JP6694195B1 - Spring type damping damper - Google Patents

Spring type damping damper Download PDF

Info

Publication number
JP6694195B1
JP6694195B1 JP2019213435A JP2019213435A JP6694195B1 JP 6694195 B1 JP6694195 B1 JP 6694195B1 JP 2019213435 A JP2019213435 A JP 2019213435A JP 2019213435 A JP2019213435 A JP 2019213435A JP 6694195 B1 JP6694195 B1 JP 6694195B1
Authority
JP
Japan
Prior art keywords
spring
seismic isolation
cylinder
isolation device
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019213435A
Other languages
Japanese (ja)
Other versions
JP2021085182A (en
Inventor
亮平 黒沢
亮平 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosawa Construction Co Ltd
Original Assignee
Kurosawa Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosawa Construction Co Ltd filed Critical Kurosawa Construction Co Ltd
Priority to JP2019213435A priority Critical patent/JP6694195B1/en
Application granted granted Critical
Publication of JP6694195B1 publication Critical patent/JP6694195B1/en
Publication of JP2021085182A publication Critical patent/JP2021085182A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】巨大地震時に積層ゴム免震装置の過大変形を防止すると共に、速やかな変形復元機能を付与して積層ゴムの損傷を防ぐことができるバネ式制震ダンパーを提供する。【解決手段】バネ式制震ダンパー11は、上部構造と基礎構造との間に、免震装置を介在させてある免震建物構造の上部構造と基礎構造との間に取り付けられ、両端に端板23、24が設けられたシリンダ18と、先端にピストン21が取り付けられたロッド22と、シリンダ18内に収納されるコイルバネ19とからなり、ピストン21がシリンダ18内に収納され、コイルバネ19の一端がシリンダ18の端板23に固定され、他端がピストン21に固定され、上部構造と基礎構造との地震による相対変位に対してコイルバネ19の圧縮によって相対変位を元の位置に戻す構成とする。【選択図】図3PROBLEM TO BE SOLVED: To provide a spring type vibration control damper capable of preventing excessive deformation of a laminated rubber seismic isolation device at the time of a huge earthquake and imparting a rapid deformation restoring function to prevent damage to the laminated rubber. SOLUTION: A spring type vibration damping damper 11 is attached between an upper structure and a basic structure of a seismic isolated building structure in which a seismic isolation device is interposed between the upper structure and the basic structure. It is composed of a cylinder 18 provided with plates 23 and 24, a rod 22 having a piston 21 attached to its tip, and a coil spring 19 housed in the cylinder 18. The piston 21 is housed in the cylinder 18 and One end is fixed to the end plate 23 of the cylinder 18, the other end is fixed to the piston 21, and the relative displacement is returned to the original position by the compression of the coil spring 19 against the relative displacement due to the earthquake between the upper structure and the foundation structure. To do. [Selection diagram] Fig. 3

Description

本発明は、免震構造物に取付けて使用されるバネ式制震ダンパーに関するものである。   TECHNICAL FIELD The present invention relates to a spring type vibration damping damper used by being attached to a seismic isolation structure.

この種の制震ダンパーについては複数の技術が公知になっている。
第1の公知技術については、油を充填したシリンダに軸を含む断面が凸字形をなすピストンを摺動自在に嵌合すると共に上記ピストンの小径部が嵌合する円筒体をシリンダの一方の端部に嵌合固定して、ピストンが上記端部に向かって移動するとき閉鎖する逆止弁を具備した油孔とピストンの大径部における両側を連通する微小の油孔とを該ピストンに形成し、かつピストンの小径部が前記円筒体に嵌合したとき該円筒体の内部に形成される密閉油室をシリンダとピストンの小径部との間に形成される円筒状の油室に連通する微小の油路を設けたオイルダンパー、である(特許文献1参照)。
Several techniques are known for this type of damping damper.
According to the first known technique, a piston having a convex cross section including an axis is slidably fitted to a cylinder filled with oil, and a cylindrical body to which a small diameter portion of the piston is fitted is attached to one end of the cylinder. An oil hole provided with a check valve that is fitted and fixed to the portion and is closed when the piston moves toward the end portion, and a minute oil hole that communicates both sides of the large diameter portion of the piston in the piston. And when the small diameter portion of the piston is fitted into the cylindrical body, the closed oil chamber formed inside the cylindrical body communicates with the cylindrical oil chamber formed between the cylinder and the small diameter portion of the piston. An oil damper provided with a minute oil passage (see Patent Document 1).

上記第1の公知技術によるダンパーは、全ストローク中の適当な一部の範囲だけで極めて大きな減衰力が発生する。従って、窓あるいはドア等にこれを直結して簡単な機構で使用し得る。かつシリンダに円筒体を嵌合し、ピストンを凸字形に形成するだけであるから、構造製作も簡単である、というものである。   The damper according to the first known technique produces a very large damping force only in an appropriate partial range during the entire stroke. Therefore, it can be used by a simple mechanism by directly connecting it to a window or a door. Moreover, since the cylinder is fitted into the cylinder and the piston is formed in a convex shape, the structure can be easily manufactured.

第2の公知技術については、筒体と、この筒体内に収納してあり、積層ゴムの変形を制御するためのばね体(らせん状のコイルバネ)と、一端部が上記筒体の軸心方向に移動可能に挿入し、他端部が筒体の端部より延出し、上記ばね体を押圧する押え部を備えているロッドとを具備し、上記筒体の長さは、少なくとも積層ゴムの許容変形量とばね体を収容できる長さとを加えたものであることを特徴とする免震構造におけるストッパ、である(特許文献2参照)。   In the second known technique, a tubular body, a spring body (helical coil spring) housed in the tubular body for controlling the deformation of the laminated rubber, and one end of the tubular body in the axial direction of the tubular body. And a rod having a pressing portion for pressing the spring body, the other end portion extending from the end portion of the tubular body, and the length of the tubular body is at least that of the laminated rubber. A stopper in a seismic isolation structure characterized by adding an allowable deformation amount and a length capable of accommodating a spring body (see Patent Document 2).

上記第2の公知技術によるストッパは、予想を越えた地震入力により積層ゴムGが過大に変形しようとする際、ロッドの押え部がばね体に当接して、ばね力によって過大変形を制御する、というものである。   In the stopper according to the second known technique, when the laminated rubber G is excessively deformed due to an unexpected earthquake input, the pressing portion of the rod contacts the spring body, and the excessive deformation is controlled by the spring force. That is.

