JP2021085182A - Spring type vibration control damper - Google Patents

Spring type vibration control damper Download PDF

Info

Publication number
JP2021085182A
JP2021085182A JP2019213435A JP2019213435A JP2021085182A JP 2021085182 A JP2021085182 A JP 2021085182A JP 2019213435 A JP2019213435 A JP 2019213435A JP 2019213435 A JP2019213435 A JP 2019213435A JP 2021085182 A JP2021085182 A JP 2021085182A
Authority
JP
Japan
Prior art keywords
spring
seismic isolation
cylinder
isolation device
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019213435A
Other languages
Japanese (ja)
Other versions
JP6694195B1 (en
Inventor
亮平 黒沢
Ryohei Kurosawa
亮平 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosawa Construction Co Ltd
Original Assignee
Kurosawa Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosawa Construction Co Ltd filed Critical Kurosawa Construction Co Ltd
Priority to JP2019213435A priority Critical patent/JP6694195B1/en
Application granted granted Critical
Publication of JP6694195B1 publication Critical patent/JP6694195B1/en
Publication of JP2021085182A publication Critical patent/JP2021085182A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a spring type vibration control damper capable of preventing excessive deformation of a laminated rubber base isolation device at the time of a huge earthquake and preventing damage of the laminated rubber by imparting a quick deformation restoring function.SOLUTION: A spring type vibration control damper 11 comprises: a cylinder 18 mounted between an upper structure and a foundation structure of a base isolation building structure having a base isolation device interposed between the upper structure and the foundation structure and provided with end plates 23, 24 at both ends; a rod 22 mounted with a piston 21 at the tip; and a coil spring 19 housed in the cylinder 18. The piston 21 is housed in the cylinder 18, one end of the coil spring 19 is fixed to the end plate 23 of the cylinder 18, the other end is fixed to the piston 21, and relative displacement between the upper structure and the foundation structure due to an earthquake is returned to an original position by compression of the coil spring 19.SELECTED DRAWING: Figure 3

Description

本発明は、免震構造物に取付けて使用されるバネ式制震ダンパーに関するものである。 The present invention relates to a spring type vibration damping damper used by being attached to a seismic isolation structure.

この種の制震ダンパーについては複数の技術が公知になっている。
第1の公知技術については、油を充填したシリンダに軸を含む断面が凸字形をなすピストンを摺動自在に嵌合すると共に上記ピストンの小径部が嵌合する円筒体をシリンダの一方の端部に嵌合固定して、ピストンが上記端部に向かって移動するとき閉鎖する逆止弁を具備した油孔とピストンの大径部における両側を連通する微小の油孔とを該ピストンに形成し、かつピストンの小径部が前記円筒体に嵌合したとき該円筒体の内部に形成される密閉油室をシリンダとピストンの小径部との間に形成される円筒状の油室に連通する微小の油路を設けたオイルダンパー、である(特許文献1参照)。
Several techniques have been known for this type of damping damper.
Regarding the first known technique, a piston having a convex cross section including a shaft is slidably fitted to an oil-filled cylinder, and a cylindrical body into which the small diameter portion of the piston is fitted is fitted to one end of the cylinder. The piston is formed with an oil hole provided with a check valve that is fitted and fixed to the portion and closed when the piston moves toward the end portion, and a minute oil hole that communicates with both sides in the large diameter portion of the piston. However, when the small diameter portion of the piston is fitted into the cylinder, the airtight oil chamber formed inside the cylinder communicates with the cylindrical oil chamber formed between the cylinder and the small diameter portion of the piston. An oil damper provided with a minute oil passage (see Patent Document 1).

上記第1の公知技術によるダンパーは、全ストローク中の適当な一部の範囲だけで極めて大きな減衰力が発生する。従って、窓あるいはドア等にこれを直結して簡単な機構で使用し得る。かつシリンダに円筒体を嵌合し、ピストンを凸字形に形成するだけであるから、構造製作も簡単である、というものである。 The damper according to the first known technique generates an extremely large damping force only in an appropriate part range during the entire stroke. Therefore, it can be directly connected to a window, a door, or the like and used with a simple mechanism. Moreover, since the cylindrical body is simply fitted to the cylinder and the piston is formed in a convex shape, the structure can be easily manufactured.

第2の公知技術については、筒体と、この筒体内に収納してあり、積層ゴムの変形を制御するためのばね体(らせん状のコイルバネ)と、一端部が上記筒体の軸心方向に移動可能に挿入し、他端部が筒体の端部より延出し、上記ばね体を押圧する押え部を備えているロッドとを具備し、上記筒体の長さは、少なくとも積層ゴムの許容変形量とばね体を収容できる長さとを加えたものであることを特徴とする免震構造におけるストッパ、である(特許文献2参照)。 Regarding the second known technique, a cylinder, a spring body (spiral coil spring) housed in the cylinder and for controlling deformation of the laminated rubber, and one end in the axial direction of the cylinder. It is provided with a rod that is movably inserted into the body, the other end of which extends from the end of the cylinder, and has a holding portion that presses the spring body, and the length of the cylinder is at least that of the laminated rubber. It is a stopper in a seismic isolation structure, which is characterized by adding an allowable deformation amount and a length capable of accommodating a spring body (see Patent Document 2).

上記第2の公知技術によるストッパは、予想を越えた地震入力により積層ゴムGが過大に変形しようとする際、ロッドの押え部がばね体に当接して、ばね力によって過大変形を制御する、というものである。 In the stopper according to the second known technique, when the laminated rubber G tries to be excessively deformed due to an unexpected earthquake input, the holding portion of the rod comes into contact with the spring body and the excessive deformation is controlled by the spring force. That is.

