JP6283322B2 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
JP6283322B2
JP6283322B2 JP2015014801A JP2015014801A JP6283322B2 JP 6283322 B2 JP6283322 B2 JP 6283322B2 JP 2015014801 A JP2015014801 A JP 2015014801A JP 2015014801 A JP2015014801 A JP 2015014801A JP 6283322 B2 JP6283322 B2 JP 6283322B2
Authority
JP
Japan
Prior art keywords
coil spring
shock absorber
steel
building
torsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015014801A
Other languages
Japanese (ja)
Other versions
JP2016138621A (en
Inventor
佑一郎 新井
佑一郎 新井
尭章 土田
尭章 土田
Original Assignee
青木あすなろ建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青木あすなろ建設株式会社 filed Critical 青木あすなろ建設株式会社
Priority to JP2015014801A priority Critical patent/JP6283322B2/en
Publication of JP2016138621A publication Critical patent/JP2016138621A/en
Application granted granted Critical
Publication of JP6283322B2 publication Critical patent/JP6283322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は、地震等の外力を受けた構造物の動きを抑制するための緩衝装置に関するものである。   The present invention relates to a shock absorber for suppressing the movement of a structure subjected to an external force such as an earthquake.

建築物等の特定部分を大きく運動させ、地震により発生する力を吸収し、破壊を防止する免震構造の設計では、地震動により想定される建築物等の最大移動量(最大変形量)を推定して、建築物等の周囲に必要な間隙を設定している。   In the design of a base-isolated structure that moves a specific part of a building, etc., absorbs the force generated by an earthquake and prevents its destruction, the maximum amount of movement (maximum deformation) assumed by the earthquake motion is estimated. Thus, a necessary gap is set around a building or the like.

しかしながら、通常は、想定を超えるような巨大地震が発生した場合の、建築物等の移動に伴う周辺の物体への接触、衝突までは想定されていないのが現状である。そのため、今後発生する可能性がある巨大地震において、建築物等が想定を超える挙動を示した場合の免震構造に対するフェイルセーフ機能の追加が求められている。   However, under the present circumstances, it has not been assumed that even a large earthquake that exceeds the expectation has occurred, such as contact and collision with surrounding objects accompanying the movement of buildings and the like. For this reason, in the case of a huge earthquake that may occur in the future, there is a demand for the addition of a fail-safe function to the seismic isolation structure when a building or the like exhibits a behavior that exceeds expectations.

また、橋梁において、特に橋脚と橋桁間の水平剛性が小さい橋梁では、地震時の橋桁の移動に伴う支承からの脱落や、橋桁の橋脚からの落下を防止するために、通常、落橋防止装置が取り付けられている。そして、このような落橋防止装置には、橋桁の落下防止や橋桁同士の衝突時に生じる衝撃荷重を緩衝するための緩衝装置が付加されている。   Also, in bridges, especially for bridges with low horizontal rigidity between the pier and bridge girder, in order to prevent the bridge girder from dropping off from the support due to the movement of the bridge girder and falling from the pier of the bridge girder, usually a falling bridge prevention device is installed. It is attached. And the buffer device for buffering the impact load which arises at the time of the collision prevention of a bridge girder fall or bridge girder is added to such a fall bridge prevention device.

このような落橋防止装置に用いられる緩衝装置としては、これまでに、鎖をゴム等で被覆したり、鋼棒の先端にリング状のゴムを取り付けたものが提案されている(例えば、特許文献1を参照)。   As a shock absorber used for such a falling bridge prevention device, a device in which a chain is covered with rubber or the like, and a ring-shaped rubber is attached to the tip of a steel rod has been proposed (for example, Patent Documents). 1).

また、ゴム等の部材を用いずに鋼製部材のみで緩衝機能を実現する緩衝装置として、鋼管に、周方向に延びる多数のスリットを軸方向に間隔を設けて入れ、強度と剛性を低下させ、鋼管の塑性変形でエネルギーを吸収させるものも提案されている(例えば、特許文献2を参照)。   In addition, as a shock absorber that achieves a shock absorbing function with only steel members without using rubber or other members, a number of circumferentially extending slits are provided in the steel pipe at intervals in the axial direction to reduce strength and rigidity. Also proposed are those that absorb energy by plastic deformation of a steel pipe (see, for example, Patent Document 2).

特開2002−97607号公報JP 2002-97607 A 特開2010−53618号公報JP 2010-53618 A

しかしながら、特許文献1に記載のような、鎖をゴム等で被覆したり、鋼棒の先端にリング状のゴムを取り付けた緩衝装置においては、ゴム等で構成された部材が、紫外線やオゾン等によって経年劣化を起こし、当初の緩衝能力を発揮できなくなったり、火災等によりゴム等の部材が焼失して緩衝能力を喪失する等の問題があった。   However, in a shock absorber in which a chain is covered with rubber or the like, as described in Patent Document 1, or a ring-shaped rubber is attached to the tip of a steel rod, a member made of rubber or the like is made of ultraviolet light, ozone, or the like. As a result, there is a problem that the initial buffering capacity cannot be exhibited due to deterioration due to aging, or the member such as rubber is burned down due to a fire or the like and the buffering capacity is lost.

また、緩衝装置として高減衰ゴムを用いた例では、履歴サイクルにおけるエネルギー吸収能力が約60%程度に低下し、入力したエネルギーの約40%が緩衝装置から放出されるというデータもあり、構造物に2次的な振動が発生する可能性があった。さらに、ゴムを用いる場合には、特殊な製造技術が必要であり、供給できる事業者が限られるため、製品価格が高くなるという欠点もあった。   In addition, in the example using a high damping rubber as a shock absorber, there is data that the energy absorption capacity in the hysteresis cycle is reduced to about 60%, and about 40% of the input energy is released from the shock absorber. Secondary vibration may occur. Further, when rubber is used, a special manufacturing technique is required, and since there are limited companies that can supply the rubber, there is a disadvantage that the product price is increased.