第3の公知技術については、相対移動する第1構造体と第2構造体との間に設けられ、減衰力を発生して前記第1構造体と前記第2構造体との相対移動を減衰する減衰手段と、前記第1構造体と前記第2構造体との間に設けられ、前記減衰手段よりも大きな減衰力を発生し、前記第1構造体と前記第2構造体との相対移動を抑制するストッパ手段とを有し、前記減衰手段が、流体を収容するシリンダと、前記シリンダ内に挿入され、前記第1構造体と前記第2構造体との相対移動に伴って該シリンダに対して抜き差しされるロッドと、前記ロッドに設けられ、前記第1構造体と前記第2構造体の相対移動が所定値を超えると、前記ストッパ手段に設けられた被押圧部を押して減衰力を発生させる押圧部と、を備える減衰装置、である(特許文献3参照)。   The third known technique is provided between a first structure and a second structure that move relative to each other, and generates a damping force to damp the relative movement of the first structure and the second structure. Provided between the first structure body and the second structure body for generating a damping force larger than that of the damping means, and the relative movement of the first structure body and the second structure body. And a damping means for suppressing fluid flow, and the damping means is inserted into the cylinder and the cylinder is accommodated in the cylinder, and the damping mechanism is installed in the cylinder along with relative movement of the first structure and the second structure. When the relative movement of the rod inserted into and removed from the rod and the first structure and the second structure provided on the rod exceeds a predetermined value, the pressed portion provided on the stopper means is pushed to reduce the damping force. A damping device, comprising: Reference 3).

上記第3の公知技術による減衰装置によれば、第1構造体と第2構造体との相対移動に伴ってロッドがシリンダに対して抜き差しされる。これにより、減衰手段が減衰力を発生し、第1構造体と第2構造体との相対移動が減衰される。また、第1構造体と第2構造体との相対移動量が所定値を超えると、ロッドに設けられた押圧部によってストッパ手段に設けられた被押圧部が押され、該ストッパ手段が減衰手段よりも大きな減衰力を発生する。これにより、第1構造体と第2構造体との相対がさらに減衰される。即ち、想定内の地震等に対しては減衰手段が減衰力を発生し、想定以上の地震等に対しては、減衰手段と共にストッパ手段減衰力を発生する。従って、想定内の地震等に対する振動減衰効率を維持しつつ、想定外の地震時にストッパ手段を緩衝材として機能させ、第1構造体と第2構造体との過大変形を抑制することができる、というものである。   According to the damping device of the third known technique, the rod is inserted into and removed from the cylinder as the first structure and the second structure move relative to each other. Thereby, the damping means generates a damping force, and the relative movement between the first structure and the second structure is damped. Further, when the relative movement amount of the first structure and the second structure exceeds a predetermined value, the pressed portion provided on the stopper means is pushed by the pressing portion provided on the rod, and the stopper means causes the damping means. It produces a greater damping force. Thereby, the relativeness between the first structure and the second structure is further attenuated. That is, the damping means generates a damping force for an expected earthquake or the like, and generates a stopper means damping force together with the damping means for an earthquake or more than expected. Therefore, it is possible to prevent the excessive deformation of the first structure and the second structure by causing the stopper means to function as a cushioning material at the time of an unexpected earthquake while maintaining the vibration damping efficiency against an unexpected earthquake or the like. That is.

実公昭51−774号の公告公報Bulletin Bulletin No. 51-774 実公平3−23004号の公告公報Publication No. 3-23004 特開2011−47421号の公開公報Japanese Unexamined Patent Publication No. 2011-47421

免震構造物に積層ゴム免震装置が多く使用されているが、積層ゴム免震装置自体は地震のエネルギーを吸収できず、振れ幅に沿って変形し振れ幅を抑えることもできない。それを防ぐために、制震ダンパーを設置して積層ゴム免震装置と併用することが必要である。 その制震ダンパーの中で、オイルダンパーが地震エネルギーを熱エネルギーに変換して建物全体の揺れを低減することができるのでよく使用されるようになっており、前記特許文献1のオイルダンパーは、その一種である。
しかしながら、オイルダンパーは、地震エネルギーを吸収することはできるが復元力を持っていないため、地震時に生じた上・下構造物の相対変位に対して元の状態に戻すことができず、積層ゴム免震装置の弾性変形力で戻すことになり、積層ゴム免震装置への負担が大きくなって、免震ゴムが過大変形して破壊されるという問題点を有している。また、オイルダンパーは火災時に高温を受けると爆発して建造物を破壊する危険性もある。
Laminated rubber seismic isolation devices are often used for seismic isolation structures, but the laminated rubber seismic isolation device itself cannot absorb the energy of the earthquake and cannot deform along the swing width to suppress the swing width. To prevent this, it is necessary to install a vibration control damper and use it together with the laminated rubber seismic isolation device. Among the vibration control dampers, the oil damper is often used because it can convert seismic energy into heat energy and reduce the shaking of the entire building. It is one of them.
However, since the oil damper can absorb seismic energy but has no restoring force, it cannot return to the original state due to the relative displacement of the upper and lower structures caused by the earthquake, and the laminated rubber There is a problem that the elastic isolation force of the seismic isolation device causes the laminated rubber seismic isolation device to be heavily loaded, and the seismic isolation rubber is excessively deformed and destroyed. In addition, the oil damper may explode when exposed to high temperatures during a fire and destroy the structure.

前記特許文献2では、オイルダンパーとストッパと併設して使用することによって、積層ゴムの過大変形を抑制することが可能となったが、ストッパとオイルダンパーを併用することが不可欠である。従って、特許文献2の技術においては、2倍の材料が必要であり材料無駄が生ずるばかりでなく、取付作業についても2倍の労力と時間が必要であり、さらに、ばね体が押え部に片持ち梁の状態で取り付けられているため、繰り返しの地震力を受けると、ばね体が座屈してしまい、斜めになったり先端が弛んでいたりすると、筒体の壁に擦れて平行移動できなくなる懸念があり、一度座屈するとその後においては装置としての正常な作動ができなくなってしまい、要するに、ストッパ機能を失うのであり、継続しての使用が不可になるという問題点を有している。   In Patent Document 2, it is possible to suppress the excessive deformation of the laminated rubber by using the oil damper and the stopper together, but it is essential to use the stopper and the oil damper together. Therefore, in the technique of Patent Document 2, not only the double material is required and the material is wasted, but also the double labor and time are required for the mounting work, and further, the spring body is not attached to the pressing portion. Since it is attached in the state of a cantilever, if it is subjected to repeated seismic force, the spring body will buckle, and if it becomes slanted or the tip is slack, it will be rubbed against the wall of the cylinder and it will not be able to move in parallel. However, once buckled, the device cannot operate normally after that, and in short, the stopper function is lost, and there is a problem that continuous use becomes impossible.