第3の公知技術については、相対移動する第1構造体と第2構造体との間に設けられ、減衰力を発生して前記第1構造体と前記第2構造体との相対移動を減衰する減衰手段と、前記第1構造体と前記第2構造体との間に設けられ、前記減衰手段よりも大きな減衰力を発生し、前記第1構造体と前記第2構造体との相対移動を抑制するストッパ手段とを有し、前記減衰手段が、流体を収容するシリンダと、前記シリンダ内に挿入され、前記第1構造体と前記第2構造体との相対移動に伴って該シリンダに対して抜き差しされるロッドと、前記ロッドに設けられ、前記第1構造体と前記第2構造体の相対移動が所定値を超えると、前記ストッパ手段に設けられた被押圧部を押して減衰力を発生させる押圧部と、を備える減衰装置、である(特許文献3参照)。 The third known technique is provided between the first structure and the second structure that move relative to each other, and generates a damping force to dampen the relative movement between the first structure and the second structure. The damping means is provided between the first structure and the second structure to generate a damping force larger than that of the damping means, and the relative movement between the first structure and the second structure is performed. The damping means is inserted into the cylinder accommodating the fluid and the cylinder, and is inserted into the cylinder as the first structure and the second structure move relative to each other. When the relative movement between the rod to be inserted and removed and the rod provided on the rod and the first structure and the second structure exceeds a predetermined value, the pressed portion provided on the stopper means is pushed to apply a damping force. It is a damping device including a pressing portion to be generated (see Patent Document 3).

上記第3の公知技術による減衰装置によれば、第1構造体と第2構造体との相対移動に伴ってロッドがシリンダに対して抜き差しされる。これにより、減衰手段が減衰力を発生し、第1構造体と第2構造体との相対移動が減衰される。また、第1構造体と第2構造体との相対移動量が所定値を超えると、ロッドに設けられた押圧部によってストッパ手段に設けられた被押圧部が押され、該ストッパ手段が減衰手段よりも大きな減衰力を発生する。これにより、第1構造体と第2構造体との相対がさらに減衰される。即ち、想定内の地震等に対しては減衰手段が減衰力を発生し、想定以上の地震等に対しては、減衰手段と共にストッパ手段減衰力を発生する。従って、想定内の地震等に対する振動減衰効率を維持しつつ、想定外の地震時にストッパ手段を緩衝材として機能させ、第1構造体と第2構造体との過大変形を抑制することができる、というものである。 According to the damping device according to the third known technique, the rod is inserted and removed from the cylinder as the first structure and the second structure move relative to each other. As a result, the damping means generates a damping force, and the relative movement between the first structure and the second structure is damped. Further, when the relative movement amount between the first structure and the second structure exceeds a predetermined value, the pressed portion provided on the stopper means is pushed by the pressing portion provided on the rod, and the stopper means is used as the damping means. Generates greater damping force. As a result, the relative relationship between the first structure and the second structure is further attenuated. That is, the damping means generates a damping force for an expected earthquake or the like, and a stopper means damping force is generated together with the damping means for an earthquake or the like more than expected. Therefore, while maintaining the vibration damping efficiency against an unexpected earthquake or the like, the stopper means can function as a cushioning material in the event of an unexpected earthquake, and excessive deformation of the first structure and the second structure can be suppressed. That is.

実公昭51−774号の公告公報Public notice of Jitsukosho No. 51-774 実公平3−23004号の公告公報Public Notice of Jitsufuku No. 3-23004 特開2011−47421号の公開公報Publication of Japanese Patent Application Laid-Open No. 2011-47421

免震構造物に積層ゴム免震装置が多く使用されているが、積層ゴム免震装置自体は地震のエネルギーを吸収できず、振れ幅に沿って変形し振れ幅を抑えることもできない。それを防ぐために、制震ダンパーを設置して積層ゴム免震装置と併用することが必要である。 その制震ダンパーの中で、オイルダンパーが地震エネルギーを熱エネルギーに変換して建物全体の揺れを低減することができるのでよく使用されるようになっており、前記特許文献1のオイルダンパーは、その一種である。
しかしながら、オイルダンパーは、地震エネルギーを吸収することはできるが復元力を持っていないため、地震時に生じた上・下構造物の相対変位に対して元の状態に戻すことができず、積層ゴム免震装置の弾性変形力で戻すことになり、積層ゴム免震装置への負担が大きくなって、免震ゴムが過大変形して破壊されるという問題点を有している。また、オイルダンパーは火災時に高温を受けると爆発して建造物を破壊する危険性もある。
Laminated rubber seismic isolation devices are often used for seismic isolation structures, but the laminated rubber seismic isolation devices themselves cannot absorb the energy of earthquakes and deform along the swing width to suppress the swing width. In order to prevent this, it is necessary to install a vibration control damper and use it together with a laminated rubber seismic isolation device. Among the vibration control dampers, the oil damper is often used because it can convert seismic energy into heat energy to reduce the shaking of the entire building. It is one of them.
However, although the oil damper can absorb seismic energy but does not have resilience, it cannot be restored to its original state with respect to the relative displacement of the upper and lower structures that occurred during the earthquake, and the laminated rubber. It is returned by the elastic deformation force of the seismic isolation device, which increases the burden on the laminated rubber seismic isolation device, and has a problem that the seismic isolation rubber is excessively deformed and destroyed. There is also the danger that oil dampers will explode and destroy buildings if exposed to high temperatures during a fire.

前記特許文献2では、オイルダンパーとストッパと併設して使用することによって、積層ゴムの過大変形を抑制することが可能となったが、ストッパとオイルダンパーを併用することが不可欠である。従って、特許文献2の技術においては、2倍の材料が必要であり材料無駄が生ずるばかりでなく、取付作業についても2倍の労力と時間が必要であり、さらに、ばね体が押え部に片持ち梁の状態で取り付けられているため、繰り返しの地震力を受けると、ばね体が座屈してしまい、斜めになったり先端が弛んでいたりすると、筒体の壁に擦れて平行移動できなくなる懸念があり、一度座屈するとその後においては装置としての正常な作動ができなくなってしまい、要するに、ストッパ機能を失うのであり、継続しての使用が不可になるという問題点を有している。 In Patent Document 2, it is possible to suppress excessive deformation of the laminated rubber by using the oil damper and the stopper side by side, but it is indispensable to use the stopper and the oil damper together. Therefore, in the technique of Patent Document 2, not only twice as much material is required and material is wasted, but also twice as much labor and time are required for the mounting work, and the spring body is separated from the holding portion. Since it is installed as a beam, the spring body will buckle when it receives repeated seismic forces, and if it is slanted or the tip is loose, it will rub against the wall of the cylinder and cannot move in parallel. However, once buckled, the device cannot operate normally after that, and in short, the stopper function is lost, and there is a problem that continuous use becomes impossible.

