energy by expanding and contracting in one direction when excessive deformation occurs in the seismic isolation layer, and suppresses excessive deformation of the seismic isolation layer.

特許第6613443号公報Japanese Patent No. 6613443 特許第6694195号公報Japanese Patent No. 6694195

しかしながら、上記特許文献1、2のバネ式制震ダンパーは、伸縮部分が圧縮することで生じた弾性反力で地震エネルギーを吸収するため、ダンパーを免震層に設置する場合、少なくとも2基のバネ式制震ダンパーを対向するように設置する必要があり、設置コストがかかるとともに、設置場所の拡大といった問題があった。 However, since the spring-type vibration damping dampers of Patent Documents 1 and 2 absorb seismic energy by the elastic reaction force generated by the compression of the expansion and contraction portion, at least two dampers are installed in the seismic isolation layer. It is necessary to install the spring type seismic damper so as to face each other, which causes a problem that the installation cost is high and the installation place is expanded.

本発明は以上のような事情に鑑みてなされたものであり、設置コストを低く抑えることができるとともに、建造物や橋梁等の免震構造物が、設計上の想定を超えて変形した場合に間題となる構造物の損傷を最小限に留める機能を有し、さらに、引張・圧縮の両方向からの外力に対しても同等の制動効果を発揮することが可能な免震制動装置を提供することを課題としている。 The present invention has been made in view of the above circumstances, and the installation cost can be kept low, and when the seismic isolation structure such as a building or a bridge is deformed beyond the design assumption. To provide a seismic isolation braking device that has the function of minimizing damage to the structure, which is a problem, and can exert the same braking effect against external forces from both tensile and compressive directions. That is the issue.

本発明の免震制動装置は、上記の技術的課題を解決するためになされたものであって、以下のことを特徴としている。 The seismic isolation braking device of the present invention has been made to solve the above technical problems, and is characterized by the following.

第1に、本発明の免震制動装置は、エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、前記エンドプレートと当接して前記ダンパーの移動を制限させるストッパーを備え、前記エネルギー吸収部材が引張時に作用するエネルギー吸収部材であり、前記ストッパーが前記エンドプレートの内側に設けられていることを特徴する。
第2に、上記第1の発明の免震制動装置において、前記ダンパーの前記エネルギー吸収部材がコイルバネであり、該コイルバネの中心空間内に、該中心空間の円周方向の寸法より小さい寸法の拘束材が内設されており、前記コイルバネの両端軸方向外向きに外力が加わり、前記コイルバネが絞られて内径が小さく変形する際に、内設された前記拘束材により一定以上前記コイルバネの内径が小さく変形しないダンパーであることが好ましい。
第3に、上記第2の発明の免震制動装置において、前記コイルバネの伸びに伴う捩れの発生を防止するための、捩れ防止機構が設けられていることが好ましい。
第4に、本発明の免震制動装置は、エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、前記エンドプレートと当接して前記ダンパーの移動を制限させるストッパーを備え、前記エネルギー吸収部材が圧縮時に作用するエネルギー吸収部材であり、前記ストッパーが前記エンドプレートの外側に設けられていることを特徴する。
第5に、上記第1から第4の発明の免震制動装置において、前記エネルギー吸収部材は、断面が矩形の線材がらせん状に巻かれたコイルバネであることが好ましい。
第6に、上記第1から第4の発明の免震制動装置において、前記エネルギー吸収部材は、鋼管材にらせん状のスリットが形成されたコイルバネであることが好ましい。
第7に、上記第1から第6の発明の免震制動装置において、前記免震制動装置が、台座に固定されたターンテーブルに設置されるとともに、両端の前記取付け部材と構造物が接続部材を介して接続されていることが好ましい。
First, the seismic isolation braking device of the present invention includes a damper provided with end plates and mounting members at both ends of the energy absorbing member, an outer cylinder member in which the damper is movablely installed, and the outer cylinder member. The inner surface near both ends is provided with a stopper that comes into contact with the end plate and restricts the movement of the damper. The energy absorbing member is an energy absorbing member that acts during tension, and the stopper is provided inside the end plate. It is characterized by being.
Secondly, in the seismic isolation braking device of the first invention, the energy absorbing member of the damper is a coil spring, and a dimension smaller than the circumferential dimension of the central space is constrained in the central space of the coil spring. When the material is internally installed and an external force is applied outward in the axial direction at both ends of the coil spring and the coil spring is squeezed and the inner diameter is slightly deformed, the inner diameter of the coil spring is increased by a certain amount or more due to the internally installed restraining material. It is preferable that the damper is small and does not deform.
Thirdly, it is preferable that the seismic isolation braking device of the second invention is provided with a twist prevention mechanism for preventing the occurrence of twist due to the elongation of the coil spring.
Fourth, the seismic isolation braking device of the present invention includes a damper provided with end plates and mounting members at both ends of the energy absorbing member, an outer cylinder member in which the damper is movablely installed, and the outer cylinder member. The inner surface near both ends is provided with a stopper that comes into contact with the end plate to limit the movement of the damper, the energy absorbing member is an energy absorbing member that acts during compression, and the stopper is provided on the outside of the end plate. It is characterized by being.
Fifth, in the seismic isolation braking device of the first to fourth inventions, it is preferable that the energy absorbing member is a coil spring in which a wire having a rectangular cross section is spirally wound.
Sixth, in the seismic isolation braking device of the first to fourth inventions, it is preferable that the energy absorbing member is a coil spring in which a spiral slit is formed in a steel pipe material.
Seventh, in the seismic isolation braking device of the first to sixth inventions, the seismic isolation braking device is installed on a turntable fixed to a pedestal, and the mounting members and structures at both ends are connected to each other. It is preferable that they are connected via.

本発明の免震制動装置によれば、設置基数を少なくでき、設置コストを低く抑えることができるとともに、建造物や橋梁等の免震構造物が地震動等の外力を受けて、設計上の想定を超えて移動した場合でも、免震構造物の免震層の擁壁の衝突や、橋梁における橋桁の落下等を防止でき、構造物の損傷を最小限に留めることができる。また、左右いずれの方向からの外力に対しても同等の減衰効果を発揮することが可能となる。 According to the seismic isolation braking device of the present invention, the number of installation units can be reduced, the installation cost can be kept low, and the seismic isolation structure such as a building or a bridge receives an external force such as an earthquake motion, and is assumed in design. Even if it moves beyond the above, it is possible to prevent the collision of the retaining wall of the seismic isolation layer of the seismic isolation structure and the fall of the bridge girder in the bridge, and the damage to the structure can be minimized. In addition, it is possible to exert the same damping effect against an external force from either the left or right direction.