また、特許文献2に記載のような、鋼製部品のみで緩衝機能を実現する緩衝装置では、装置動作時の初期勾配が大きく、鋼管弾性領域である程度の衝撃荷重が構造物に入力し、構造物への負担が大きくなる可能性があった。これらのことから、鋼製部品のみでゴム等の部材を用いる緩衝装置と同水準の緩衝性能を発現させることは未だできていないのが現実である。   Moreover, in the shock absorber which implement | achieves a shock absorbing function only by steel parts like the patent document 2, the initial gradient at the time of apparatus operation | movement is large, and a certain amount of impact load inputs into a structure in a steel pipe elastic region, and a structure There was a possibility that the burden on things would increase. From these facts, the reality is that it has not yet been possible to develop the same level of buffer performance as a shock absorber using a member such as rubber with only steel parts.

本発明は以上のような事情に鑑みてなされたものであり、建造物や橋梁等の構造物が、地震動等の外力を受けて、設計上の想定を超えて移動した場合に間題となる、隣接する建造物同士の衝突や、橋梁における橋桁の落下等を防止し、構造物の損傷を最小限に留める機能を有する緩衝装置を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and becomes a problem when a structure such as a building or a bridge is moved beyond a design assumption due to an external force such as earthquake motion. It is an object of the present invention to provide a shock absorber having a function of preventing collision between adjacent structures, dropping of a bridge girder in a bridge, and the like to minimize damage to the structure.

本発明の緩衝装置は、上記の技術的課題を解決するためになされたものであって、以下のことを特徴としている。   The shock absorber according to the present invention has been made to solve the above technical problem, and is characterized by the following.

第1に、本発明の緩衝装置は、コイルばねの中心空間に、前記コイルばねの円周方向に対して特定の間隔を設けて拘束材が内設され、前記コイルばねの片端には前記拘束材が接合され、前記コイルばねの両端には構造物に取付けるための取り付け部材が設けられており、前記コイルばねの両端軸方向外向きに外力が加わり、引張力を受ける前記コイルばねが絞られて内径が小さく変形する際に、内設された前記拘束材により一定以上前記コイルばねの内径が小さく変形しないことを特徴とする緩衝装置である。
First, in the shock absorber according to the present invention, a constraining material is provided in the central space of the coil spring at a specific interval with respect to the circumferential direction of the coil spring, and the constraining member is provided at one end of the coil spring. Attachment members for attaching to the structure are provided at both ends of the coil spring, and external force is applied outward in the axial direction at both ends of the coil spring, and the coil spring receiving the tensile force is throttled. When the inner diameter is deformed to be small , the shock absorber is characterized in that the inner diameter of the coil spring is not deformed to be smaller than a certain level by the restraining material provided therein .

第2に、上記第1の発明の緩衝装置において、前記コイルばねは、断面が矩形の鋼材がらせん状に巻かれたコイルばねであることが好ましい。   Second, in the shock absorber according to the first invention, the coil spring is preferably a coil spring in which a steel material having a rectangular cross section is wound in a spiral shape.

第3に、上記第1の発明の緩衝装置において、前記コイルばねは、鋼管材にらせん状のスリットが形成されたコイルばねであることが好ましい。   Third, in the shock absorber according to the first invention, the coil spring is preferably a coil spring in which a helical slit is formed in a steel pipe material.

第4に、上記第1から第3の発明の緩衝装置において、前記コイルばねの伸びに伴う捩れの発生を防止するための、捩れ防止部材が設けられていることが好ましい。   Fourthly, in the shock absorber according to the first to third aspects of the present invention, it is preferable that a torsion preventing member for preventing the torsion caused by the extension of the coil spring is provided.

本発明によれば、建造物や橋梁等の構造物が、地震動等の外力を受けて、設計上の想定を超えて移動した場合に間題となる、隣接する建造物同士の衝突や、橋梁における橋桁の落下等を防止し、構造物の損傷を最小限に留める機能を有する緩衝装置を提供することができる。   According to the present invention, when a structure such as a building or a bridge is subjected to an external force such as an earthquake motion and moves beyond a design assumption, a collision between adjacent buildings or a bridge becomes a problem. It is possible to provide a shock absorber having a function of preventing a bridge girder from falling and preventing damage to a structure to a minimum.

図1(a)は、本発明の緩衝装置の一実施形態の構成を示す概略正面断面図であり、図1(b)は、この実施形態の概略斜視図である。Fig.1 (a) is a schematic front sectional view which shows the structure of one Embodiment of the buffering device of this invention, FIG.1 (b) is a schematic perspective view of this embodiment. 分割した拘束材を用いた本発明の緩衝装置の一実施形態の構成を示す概略正面断面図である。It is a schematic front sectional drawing which shows the structure of one Embodiment of the buffering device of this invention using the divided | segmented restraint material. 図3(a)は、捩れ防止機構の一実施形態を設けた緩衝装置の概略正面断面図であり、図3(b)は、この実施形態の概略上面図である。FIG. 3A is a schematic front cross-sectional view of a shock absorber provided with one embodiment of a twist preventing mechanism, and FIG. 3B is a schematic top view of this embodiment. 他の捩れ防止機構の一実施形態を設けた緩衝装置の概略正面断面図である。It is a schematic front sectional view of a shock absorber provided with an embodiment of another twist prevention mechanism. 軸方向力−軸方向変位の関係を示すグラフである。It is a graph which shows the relationship between axial force-axial displacement. 免震装置を設けた建築物の免震層と建築物の間に、本発明の緩衝装置を設置した構成を示す概略図である。It is the schematic which shows the structure which installed the buffering device of this invention between the seismic isolation layer of the building which provided the seismic isolation apparatus, and the building. 橋梁の橋脚と橋桁の間に、本発明の緩衝装置を設置した構成を示す概略図である。It is the schematic which shows the structure which installed the buffering device of this invention between the bridge pier and the bridge girder of the bridge.