特許文献3の技術においては、減衰装置にオイル等の流体による減衰手段とスプリングによるストッパ手段とを設ける必要があるため構成が複雑で部品点数が多くなりコスト高になるばかりでなく、オイル等の流体を使用するため前記特許文献1と同様に、火災時の危険性を回避することはできない。
また、ロッドの挿入孔にはオイル等の流体漏れを防止するOリング等のシール部材を設けることが不可欠であるため、やはり装置としてコスト高になる。仮に、液体(オイル)に替えて気体(空気)にして空気ダンパーとしても、同様に気体漏れのシーリングが必要であるから、同様にコスト高になるという問題点を有する。
In the technique of Patent Document 3, since it is necessary to provide a damping device with a damping device using a fluid such as oil and a stopper device using a spring, the structure is complicated, the number of parts is increased, and the cost is increased. Since a fluid is used, the danger at the time of fire cannot be avoided as in the case of Patent Document 1.
Further, since it is indispensable to provide a seal member such as an O-ring for preventing the fluid such as oil from leaking in the insertion hole of the rod, the cost of the device also becomes high. Even if a liquid (oil) is replaced with a gas (air) to be used as an air damper, sealing for gas leakage is also required, and thus there is a problem that the cost becomes high.

そこで、本発明は、前記従来技術における全ての問題点を解決し、オイル等の流体を一切使用せず、地震エネルギーを吸収する機能と、積層ゴム免震装置の過大変形を防止するストッパー機能と、地震による構造物の変形を速やかに復帰させる変形復元機能との三つの機能を備えた制震ダンパーを提供することを目的とするものである。   Therefore, the present invention solves all the problems in the above-mentioned conventional technology, uses no fluid such as oil at all, absorbs seismic energy, and has a stopper function that prevents excessive deformation of the laminated rubber seismic isolation device. The purpose of the present invention is to provide a seismic damper having three functions, a deformation restoring function for promptly restoring the deformation of a structure caused by an earthquake.

前述の従来例の課題を解決する具体的手段として、本発明に係る発明は、上部構造と基礎構造との間に、免震装置を介在させてある免震建物構造に使用されるダンパーであって、前記ダンパーは、両端に端板が設けられたシリンダと、該シリンダ内に摺動自在に配設され一端にピストンが取り付けられたロッドと、ピストンの両側にそれぞれ設けられた一対のバネと、両端板の内側にそれぞれ設置された弾性緩衝材とからなり、前記バネの一端部がピストンに固定され、他端部と前記弾性緩衝材との間に遊間部が設けられ、前記上部構造と基礎構造との相対変位が前記遊間部を超えると、前記バネの圧縮によって生じた弾性反力で地震エネルギーを吸収する機能と、免震装置の過大変形を防止するストッパー機能と、地震後の免震建物の変形を復元する機能とを有する構成にしたことを特徴とするバネ式制震ダンパーを提供するものである。   As a specific means for solving the above-mentioned problems of the conventional example, the invention according to the present invention is a damper used in a seismic isolated building structure in which a seismic isolation device is interposed between an upper structure and a foundation structure. The damper includes a cylinder having end plates at both ends, a rod slidably disposed in the cylinder and having a piston attached to one end, and a pair of springs provided on both sides of the piston. An elastic cushioning member installed inside each of the end plates, one end of the spring is fixed to the piston, and a clearance is provided between the other end and the elastic cushioning member. When the relative displacement with the foundation structure exceeds the clearance, the function of absorbing seismic energy by the elastic reaction force generated by the compression of the spring, the stopper function of preventing excessive deformation of the seismic isolation device, and the isolation after the earthquake. Quake building deformation There is provided a spring Seismic damper being characterized in that a configuration and a function to restore.

上記発明において、前記遊間部を前記免震装置の限界変形許容値の70〜80%とし、且つ、前記相対変位が前記免震装置の限界変形許容値に達する直前に、前記バネが密着するようにしてあること;前記バネをコイルバネとし、該バネの内側に所要の隙間をもって複数の座屈防止材をシリンダ全長に亘って設置されること;及び前記バネが少なくとも二つの異なるバネ係数を一連に長さ方向に組み合わせたものとすること、を付加的な要件として含むものである。   In the above invention, the clearance is set to 70 to 80% of the limit deformation allowable value of the seismic isolation device, and the spring is closely contacted immediately before the relative displacement reaches the limit deformation allowable value of the seismic isolation device. The spring is a coil spring, and a plurality of buckling prevention materials are installed inside the spring with a required gap over the entire length of the cylinder; and the spring has a series of at least two different spring coefficients. It is an additional requirement that they are combined in the length direction.