本発明の免震制動装置の実施形態の動作状態を示す概略断面図であり、(A)は静置状態、(B)は左方向から引っ張られた状態を示し、(C)は右方向から引っ張られた状態を示している。It is a schematic cross-sectional view which shows the operation state of the embodiment of the seismic isolation braking device of this invention, (A) shows the static state, (B) shows the state pulled from the left direction, (C) shows from the right direction. It shows the pulled state. (A)、(B)はストッパーの実施形態を示す概略図であり、(C)は(A)、(B)のストッパーを取り付けた免震制動装置の軸方向概略図である。(A) and (B) are schematic views showing an embodiment of a stopper, and (C) is an axial schematic diagram of a seismic isolation braking device to which the stoppers of (A) and (B) are attached. (a)は、本発明のダンパーの一実施形態を示す概略断面図であり、(b)は、この実施形態の概略斜視図である。(A) is a schematic cross-sectional view showing an embodiment of the damper of the present invention, and (b) is a schematic perspective view of this embodiment. 図3に示すダンパーの軸方向力-軸方向変位の関係を示すグラフである。It is a graph which shows the relationship between the axial force and the axial displacement of the damper shown in FIG. 本発明の免震制動装置の他の実施形態の動作状態を示す概略断面図であり、(A)は静置状態、(B)は左方向から押された状態を示し、(C)は右方向から押された状態を示している。It is a schematic cross-sectional view which shows the operating state of another embodiment of the seismic isolation braking device of this invention, (A) shows the stationary state, (B) shows the state pushed from the left direction, (C) is right. It shows the state of being pushed from the direction. 免震装置を設けた建築物の基礎の台座と上部建築物の間に、本発明の緩衝装置を設置した構成を示す概略図である。It is a schematic diagram which shows the structure which installed the shock absorber of this invention between a pedestal of the foundation of a building provided with a seismic isolation device, and an upper building. 本発明の免震制動装置をターンテーブル上に設置した状態を示す概略図であり、(a)は概略側面図であり、(b)は概略上面である。It is a schematic diagram which shows the state which the seismic isolation braking device of this invention is installed on a turntable, (a) is a schematic side view, and (b) is a schematic upper surface.

本発明の免震制動装置は、エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、エンドプレートと当接してダンパーの移動を制限させるストッパーを備えている。また、ダンパーのエネルギー吸収部材として、圧縮時に作用するエネルギー吸収部材又は引張時に作用するエネルギー吸収部材のいずれかを選択的に用いるものである。なお、本発明における引張時に作用するエネルギー吸収部材とは、例えば、エネルギー吸収部材としてバネを用いた場合、比較的ピッチが小さく、バネが伸びるときに反発する弾塑性変形を発現するバネを意味し、本発明における圧縮時に作用するエネルギー吸収部材とは、比較的ピッチが大きく、バネが縮むときに反発する弾塑性変形を発現するバネを意味する。 The seismic isolation braking device of the present invention includes a damper provided with end plates and mounting members at both ends of the energy absorbing member, an outer cylinder member in which the damper is movablely installed, and an inner surface near both ends of the outer cylinder member. It is equipped with a stopper that comes into contact with the end plate and restricts the movement of the damper. Further, as the energy absorbing member of the damper, either an energy absorbing member acting at the time of compression or an energy absorbing member acting at the time of tension is selectively used. The energy absorbing member acting at the time of tension in the present invention means, for example, a spring having a relatively small pitch when a spring is used as the energy absorbing member and exhibiting elasto-plastic deformation that repels when the spring is extended. The energy absorbing member acting during compression in the present invention means a spring having a relatively large pitch and exhibiting elasto-plastic deformation that repels when the spring contracts.

以下、本発明の免震制動装置の実施形態について、図面を用いて詳述する。図1は、本発明の免震制動装置の一実施形態の動作状態を示す概略断面図である。図1に示す実施形態の免震制動装置1では、ダンパー3のエネルギー吸収部材30として、引張時に作用するエネルギー吸収部材30を用いている。そして、上記エネルギー吸収部材30の両端部には、バネ径より大きいフランジ状のエンドプレート31が接続されており、さらに、エンドプレート31の中央部に取付部材32が設けられている。また、上記構成のダンパー3は、両端が開口した外筒部材2の内部に移動可能に内設されており、外筒部材2の内面で、ダンパー3に設けられたエンドプレート31の内側にはストッパー20が設けられている。 Hereinafter, embodiments of the seismic isolation braking device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an operating state of an embodiment of the seismic isolation braking device of the present invention. In the seismic isolation braking device 1 of the embodiment shown in FIG. 1, an energy absorbing member 30 that acts during tension is used as the energy absorbing member 30 of the damper 3. A flange-shaped end plate 31 having a larger spring diameter is connected to both ends of the energy absorbing member 30, and a mounting member 32 is provided at the center of the end plate 31. Further, the damper 3 having the above configuration is movably installed inside the outer cylinder member 2 having both ends open, and is inside the end plate 31 provided on the damper 3 on the inner surface of the outer cylinder member 2. A stopper 20 is provided.

なお、図1に示す実施形態の免震制動装置1のダンパー3では、エネルギー吸収部材30として、板状の鋼材を一定の内径でらせん状に巻いた形状のものを用いているが、本発明の免震制動装置1のダンパー3におけるエネルギー吸収部材30は、入力された運動エネルギーを吸収できる能力を有するものであればこれに限定されるものではなく、コイルバネ、板バネ、粘弾性体等を用いることができる。また、エネルギー吸収部材30の径や長さ、弾塑性変形は、設置する構造物の大きさや想定する地震動等の大きさに応じて適宜決定することができる。 The damper 3 of the seismic isolation braking device 1 of the embodiment shown in FIG. 1 uses a plate-shaped steel material spirally wound with a constant inner diameter as the energy absorbing member 30. The energy absorbing member 30 in the damper 3 of the seismic isolation braking device 1 is not limited to the energy absorbing member 30 as long as it has the ability to absorb the input kinetic energy, and includes coil springs, leaf springs, viscoelastic bodies and the like. Can be used. Further, the diameter and length of the energy absorbing member 30 and the elasto-plastic deformation can be appropriately determined according to the size of the structure to be installed and the size of the assumed seismic motion.