本発明の緩衝装置は、前記のとおり、コイルばねの中心空間に、コイルばねの円周方向に対して特定の間隔を設けて拘束材が内設され、コイルばねの片端には拘束材が接合され、コイルばねの両端には構造物に取付けるための取り付け部材が設けられているものである。   In the shock absorber according to the present invention, as described above, a constraining material is provided in the central space of the coil spring at a specific interval with respect to the circumferential direction of the coil spring, and the constraining material is bonded to one end of the coil spring. And the attachment member for attaching to a structure is provided in the both ends of a coil spring.

このような本発明の緩衝装置では、コイルばねの両端軸方向外向きに外力が加わり、引張力を受けるコイルばねが絞られて内径が小さく変形する際に、内設された拘束材により一定以上コイルばねの内径が小さく変形しないようになっている。   In such a shock absorber according to the present invention, when an external force is applied outward in the axial direction at both ends of the coil spring, and the coil spring that receives the tensile force is squeezed to deform the inner diameter to a small extent, it is more than a certain level by the restraining material provided inside. The inner diameter of the coil spring is small and does not deform.

以下、本発明に係る緩衝装置の実施形態について、図面を用いて詳述する。図1(a)は、本発明の緩衝装置の一例の構成を示す概略正面断面図であり、図1(b)は、その概略斜視図である。   Hereinafter, embodiments of a shock absorber according to the present invention will be described in detail with reference to the drawings. Fig.1 (a) is a schematic front sectional view which shows a structure of an example of the buffering device of this invention, FIG.1 (b) is the schematic perspective view.

緩衝装置1に用いるコイルばね2は、板状の鋼材を一定の内径でらせん状に巻いた形状のものである。すなわち、コイルばね2のバネ線材の断面は矩形形状となっている。   The coil spring 2 used in the shock absorber 1 has a shape in which a plate-shaped steel material is spirally wound with a constant inner diameter. That is, the cross section of the spring wire of the coil spring 2 has a rectangular shape.

また、鋼材の種類は、通常のバネに用いられる鋼材、すなわち適度な弾性を有するものであれば制限なく用いることができ、例えば、低炭素鋼、バネ鋼(熱間材)である高炭素鋼、シリコンマンガン鋼、マンガンクロム鋼、クロムバナジウム鋼、マンガンクロムボロン鋼、シリコンクロム鋼、クロムモリブデン鋼、ステンレス鋼等を挙げることができる。   Further, the type of steel material can be used without limitation as long as it is a steel material that is used for ordinary springs, that is, has an appropriate elasticity, for example, low carbon steel, high carbon steel that is spring steel (hot material). , Silicon manganese steel, manganese chromium steel, chromium vanadium steel, manganese chromium boron steel, silicon chromium steel, chromium molybdenum steel, stainless steel and the like.

前記のコイルばねの製造では、通常のコイルばねの製造方法と同様に、板状の鋼材をらせん状に成型後、冷間加工のまま、もしくは低温焼なまし等の熱処理を施して所望の特性のコイルばね2とすることができる。   In the production of the coil spring, the desired properties are obtained by forming a plate-shaped steel material into a spiral shape and then subjecting it to cold working or a heat treatment such as low-temperature annealing in the same manner as in the ordinary coil spring manufacturing method. The coil spring 2 can be used.

なお、コイルばね2を構成する板状の鋼材の幅、巻き数は、使用する鋼材の材質や特性、また、取り付ける構造物の大きさや要求される緩衝能力に応じて適宜設定することができ、特に限定されるものではないが、エネルギー吸収能力を高めるために、断面が幅広の矩形形状の鋼材を用いるのが好ましい。具体的には、十分な緩衝性能を発現するための設定として、鋼材断面の矩形形状の幅径比(ばね径/線材幅)が0.5〜1程度の範囲が望ましい。   The width of the plate-shaped steel material constituting the coil spring 2 and the number of turns can be appropriately set according to the material and characteristics of the steel material to be used, the size of the structure to be attached, and the required buffer capacity, Although not particularly limited, it is preferable to use a rectangular steel material having a wide cross section in order to increase energy absorption capability. Specifically, it is desirable that the width-to-diameter ratio (spring diameter / wire width) of the rectangular cross-section of the steel material is in a range of about 0.5 to 1 as a setting for expressing sufficient buffer performance.

ここで、鋼材断面の矩形形状の幅径比を算出するためのばね径の寸法とは、図1における、らせん状に巻いたコイルばねの径、すなわち緩衝装置1の直径に相当する。   Here, the dimension of the spring diameter for calculating the width-diameter ratio of the rectangular shape of the steel material cross section corresponds to the diameter of the helically wound coil spring, that is, the diameter of the shock absorber 1 in FIG.

また、コイルばね2は、上記の板状の鋼材をらせん状に巻いて製造する他、円筒状の鋼管材の周囲に一定間隔のスリット状の切込みをらせん状に形成して製造することもできる。   The coil spring 2 can be manufactured by winding the plate-shaped steel material in a spiral shape, or by forming slit-shaped cuts at regular intervals around the cylindrical steel pipe material in a spiral shape. .