本発明に係るバネ式制震ダンパーによれば、以下の効果を奏することができる。
1.バネと弾性緩衝材との間に遊間部を設けることによって、上部構造と基礎構造との地震による相対変位(相対間距離の伸びまたは縮み)が遊間部を越えない範囲であれば、免震装置の弾性変形可能な範囲内でフリーに水平変形をすることによって、上部構造への地震力が非常に小さくなり上部構造が地震の影響を受けない状態となる。要するに、中小地震時には、通常の積層ゴム型免震装置が水平変形能力を持っているため対応できるのである。従って、中小地震では、積層ゴム型免震装置の復元力を活かして地震後の免震建物を元の状態に復元させることによって、バネ式制震ダンパーのバネの巻き数や直径および強さ等を低減させることができると共に、バネ式制震ダンパーその物の大きさとコストの低減を図ることができるのである。
2.大地震時による上部構造と基礎構造との相対変位(相対間距離の伸びまたは縮み)が遊間部を越えと、バネが弾性緩衝材に当接して圧縮されることによってバネに弾性反力が生ずる。この弾性反力によって地震エネルギーを吸収するという機能が得られる。続いて、相対変量が所定値に達するとコイルバネが圧縮密着される状態になり、シリンダ内におけるピストンの相対移動がストップされることによって、上部構造と基礎構造との相対変位が制限され、免震装置の過大変形を防止するというストッパー機能が得られる。さらに、地震による上部構造と基礎構造との相対変位および免震装置のゴム変形に対し、コイルバネの圧縮によって生じたバネ弾性反力によって、地震後の免震建物の変形を速やかに復元するという変形復元機能が得られる。つまり、従来技術のように、ストッパーとダンパーの両方を設置する必要がなく、一つの装置に地震エネルギー吸収機能、免震装置の過大変形を防ぐストッパー機能および変形復元機能という三つの機能を備えた制震ダンパーになる。なお、上記所定値とは、積層ゴム免震装置の限界変形許容値とすることが好ましい。
3.また、上記の変形復元機能とは、バネの圧縮により弾性反力(復元力)が発生することである。大地震時に、上部構造と基礎構造との相対変位が遊間部を越えて、積層ゴム免震装置が大きく変形する際に、バネの圧縮により弾性反力を発生させて抑制させるのである。要するに、大地震時に、積層ゴム免震装置が受ける大変形をバネの復元力によって抑制し、変形が遊間部まで小さくなれば免震装置自体の弾性復元力で復元させることができ、積層ゴム免震装置が繰り返しの水平力を受けても、免震装置の積層ゴムが荷重疲労による劣化を防止できるのであり、免震装置の使用寿命を長くすることができるのである。
4.さらに、遊間部を積層ゴム型免震装置の限界変形許容値の70〜80%とし、且つ、上部構造と基礎構造との相対変位が免震装置の限界変形許容値に達する直前に、バネが密着するようにしてあることによって、設計上で想定した巨大地震に対して余裕をもって対応できるばかりでなく、想定外の巨大地震が発生した場合でも、免震装置の過大変形を抑制して免震装置自体の破損を防止して、免震建物構造全体の安全性を大幅に高めることができる。
5.座屈防止材が設置されることによって、繰り返し地震や強風を受けでも、バネが座屈や先端撓みでシリンダの軸方向に伸縮不能となることを防ぐことができる。とくに、片持ち梁形式で取り付けられたバネでも座屈や先端撓みを防止することができる。
6.さらに、オイル等の流体を一切使用しないことにより、シリンダの端板にロッドが貫通できる孔を設けるだけで良いので、オイルや気体漏れ対策を講じる必要がなく、構成が簡単で安価に提供できる。
According to the spring type vibration damping damper of the present invention, the following effects can be achieved.
1. If the relative displacement (extension or contraction of the relative distance) between the upper structure and the foundation structure due to an earthquake is provided within the clearance by providing the clearance between the spring and the elastic cushioning material, it is exempt. By performing horizontal deformation freely within the elastically deformable range of the seismic device, the seismic force on the superstructure becomes extremely small and the superstructure is not affected by the earthquake. In short, it is possible to deal with small and medium-sized earthquakes because the normal laminated rubber type seismic isolation device has horizontal deformation capability. Therefore, in small and medium-scale earthquakes, the restoring force of the laminated rubber type seismic isolation device is used to restore the seismic isolated building to its original state, and the number of turns, diameter, strength, etc. It is possible to reduce the size and cost of the spring type damping damper itself.
2. When the relative displacement (expansion or contraction of the relative distance) between the upper structure and the foundation structure due to a large earthquake exceeds the free space, the spring comes into contact with the elastic cushioning material and is compressed, resulting in an elastic reaction force to the spring. Occurs. This elastic reaction force has the function of absorbing seismic energy. Then, when the relative variable reaches a predetermined value, the coil spring is compressed and brought into close contact, and the relative movement of the piston in the cylinder is stopped, which limits the relative displacement between the upper structure and the foundation structure, resulting in seismic isolation. A stopper function of preventing excessive deformation of the device can be obtained. Further, against the relative displacement between the upper structure and the foundation structure due to the earthquake and the rubber deformation of the seismic isolation device, the spring elastic reaction force generated by the compression of the coil spring quickly restores the deformation of the seismic isolated building after the earthquake. Restore function is obtained. In other words, unlike the prior art, it is not necessary to install both stoppers and dampers, and one device has three functions: seismic energy absorption function, stopper function to prevent excessive deformation of seismic isolation device, and deformation restoration function. Become a vibration control damper. The predetermined value is preferably a limit deformation allowable value of the laminated rubber seismic isolation device.
3. The above-mentioned deformation restoring function means that an elastic reaction force (restoring force) is generated by the compression of the spring. In the event of a large earthquake, when the relative displacement between the upper structure and the foundation structure exceeds the clearance and the laminated rubber seismic isolation device is largely deformed, elastic reaction force is generated and suppressed by compression of the spring. In short, when a large earthquake occurs, the large deformation that the laminated rubber seismic isolation device receives is suppressed by the restoring force of the spring, and if the deformation is reduced to the play area, it can be restored by the elastic restoring force of the seismic isolation device itself. Even if the seismic isolation device receives repeated horizontal forces, the laminated rubber of the seismic isolation device can prevent deterioration due to load fatigue, and the service life of the seismic isolation device can be extended.
4. Further, the clearance is set to 70 to 80% of the limit deformation allowable value of the laminated rubber type base isolation device, and the spring is moved immediately before the relative displacement between the upper structure and the foundation structure reaches the limit deformation allowable value of the base isolation device. The close contact not only allows for a large earthquake expected in the design with a margin, but also suppresses excessive deformation of the seismic isolation device to prevent seismic isolation even when an unexpected large earthquake occurs. The damage to the device itself can be prevented, and the safety of the entire seismic isolated building structure can be greatly improved.
5. By installing the buckling prevention material, it is possible to prevent the spring from being unable to expand and contract in the axial direction of the cylinder due to buckling or bending of the tip even when subjected to repeated earthquakes or strong winds. Particularly, even a spring mounted in a cantilever manner can prevent buckling and tip bending.
6. Further, since no fluid such as oil is used, it suffices to provide a hole through which the rod can penetrate in the end plate of the cylinder, so that it is not necessary to take measures against oil or gas leakage, and the structure can be provided simply and at low cost.

本発明に係るバネ式制震ダンパーが取り付けられた免震構造物の要部のみを示した側面図である。It is the side view which showed only the principal part of the seismic isolation structure to which the spring type damping damper which concerns on this invention was attached. 同免震構造物の要部のみを示した平面図である。It is a top view showing only an important section of the seismic isolation structure. 本発明に係る実施例のバネ式制震ダンパーの取り付け状態における断面図である。It is sectional drawing in the mounting state of the spring type damping damper of the Example which concerns on this invention. 図3のA−A線に沿う拡大断面図である。It is an expanded sectional view which follows the AA line of FIG. 本発明に係る実施例のバネ式制震ダンパーにおける座屈防止材の取り付け状況の要部の一例を示す拡大断面図である。It is an expanded sectional view showing an example of the important section of the attachment state of the buckling prevention material in the spring type damping damper of the example concerning the present invention. 本発明に係る実施例のバネ式制震ダンパーにおける座屈防止材の取り付け状況の要部を示す他の例の拡大断面図である。It is an expanded sectional view of other examples which show the important section of the attachment state of the buckling prevention material in the spring type damping damper of the example concerning the present invention. 同実施例のバネ式制震ダンパーの地震を受けた時に、図(a)、(b)、(c)は基礎構造と上部構造との相対変位についての説明図である。(A), (b), (c) is an explanatory view of the relative displacement between the foundation structure and the upper structure when the earthquake of the spring type damping damper of the embodiment is received. 同実施例におけるコイルバネの特性を示したグラフである。It is a graph showing the characteristic of the coil spring in the example.