特許文献3の技術においては、減衰装置にオイル等の流体による減衰手段とスプリングによるストッパ手段とを設ける必要があるため構成が複雑で部品点数が多くなりコスト高になるばかりでなく、オイル等の流体を使用するため前記特許文献1と同様に、火災時の危険性を回避することはできない。
また、ロッドの挿入孔にはオイル等の流体漏れを防止するOリング等のシール部材を設けることが不可欠であるため、やはり装置としてコスト高になる。仮に、液体(オイル)に替えて気体(空気)にして空気ダンパーとしても、同様に気体漏れのシーリングが必要であるから、同様にコスト高になるという問題点を有する。
In the technique of Patent Document 3, since it is necessary to provide a damping means by a fluid such as oil and a stopper means by a spring in the damping device, the configuration is complicated, the number of parts is increased, and the cost is increased, as well as oil and the like. Since a fluid is used, the danger in the event of a fire cannot be avoided as in Patent Document 1.
Further, since it is indispensable to provide a sealing member such as an O-ring for preventing fluid leakage of oil or the like in the insertion hole of the rod, the cost of the device is also high. Even if the air damper is made of gas (air) instead of liquid (oil), there is a problem that the cost is similarly high because the sealing of gas leakage is also required.

そこで、本発明は、前記従来技術における全ての問題点を解決し、オイル等の流体を一切使用せず、地震エネルギーを吸収する機能と、積層ゴム免震装置の過大変形を防止するストッパー機能と、地震による構造物の変形を速やかに復帰させる変形復元機能との三つの機能を備えた制震ダンパーを提供することを目的とするものである。 Therefore, the present invention solves all the problems in the prior art, has a function of absorbing seismic energy without using any fluid such as oil, and a stopper function of preventing excessive deformation of the laminated rubber seismic isolation device. It is an object of the present invention to provide a seismic isolation damper having three functions, that is, a deformation restoration function that quickly restores the deformation of a structure due to an earthquake.

前述の従来例の課題を解決する具体的手段として、本発明に係る発明は、上部構造と基礎構造との間に、免震装置を介在させてある免震建物構造に使用されるダンパーであって、前記ダンパーは、両端に端板が設けられたシリンダと、該シリンダ内に摺動自在に配設され一端にピストンが取り付けられたロッドと、ピストンの両側にそれぞれ設けられた一対のバネと、両端板の内側にそれぞれ設置された弾性緩衝材とからなり、前記バネの一端部がピストンに固定され、他端部と前記弾性緩衝材との間に遊間部が設けられ、前記上部構造と基礎構造との相対変位が前記遊間部を超えると、前記バネの圧縮によって生じた弾性反力で地震エネルギーを吸収する機能と、免震装置の過大変形を防止するストッパー機能と、地震後の免震建物の変形を復元する機能とを有する構成にしたことを特徴とするバネ式制震ダンパーを提供するものである。 As a specific means for solving the above-mentioned problems of the conventional example, the invention according to the present invention is a damper used for a seismic isolation building structure in which a seismic isolation device is interposed between a superstructure and a foundation structure. The damper includes a cylinder provided with end plates at both ends, a rod slidably arranged in the cylinder and a piston attached to one end, and a pair of springs provided on both sides of the piston. , Each of which is composed of an elastic cushioning material installed inside both end plates, one end of the spring is fixed to the piston, and a clearance portion is provided between the other end and the elastic cushioning material. When the relative displacement with the basic structure exceeds the clearance, the elastic reaction force generated by the compression of the spring absorbs the seismic energy, the stopper function to prevent excessive deformation of the seismic isolation device, and the seismic isolation after the earthquake. It provides a spring-type seismic isolation damper characterized by having a structure having a function of restoring the deformation of a seismic building.

上記発明において、前記遊間部を前記免震装置の限界変形許容値の70〜80%とし、且つ、前記相対変位が前記免震装置の限界変形許容値に達する直前に、前記バネが密着するようにしてあること;前記バネをコイルバネとし、該バネの内側に所要の隙間をもって複数の座屈防止材をシリンダ全長に亘って設置されること;及び前記バネが少なくとも二つの異なるバネ係数を一連に長さ方向に組み合わせたものとすること、を付加的な要件として含むものである。 In the above invention, the clearance portion is set to 70 to 80% of the limit deformation allowable value of the seismic isolation device, and the spring is brought into close contact immediately before the relative displacement reaches the limit deformation allowable value of the seismic isolation device. The spring is a coil spring, and a plurality of anti-skid materials are installed inside the spring with a required gap over the entire length of the cylinder; and the spring has at least two different spring constants in a series. It includes the combination in the length direction as an additional requirement.