この、鋼管材にらせん状の切り込みを形成するコイルばねの製造方法によれば、鋼管材に形成する切り込みの角度や幅を調整することにより所望のバネ特性を実現することができる。また、らせん部分の角度を部分的に変化させることにより、特定の位置の弾性を変化させることもでき、設計上の応用範囲を広くすることができる。また、鋼管材の任意の部分のみにコイルばねを形成することができ、両端を閉じた円筒状とすることができるため、用途の拡張性や加工性の観点から好ましい。また、加工歩留りが高まり、生産を自動化することができるため大量生産が可能となる。   According to this method of manufacturing a coil spring that forms a spiral cut in a steel pipe, desired spring characteristics can be realized by adjusting the angle and width of the cut formed in the steel pipe. In addition, by changing the angle of the spiral portion partially, the elasticity at a specific position can be changed, and the application range in design can be widened. Moreover, since a coil spring can be formed only in an arbitrary portion of the steel pipe material and can be formed in a cylindrical shape with both ends closed, it is preferable from the viewpoint of expandability of application and workability. In addition, since the processing yield is increased and the production can be automated, mass production becomes possible.

緩衝装置1では、前記のコイルばね2の円周方向に対して、特定の間隔5を設けて拘束材3が内設される。また、コイルばね2の中心空間に、長手方向に対して平行に挿入された拘束材3の一端は、コイルばね2の片端の内面に固定されている。   In the shock absorber 1, the constraining material 3 is provided with a specific interval 5 in the circumferential direction of the coil spring 2. Further, one end of the restraining material 3 inserted in the central space of the coil spring 2 in parallel with the longitudinal direction is fixed to the inner surface of one end of the coil spring 2.

拘束材3の材質としては、コイルばね2の内径の変形を防止できる強度を有するものであれば特に制限はなく、例えば、鋼材、非鉄金属、エンジニアリングプラスチック、FRP、硬質ゴム、ダンパー等を用いることができる。   The material of the restraint material 3 is not particularly limited as long as it has a strength capable of preventing the deformation of the inner diameter of the coil spring 2. For example, steel, non-ferrous metal, engineering plastic, FRP, hard rubber, damper, etc. are used. Can do.

また、拘束材3の形状は特に制限はなく、円柱、円筒、多角柱等のものを用いることができる。なお、多角柱のものを用いる場合には、コイルばね2の内側との接触面積を多くするために角を面取りしたものを用いるのが好ましい。これは、拘束材3に対してコイルばね2が絡まる際に、拘束材3の角の鋭い部分に接触すると、コイルばね2の耐力が低下する場合があるためである。   Moreover, the shape of the restraint material 3 is not particularly limited, and a column, cylinder, polygonal column or the like can be used. In addition, when using the thing of a polygonal column, in order to increase the contact area with the inner side of the coil spring 2, it is preferable to use what chamfered the corner | angular. This is because, when the coil spring 2 is entangled with the restraining material 3, if the sharp corner of the restraining material 3 is contacted, the yield strength of the coil spring 2 may be reduced.

また、コイルばね2の両端には、緩衝装置1を構造物に取付けるための取り付け部材4が設けられている。この取り付け部材4は、構造物と接合可能な形態であれば特に制限されるものではなく、例えば、取り付け部材4に設けた接続穴41に、ワイヤー、鎖、鋼板、ボルト、ピン等を接続して建物等と接合する形態のものを例示することができる。   Further, attachment members 4 for attaching the shock absorber 1 to the structure are provided at both ends of the coil spring 2. The attachment member 4 is not particularly limited as long as it can be joined to the structure. For example, a wire, a chain, a steel plate, a bolt, a pin, or the like is connected to the connection hole 41 provided in the attachment member 4. The thing of the form joined to a building etc. can be illustrated.

このような緩衝装置の動作については、次のように説明される。   The operation of such a shock absorber will be described as follows.

通常のコイルばねが、外力により両端軸方向外向きに伸ばされると、コイルばねが絞られて内径が小さく変形する。このように、コイルばねに外力が加わり続けた場合、絞られた状態で長軸方向に伸び続け、最終的にコイルばねは破断する。   When a normal coil spring is extended outward in the axial direction by the external force, the coil spring is squeezed and the inner diameter is reduced. As described above, when an external force continues to be applied to the coil spring, the coil spring continues to extend in the major axis direction in a constricted state, and finally the coil spring breaks.

一方、本発明の緩衝装置1は、コイルばね2の両端方向外向きに外力が加わり、コイルばね2が絞られて内径が小さく変形する際に、一定以上内径が小さく変形しないように拘束材3が挿入されている。   On the other hand, in the shock absorber 1 of the present invention, when an external force is applied outward in the both end directions of the coil spring 2 and the coil spring 2 is squeezed and the inner diameter is reduced, the restraining material 3 is prevented from being deformed to be smaller than a certain value. Has been inserted.

すなわち、コイルばね2が絞られて内径が小さく変形して、コイルばね2の内側が拘束材3に接触するまでは引きばねとして機能し、接触して軸力を受けて、拘束材3に巻きついてコイルばね2の変形が拘束されると緩衝装置全体の剛性と強度が上昇する。   That is, the coil spring 2 is squeezed and the inner diameter is deformed to be small, and the coil spring 2 functions as a tension spring until the inside of the coil spring 2 comes into contact with the restraining material 3. When the deformation of the coil spring 2 is constrained, the rigidity and strength of the entire shock absorber increase.