本発明を図示の実施の形態に係る実施例について説明する。まず、図1と図2について説明する。一般的に免震構造物にとしては図1、2に示したように、基礎構造1の上に上部構造2が構築されるものであり、基礎構造1は、地盤3に複数の基礎杭4を打ち込み、該基礎杭4の上に夫々ラップル基礎5を形成すると共に、各基礎杭4間にコンクリート製のマットスラブ6を形成する。上部構造2は、前記ラップル基礎5との間に積層ゴム型の免震装置7を介してフーチング8を設置し、該フーチング8間には大梁(地中梁)9が配設されると共に、フーチング8の上面には柱10が建て込まれ、梁やスラブ、壁部(図示せず)等も順次形成されて上部構造2が構築されたものである。   Examples of the present invention will be described with reference to the illustrated embodiments. First, FIGS. 1 and 2 will be described. Generally, as a seismic isolation structure, as shown in FIGS. 1 and 2, an upper structure 2 is constructed on a foundation structure 1. The foundation structure 1 includes a plurality of foundation piles 4 on a ground 3. And the wrinkle foundation 5 is formed on each of the foundation piles 4, and a mat slab 6 made of concrete is formed between the foundation piles 4. In the upper structure 2, a footing 8 is installed between the lapping foundation 5 and a seismic isolation device 7 of a laminated rubber type, and a large beam (underground beam) 9 is arranged between the footing 8. A pillar 10 is built on the upper surface of the footing 8, and beams, slabs, walls (not shown), etc. are sequentially formed to construct the upper structure 2.

このように構築された免震構造物に対して、基礎構造1と上部構造2との間に本発明に係るバネ式制震ダンパー11が取り付けられるのであり、その取り付けに当たっては、基礎構造1側(マットスラブ6)に設けた支持台12と上部構造2側(大梁9)に設けた支持台13との間に鋼製金具からなる取付基部14、15と連結ピン16、17とを介してバネ式制震ダンパー11が水平に、且つ左右方向に自由に回転できるように設置される。なお、図示は省略するが、取付基部14、15を球体連結構造とすることにより、バネ式制震ダンパー11を上下・左右方向にも回転できるように取り付けることができる。   The spring-type damping damper 11 according to the present invention is attached between the base structure 1 and the superstructure 2 to the base-isolated structure constructed as described above. Between the support base 12 provided on the (mat slab 6) and the support base 13 provided on the upper structure 2 side (large beam 9) via mounting bases 14 and 15 made of steel metal fittings and connecting pins 16 and 17, The spring type vibration damper 11 is installed horizontally and freely rotatable in the left and right directions. Although illustration is omitted, the spring-type vibration damping damper 11 can be attached so as to be able to rotate in the vertical and horizontal directions by using the attachment bases 14 and 15 having a spherical connection structure.

本発明に係る具体的な実施例のバネ式制震ダンパー11は、図3〜図8に示したように、所要長さのシリンダ18の内部に、コイルバネ19と、該コイルバネ19の座屈を防止する複数の座屈防止材20と、ピストン21とが配設され、該ピストン21はピストンロッド22の先端に連結(取り付け)されてシリンダ18内に摺動自在に配設され、該ピストンロッド22の後端はシリンダ18の一端部側から所要長さ突出した状態で配設され、該ロッド22の突出端部を連結ピン16と取付基部14とで支持台12に取り付けている。   As shown in FIGS. 3 to 8, the spring type vibration damping damper 11 according to the specific embodiment of the present invention prevents the coil spring 19 and the buckling of the coil spring 19 from being inside the cylinder 18 of the required length. A plurality of anti-buckling members 20 for preventing and a piston 21 are arranged. The piston 21 is connected (attached) to the tip of a piston rod 22 and slidably arranged in the cylinder 18. The rear end of the rod 22 is arranged so as to protrude from the one end of the cylinder 18 by a required length, and the protruding end of the rod 22 is attached to the support base 12 by the connecting pin 16 and the attachment base 14.

これら部材のシリンダ18内への配設については、円筒状のシリンダ18の両端部に鋼製金具からなる端板23、24がそれぞれ溶接等で強固に取り付けられるのであるが、両端板23、24には複数の座屈防止材20が取り付けられる複数の孔、図示の実施例(図4〜6参照)では4個の孔または螺子孔25が周縁寄りに均等間隔をもって予め設けられており、奥側(図3では左側)に設けられる端板23に対して4本の丸鋼からなる座屈防止材20のヘッド部が当接するように挿通し、挿通端部は右側の螺子孔25螺着して固定するか又は孔に挿通させて端部をシリンダ18から所要長さ突出させ、その突出端部にナット28を螺合させて固定し、座屈防止材20をシリンダ18の全長に亘って取り付け、該座屈防止部材20を内側に所要の隙間をもって抱え込むようにしてコイルバネ19を配設する。なお、ピストン21にも座屈防止部材20が挿通される挿通孔26が設けられており、ピストンロッド22の後端部は、端板24に設けた挿通孔31に挿通させてシリンダ18から所要長さ突出させてある。   Regarding the arrangement of these members in the cylinder 18, the end plates 23 and 24 made of steel metal fittings are firmly attached to both ends of the cylindrical cylinder 18 by welding or the like. Has a plurality of holes to which a plurality of buckling prevention members 20 are attached, and in the illustrated embodiment (see FIGS. 4 to 6), four holes or screw holes 25 are preliminarily provided near the peripheral edge at even intervals. Insertion is made so that the head portions of the four buckling prevention members 20 made of round steel contact the end plate 23 provided on the side (the left side in FIG. 3), and the insertion end is screwed into the right side screw hole 25. The end portion of the cylinder 18 so that the end portion protrudes from the cylinder 18 by a required length, and the nut 28 is screwed onto the protruding end portion to fix the end portion of the buckling prevention member 20 over the entire length of the cylinder 18. And install the buckling prevention member 20 inside. As saddled with the gap disposing the coil spring 19. The piston 21 is also provided with an insertion hole 26 through which the buckling prevention member 20 is inserted, and the rear end portion of the piston rod 22 is inserted into an insertion hole 31 provided in the end plate 24 so as to be required from the cylinder 18. The length is projected.

さらに、図3に示したように、ピストンロッド22に取り付けたピストン21がシリンダ18の中央部に位置するように配設し、該ピストン21に取り付けられるコイルバネ19はピストン21の両側に同じバネ係数とする一対のコイルバネ19c、19dであって、該コイルバネ19c、19dと両側の端板23、24の内側にそれぞれ設けられている緩衝材29との間に所要間隔の遊間部32がそれぞれ設けられる。この遊間部32は、免震装置7の積層ゴムの弾性変形能力によって適宜に定めるものであるが、免震装置7の限界変形許容値の70〜80%の長さとすることが好ましい。   Further, as shown in FIG. 3, the piston 21 attached to the piston rod 22 is arranged so as to be located at the center of the cylinder 18, and the coil spring 19 attached to the piston 21 has the same spring coefficient on both sides of the piston 21. A pair of coil springs 19c and 19d, and a gap portion 32 is provided between the coil springs 19c and 19d and the cushioning members 29 provided inside the end plates 23 and 24 on both sides, respectively. .. The clearance 32 is appropriately determined according to the elastic deformation capacity of the laminated rubber of the seismic isolation device 7, and is preferably 70 to 80% of the limit deformation allowable value of the seismic isolation device 7.