本発明に係るバネ式制震ダンパーによれば、以下の効果を奏することができる。
1.バネと弾性緩衝材との間に遊間部を設けることによって、上部構造と基礎構造との地震による相対変位(相対間距離の伸びまたは縮み)が遊間部を越えない範囲であれば、免震装置の弾性変形可能な範囲内でフリーに水平変形をすることによって、上部構造への地震力が非常に小さくなり上部構造が地震の影響を受けない状態となる。要するに、中小地震時には、通常の積層ゴム型免震装置が水平変形能力を持っているため対応できるのである。従って、中小地震では、積層ゴム型免震装置の復元力を活かして地震後の免震建物を元の状態に復元させることによって、バネ式制震ダンパーのバネの巻き数や直径および強さ等を低減させることができると共に、バネ式制震ダンパーその物の大きさとコストの低減を図ることができるのである。
2.大地震時による上部構造と基礎構造との相対変位(相対間距離の伸びまたは縮み)が遊間部を越えと、バネが弾性緩衝材に当接して圧縮されることによってバネに弾性反力が生ずる。この弾性反力によって地震エネルギーを吸収するという機能が得られる。続いて、相対変量が所定値に達するとコイルバネが圧縮密着される状態になり、シリンダ内におけるピストンの相対移動がストップされることによって、上部構造と基礎構造との相対変位が制限され、免震装置の過大変形を防止するというストッパー機能が得られる。さらに、地震による上部構造と基礎構造との相対変位および免震装置のゴム変形に対し、コイルバネの圧縮によって生じたバネ弾性反力によって、地震後の免震建物の変形を速やかに復元するという変形復元機能が得られる。つまり、従来技術のように、ストッパーとダンパーの両方を設置する必要がなく、一つの装置に地震エネルギー吸収機能、免震装置の過大変形を防ぐストッパー機能および変形復元機能という三つの機能を備えた制震ダンパーになる。なお、上記所定値とは、積層ゴム免震装置の限界変形許容値とすることが好ましい。
3.また、上記の変形復元機能とは、バネの圧縮により弾性反力(復元力)が発生することである。大地震時に、上部構造と基礎構造との相対変位が遊間部を越えて、積層ゴム免震装置が大きく変形する際に、バネの圧縮により弾性反力を発生させて抑制させるのである。要するに、大地震時に、積層ゴム免震装置が受ける大変形をバネの復元力によって抑制し、変形が遊間部まで小さくなれば免震装置自体の弾性復元力で復元させることができ、積層ゴム免震装置が繰り返しの水平力を受けても、免震装置の積層ゴムが荷重疲労による劣化を防止できるのであり、免震装置の使用寿命を長くすることができるのである。
4.さらに、遊間部を積層ゴム型免震装置の限界変形許容値の70〜80%とし、且つ、上部構造と基礎構造との相対変位が免震装置の限界変形許容値に達する直前に、バネが密着するようにしてあることによって、設計上で想定した巨大地震に対して余裕をもって対応できるばかりでなく、想定外の巨大地震が発生した場合でも、免震装置の過大変形を抑制して免震装置自体の破損を防止して、免震建物構造全体の安全性を大幅に高めることができる。
5.座屈防止材が設置されることによって、繰り返し地震や強風を受けでも、バネが座屈や先端撓みでシリンダの軸方向に伸縮不能となることを防ぐことができる。とくに、片持ち梁形式で取り付けられたバネでも座屈や先端撓みを防止することができる。
6.さらに、オイル等の流体を一切使用しないことにより、シリンダの端板にロッドが貫通できる孔を設けるだけで良いので、オイルや気体漏れ対策を講じる必要がなく、構成が簡単で安価に提供できる。
According to the spring type vibration damping damper according to the present invention, the following effects can be obtained.
1. By providing a gap between the spring and the elastic cushioning material, if the relative displacement (extension or contraction of the relative distance) due to the earthquake between the superstructure and the foundation structure does not exceed the gap, it is exempted. By freely horizontally deforming within the elastically deformable range of the seismic device, the seismic force on the superstructure becomes very small and the superstructure is not affected by the earthquake. In short, in the event of a small or medium-sized earthquake, a normal laminated rubber type seismic isolation device can respond because it has horizontal deformation ability. Therefore, in small and medium-sized earthquakes, the number of turns, diameter, and strength of the springs of the spring-type seismic damping damper can be adjusted by restoring the seismic isolated building after the earthquake to its original state by utilizing the restoring force of the laminated rubber type seismic isolation device. It is possible to reduce the size and cost of the spring-type seismic isolation damper itself.
2. When the relative displacement (extension or contraction of the relative distance) between the superstructure and the foundation structure due to a large earthquake exceeds the free space, the spring abuts on the elastic cushioning material and is compressed, resulting in an elastic reaction force on the spring. Occurs. This elastic reaction force provides the function of absorbing seismic energy. Subsequently, when the relative variate reaches a predetermined value, the coil spring is in a state of being compressed and brought into close contact with each other, and the relative movement of the piston in the cylinder is stopped, so that the relative displacement between the superstructure and the foundation structure is restricted and seismic isolation occurs. A stopper function is obtained to prevent excessive deformation of the device. Furthermore, with respect to the relative displacement between the superstructure and the foundation structure due to the earthquake and the rubber deformation of the seismic isolation device, the deformation of the seismic isolated building after the earthquake is quickly restored by the spring elastic reaction force generated by the compression of the coil spring. Restoration function is obtained. In other words, unlike the conventional technology, it is not necessary to install both a stopper and a damper, and one device has three functions: a seismic energy absorption function, a stopper function to prevent excessive deformation of the seismic isolation device, and a deformation restoration function. Become a seismic damper. The above-mentioned predetermined value is preferably a limit deformation allowable value of the laminated rubber seismic isolation device.
3. The above-mentioned deformation restoration function is that an elastic reaction force (restoring force) is generated by compression of a spring. In the event of a large earthquake, when the relative displacement between the superstructure and the foundation structure exceeds the gap and the laminated rubber seismic isolation device is significantly deformed, elastic reaction force is generated and suppressed by compression of the spring. In short, in the event of a large earthquake, the large deformation received by the laminated rubber seismic isolation device can be suppressed by the restoring force of the spring, and if the deformation becomes small to the play space, it can be restored by the elastic restoring force of the seismic isolation device itself. Even if the seismic isolation device receives repeated horizontal forces, the laminated rubber of the seismic isolation device can prevent deterioration due to load fatigue, and the service life of the seismic isolation device can be extended.
4. Further, the play space is set to 70 to 80% of the limit deformation allowable value of the laminated rubber type seismic isolation device, and the spring is released just before the relative displacement between the superstructure and the basic structure reaches the limit deformation allowable value of the seismic isolation device. By making them in close contact with each other, not only is it possible to respond to a huge earthquake envisioned in the design with a margin, but even if an unexpected huge earthquake occurs, it suppresses excessive deformation of the seismic isolation device and seismic isolation is achieved. It is possible to prevent damage to the device itself and greatly improve the safety of the entire seismic isolated building structure.
5. By installing the anti-buckling material, it is possible to prevent the spring from becoming unable to expand and contract in the axial direction of the cylinder due to buckling and tip bending even if it receives repeated earthquakes and strong winds. In particular, buckling and tip bending can be prevented even with a spring attached in the form of a cantilever.
6. Further, by not using any fluid such as oil, it is only necessary to provide a hole through which the rod can penetrate in the end plate of the cylinder, so that it is not necessary to take measures against oil or gas leakage, and the configuration is simple and can be provided at low cost.