コイルばね2の中心空間に内設した拘束材3とコイルばね2の内側の間隔5は、緩衝装置1にかかる外力の荷重とコイルばね2の変形関係に影響を与える。この間隔5は、コイルばね2の内径を変更することにより、また、拘束材3の径(太さ)を変更することにより調整可能である。そして、この拘束材3とコイルばね2の内側の間隔5を調整することにより、コイルばね2の伸び量、すなわち、緩衝装置1の緩衝性能を決定することができる。なお、通常の設計においては、可能な限り間隔5を狭く設定し、拘束材3を密に内設するのが好ましい。   The space 5 inside the coil spring 2 and the restraining material 3 provided in the central space of the coil spring 2 influences the external force load applied to the shock absorber 1 and the deformation relationship of the coil spring 2. The interval 5 can be adjusted by changing the inner diameter of the coil spring 2 and by changing the diameter (thickness) of the restraining material 3. Then, by adjusting the space 5 between the restraining member 3 and the coil spring 2, the extension amount of the coil spring 2, that is, the buffer performance of the shock absorber 1 can be determined. In a normal design, it is preferable that the interval 5 is set as narrow as possible and the constraining material 3 is densely provided.

また、図2に示すように、長手方向に分割した拘束材31、32を用い、それぞれの拘束材31、32の端部をコイルばね2の両端で保持させることもできる。このように拘束材31、32を分割することにより曲がる機能を有する緩衝装置1とすることができる。   In addition, as shown in FIG. 2, the restraining members 31 and 32 divided in the longitudinal direction can be used, and the ends of the restraining members 31 and 32 can be held at both ends of the coil spring 2. Thus, it can be set as the buffering device 1 which has the function to bend | bend by dividing | segmenting the restraining materials 31 and 32. FIG.

一方、コイルばね2は、両端に軸方向外向きの外力がかかり軸方向の変形が大きくなるにつれてばね本体に捩れが生じ、コイルばね2と拘束材3とが十分接触せずに滑り、コイルばね2が荷重上昇することなく塑性化による変形が増大し、緩衝機能が働かなくなる可能性もある。   On the other hand, the coil spring 2 is twisted in the spring body as the axially outward force is applied to both ends and the axial deformation is increased, and the coil spring 2 and the restraining material 3 are not sufficiently in contact with each other. There is a possibility that the deformation due to plasticization increases without increasing the load of 2 and the buffer function does not work.

そのため、本発明の緩衝装置には、コイルばね2の所定以上の捩れの発生を防止するために、捩れ防止機構を設けることができる。   Therefore, the shock absorber of the present invention can be provided with a twist prevention mechanism in order to prevent the coil spring 2 from being twisted more than a predetermined amount.

図3(a)に、捩れ防止機構の一実施形態を設けた緩衝装置の概略正面断面図を示し、図3(b)に、その概略上面図を示す。   FIG. 3A shows a schematic front cross-sectional view of a shock absorber provided with one embodiment of a twist preventing mechanism, and FIG. 3B shows a schematic top view thereof.

捩れ防止機構は、図3(a)に示すような、拘束材3の一部に突起部61を設けて、この突起部61をコイルばねの長手方向に設けたスリット62に挿入した構成の捩れ防止機構6を例示することができる。   As shown in FIG. 3A, the torsion prevention mechanism has a structure in which a protrusion 61 is provided on a part of the restraint member 3 and the protrusion 61 is inserted into a slit 62 provided in the longitudinal direction of the coil spring. The prevention mechanism 6 can be illustrated.

この捩れ防止機構6によれば、コイルばね2が両端軸方向外向きに引き伸ばされ、拘束材3とコイルばね2の内面が接触した後のコイルばね2の捩れが、突起部61とスリット62の接触により防止されるため、確実にコイルばね2の破断を防止することが可能となる。   According to this torsion prevention mechanism 6, the coil spring 2 is stretched outward in the axial direction at both ends, and the torsion of the coil spring 2 after the restraining material 3 and the inner surface of the coil spring 2 come into contact with each other. Since it is prevented by contact, it is possible to reliably prevent the coil spring 2 from being broken.

また、他の捩れ防止機構として、図4に示すような、中央で分割した拘束材31、32の、それぞれの片端をコイルばね2の両端で保持するとともに、片方の拘束材31の分割部に柱状部材71を設け、もう片方の拘束材32の分割部に、柱状部材71が嵌合する孔72を設けて、この孔72に柱状部材71を挿入して、それぞれの拘束材31、32が捻じれることなく、長手方向に伸縮自在に結合した構造の捩れ防止機構7を例示することもできる。   As another twist prevention mechanism, as shown in FIG. 4, each of the restraining materials 31 and 32 divided at the center is held at both ends of the coil spring 2, and at one portion of the restraining material 31. A columnar member 71 is provided, and a hole 72 into which the columnar member 71 is fitted is provided in the divided portion of the other constraint member 32. The columnar member 71 is inserted into the hole 72 so that each of the constraint members 31 and 32 is provided. It is also possible to exemplify the twist preventing mechanism 7 having a structure in which the members are stretched in the longitudinal direction without being twisted.

この捩れ防止機構7によれば、コイルばね2が両端軸方向外向きに引き伸ばされたときに生じる捩れは、端部が接続された拘束材31、32に軸方向の捻じれとして伝達されるが、分割した拘束材31、32それぞれに設けた柱状部材71と孔72を嵌合させて、柱状部材が長手方向に伸縮自在に挿入されることにより、拘束材31、32の捻じれが抑制され、結果としてコイルばね2の捩れを防止することが可能となる。   According to this torsion prevention mechanism 7, the torsion generated when the coil spring 2 is extended outward in the axial direction at both ends is transmitted to the restraining members 31 and 32 to which the ends are connected as axial twist. The columnar member 71 and the hole 72 provided in each of the divided constraining materials 31 and 32 are fitted to each other, and the columnar member is inserted so as to be stretchable in the longitudinal direction, whereby the twisting of the constraining materials 31 and 32 is suppressed. As a result, twisting of the coil spring 2 can be prevented.