要するに、地震による免震建物の水平変形に対して、通常は、中小の地震時の水平変形が小さいため、コイルバネ19(19c、19d)が緩衝材29に当接しない水平変形の時には、免震装置7自身が有する弾性復元力によって地震後の免震建物を元の状態に復元させることができるが、大地震時の水平変形に対しては、遊間部32が無くなってコイルバネ19が緩衝材29に当接して圧縮する水平変形に対しては、コイルバネ19の圧縮による弾性反力で地震後に免震建物の変形を遊間部32の長さ分迄まで戻し、その後は免震装置7の弾性復元能力によって復元させるのであり、夫々の役割分担で地震後の免震建物を元の状態に復元させるようにしたものである。
なお、緩衝材29は、バネ19が密着するまで弾性滑らかに圧縮されるように設けられるものであり、従来の緩衝材と同様である。また、ゴムやバネ等としてもよい。
また、座屈防止材20の固定については、図5に示したようにネジ式でも良いが、図6に示したように座金27を介してナット28による締め付け固定でもよい。
なお、本願発明でいう免震装置の限界変形許容値とは、免震装置7が弾性範囲内の最大水平変形量とする。従って、巨大地震が発生した後にも、免震装置が復元する能力を保持している状態にすることとする。
In short, the horizontal deformation of a base-isolated building due to an earthquake is usually small during a small-to-medium-scale earthquake, and therefore, when the coil spring 19 (19c, 19d) does not abut on the cushioning material 29, the base isolation is The seismic isolated building after the earthquake can be restored to its original state by the elastic restoring force of the device 7 itself, but for horizontal deformation at the time of a large earthquake, the clearance 32 is eliminated and the coil spring 19 absorbs the cushioning material 29. With respect to horizontal deformation that abuts against and compresses, the elastic reaction force due to the compression of the coil spring 19 restores the deformation of the base-isolated building to the length of the free space 32 after the earthquake, and then restores the elasticity of the seismic isolation device 7. They are restored by their ability, and each role is divided so that the seismically isolated building after the earthquake is restored to its original state.
The cushioning member 29 is provided so as to be elastically and smoothly compressed until the spring 19 comes into close contact, and is the same as the conventional cushioning member. Alternatively, rubber or spring may be used.
The buckling prevention member 20 may be fixed by screwing as shown in FIG. 5, but may be fixed by tightening with a nut 28 via a washer 27 as shown in FIG.
The limit deformation allowable value of the seismic isolation device referred to in the present invention is the maximum horizontal deformation amount of the seismic isolation device 7 within the elastic range. Therefore, the seismic isolation device should retain the ability to recover even after a huge earthquake.

上記実施例に係るバネ式制震ダンパー11の地震を受けた時の基礎構造1と上部構造2との相対変位について、図7(a)、(b)、(c)を用いて説明する。
まず、(a)図は相対変位が矢印aで示した方向(相対間距離が伸びる方向)に変形して所定値に達した状態を示し、(b)図は設置状態におけるコイルバネ19c、19dの不作用(相対変位がない)状態を示し、(c)図は相対変位が矢印bで示した方向(相対間距離が縮む方向)に変形して所定値に達した状態を示すものである。
例えば、免震構造物は通常想定している地震力に対して免震装置7が設置されており、想定内の場合は、免震装置7における積層ゴムの弾性変形によって元の状態に戻るが、想定を超えた大地震の場合に、積層ゴムが過大変形して免震装置7が破壊されてしまうのである。
The relative displacement between the base structure 1 and the superstructure 2 when the spring type damping damper 11 according to the above-described embodiment is subjected to an earthquake will be described with reference to FIGS. 7 (a), 7 (b), and 7 (c).
First, Fig. (A) shows a state in which the relative displacement is deformed in the direction indicated by the arrow a (direction in which the relative distance extends) and reaches a predetermined value, and Fig. (B) shows the coil springs 19c, 19d in the installed state. The non-acting state (no relative displacement) is shown, and the figure (c) shows the state where the relative displacement is deformed in the direction indicated by the arrow b (the direction in which the relative distance decreases) and reaches a predetermined value.
For example, in a seismic isolation structure, the seismic isolation device 7 is installed against the normally assumed seismic force. If the seismic isolation device 7 is within the assumption, the seismic isolation device 7 returns to its original state due to elastic deformation of the laminated rubber. In the event of a large earthquake that exceeds expectations, the laminated rubber is excessively deformed and the seismic isolation device 7 is destroyed.

いずれの場合でも、同じバネ係数とする一対のコイルバネ19c、19dをピストン21の両側に取り付けたことにより、基礎構造1と上部構造2との相対変位が遊間部32を超えて伸びても縮んでも、いずれかのコイルバネ19c、19dの弾性反力によって地震エネルギーを吸収しながら復元作用し、基礎構造1と上部構造2との相対変位を復元することができるのである。従って、基礎構造1と上部構造2との相対変位のストロークLは、ピストン21がシリンダ18内の遊間部32内の中間位置からいずれの端板23、24側に(変位)するストロークであっても、両コイルバネ19c、19dの初期復元力が強く作用するので、疲労荷重による免震装置7の機能の劣化を防止できるばかりでなく、座屈防止材20を配設してあるので、コイルバネ19c、19dは座屈することなく、常にスムーズにシリンダ18内で繰り返し伸縮することができるのである。なお、シリンダ18の端板23、24が過大な相対変位に対してストッパー機能を発揮するのである。   In any case, by installing a pair of coil springs 19c and 19d having the same spring coefficient on both sides of the piston 21, even if the relative displacement between the base structure 1 and the upper structure 2 extends beyond the clearance 32 and contracts. It is possible to restore the relative displacement between the base structure 1 and the upper structure 2 by absorbing the seismic energy by the elastic reaction force of one of the coil springs 19c and 19d and absorbing the seismic energy. Therefore, the stroke L of relative displacement between the basic structure 1 and the upper structure 2 is a stroke in which the piston 21 moves (displaces) from the intermediate position in the free space portion 32 in the cylinder 18 to whichever end plate 23, 24 side. Also, since the initial restoring forces of both coil springs 19c and 19d act strongly, not only the deterioration of the function of the seismic isolation device 7 due to the fatigue load can be prevented, but also the buckling prevention material 20 is provided. , 19d can be smoothly and repeatedly expanded and contracted in the cylinder 18 without buckling. In addition, the end plates 23 and 24 of the cylinder 18 exhibit a stopper function against an excessive relative displacement.