ダンパー3を内設する外筒部材2の形状は、ダンパー3を安定して移動可能に内設できれば特に限定されず、例えば、断面矩形状や円管状等の形状を例示できるが、後述するストッパー20を所定の位置に配設することを考慮した場合、加工性等の観点から、図2に示すような断面矩形状の形状とするのが望ましい。また、外筒部材2の材質は、土台や構造物に固定され、ダンパー3の伸縮に耐えうる強度を有するものであれば特に限定されるものではなく、例えば、鉄鋼や高強度樹脂等を用いることができる。 The shape of the outer cylinder member 2 in which the damper 3 is installed is not particularly limited as long as the damper 3 can be stably and movablely installed. For example, a shape having a rectangular cross section or a circular tubular shape can be exemplified. Considering that the 20 is arranged at a predetermined position, it is desirable to have a rectangular cross-section as shown in FIG. 2 from the viewpoint of workability and the like. Further, the material of the outer cylinder member 2 is not particularly limited as long as it is fixed to the base or the structure and has the strength to withstand the expansion and contraction of the damper 3, and for example, steel or high-strength resin is used. be able to.

本発明の免震制動装置1において、外力が加わったときにダンパー3の移動を制御するためのストッパー20はエンドプレート31の内側の所定の位置に設けられるが、通常、ダンパー3を外筒部材2に内設した後にストッパー20をエンドプレート31の内側に配設するのは困難となる。そのため、ストッパー20は、ダンパー3を外筒部材2内に導入後、外筒部材2の外側から配設できる構成とすることが好ましい。具体的には、例えば、外筒部材2にダンパー3を挿入した状態のエンドプレート31に対して内側となる所定の位置に、外筒部材2の内側まで貫通するスリットを設けておき、該スリットに、図2(A)(B)に示す凸状のストッパー20を図2(C)に示すように嵌合させ、ボルト21等によって外筒部材2に固定する構成とすることができる。上記構成により、エンドプレート31の内側にストッパー20を配設した後、容易かつ確実にストッパー20を配設することが可能となる。なお、ストッパー20の材質は、確実にダンパー3の移動を制御できれば特に限定されず、外筒部材2と同様の材料を用いることができる。 In the seismic isolation braking device 1 of the present invention, the stopper 20 for controlling the movement of the damper 3 when an external force is applied is provided at a predetermined position inside the end plate 31, but the damper 3 is usually used as an outer cylinder member. It becomes difficult to dispose the stopper 20 inside the end plate 31 after installing the stopper 20 internally. Therefore, it is preferable that the stopper 20 is configured so that the damper 3 can be disposed from the outside of the outer cylinder member 2 after the damper 3 is introduced into the outer cylinder member 2. Specifically, for example, a slit penetrating to the inside of the outer cylinder member 2 is provided at a predetermined position inside the end plate 31 in a state where the damper 3 is inserted into the outer cylinder member 2, and the slit is provided. The convex stopper 20 shown in FIGS. 2A and 2B can be fitted as shown in FIG. 2C and fixed to the outer cylinder member 2 by a bolt 21 or the like. With the above configuration, after the stopper 20 is arranged inside the end plate 31, the stopper 20 can be easily and surely arranged. The material of the stopper 20 is not particularly limited as long as the movement of the damper 3 can be reliably controlled, and the same material as the outer cylinder member 2 can be used.

上記実施形態の免震制動装置1の動作は、図1(A)に示す静置状態から図1(B)に示すように、地震動等の外力によって左側から矢印方向に引っ張られた場合、ダンパー3の右端のエンドプレート31の内側面は、外筒部材2の右側のストッパー20と当接してダンパー3の移動は阻止されるが、ダンパー3が伸びて、ダンパー3左端のエンドプレート31の内側面は外筒部材2の左側のストッパー20から離れる。この際、免震制動装置1に左側から矢印方向にかかる力は、引張時に作用するエネルギー吸収部材30の弾塑性変形により吸収される。なお、外筒部材2におけるストッパー20から開口端部までの寸法は、ダンパー3が伸びたときに、外筒部材2の開口端部から脱落しないようにダンパー3の変形量を考慮して決定する。 The operation of the seismic isolation braking device 1 of the above embodiment is as shown in FIG. 1 (B) from the stationary state shown in FIG. 1 (A) when the damper is pulled from the left side in the direction of the arrow by an external force such as a seismic motion. The inner surface of the end plate 31 at the right end of 3 comes into contact with the stopper 20 on the right side of the outer cylinder member 2 to prevent the damper 3 from moving, but the damper 3 extends and the inside of the end plate 31 at the left end of the damper 3 The side surface is separated from the stopper 20 on the left side of the outer cylinder member 2. At this time, the force applied to the seismic isolation braking device 1 in the direction of the arrow from the left side is absorbed by the elasto-plastic deformation of the energy absorbing member 30 acting during tensioning. The dimension from the stopper 20 to the open end of the outer cylinder member 2 is determined in consideration of the amount of deformation of the damper 3 so that the damper 3 does not fall off from the open end of the outer cylinder member 2 when the damper 3 is extended. ..

また、これとは逆に、図1(A)に示す静置状態から図1(C)に示すように、地震動等の外力によって右側から矢印方向に引っ張られた場合には、ダンパー3の左端のエンドプレート31の内側面が外筒部材2の左側のストッパー20と当接してダンパー3の移動は阻止されるが、ダンパー3が伸びて、ダンパー3右端のエンドプレート31の内側面は外筒部材2の右側のストッパー20から離れる。この際、免震制動装置1に右から矢印方向にかかる力は、引張時に作用するエネルギー吸収部材30の弾塑性変形により吸収される。 On the contrary, when the damper 3 is pulled from the right side in the arrow direction by an external force such as a seismic motion as shown in FIG. 1 (C) from the stationary state shown in FIG. 1 (A), the left end of the damper 3 is used. The inner surface of the end plate 31 in contact with the stopper 20 on the left side of the outer cylinder member 2 to prevent the damper 3 from moving, but the damper 3 extends and the inner surface of the end plate 31 at the right end of the damper 3 is the outer cylinder. Move away from the stopper 20 on the right side of the member 2. At this time, the force applied to the seismic isolation braking device 1 in the direction of the arrow from the right is absorbed by the elasto-plastic deformation of the energy absorbing member 30 acting at the time of tension.