なお、前記の捩れ防止機構6、7においては、機構内に摩擦部分が存在するため、捩れ防止機構6、7の動作をスムーズにすることが望ましい。そのために、例えば、捩れ防止機構6を構成する突起部61及びスリット62の内壁や、捩れ防止機構7を構成する柱状部材71及び孔72の内壁に、摩擦低減のためのみがき加工処理を施したり、潤滑油や潤滑塗料を塗布することが好ましい。   In addition, in the above-described twist preventing mechanisms 6 and 7, since there is a friction portion in the mechanism, it is desirable to make the operations of the twist preventing mechanisms 6 and 7 smooth. For this purpose, for example, the inner wall of the protrusion 61 and the slit 62 constituting the torsion prevention mechanism 6 and the inner wall of the columnar member 71 and the hole 72 constituting the torsion prevention mechanism 7 are subjected to a postcarding process for reducing friction. It is preferable to apply a lubricating oil or a lubricating paint.

さらに、他の捩れ防止機構として、らせんが逆のコイルばねを直列に接合した構成とすることもできる。この捩れ防止機構によれば、コイルばねが両端軸方向外向きに引き伸ばされたときに生じる捩れをコイルばねのらせんを逆にすることにより相殺させ、捩れを防止することが可能となる。   Furthermore, as another torsion prevention mechanism, it is possible to adopt a configuration in which coil springs with reversed spirals are joined in series. According to this torsion prevention mechanism, it is possible to cancel the torsion generated when the coil spring is extended outward in the axial direction at both ends by reversing the spiral of the coil spring, thereby preventing the torsion.

図5に、図3に示す捩れ防止機構6を設けた緩衝装置1の軸方向力−軸方向変位の関係グラフを示す。図5のグラフでは、実線が本発明の緩衝装置1の特性を示し、破線が通常のコイルばねの特性を示している。   FIG. 5 is a graph showing the relationship between the axial force and the axial displacement of the shock absorber 1 provided with the twist preventing mechanism 6 shown in FIG. In the graph of FIG. 5, the solid line indicates the characteristics of the shock absorber 1 of the present invention, and the broken line indicates the characteristics of a normal coil spring.

このグラフによれば、本発明の緩衝装置1の軸方向力−軸方向変位特性(実線)は、初期は剛性が小さく緩やかに剛性が上昇し、特定のエネルギー以上の入力に対しては所定の耐力を発現している。これにより、構造物の変位が急激に拘束されることによる衝撃的な荷重の伝達を抑制することがわかる。   According to this graph, the axial force-axial displacement characteristic (solid line) of the shock absorber 1 of the present invention has a small initial rigidity and a moderate increase in rigidity. Has developed strength. Thereby, it turns out that the transmission of the impact load by the displacement of a structure being restrained rapidly is suppressed.

このように、コイルばね2が拘束材3に巻きつきながら荷重と剛性が上昇する過程で、コイルばね2の矩形断面の鋼材がせん断降伏しエネルギーを吸収する。   Thus, in the process in which the load and rigidity increase while the coil spring 2 is wound around the restraint material 3, the steel material having a rectangular cross section of the coil spring 2 yields a shear yield and absorbs energy.

これに対して、通常のコイルばね(破線)では、初期は剛性が小さく緩やかに剛性が上昇するが、軸方向力の上昇に伴い限界点で破断している。   On the other hand, in the normal coil spring (broken line), the rigidity is small at the initial stage and the rigidity gradually increases, but it breaks at the limit point as the axial force increases.

また、鋼材はゴムと比較して履歴サイクルにおけるエネルギー吸収能力が大きい。本発明の緩衝装置1の場合、実験により、入力した地震動エネルギーのうちの約90%程度を吸収できることが確認されている。   In addition, steel materials have a larger energy absorption capacity in a hysteresis cycle than rubber. In the case of the shock absorber 1 of the present invention, it has been confirmed by experiments that about 90% of the input seismic energy can be absorbed.

本発明の緩衝装置1は、従来技術でみられた鋼材弾性域が、非常に剛性が小さいコイルばねの変形に置き換えられるため、軸方向力−軸方向変位特性の初期立ち上がりがない。これは、ゴム等の材料を用いた緩衝装置と同等の軸力一軸変位関係であることを意味している。   In the shock absorber 1 of the present invention, since the steel elastic region found in the prior art is replaced by the deformation of a coil spring having very low rigidity, there is no initial rise in axial force-axial displacement characteristics. This means that the uniaxial displacement relationship is equivalent to that of a shock absorber using a material such as rubber.

以上のように、鋼材特有の高いエネルギー吸収能力に、緩やかな荷重上昇機能を持たせることで、従来の鋼材と有機材料系の両方の利点を有する緩衝機構を実現することができる。   As described above, a buffer mechanism having the advantages of both a conventional steel material and an organic material system can be realized by giving a gentle load increasing function to the high energy absorption capability unique to the steel material.

また、本発明の緩衝装置1は全て鋼材で構成することができるため、例えば、地震後に緩衝装置が受けた損傷の程度の判断は、コイルばね2の亀裂や塗装の剥がれなどを目視することにより容易に判断することができる。また通常のメンテナンスにおいても、目視により、コイルばね2のスリット状の間隔部分の劣化や損傷を容易に判断することができる。これは、緩衝装置が被覆され内部が見えないゴム系の緩衝装置では実施することができない特徴である。   In addition, since the shock absorber 1 of the present invention can be composed entirely of steel, for example, the degree of damage received by the shock absorber after the earthquake is determined by observing cracks in the coil spring 2 or peeling of the paint. It can be easily judged. Further, even in normal maintenance, it is possible to easily determine deterioration or damage of the slit-like interval portion of the coil spring 2 by visual observation. This is a feature that cannot be implemented with a rubber-based shock absorber that is covered with a shock absorber and the inside is not visible.