さらに、使用されるコイルバネ19c、19dについては、異なるパネ係数を有する複数のコイルバネを一連に合成させたものが使用できるし、例えば、バネ線材の直径、巻き数や材質を変えて形成したものが使用できるのであり、いずれにしても、図8に示したように、コイルバネの特性が曲線状(非線形弾性特性)になり、初期のバネ反力を小さくして、基礎構造1と上部構造2との相対移動を強く拘束しないようにしたものである。   Further, as the coil springs 19c and 19d used, those obtained by combining a plurality of coil springs having different panel coefficients in series can be used, and for example, those formed by changing the diameter, the number of windings and the material of the spring wire. In any case, as shown in FIG. 8, the characteristic of the coil spring becomes curved (non-linear elastic characteristic), the initial spring reaction force is reduced, and the basic structure 1 and the superstructure 2 are connected. The relative movement of is not strongly restrained.

本発明に係るバネ式制震ダンパー11は、上部構造2と基礎構造1との間に、免震装置7を介在させてある免震建物構造に使用されるダンパーであって、前記ダンパー11は、両端に端板23,24が設けられたシリンダ18と、該シリンダ18内に摺動自在に配設され一端にピストン21が取り付けられたロッド22と、ピストン21の両側にそれぞれ設けられた一対のコイルバネ19c、19dと、両端板23、24の内側にそれぞれ設置された弾性緩衝材29とからなり、前記コイルバネ19c、19dの一端部がピストン21に固定され、他端部と前記弾性緩衝材29との間に遊間部32が設けられ、前記上部構造2と基礎構造1との相対変位が前記遊間部32を超えると、前記コイルバネ19c、19dの圧縮によって生じた弾性反力で地震エネルギーを吸収する機能と、免震装置7の過大変形を防止するストッパー機能と、地震後の免震建物の変形を復元する機能とを有する構成にしたので、上部構造2と基礎構造1との相対変位の方向に対して、従来技術のように伸びまたは縮みに夫々効く装置を配置する必要性なく両方効くようにし、装置自体のコストだけでなく、作業の手間も軽減することができる。また、ストッパーとダンパーを両方設置する必要性なく、シリンダ18に積層ゴム免震装置7の過大変形を防ぐストッパー機能(両側板)を付与すると共に、変形復元機能及び地震エネルギー吸収機能の三つの機能を有する制震ダンパーにしたのである。そして、コイルバネ19c、19dの圧縮による反力(復元力)により、積層ゴム免震装置7の変形に対して抑制するものであり、また、中小地震や強風等の水平力によって発生する変形を含めて、変形を復元するものであり、積層ゴム免震装置7が繰り返しの水平力を受けても、現状復帰にはコイルバネ19c、19dの変形復元機能によって大部分を負担し、疲労荷重による積層ゴムの劣化を防止できるのであり、免震装置7の使用寿命を長くすることができるので、この種免震構造物において広い範囲で使用可能である。   A spring type damping damper 11 according to the present invention is a damper used in a seismic isolated building structure in which a seismic isolation device 7 is interposed between an upper structure 2 and a foundation structure 1, and the damper 11 is , A cylinder 18 provided with end plates 23 and 24 at both ends, a rod 22 slidably disposed in the cylinder 18 and having a piston 21 attached to one end thereof, and a pair provided on both sides of the piston 21. Coil springs 19c and 19d and elastic cushioning members 29 installed inside both end plates 23 and 24, respectively. One ends of the coil springs 19c and 19d are fixed to the piston 21, and the other end and the elastic cushioning member. 29 is provided between the upper structure 2 and the basic structure 1 when the relative displacement between the upper structure 2 and the basic structure 1 exceeds the free space 32, the elasticity generated by the compression of the coil springs 19c and 19d. Since the structure has a function of absorbing seismic energy by force, a stopper function of preventing excessive deformation of the seismic isolation device 7, and a function of restoring the deformation of the seismic isolated building after the earthquake, the upper structure 2 and the basic structure With respect to the direction of relative displacement with respect to 1, both can be made effective without the need for disposing a device that is effective for expansion or contraction as in the prior art, and not only the cost of the device itself but also the labor of work can be reduced. it can. In addition, the cylinder 18 is provided with a stopper function (both side plates) for preventing excessive deformation of the laminated rubber seismic isolation device 7 without the need to install both a stopper and a damper, and three functions of a deformation restoring function and an earthquake energy absorbing function. It was a seismic control damper with. The reaction force (restoring force) due to the compression of the coil springs 19c and 19d suppresses the deformation of the laminated rubber seismic isolation device 7, and also includes the deformation caused by the horizontal force such as small and medium earthquakes and strong winds. Therefore, even if the laminated rubber seismic isolation device 7 receives repeated horizontal force, most of the burden is borne by the deformation restoring function of the coil springs 19c and 19d to restore the current state. The seismic isolation device 7 can be used in a wide range because it can be prevented from deteriorating and the service life of the seismic isolation device 7 can be extended.

1 基礎構造
2 上部構造
3 地盤
4 基礎杭
5 ラップル基礎
6 マットスラブ
7 積層ゴム免震装置
8 フーチング
9 大梁(地中梁)
10 柱
11 バネ式制震ダンパー
12 支持台
13 支持台
14、15 取付基部
16、17 連結ピン
18 シリンダ
19、19c、19d コイルバネ
20 座屈防止材
21 ピストン
22 ロッド(ピストンロッド)
23、24 端板
25 孔または螺子孔
26 挿通孔
27 座金
28 ナット
29 緩衝材
30 空間部
31 挿通孔
32 遊間部
a、b 矢印
1 Foundation structure 2 Superstructure 3 Ground 4 Foundation pile
5 Lapple foundation 6 Mat slab 7 Laminated rubber seismic isolation device 8 Footing 9 Large beam (Underground beam)
10 pillars 11 spring type vibration damper 12 support base 13 support bases 14, 15 mounting bases 16, 17 connecting pins 18 cylinders 19, 19c, 19d coil springs 20 buckling prevention material 21 pistons 22 rods (piston rods)
23, 24 End plate 25 Hole or screw hole 26 Insertion hole 27 Washer 28 Nut 29 Buffer material 30 Space part 31 Insertion hole 32 Free space part a, b Arrow

Claims (4)