本発明に係るバネ式制震ダンパーが取り付けられた免震構造物の要部のみを示した側面図である。It is a side view which showed only the main part of the seismic isolation structure to which the spring type vibration damping damper which concerns on this invention is attached. 同免震構造物の要部のみを示した平面図である。It is a top view which showed only the main part of the seismic isolation structure. 本発明に係る実施例のバネ式制震ダンパーの取り付け状態における断面図である。It is sectional drawing in the attached state of the spring type vibration damping damper of the Example which concerns on this invention. 図3のA−A線に沿う拡大断面図である。FIG. 3 is an enlarged cross-sectional view taken along the line AA of FIG. 本発明に係る実施例のバネ式制震ダンパーにおける座屈防止材の取り付け状況の要部の一例を示す拡大断面図である。It is an enlarged sectional view which shows an example of the main part of the attachment state of the buckling prevention material in the spring type vibration damping damper of the Example which concerns on this invention. 本発明に係る実施例のバネ式制震ダンパーにおける座屈防止材の取り付け状況の要部を示す他の例の拡大断面図である。It is an enlarged cross-sectional view of another example which shows the main part of the attachment state of the buckling prevention material in the spring type vibration damping damper of the Example which concerns on this invention. 同実施例のバネ式制震ダンパーの地震を受けた時に、図(a)、(b)、(c)は基礎構造と上部構造との相対変位についての説明図である。Figures (a), (b), and (c) are explanatory views of the relative displacement between the foundation structure and the superstructure when the spring-type vibration damping damper of the same embodiment receives an earthquake. 同実施例におけるコイルバネの特性を示したグラフである。It is a graph which showed the characteristic of the coil spring in the same Example.

本発明を図示の実施の形態に係る実施例について説明する。まず、図1と図2について説明する。一般的に免震構造物にとしては図1、2に示したように、基礎構造1の上に上部構造2が構築されるものであり、基礎構造1は、地盤3に複数の基礎杭4を打ち込み、該基礎杭4の上に夫々ラップル基礎5を形成すると共に、各基礎杭4間にコンクリート製のマットスラブ6を形成する。上部構造2は、前記ラップル基礎5との間に積層ゴム型の免震装置7を介してフーチング8を設置し、該フーチング8間には大梁(地中梁)9が配設されると共に、フーチング8の上面には柱10が建て込まれ、梁やスラブ、壁部(図示せず)等も順次形成されて上部構造2が構築されたものである。 Examples of the present invention according to the illustrated embodiment will be described. First, FIGS. 1 and 2 will be described. Generally, as a seismic isolation structure, as shown in FIGS. 1 and 2, an upper structure 2 is constructed on the foundation structure 1, and the foundation structure 1 has a plurality of foundation piles 4 on the ground 3. , A rapple foundation 5 is formed on each of the foundation piles 4, and a concrete mat slab 6 is formed between the foundation piles 4. In the superstructure 2, a footing 8 is installed between the superstructure 2 and the rapple foundation 5 via a laminated rubber type seismic isolation device 7, and a girder (underground beam) 9 is arranged between the footings 8. A pillar 10 is built on the upper surface of the footing 8, and a beam, a slab, a wall portion (not shown) and the like are sequentially formed to construct the superstructure 2.

このように構築された免震構造物に対して、基礎構造1と上部構造2との間に本発明に係るバネ式制震ダンパー11が取り付けられるのであり、その取り付けに当たっては、基礎構造1側(マットスラブ6)に設けた支持台12と上部構造2側(大梁9)に設けた支持台13との間に鋼製金具からなる取付基部14、15と連結ピン16、17とを介してバネ式制震ダンパー11が水平に、且つ左右方向に自由に回転できるように設置される。なお、図示は省略するが、取付基部14、15を球体連結構造とすることにより、バネ式制震ダンパー11を上下・左右方向にも回転できるように取り付けることができる。 The spring-type seismic damping damper 11 according to the present invention is attached between the foundation structure 1 and the superstructure 2 to the seismic isolation structure constructed in this manner, and the attachment is on the foundation structure 1 side. Between the support base 12 provided on the (mat slab 6) and the support base 13 provided on the upper structure 2 side (girder 9) via mounting bases 14 and 15 made of steel metal fittings and connecting pins 16 and 17. The spring-type seismic isolation damper 11 is installed so that it can freely rotate horizontally and in the left-right direction. Although not shown, the spring-type vibration damping damper 11 can be mounted so as to be able to rotate in the vertical and horizontal directions by forming the mounting bases 14 and 15 into a spherical connecting structure.

本発明に係る具体的な実施例のバネ式制震ダンパー11は、図3〜図8に示したように、所要長さのシリンダ18の内部に、コイルバネ19と、該コイルバネ19の座屈を防止する複数の座屈防止材20と、ピストン21とが配設され、該ピストン21はピストンロッド22の先端に連結(取り付け)されてシリンダ18内に摺動自在に配設され、該ピストンロッド22の後端はシリンダ18の一端部側から所要長さ突出した状態で配設され、該ロッド22の突出端部を連結ピン16と取付基部14とで支持台12に取り付けている。 As shown in FIGS. 3 to 8, the spring-type vibration control damper 11 of the specific embodiment according to the present invention has the coil spring 19 and the buckling of the coil spring 19 inside the cylinder 18 having the required length. A plurality of buckling prevention members 20 to be prevented and a piston 21 are arranged, and the piston 21 is connected (attached) to the tip of the piston rod 22 and slidably arranged in the cylinder 18, and the piston rod is slidably arranged. The rear end of the 22 is arranged so as to protrude from the one end side of the cylinder 18 by a required length, and the protruding end of the rod 22 is attached to the support base 12 by the connecting pin 16 and the mounting base 14.