図6に、免震装置を設けた建築物の免震層と建築物の間に、本発明の緩衝装置1を設置した構成の概略図を示す。   In FIG. 6, the schematic of the structure which installed the buffering device 1 of this invention between the seismic isolation layer of the building which provided the seismic isolation apparatus, and the building is shown.

免震装置81を設置した建築物8では、地震により揺れが発生しても、通常は免震装置81が地震動を吸収する。しかしながら、地震規模が大きく免震装置81の変形が想定値を超える場合には、建築物8に揺れが発生する。そして、この免震許容量を超えた建造物8の揺れが大きい場合には、隣接する建造物等と接触したり衝突する可能性がある。   In the building 8 in which the seismic isolation device 81 is installed, the seismic isolation device 81 normally absorbs seismic motion even if shaking occurs due to an earthquake. However, when the magnitude of the earthquake is large and the deformation of the seismic isolation device 81 exceeds the assumed value, the building 8 is shaken. And when the shaking of the building 8 exceeding this seismic isolation allowance is large, there exists a possibility of contacting or colliding with an adjacent building or the like.

このような接触や衝突を防止するために、例えば、鎖やワイヤー等により基礎と建築物を繋いだ場合であっても緩衝効果は得ることができず、また、鎖やワイヤー等が伸びきった段階で建築物に衝撃が直接加わり、鎖やワイヤー等の破断や取り付け部材の破損が生じる。   In order to prevent such contact and collision, for example, even when the foundation and the building are connected by a chain or a wire, the buffering effect cannot be obtained, and the chain or the wire has been fully extended. At the stage, an impact is directly applied to the building, causing breakage of chains, wires, etc. and breakage of attachment members.

これに対して、本発明の緩衝装置1は、免震装置81の免震許容量を超えて発生する建造物8に揺れによる一定の移動寸法までは引きばねとしての緩衝効果を発現し、コイルばね2の内側と拘束材3が接触した後は、鎖やワイヤー等と同様のストッパー部材として機能する。   On the other hand, the shock absorber 1 of the present invention exhibits a shock absorbing effect as a tension spring up to a certain moving dimension due to shaking in the building 8 generated exceeding the seismic isolation allowable amount of the seismic isolator 81, and the coil After the inside of the spring 2 and the restraining material 3 contact, it functions as a stopper member similar to a chain or a wire.

また、本発明の緩衝装置1を免震建物に用いた場合、複数回の衝撃に耐えながら、免震建物と他の構造物との衝突防止部材として機能するとともに、確実に免震層のエネルギーを吸収する緩衝装置とすることができる。   In addition, when the shock absorber 1 of the present invention is used in a base-isolated building, it functions as a collision prevention member between the base-isolated building and other structures while being able to withstand multiple impacts, and also ensures the energy of the base isolation layer. It can be set as the buffer device which absorbs.

図7に、橋梁の橋脚と橋桁の間に、本発明の緩衝装置を設置した構成の概略図を示す。   FIG. 7 shows a schematic diagram of a configuration in which the shock absorber of the present invention is installed between the bridge pier and the bridge girder.

本発明の緩衝装置1を用いて橋脚91と橋桁9を繋ぐ場合には、可動支承92に対する橋桁9の移動許容範囲を考慮して、緩衝装置1の最大伸び幅を設定する必要がある。これにより地震動による橋桁9の落橋を確実に防止することが可能となる。   When the bridge pier 91 and the bridge girder 9 are connected using the shock absorber 1 of the present invention, it is necessary to set the maximum extension width of the shock absorber 1 in consideration of the allowable movement range of the bridge girder 9 with respect to the movable support 92. As a result, it is possible to reliably prevent the bridge girder 9 from being dropped due to earthquake motion.

また、本発明の緩衝装置1を落橋防止装置として用いる場合は、緩衝装置1の内部に挿入された拘束材3を、桁落下時の死荷重を支える部材として併用することができる。   Moreover, when using the shock absorber 1 of this invention as a fall bridge prevention apparatus, the restraint material 3 inserted in the inside of the shock absorber 1 can be used together as a member which supports the dead load at the time of a girder fall.

このように、本発明の緩衝装置1によれば、免震建物や橋梁といった大きく水平移動する構造物の過大な変位を抑制し、衝突や落下を防止することが可能となる。   Thus, according to the shock absorber 1 of the present invention, it is possible to suppress an excessive displacement of a structure that moves horizontally, such as a base-isolated building or a bridge, and to prevent a collision or a fall.

以上、本発明の緩衝装置を一実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内において種々の変形、変更が可能である。   Although the shock absorber according to the present invention has been described based on one embodiment, the present invention is not limited to the above-described embodiment, and various modifications and changes can be made without departing from the scope of the present invention. .

例えば、上記実施形態では、構成する材料を鋼材として説明したが、建造物等の規模や用途によっては、鋼材以外の材質のものにより構成することができる。   For example, in the said embodiment, although the material to comprise was demonstrated as a steel material, depending on the scales and uses, such as a building, it can comprise with materials other than steel materials.

また、拘束材には鋼材等の単純な材料だけではなくダンパー等の緩衝装置等を使用することができ、複合的な免制震部材とすることもできる。   Moreover, not only a simple material such as a steel material but also a shock absorber such as a damper can be used as the restraining material, and a composite seismic isolation member can be obtained.