上部構造と基礎構造との間に、免震装置を介在させてある免震建物構造に使用されるダンパーであって、
前記ダンパーは、両端に端板が設けられたシリンダと、該シリンダ内に摺動自在に配設され一端にピストンが取り付けられたロッドと、ピストンの両側にそれぞれ設けられた一対のバネと、両端板の内側にそれぞれ設置された弾性緩衝材とからなり、
前記バネの一端部がピストンに固定され、他端部と前記弾性緩衝材との間に遊間部が設けられ、
前記上部構造と基礎構造との相対変位が前記遊間部を超えると、前記バネの圧縮によって生じた弾性反力で地震エネルギーを吸収する機能と、免震装置の過大変形を防止するストッパー機能と、地震後の免震建物の変形を復元する機能とを有する構成にしたこと
を特徴とするバネ式制震ダンパー。
A damper used in a seismic isolated building structure in which a seismic isolation device is interposed between the superstructure and the foundation structure,
The damper includes a cylinder having end plates at both ends, a rod slidably disposed in the cylinder and having a piston attached at one end, a pair of springs provided at both sides of the piston, and both ends. It consists of elastic cushioning materials installed inside the plate,
One end of the spring is fixed to the piston, and a play portion is provided between the other end and the elastic cushioning material.
When the relative displacement between the upper structure and the base structure exceeds the play part, a function of absorbing seismic energy by elastic reaction force generated by compression of the spring, and a stopper function of preventing excessive deformation of the seismic isolation device, A spring-type seismic damper, which has a function of restoring the deformation of a base-isolated building after an earthquake.
前記遊間部を前記免震装置の限界変形許容値の70〜80%とし、且つ、前記相対変位が前記免震装置の限界変形許容値に達する直前に、前記バネが密着するようにしてあること
を特徴とする請求項1に記載のバネ式制震ダンパー。
The clearance is set to 70 to 80% of the limit deformation allowable value of the seismic isolation device, and the spring is closely contacted immediately before the relative displacement reaches the limit deformation allowable value of the seismic isolation device. The spring type damping damper according to claim 1.
前記バネをコイルバネとし、該バネの内側に所要の隙間をもって複数の座屈防止材をシリンダ全長に亘って設置されること
を特徴とする請求項1または2に記載のバネ式制震ダンパー。
The spring type damping damper according to claim 1 or 2, wherein the spring is a coil spring, and a plurality of buckling prevention members are installed inside the spring with a required gap over the entire length of the cylinder.
前記バネが少なくとも二つの異なるバネ係数を一連に長さ方向に組み合わせたものとすること
を特徴とする請求項1乃至3のいずれかに記載のバネ式制震ダンパー。
The spring type damping damper according to any one of claims 1 to 3 , wherein the spring is a combination of at least two different spring coefficients in series in the lengthwise direction.
JP2019213435A 2019-11-26 2019-11-26 Spring type damping damper Active JP6694195B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019213435A JP6694195B1 (en) 2019-11-26 2019-11-26 Spring type damping damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213435A JP6694195B1 (en) 2019-11-26 2019-11-26 Spring type damping damper

Publications (2)

Publication Number Publication Date
JP6694195B1 true JP6694195B1 (en) 2020-05-13
JP2021085182A JP2021085182A (en) 2021-06-03

Family

ID=70549849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213435A Active JP6694195B1 (en) 2019-11-26 2019-11-26 Spring type damping damper

Country Status (1)

Country Link
JP (1) JP6694195B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112610652A (en) * 2021-01-21 2021-04-06 吕梁学院 Electromechanical device damping device
CN113833149A (en) * 2021-10-18 2021-12-24 湖南大学 Tuned inerter damping support
CN114960396A (en) * 2022-04-26 2022-08-30 中铁第四勘察设计院集团有限公司 Elasticity and locking limit constraint structure system of cable-stayed bridge
CN114961013A (en) * 2022-06-24 2022-08-30 兰州理工大学 Replaceable component type energy dissipation support, self-resetting support and use method of replaceable component type energy dissipation support
CN116448363A (en) * 2023-04-22 2023-07-18 江苏华科建设工程质量检测有限公司 Anti-seismic detection device and detection method for assembled building structure
JP7460287B2 (en) 2020-12-23 2024-04-02 青木あすなろ建設株式会社 Seismic isolation braking device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343868A1 (en) 2021-05-20 2024-03-27 National Institute Of Advanced Industrial Science and Technology ScAlN LAYERED BODY AND METHOD FOR PRODUCING SAME
KR102561055B1 (en) * 2022-05-13 2023-07-27 (주) 희림종합건축사사무소 Architecture of the damper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016294U (en) * 1995-03-28 1995-09-26 厚生 梶原 Home seismic isolation device
JP6529884B2 (en) * 2015-10-19 2019-06-12 株式会社免制震ディバイス SPRING MECHANISM AND VIBRATION CONTROL DEVICE HAVING SPRING MECHANISM

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460287B2 (en) 2020-12-23 2024-04-02 青木あすなろ建設株式会社 Seismic isolation braking device
CN112610652A (en) * 2021-01-21 2021-04-06 吕梁学院 Electromechanical device damping device
CN113833149A (en) * 2021-10-18 2021-12-24 湖南大学 Tuned inerter damping support
CN113833149B (en) * 2021-10-18 2023-02-03 湖南大学 Tuned inerter damping support
CN114960396A (en) * 2022-04-26 2022-08-30 中铁第四勘察设计院集团有限公司 Elasticity and locking limit constraint structure system of cable-stayed bridge
CN114961013A (en) * 2022-06-24 2022-08-30 兰州理工大学 Replaceable component type energy dissipation support, self-resetting support and use method of replaceable component type energy dissipation support
CN114961013B (en) * 2022-06-24 2024-02-20 兰州理工大学 Replaceable component type energy consumption support, self-resetting support and use method thereof
CN116448363A (en) * 2023-04-22 2023-07-18 江苏华科建设工程质量检测有限公司 Anti-seismic detection device and detection method for assembled building structure
CN116448363B (en) * 2023-04-22 2023-11-24 江苏华科建设工程质量检测有限公司 Anti-seismic detection device and detection method for assembled building structure

Also Published As

Publication number Publication date
JP2021085182A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP6694195B1 (en) Spring type damping damper
JP6613443B1 (en) Spring-type damping damper
JP6909357B2 (en) SMA springs for buildings-STF viscous dampers
US9206616B2 (en) Negative stiffness device and method
KR100810518B1 (en) A damper using super elastic shape memory alloy
JP2018091096A (en) Damping device for bridge
JP2016180292A (en) Base-isolation structure
WO2015140188A1 (en) Energy dissipating device
JP2007278411A (en) Damper device
CA2894135A1 (en) A variable stiffness bracing device
US20210123257A1 (en) Structural connector
CN213926837U (en) Variable friction force and multi-stage energy consumption based damper and beam column node
JP5787534B2 (en) Seismic structure
JP2016105021A (en) Base-isolation mechanism
JP4468212B2 (en) Fall bridge prevention device
JP6184789B2 (en) Damping / seismic composite material and building using the same
CN214994679U (en) Anti-seismic device
JP5911743B2 (en) Damping damper and damping structure
JP5874336B2 (en) Vibration control device
CA3045250A1 (en) A volumetric compression restrainer
JP2005187185A (en) Device for horizontally supporting mast of tower crane
JP2019116724A (en) Displacement stopper and base-isolated building
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP5401260B2 (en) Attenuator
JP2601439Y2 (en) Brace equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200403

R150 Certificate of patent or registration of utility model

Ref document number: 6694195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250