即ち、本実施形態の免震制動装置1によれば、1つのダンパー3により左右いずれから引っ張られる外力に対してもエネルギー吸収部材30の弾塑性変形により構造物にかかる力を同等に吸収させることが可能となる。 That is, according to the seismic isolation braking device 1 of the present embodiment, the force applied to the structure due to the elasto-plastic deformation of the energy absorbing member 30 is equally absorbed by the external force pulled from either the left or right by one damper 3. Is possible.

また、本発明の免震制動装置1においては、引張時に作用するエネルギー吸収部材30を用いたダンパー3として、エネルギー吸収部材としてのコイルバネ30の中心空間に、該中心空間の円周方向の寸法より小さい寸法の拘束材が内設されており、コイルバネ30の両端にエンドプレート31及び取付部材32を設けたダンパー3を用いることもできる。 Further, in the seismic isolation braking device 1 of the present invention, as a damper 3 using the energy absorbing member 30 that acts at the time of tension, the central space of the coil spring 30 as the energy absorbing member is measured from the circumferential dimension of the central space. It is also possible to use a damper 3 in which a restraining material having a small size is provided internally and an end plate 31 and a mounting member 32 are provided at both ends of the coil spring 30.

以下、上記実施形態のダンパー3について、図面を用いて詳述する。図3(a)は、本発明の免震制動装置1で用いるダンパー3の一実施形態の構成を示す概略正面断面図であり、図3(b)は、その概略斜視図である。 Hereinafter, the damper 3 of the above embodiment will be described in detail with reference to the drawings. FIG. 3A is a schematic front sectional view showing the configuration of an embodiment of the damper 3 used in the seismic isolation braking device 1 of the present invention, and FIG. 3B is a schematic perspective view thereof.

図3に示す実施形態のダンパー3では、コイルバネ30として板状の鋼材を一定の内径でらせん状に巻いた形状のものを用いている。すなわち、コイルバネ30のバネ線材の断面は矩形形状となっている。また、鋼材の種類は、通常のバネに用いられる適度な弾性を有する鋼材であれば制限なく用いることができ、例えば、低炭素鋼、バネ鋼(熱間材)である高炭素鋼、シリコンマンガン鋼、マンガンクロム鋼、クロムバナジウム鋼、マンガンクロムボロン鋼、シリコンクロム鋼、クロムモリブデン鋼、ステンレス鋼等を挙げることができる。 In the damper 3 of the embodiment shown in FIG. 3, a plate-shaped steel material is spirally wound with a constant inner diameter as the coil spring 30. That is, the cross section of the spring wire of the coil spring 30 has a rectangular shape. Further, the type of steel material can be used without limitation as long as it is a steel material having appropriate elasticity used for ordinary springs. For example, low carbon steel, high carbon steel which is a spring steel (hot material), silicon manganese. Examples thereof include steel, manganese chrome steel, chrome vanadium steel, manganese chrome boron steel, silicon chrome steel, chrome molybdenum steel, and stainless steel.

また、コイルバネ30を構成する鋼材の幅、巻き数は、使用する鋼材の材質や特性、また、取り付ける構造物の大きさや要求される制動性能に応じて適宜設定することができ、特に限定されるものではないが、エネルギー吸収能力を高めるために、断面が幅広の矩形形状の鋼材を用いるのが好ましい。具体的には、十分な制動性能を発現するための設定として、鋼材断面の矩形形状の幅径比(バネ径/線材幅)が0.5~1程度の範囲が望ましい。 Further, the width and the number of turns of the steel material constituting the coil spring 30 can be appropriately set according to the material and characteristics of the steel material to be used, the size of the structure to be attached, and the required braking performance, and are particularly limited. Although it is not a thing, it is preferable to use a rectangular steel material having a wide cross section in order to increase the energy absorption capacity. Specifically, as a setting for exhibiting sufficient braking performance, it is desirable that the width-diameter ratio (spring diameter / wire width) of the rectangular shape of the steel cross section is in the range of about 0.5 to 1.

また、コイルバネ30は、上記の鋼材をらせん状に巻いて製造する他、円筒状の鋼管材の周囲に一定間隔のスリット状の切込みをらせん状に形成して製造することもできる。この、鋼管材にらせん状の切り込みを形成するコイルバネ30の製造方法によれば、鋼管材に形成する切り込みの角度や幅を調整することにより所望のバネ特性を実現することができる。また、らせん部分の角度を部分的に変化させることにより、特定の位置の弾性を変化させることもでき、設計上の応用範囲を広くすることができる。また、鋼管材の任意の部分のみにコイルバネ30を形成することができ、両端を閉じた円筒状とすることができるため、用途の拡張性や加工性の観点から好ましい。また、加工歩留りが高まり、生産を自動化することができるため大量生産が可能となる。 Further, the coil spring 30 can be manufactured by winding the above steel material in a spiral shape, or by forming slit-shaped cuts at regular intervals around the cylindrical steel pipe material in a spiral shape. According to the method for manufacturing the coil spring 30 that forms a spiral notch in the steel pipe material, desired spring characteristics can be realized by adjusting the angle and width of the notch formed in the steel pipe material. Further, by partially changing the angle of the spiral portion, the elasticity of a specific position can be changed, and the range of application in design can be widened. Further, since the coil spring 30 can be formed only on an arbitrary portion of the steel pipe material and can be formed into a cylindrical shape with both ends closed, it is preferable from the viewpoint of expandability and workability of the application. In addition, the processing yield is increased and the production can be automated, so that mass production becomes possible.