これら部材のシリンダ18内への配設については、円筒状のシリンダ18の両端部に鋼製金具からなる端板23、24がそれぞれ溶接等で強固に取り付けられるのであるが、両端板23、24には複数の座屈防止材20が取り付けられる複数の孔、図示の実施例(図4〜6参照)では4個の孔または螺子孔25が周縁寄りに均等間隔をもって予め設けられており、奥側(図3では左側)に設けられる端板23に対して4本の丸鋼からなる座屈防止材20のヘッド部が当接するように挿通し、挿通端部は右側の螺子孔25螺着して固定するか又は孔に挿通させて端部をシリンダ18から所要長さ突出させ、その突出端部にナット28を螺合させて固定し、座屈防止材20をシリンダ18の全長に亘って取り付け、該座屈防止部材20を内側に所要の隙間をもって抱え込むようにしてコイルバネ19を配設する。なお、ピストン21にも座屈防止部材20が挿通される挿通孔26が設けられており、ピストンロッド22の後端部は、端板24に設けた挿通孔31に挿通させてシリンダ18から所要長さ突出させてある。 Regarding the arrangement of these members in the cylinder 18, end plates 23 and 24 made of steel metal fittings are firmly attached to both ends of the cylindrical cylinder 18 by welding or the like, respectively. Is provided with a plurality of holes to which a plurality of buckling prevention members 20 are attached, and in the illustrated embodiment (see FIGS. 4 to 6), four holes or screw holes 25 are provided in advance near the peripheral edge at equal intervals. The head portion of the buckling prevention member 20 made of four round steels is inserted so as to abut against the end plate 23 provided on the side (left side in FIG. 3), and the insertion end portion is screwed into the screw hole 25 on the right side. The end is projected from the cylinder 18 to the required length by fixing or inserting it into the hole, and the nut 28 is screwed into the protruding end to fix the buckling prevention member 20 over the entire length of the cylinder 18. The coil spring 19 is arranged so as to hold the buckling prevention member 20 inside with a required gap. The piston 21 is also provided with an insertion hole 26 through which the buckling prevention member 20 is inserted, and the rear end portion of the piston rod 22 is required to be inserted from the cylinder 18 through the insertion hole 31 provided in the end plate 24. The length is projected.

さらに、図3に示したように、ピストンロッド22に取り付けたピストン21がシリンダ18の中央部に位置するように配設し、該ピストン21に取り付けられるコイルバネ19はピストン21の両側に同じバネ係数とする一対のコイルバネ19c、19dであって、該コイルバネ19c、19dと両側の端板23、24の内側にそれぞれ設けられている緩衝材29との間に所要間隔の遊間部32がそれぞれ設けられる。この遊間部32は、免震装置7の積層ゴムの弾性変形能力によって適宜に定めるものであるが、免震装置7の限界変形許容値の70〜80%の長さとすることが好ましい。 Further, as shown in FIG. 3, the piston 21 attached to the piston rod 22 is arranged so as to be located at the center of the cylinder 18, and the coil springs 19 attached to the piston 21 have the same spring constants on both sides of the piston 21. A pair of coil springs 19c and 19d, each of which is provided with a clearance portion 32 having a required interval between the coil springs 19c and 19d and a cushioning material 29 provided inside the end plates 23 and 24 on both sides. .. The gap portion 32 is appropriately determined by the elastic deformation ability of the laminated rubber of the seismic isolation device 7, but it is preferably 70 to 80% of the limit deformation allowable value of the seismic isolation device 7.

要するに、地震による免震建物の水平変形に対して、通常は、中小の地震時の水平変形が小さいため、コイルバネ19(19c、19d)が緩衝材29に当接しない水平変形の時には、免震装置7自身が有する弾性復元力によって地震後の免震建物を元の状態に復元させることができるが、大地震時の水平変形に対しては、遊間部32が無くなってコイルバネ19が緩衝材29に当接して圧縮する水平変形に対しては、コイルバネ19の圧縮による弾性反力で地震後に免震建物の変形を遊間部32の長さ分迄まで戻し、その後は免震装置7の弾性復元能力によって復元させるのであり、夫々の役割分担で地震後の免震建物を元の状態に復元させるようにしたものである。
なお、緩衝材29は、バネ19が密着するまで弾性滑らかに圧縮されるように設けられるものであり、従来の緩衝材と同様である。また、ゴムやバネ等としてもよい。
また、座屈防止材20の固定については、図5に示したようにネジ式でも良いが、図6に示したように座金27を介してナット28による締め付け固定でもよい。
なお、本願発明でいう免震装置の限界変形許容値とは、免震装置7が弾性範囲内の最大水平変形量とする。従って、巨大地震が発生した後にも、免震装置が復元する能力を保持している状態にすることとする。
In short, the horizontal deformation of a seismic isolation building due to an earthquake is usually small during a small or medium-sized earthquake, so when the coil spring 19 (19c, 19d) is not in contact with the cushioning material 29, the vibration isolation The seismic isolation building after the earthquake can be restored to its original state by the elastic restoring force of the device 7 itself, but for horizontal deformation during a large earthquake, the free space 32 is eliminated and the coil spring 19 is used as a cushioning material 29. With respect to the horizontal deformation that abuts and compresses, the deformation of the seismic isolation building is restored to the length of the clearance portion 32 after the earthquake by the elastic reaction force due to the compression of the coil spring 19, and then the elastic restoration of the seismic isolation device 7. It is restored by ability, and the seismic isolation building after the earthquake is restored to its original state by dividing the roles of each.
The cushioning material 29 is provided so as to be elastically and smoothly compressed until the spring 19 is brought into close contact with the cushioning material 29, and is the same as the conventional cushioning material. Further, it may be rubber, a spring or the like.
Further, the buckling prevention member 20 may be fixed by a screw type as shown in FIG. 5, but may be tightened and fixed by a nut 28 via a washer 27 as shown in FIG.
The limit deformation allowable value of the seismic isolation device in the present invention is the maximum horizontal deformation amount of the seismic isolation device 7 within the elastic range. Therefore, even after a huge earthquake occurs, the seismic isolation device shall retain the ability to restore.