1 緩衝装置
2 コイルばね
3 拘束材
4 取り付け部材
5 間隔
6 捩れ防止部材
7 捩れ防止部材
DESCRIPTION OF SYMBOLS 1 Shock absorber 2 Coil spring 3 Restraint material 4 Attachment member 5 Space | interval 6 Torsion prevention member 7 Torsion prevention member

Claims (4)

コイルばねの中心空間に、前記コイルばねの円周方向に対して特定の間隔を設けて拘束材が内設され、前記コイルばねの片端には前記拘束材が接合され、前記コイルばねの両端には構造物に取付けるための取り付け部材が設けられており、前記コイルばねの両端軸方向外向きに外力が加わり、引張力を受ける前記コイルばねが絞られて内径が小さく変形する際に、内設された前記拘束材により一定以上前記コイルばねの内径が小さく変形しないことを特徴とする緩衝装置。 A constraining material is provided in the central space of the coil spring at a specific interval with respect to the circumferential direction of the coil spring, the constraining material is joined to one end of the coil spring, and the coil spring is connected to both ends of the coil spring. Is provided with an attachment member for attachment to the structure. When an external force is applied outward in the axial direction at both ends of the coil spring, and the coil spring receiving the tensile force is squeezed, the internal diameter is reduced. The shock absorber is characterized in that an inner diameter of the coil spring is not reduced and deformed by a certain amount or more by the restrained material . 前記コイルばねは、断面が矩形の線材がらせん状に巻かれたコイルばねであることを特徴とする請求項1に記載の緩衝装置。   The shock absorber according to claim 1, wherein the coil spring is a coil spring in which a wire having a rectangular cross section is wound in a spiral shape. 前記コイルばねは、鋼管材にらせん状のスリットが形成されたコイルばねであることを特徴とする請求項1に記載の緩衝装置。   The shock absorber according to claim 1, wherein the coil spring is a coil spring in which a spiral slit is formed in a steel pipe material. 前記コイルばねの伸びに伴う捩れの発生を防止するための、捩れ防止部材が設けられていることを特徴とする請求項1から3のいずれか一項に記載の緩衝装置。   The shock absorber according to any one of claims 1 to 3, further comprising a torsion preventing member for preventing the occurrence of torsion accompanying the extension of the coil spring.
JP2015014801A 2015-01-28 2015-01-28 Shock absorber Active JP6283322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015014801A JP6283322B2 (en) 2015-01-28 2015-01-28 Shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014801A JP6283322B2 (en) 2015-01-28 2015-01-28 Shock absorber

Publications (2)

Publication Number Publication Date
JP2016138621A JP2016138621A (en) 2016-08-04
JP6283322B2 true JP6283322B2 (en) 2018-02-21

Family

ID=56559050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014801A Active JP6283322B2 (en) 2015-01-28 2015-01-28 Shock absorber

Country Status (1)

Country Link
JP (1) JP6283322B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6457886B2 (en) * 2014-05-20 2019-01-23 青木あすなろ建設株式会社 Pile head pin joint structure
KR102560671B1 (en) * 2020-12-15 2023-07-27 엘지전자 주식회사 Laundry Treatment Apparatus
JP7460287B2 (en) 2020-12-23 2024-04-02 青木あすなろ建設株式会社 Seismic isolation braking device
CN114961013B (en) * 2022-06-24 2024-02-20 兰州理工大学 Replaceable component type energy consumption support, self-resetting support and use method thereof
CN116446554B (en) * 2023-06-16 2023-09-05 中国建筑第六工程局有限公司 Steel slit metal damper with self-resetting function

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50762Y1 (en) * 1970-12-28 1975-01-10
JPS5058156U (en) * 1973-09-28 1975-05-30
JPS5294581U (en) * 1976-01-14 1977-07-15
JPS6132158Y2 (en) * 1980-09-30 1986-09-18
JPS6245440U (en) * 1985-09-09 1987-03-19
JP5208002B2 (en) * 2009-01-27 2013-06-12 倉敷化工株式会社 Vibration isolator

Also Published As

Publication number Publication date
JP2016138621A (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6283322B2 (en) Shock absorber
US9410592B2 (en) Apparatus for absorbing shocks
WO2016042742A1 (en) Vibration damping device for structure
EP3259489B1 (en) Multi-performance hysteretic rheological device
KR20180046558A (en) Damper for earthquake proof of structure
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP5689699B2 (en) Fall bridge prevention device
JP2017089146A (en) Composite vibration control damper for structure
JP6184789B2 (en) Damping / seismic composite material and building using the same
KR101541845B1 (en) Brace damper for energy dissipation
JP4468212B2 (en) Fall bridge prevention device
JP4838898B1 (en) Damping damper
JP2019031827A (en) Function separation type shock absorber and bridge provided with function separation type shock absorber
JPH0585776B2 (en)
JP7460287B2 (en) Seismic isolation braking device
JP2015200086A (en) Protection net
JP2010222797A (en) Base-isolated structure
KR100923072B1 (en) Damperwith sma and steel
JP6872359B2 (en) Shock absorber
Zheng et al. Comparative seismic performance of conventional and resilient bridges with SMA-cable-based frictional sliding bearings
JP6179316B2 (en) Brace structure
JP4250539B2 (en) Seismic isolation device
RU2665108C2 (en) Vibration isolator with elastic damping axial elements
JP6720702B2 (en) Energy absorbing device, earthquake resistant wall and seismic isolation structure
JP6848932B2 (en) Seismic isolation damper and seismic isolation structure using the seismic isolation damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180126

R150 Certificate of patent or registration of utility model

Ref document number: 6283322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250