本実施形態のダンパー3では、上記のコイルバネ30の中心空間の円周方向の寸法より小さい寸法の拘束材が内設されており、コイルバネ30の内面と拘束材との間には特定の間隔が形成されている。なお、本実施形態のダンパーにおける拘束材の内設は、図3に示すようにコイルバネ30の内部空間に単に拘束材が載置された構成となっているが、コイルバネ30の中心空間に、長手方向に対して平行に挿入された拘束材34の一端をエンドプレート31に固定して配設してもよい。 In the damper 3 of the present embodiment, a restraining material having a dimension smaller than the circumferential dimension of the central space of the coil spring 30 is internally provided, and a specific distance is provided between the inner surface of the coil spring 30 and the restraining material. It is formed. As shown in FIG. 3, the restraint material is internally installed in the damper of the present embodiment so that the restraint material is simply placed in the internal space of the coil spring 30, but it is longitudinally arranged in the central space of the coil spring 30. One end of the restraint material 34 inserted in parallel with respect to the direction may be fixedly arranged on the end plate 31.

拘束材34の材質としては、コイルバネ30の内径の変形を防止できる強度を有するものであれば特に制限はなく、例えば、鋼材、非鉄金属、エンジニアリングプラスチック、FRP、硬質ゴム等を用いることができる。 The material of the restraining material 34 is not particularly limited as long as it has a strength capable of preventing deformation of the inner diameter of the coil spring 30, and for example, steel material, non-ferrous metal, engineering plastic, FRP, hard rubber and the like can be used.

また、拘束材34の形状は特に制限はなく、円柱、円筒、多角柱等のものを用いることができる。なお、多角柱のものを用いる場合には、コイルバネ30の内側との接触面積を多くするために角を面取りしたものを用いるのが好ましい。これは、拘束材34に対してコイルバネ30が絡まる際に、拘束材34の角の鋭い部分に接触すると、コイルバネ30の耐力が低下する場合があるためである。 The shape of the restraining material 34 is not particularly limited, and a cylinder, a cylinder, a polygonal pillar, or the like can be used. When using a polygonal column, it is preferable to use one with chamfered corners in order to increase the contact area with the inside of the coil spring 30. This is because when the coil spring 30 is entangled with the restraining material 34, if it comes into contact with a sharp corner portion of the restraining material 34, the yield strength of the coil spring 30 may decrease.

また、コイルバネ30の両端には、コイルバネ30の径より大きく、外筒部材2に内設可能な大きさのエンドプレート31が設けられ、エンドプレート31には、免震制動装置1を構造物に取付けるための取付部材32が設けられている。 Further, at both ends of the coil spring 30, end plates 31 having a diameter larger than the diameter of the coil spring 30 and having a size that can be internally installed in the outer cylinder member 2 are provided, and the end plate 31 is provided with a seismic isolation braking device 1 as a structure. A mounting member 32 for mounting is provided.

上記実施形態のダンパー3を用いた免震制動装置1の動作については、以下のように説明される。通常のコイルバネを用いたダンパー3が、外力により両端軸方向外向きに伸ばされると、コイルバネが絞られて内径が小さく変形する。このように、コイルバネに外力が加わり続けた場合、絞られた状態で長軸方向に伸び続け、最終的にコイルバネは破断する虞がある。 The operation of the seismic isolation braking device 1 using the damper 3 of the above embodiment will be described as follows. When the damper 3 using a normal coil spring is extended outward in the axial direction at both ends by an external force, the coil spring is squeezed and the inner diameter is greatly deformed. As described above, when an external force continues to be applied to the coil spring, the coil spring continues to extend in the long axis direction in a squeezed state, and the coil spring may eventually break.

一方、本実施形態のダンパー3を用いた免震制動装置1は、コイルバネ30の両端方向外向きに外力が加わり、コイルバネ30が絞られて内径が小さく変形する際に、コイルバネ30の中に内設された拘束材34により、コイルバネ30の内径は拘束材34の径以下には変形しない。 On the other hand, in the seismic isolation braking device 1 using the damper 3 of the present embodiment, when an external force is applied outward in the direction of both ends of the coil spring 30 and the coil spring 30 is squeezed and the inner diameter is small and deformed, the inside of the coil spring 30 is inside. Due to the restraint material 34 provided, the inner diameter of the coil spring 30 is not deformed below the diameter of the restraint material 34.

すなわち、コイルバネ30が絞られて内径が小さく変形して、コイルバネ30の内側が拘束材34に接触するまでは引張時に作用するエネルギー吸収部材30として機能し、接触して軸力を受けて、拘束材34に巻きついてコイルバネ30の変形が拘束されると免震制動装置1全体の剛性と強度が上昇する。 That is, until the coil spring 30 is squeezed and deformed to have a small inner diameter and the inside of the coil spring 30 comes into contact with the restraining material 34, it functions as an energy absorbing member 30 that acts during tension, and receives axial force when it comes into contact with the restraining material 34. When the coil spring 30 is wound around the material 34 and the deformation of the coil spring 30 is restrained, the rigidity and strength of the entire seismic isolation braking device 1 increase.

コイルバネ30の中心空間に内設した拘束材34とコイルバネ30の内側の間隔は、免震制動装置1にかかる外力の荷重とコイルバネ30の変形関係に影響を与える。この間隔は、コイルバネ30の内径を変更することにより、また、拘束材34の径(太さ)を変更することにより調整可能である。即ち、この拘束材34の径を適切に設定することにより、コイルバネ30の伸び量、すなわち、免震制動装置1の制動性能を決定することができる。 The distance between the restraining material 34 internally provided in the central space of the coil spring 30 and the inside of the coil spring 30 affects the load of the external force applied to the seismic isolation braking device 1 and the deformation relationship of the coil spring 30. This interval can be adjusted by changing the inner diameter of the coil spring 30 and by changing the diameter (thickness) of the restraining material 34. That is, by appropriately setting the diameter of the restraining material 34, the elongation amount of the coil spring 30, that is, the braking performance of the seismic isolation braking device 1 can be determined.

図4に、図3に示す免震制動装置1の軸方向力-軸方向変位の関係グラフを示す。図4のグラフでは、実線が本発明の免震制動装置1の特性を示し、破線が通常のコイルバネの特性を示している。 FIG. 4 shows a graph of the relationship between the axial force and the axial displacement of the seismic isolation braking device 1 shown in FIG. In the graph of FIG. 4, the solid line shows the characteristics of the seismic isolation braking device 1 of the present invention, and the broken line shows the characteristics of a normal coil spring.