上記実施例に係るバネ式制震ダンパー11の地震を受けた時の基礎構造1と上部構造2との相対変位について、図7(a)、(b)、(c)を用いて説明する。
まず、(a)図は相対変位が矢印aで示した方向(相対間距離が伸びる方向)に変形して所定値に達した状態を示し、(b)図は設置状態におけるコイルバネ19c、19dの不作用(相対変位がない)状態を示し、(c)図は相対変位が矢印bで示した方向(相対間距離が縮む方向)に変形して所定値に達した状態を示すものである。
例えば、免震構造物は通常想定している地震力に対して免震装置7が設置されており、想定内の場合は、免震装置7における積層ゴムの弾性変形によって元の状態に戻るが、想定を超えた大地震の場合に、積層ゴムが過大変形して免震装置7が破壊されてしまうのである。
The relative displacement between the foundation structure 1 and the superstructure 2 when the spring-type vibration damping damper 11 according to the above embodiment receives an earthquake will be described with reference to FIGS. 7A, 7B, and 7C.
First, the figure (a) shows a state in which the relative displacement is deformed in the direction indicated by the arrow a (the direction in which the relative distance increases) and reaches a predetermined value, and the figure (b) shows the coil springs 19c and 19d in the installed state. The non-acting (no relative displacement) state is shown, and the figure (c) shows the state in which the relative displacement is deformed in the direction indicated by the arrow b (the direction in which the relative distance is shortened) and reaches a predetermined value.
For example, in a seismic isolation structure, a seismic isolation device 7 is installed for a seismic force normally assumed, and if it is within the assumption, it returns to the original state due to elastic deformation of the laminated rubber in the seismic isolation device 7. In the case of a large earthquake that exceeds expectations, the laminated rubber is excessively deformed and the seismic isolation device 7 is destroyed.

いずれの場合でも、同じバネ係数とする一対のコイルバネ19c、19dをピストン21の両側に取り付けたことにより、基礎構造1と上部構造2との相対変位が遊間部32を超えて伸びても縮んでも、いずれかのコイルバネ19c、19dの弾性反力によって地震エネルギーを吸収しながら復元作用し、基礎構造1と上部構造2との相対変位を復元することができるのである。従って、基礎構造1と上部構造2との相対変位のストロークLは、ピストン21がシリンダ18内の遊間部32内の中間位置からいずれの端板23、24側に(変位)するストロークであっても、両コイルバネ19c、19dの初期復元力が強く作用するので、疲労荷重による免震装置7の機能の劣化を防止できるばかりでなく、座屈防止材20を配設してあるので、コイルバネ19c、19dは座屈することなく、常にスムーズにシリンダ18内で繰り返し伸縮することができるのである。なお、シリンダ18の端板23、24が過大な相対変位に対してストッパー機能を発揮するのである。 In either case, by attaching a pair of coil springs 19c and 19d having the same spring constant to both sides of the piston 21, the relative displacement between the foundation structure 1 and the upper structure 2 may extend or contract beyond the clearance portion 32. The elastic reaction force of any of the coil springs 19c and 19d absorbs the seismic energy and restores the relative displacement between the foundation structure 1 and the superstructure 2. Therefore, the stroke L of the relative displacement between the foundation structure 1 and the upper structure 2 is a stroke in which the piston 21 is (displaced) toward any of the end plates 23 and 24 from the intermediate position in the clearance portion 32 in the cylinder 18. However, since the initial restoring force of both coil springs 19c and 19d acts strongly, not only can the function of the seismic isolation device 7 be prevented from deteriorating due to the fatigue load, but also the buckling prevention material 20 is arranged, so that the coil springs 19c , 19d can always and smoothly repeatedly expand and contract in the cylinder 18 without buckling. The end plates 23 and 24 of the cylinder 18 exert a stopper function against an excessive relative displacement.

さらに、使用されるコイルバネ19c、19dについては、異なるパネ係数を有する複数のコイルバネを一連に合成させたものが使用できるし、例えば、バネ線材の直径、巻き数や材質を変えて形成したものが使用できるのであり、いずれにしても、図8に示したように、コイルバネの特性が曲線状(非線形弾性特性)になり、初期のバネ反力を小さくして、基礎構造1と上部構造2との相対移動を強く拘束しないようにしたものである。 Further, as the coil springs 19c and 19d to be used, those obtained by synthesizing a plurality of coil springs having different panel coefficients in a series can be used, and for example, those formed by changing the diameter, the number of turns and the material of the spring wire rod. It can be used, and in any case, as shown in FIG. 8, the characteristics of the coil spring become curved (non-linear elastic characteristics), the initial spring reaction force is reduced, and the basic structure 1 and the superstructure 2 The relative movement of the is not strongly restrained.