このグラフによれば、本実施形態の免震制動装置1の軸方向力-軸方向変位特性(実線)は、初期は剛性が小さく緩やかに剛性が上昇し、特定のエネルギー以上の入力に対しては所定の耐力を発現している。これにより、構造物の変位が急激に拘束されることによる衝撃的な荷重の伝達を抑制することがわかる。 According to this graph, the axial force-axial displacement characteristic (solid line) of the seismic isolation braking device 1 of the present embodiment has a small rigidity at the initial stage and a gradual increase in rigidity, and the rigidity is gradually increased with respect to an input of a specific energy or more. Has developed a predetermined yield strength. As a result, it can be seen that the transmission of a shocking load due to the sudden restraint of the displacement of the structure is suppressed.

なお、コイルバネ30は、軸方向外向きの外力がかかり軸方向の変形が大きくなるにつれてバネ本体に捩れが生じ、コイルバネ30と拘束材34とが十分接触せずに滑り、コイルバネ30が荷重上昇することなく塑性化による変形が増大し、制動装置が働かなくなる可能性もあるため、コイルバネ30の所定以上の捩れの発生を防止するための捩れ防止機構を設けることができる。 The coil spring 30 is subjected to an external force outward in the axial direction, and as the deformation in the axial direction increases, the spring body is twisted, the coil spring 30 and the restraint member 34 slip without sufficient contact, and the load of the coil spring 30 increases. Since there is a possibility that the deformation due to plasticization will increase and the braking device will not work, a twist prevention mechanism for preventing the occurrence of twisting of the coil spring 30 beyond a predetermined value can be provided.

このように、上記実施形態のダンパー3を用いた免震制動装置1は、コイルバネ30が拘束材34に巻きつきながら荷重と剛性が上昇する過程で、コイルバネ30の矩形断面の鋼材がせん断降伏しエネルギーを吸収する。すなわち、免震装置の免震許容量を超えて発生する構造物に揺れによる一定の移動寸法までは制動効果を発現し、コイルバネ30の内面と拘束材34が接触した後はストッパー20として機能する。また、本実施形態のダンパー3を用いた免震制動装置1を免震建物に用いた場合、複数回の衝撃に耐えながら、免震建物と他の構造物との衝突防止部材として機能するとともに、確実に免震層に作用する設計想定レベルを超えるエネルギーを吸収する免震制動装置1とすることができる。 As described above, in the seismic isolation braking device 1 using the damper 3 of the above embodiment, the steel material having a rectangular cross section of the coil spring 30 is shear yielded in the process of increasing the load and rigidity while the coil spring 30 is wound around the restraining material 34. Absorb energy. That is, a braking effect is exhibited up to a certain movement dimension due to shaking on a structure generated in excess of the seismic isolation allowance of the seismic isolation device, and functions as a stopper 20 after the inner surface of the coil spring 30 and the restraining material 34 come into contact with each other. .. Further, when the seismic isolation braking device 1 using the damper 3 of the present embodiment is used for the seismic isolation building, it functions as a collision prevention member between the seismic isolation building and other structures while withstanding a plurality of impacts. The seismic isolation braking device 1 can reliably absorb energy exceeding the design assumed level that acts on the seismic isolation layer.

また、本発明の免震制動装置1においては、図5に示すように、ダンパー3の圧縮時に作用するエネルギー吸収部材30として、ストッパー20をエンドプレート31の外側に設けた構成とすることもできる。なお、免震制動装置1の大きさや各部材の材質等においては、図1に示す免震制動装置1と同様とすることができる。 Further, in the seismic isolation braking device 1 of the present invention, as shown in FIG. 5, the stopper 20 may be provided on the outside of the end plate 31 as the energy absorbing member 30 that acts when the damper 3 is compressed. .. The size of the seismic isolation braking device 1, the material of each member, and the like can be the same as those of the seismic isolation braking device 1 shown in FIG.

以下に、ダンパー3のエネルギー吸収部材30を圧縮時に作用するエネルギー吸収部材30とした実施形態の免震制動装置1の動作について図を用いて説明する。本実施形態の免震制動装置1の動作は、図5(A)に示す静置状態から図5(B)に示すように、地震動等により左側から矢印方向に押された場合、ダンパー3の右端のエンドプレート31の外側面は、外筒部材2の右側のストッパー20と当接してダンパー3の移動が阻止され、圧縮時に作用するエネルギー吸収部材30のダンパー3が縮んで、ダンパー3左端のエンドプレート31の外側面は外筒部材2の左のストッパー20から離れる。この際、免震制動装置1に左側から矢印方向に係る力は、圧縮時に作用するエネルギー吸収部材30のダンパー3の弾塑性変形により吸収される。 Hereinafter, the operation of the seismic isolation braking device 1 of the embodiment in which the energy absorbing member 30 of the damper 3 is used as the energy absorbing member 30 acting at the time of compression will be described with reference to the drawings. The operation of the seismic isolation braking device 1 of the present embodiment is as shown in FIG. 5 (B) from the stationary state shown in FIG. 5 (A) when the damper 3 is pushed in the direction of the arrow from the left side due to seismic motion or the like. The outer surface of the right end plate 31 comes into contact with the stopper 20 on the right side of the outer cylinder member 2 to prevent the damper 3 from moving, and the damper 3 of the energy absorbing member 30 acting during compression shrinks, so that the left end of the damper 3 ends. The outer surface of the end plate 31 is separated from the stopper 20 on the left side of the outer cylinder member 2. At this time, the force applied to the seismic isolation braking device 1 from the left side in the direction of the arrow is absorbed by the elasto-plastic deformation of the damper 3 of the energy absorbing member 30 acting during compression.

また、これとは逆に、図5(A)に示す静置状態から図5(C)に示すように、地震動等により右側から矢印方向に押された場合には、ダンパー3の左端のエンドプレート31の外側面は、外筒部材2の左側のストッパー20と当接してダンパー3の移動が阻止され、圧縮時に作用するエネルギー吸収部材30のダンパー3が縮んで、ダンパー3右端のエンドプレート31の外側面は外筒部材2の右のストッパー20から離れる。この際、免震制動装置1に右側から矢印方向に係る力は、圧縮時に作用するエネルギー吸収部材30のダンパー3の弾塑性変形により吸収される。 On the contrary, when the static state shown in FIG. 5A is pushed in the direction of the arrow from the right side due to a seismic motion or the like as shown in FIG. 5C, the end of the left end of the damper 3 is reached. The outer surface of the plate 31 comes into contact with the stopper 20 on the left side of the outer cylinder member 2 to prevent the damper 3 from moving, the damper 3 of the energy absorbing member 30 acting during compression shrinks, and the end plate 31 at the right end of the damper 3 The outer surface of the outer cylinder member 2 is separated from the right stopper 20 of the outer cylinder member 2. At this time, the force applied to the seismic isolation braking device 1 from the right side in the direction of the arrow is absorbed by the elasto-plastic deformation of the damper 3 of the energy absorbing member 30 acting during compression.

即ち、本実施形態の免震制動装置1によれば、1つのダンパー3により左右いずれから押される外力に対してもダンパー3の弾塑性変形により構造物にかかる力を同等に吸収させることが可能となる。 That is, according to the seismic isolation braking device 1 of the present embodiment, it is possible to equally absorb the force applied to the structure by the elasto-plastic deformation of the damper 3 against the external force pushed from either the left or right by one damper 3. It becomes.

本発明の免震制動装置1は、免震装置が設置された建築物に設置する場合、図6に示すように、建築物の基礎の台座63に固定され、両端に設けられた取付部材32と上部建築物を接続部材4を介して接続する。接続部材4は、本発明の免震制動装置1と構造物である建築物とを接合可能な形態であれば特に制限されるものではなく、例えば、ワイヤー、鎖、ロープ、パンタグラフ式接合部材等を例示することができる。また、これらの長さは免震構造物に設置されている免震装置の性能や可動域等に応じて適宜設定することができる。なお、本発明における構造物としては、上記建築物の他、橋脚と橋桁の間に可動支承や免震装置が設置された橋梁等を例示することができる。 When the seismic isolation braking device 1 of the present invention is installed in a building in which the seismic isolation device is installed, as shown in FIG. 6, the seismic isolation braking device 1 is fixed to the pedestal 63 of the foundation of the building and the mounting members 32 provided at both ends. And the upper building are connected via the connecting member 4. The connecting member 4 is not particularly limited as long as it can join the seismic isolation braking device 1 of the present invention and the building which is a structure. For example, a wire, a chain, a rope, a pantograph type joining member, or the like. Can be exemplified. Further, these lengths can be appropriately set according to the performance, range of motion, etc. of the seismic isolation device installed in the seismic isolation structure. As the structure in the present invention, in addition to the above-mentioned building, a bridge or the like in which a movable bearing or a seismic isolation device is installed between a pier and a bridge girder can be exemplified.

本発明の免震制動装置1を用いて橋脚と橋桁を繋ぐ場合には、可動支承に対する橋桁の移動許容範囲を考慮して、免震制動装置1の最大伸び幅を設定する必要がある。これにより地震動による橋桁の落橋を確実に防止することが可能となる。このように、本発明の免震制動装置1によれば、免震建物や橋梁といった大きく水平移動する構造物の過大な変位を抑制し、衝突や落下を防止することが可能となる。また、本発明の免震制動装置1は、左右いずれからの外力に対しても同等の制動効果を発揮することができるため、設置基数を少なくすることができ、コストを低く抑えることができる。 When connecting the pier and the bridge girder using the seismic isolation braking device 1 of the present invention, it is necessary to set the maximum extension width of the seismic isolation braking device 1 in consideration of the movement allowable range of the bridge girder with respect to the movable bearing. This makes it possible to reliably prevent the collapse of the bridge girder due to earthquake motion. As described above, according to the seismic isolation braking device 1 of the present invention, it is possible to suppress excessive displacement of a structure that moves largely horizontally, such as a seismic isolation building or a bridge, and prevent collision or fall. Further, since the seismic isolation braking device 1 of the present invention can exert the same braking effect against an external force from either the left or right side, the number of installed units can be reduced and the cost can be kept low.

また、本発明の免震制動装置1を構造物の台座63に固定する場合には、図7に示すように、台座63にターンテーブル7を設置し、該ターンテーブル7に免震制動装置1を固定するとともに、免震制動装置1の取付け部材と構造物を接続部材4を介して接続する構成とすることができる。 When fixing the seismic isolation braking device 1 of the present invention to the pedestal 63 of the structure, as shown in FIG. 7, a turntable 7 is installed on the pedestal 63, and the seismic isolation braking device 1 is attached to the turntable 7. Can be fixed, and the mounting member of the seismic isolation braking device 1 and the structure can be connected via the connecting member 4.

上記設置構成とすることにより、地震動の方向に追随してターンテーブル7が平面方向に回転し、XY方向の動きに対応しながら免震制動装置1を作動させることが可能となり、如何なる方向からの複雑な地震動に対しても対応可能な免震制動装置1とすることが可能となる。 With the above installation configuration, the turntable 7 rotates in the plane direction following the direction of the seismic motion, and the seismic isolation braking device 1 can be operated while responding to the movement in the XY direction, from any direction. The seismic isolation braking device 1 can be used even for complicated seismic motion.

1 免震制動装置
2 外筒部材
20 ストッパー
3 ダンパー
30 エネルギー吸収部材(コイルバネ)
31 エンドプレート
32 取付部材
34 拘束材
35 間隔
36 捩れ防止機構
37 捩れ防止機構
4 接続部材
5 免震装置
6 構造物
61基礎
62 上部構造物
63 台座
7 ターンテーブル
1 Seismic isolation braking device 2 Outer cylinder member 20 Stopper 3 Damper 30 Energy absorption member (coil spring)
31 End plate 32 Mounting member 34 Restraint material 35 Interval 36 Twist prevention mechanism 37 Twist prevention mechanism 4 Connection member 5 Seismic isolation device 6 Structure 61 Foundation 62 Superstructure 63 Pedestal 7 Turntable

Claims (7)

エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、前記エンドプレートと当接して前記ダンパーの移動を制限させるストッパーを備え、
前記エネルギー吸収部材が引張時に作用するエネルギー吸収部材であり、前記ストッパーが前記エンドプレートの内側に設けられていることを特徴する免震制動装置。
A damper provided with end plates and mounting members at both ends of the energy absorbing member, an outer cylinder member in which the damper is movably installed, and an inner surface near both ends of the outer cylinder member are in contact with the end plate. Equipped with a stopper that restricts the movement of the damper,
A seismic isolation braking device characterized in that the energy absorbing member is an energy absorbing member that acts during tension, and the stopper is provided inside the end plate.
前記ダンパーの前記エネルギー吸収部材がコイルバネであり、該コイルバネの中心空間内に、該中心空間の円周方向の寸法より小さい寸法の拘束材が内設されており、前記コイルバネの両端軸方向外向きに外力が加わり、前記コイルバネが絞られて内径が小さく変形する際に、内設された前記拘束材により一定以上前記コイルバネの内径が小さく変形しないダンパーであることを特徴とする請求項1に記載の免震制動装置。 The energy absorbing member of the damper is a coil spring, and a restraining material having a dimension smaller than the circumferential dimension of the central space is internally provided in the central space of the coil spring, and the coil spring is outward in the axial direction at both ends. The damper according to claim 1, wherein when an external force is applied to the coil spring and the coil spring is squeezed and the inner diameter is deformed to be small, the inner diameter of the coil spring is small to a certain extent or more and is not deformed by the internally installed restraining material. Seismic isolation braking device. 前記コイルバネの伸びに伴う捩れの発生を防止するための、捩れ防止機構が設けられていることを特徴とする請求項2に記載の免震制動装置。 The seismic isolation braking device according to claim 2, further comprising a twist prevention mechanism for preventing the occurrence of twist due to the elongation of the coil spring. エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、前記エンドプレートと当接して前記ダンパーの移動を制限させるストッパーを備え、
前記エネルギー吸収部材が圧縮時に作用するエネルギー吸収部材であり、前記ストッパーが前記エンドプレートの外側に設けられていることを特徴する免震制動装置。
A damper provided with end plates and mounting members at both ends of the energy absorbing member, an outer cylinder member in which the damper is movably installed, and an inner surface near both ends of the outer cylinder member are in contact with the end plate. Equipped with a stopper that restricts the movement of the damper,
A seismic isolation braking device characterized in that the energy absorbing member is an energy absorbing member that acts during compression, and the stopper is provided on the outside of the end plate.
前記エネルギー吸収部材が、断面が矩形の線材がらせん状に巻かれたコイルバネであることを特徴とする請求項1から4のいずれか一項に記載の免震制動装置。 The seismic isolation braking device according to any one of claims 1 to 4, wherein the energy absorbing member is a coil spring in which a wire having a rectangular cross section is spirally wound. 前記エネルギー吸収部材が、鋼管材にらせん状のスリットが形成されたコイルバネであることを特徴とする請求項1から4のいずれか一項に記載の免震制動装置。 The seismic isolation braking device according to any one of claims 1 to 4, wherein the energy absorbing member is a coil spring having a spiral slit formed in a steel pipe material. 前記免震制動装置が、台座に固定されたターンテーブルに設置されるとともに、両端の前記取付け部材と構造物が接続部材を介して接続されていることを特徴とする請求項1から6のいずれか一項に記載の免震制動装置。 Any of claims 1 to 6, wherein the seismic isolation braking device is installed on a turntable fixed to a pedestal, and the mounting members at both ends and a structure are connected via a connecting member. The seismic isolation braking device described in item 1.
JP2020213288A 2020-12-23 2020-12-23 Seismic isolation braking device Active JP7460287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020213288A JP7460287B2 (en) 2020-12-23 2020-12-23 Seismic isolation braking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020213288A JP7460287B2 (en) 2020-12-23 2020-12-23 Seismic isolation braking device

Publications (2)

Publication Number Publication Date
JP2022099496A true JP2022099496A (en) 2022-07-05
JP7460287B2 JP7460287B2 (en) 2024-04-02

Family

ID=82269755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020213288A Active JP7460287B2 (en) 2020-12-23 2020-12-23 Seismic isolation braking device

Country Status (1)

Country Link
JP (1) JP7460287B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6283322B2 (en) 2015-01-28 2018-02-21 青木あすなろ建設株式会社 Shock absorber
JP6309170B2 (en) 2015-09-30 2018-04-11 三菱電機株式会社 Seismic isolation unit and seismic isolation device
JP6613443B1 (en) 2019-03-19 2019-12-04 黒沢建設株式会社 Spring-type damping damper
JP6694195B1 (en) 2019-11-26 2020-05-13 黒沢建設株式会社 Spring type damping damper

Also Published As

Publication number Publication date
JP7460287B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP5762780B2 (en) Hysteretic damper
JP4726095B1 (en) Fall prevention device
JP6283322B2 (en) Shock absorber
US20210123257A1 (en) Structural connector
US5441243A (en) Wire cable isolator and energy absorbing restraint
JP2011099541A (en) Quake-absorbing mechanism
JP6184789B2 (en) Damping / seismic composite material and building using the same
JP4468212B2 (en) Fall bridge prevention device
JP2022099496A (en) Seismic isolation braking device
JP4926995B2 (en) Friction damper and damping method
JP6442934B2 (en) Fail-safe device
JP7017879B2 (en) A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
JP6872359B2 (en) Shock absorber
JP2019100098A (en) Composite damper
KR102303110B1 (en) Vibration control damper for seismic retrofitting of structures
JP5433311B2 (en) Vibration control device
JP2018091035A (en) Attachment structure of building oil damper
JP4188347B2 (en) Seismic isolation structure
JP2002047827A (en) Base isolation structure
JP6869015B2 (en) Wind lock mechanism
JP5214371B2 (en) Structure
WO2010074229A1 (en) Hysteretic damper
TWI435019B (en) Piping support structure
JP5235467B2 (en) Energy absorption support device
JPH0462271A (en) Damper for response control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240319

R150 Certificate of patent or registration of utility model

Ref document number: 7460287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150