本発明に係るバネ式制震ダンパー11は、上部構造2と基礎構造1との間に、免震装置7を介在させてある免震建物構造に使用されるダンパーであって、前記ダンパー11は、両端に端板23,24が設けられたシリンダ18と、該シリンダ18内に摺動自在に配設され一端にピストン21が取り付けられたロッド22と、ピストン21の両側にそれぞれ設けられた一対のコイルバネ19c、19dと、両端板23、24の内側にそれぞれ設置された弾性緩衝材29とからなり、前記コイルバネ19c、19dの一端部がピストン21に固定され、他端部と前記弾性緩衝材29との間に遊間部32が設けられ、前記上部構造2と基礎構造1との相対変位が前記遊間部32を超えると、前記コイルバネ19c、19dの圧縮によって生じた弾性反力で地震エネルギーを吸収する機能と、免震装置7の過大変形を防止するストッパー機能と、地震後の免震建物の変形を復元する機能とを有する構成にしたので、上部構造2と基礎構造1との相対変位の方向に対して、従来技術のように伸びまたは縮みに夫々効く装置を配置する必要性なく両方効くようにし、装置自体のコストだけでなく、作業の手間も軽減することができる。また、ストッパーとダンパーを両方設置する必要性なく、シリンダ18に積層ゴム免震装置7の過大変形を防ぐストッパー機能(両側板)を付与すると共に、変形復元機能及び地震エネルギー吸収機能の三つの機能を有する制震ダンパーにしたのである。そして、コイルバネ19c、19dの圧縮による反力(復元力)により、積層ゴム免震装置7の変形に対して抑制するものであり、また、中小地震や強風等の水平力によって発生する変形を含めて、変形を復元するものであり、積層ゴム免震装置7が繰り返しの水平力を受けても、現状復帰にはコイルバネ19c、19dの変形復元機能によって大部分を負担し、疲労荷重による積層ゴムの劣化を防止できるのであり、免震装置7の使用寿命を長くすることができるので、この種免震構造物において広い範囲で使用可能である。 The spring-type seismic isolation damper 11 according to the present invention is a damper used for a seismic isolation building structure in which a seismic isolation device 7 is interposed between a superstructure 2 and a foundation structure 1, and the damper 11 is , A cylinder 18 provided with end plates 23 and 24 at both ends, a rod 22 slidably arranged in the cylinder 18 and having a piston 21 attached to one end, and a pair provided on both sides of the piston 21. The coil springs 19c and 19d are composed of an elastic cushioning material 29 installed inside both end plates 23 and 24, respectively. One end of the coil springs 19c and 19d is fixed to the piston 21, and the other end and the elastic cushioning material are fixed. When the clearance portion 32 is provided between the gap portion 32 and the relative displacement between the upper structure 2 and the foundation structure 1 exceeds the clearance portion 32, seismic energy is generated by the elastic reaction force generated by the compression of the coil springs 19c and 19d. Since the configuration has a function of absorbing, a stopper function of preventing excessive deformation of the seismic isolation device 7, and a function of restoring the deformation of the seismic isolated building after the earthquake, the relative displacement between the superstructure 2 and the foundation structure 1 is provided. It is possible to reduce not only the cost of the device itself but also the labor of work by making it possible to work in both directions without the need to arrange a device that is effective for expansion or contraction as in the prior art. Further, without the need to install both a stopper and a damper, the cylinder 18 is provided with a stopper function (both side plates) for preventing excessive deformation of the laminated rubber seismic isolation device 7, and has three functions of deformation restoration function and seismic energy absorption function. It was made into a seismic isolation damper with. Then, the reaction force (restoring force) due to the compression of the coil springs 19c and 19d suppresses the deformation of the laminated rubber seismic isolation device 7, and also includes the deformation generated by the horizontal force such as a small and medium-sized earthquake or a strong wind. Even if the laminated rubber seismic isolation device 7 receives repeated horizontal force, most of the deformation is restored by the deformation restoration function of the coil springs 19c and 19d, and the laminated rubber due to the fatigue load is restored. Since the deterioration of the seismic isolation device 7 can be prevented and the service life of the seismic isolation device 7 can be extended, it can be used in a wide range in this type of seismic isolation structure.

1 基礎構造
2 上部構造
3 地盤
4 基礎杭
5 ラップル基礎
6 マットスラブ
7 積層ゴム免震装置
8 フーチング
9 大梁(地中梁)
10 柱
11 バネ式制震ダンパー
12 支持台
13 支持台
14、15 取付基部
16、17 連結ピン
18 シリンダ
19、19c、19d コイルバネ
20 座屈防止材
21 ピストン
22 ロッド(ピストンロッド)
23、24 端板
25 孔または螺子孔
26 挿通孔
27 座金
28 ナット
29 緩衝材
30 空間部
31 挿通孔
32 遊間部
a、b 矢印
1 Foundation structure 2 Superstructure 3 Ground 4 Foundation pile
5 Wrapple foundation 6 Matte slab 7 Laminated rubber seismic isolation device 8 Footing 9 Large beam (underground beam)
10 Pillar 11 Spring type vibration control damper 12 Support base 13 Support base 14, 15 Mounting base 16, 17 Connecting pin 18 Cylinder 19, 19c, 19d Coil spring 20 Buckling prevention material 21 Piston 22 Rod (piston rod)
23, 24 End plate 25 holes or screw holes 26 Insertion holes 27 Washers 28 Nuts 29 Cushioning material 30 Space part 31 Insertion holes 32 Free space a, b Arrows

Claims (4)

上部構造と基礎構造との間に、免震装置を介在させてある免震建物構造に使用されるダンパーであって、
前記ダンパーは、両端に端板が設けられたシリンダと、該シリンダ内に摺動自在に配設され一端にピストンが取り付けられたロッドと、ピストンの両側にそれぞれ設けられた一対のバネと、両端板の内側にそれぞれ設置された弾性緩衝材とからなり、
前記バネの一端部がピストンに固定され、他端部と前記弾性緩衝材との間に遊間部が設けられ、
前記上部構造と基礎構造との相対変位が前記遊間部を超えると、前記バネの圧縮によって生じた弾性反力で地震エネルギーを吸収する機能と、免震装置の過大変形を防止するストッパー機能と、地震後の免震建物の変形を復元する機能とを有する構成にしたこと
を特徴とするバネ式制震ダンパー。
A damper used for a seismic isolation building structure in which a seismic isolation device is interposed between the superstructure and the foundation structure.
The damper includes a cylinder having end plates at both ends, a rod slidably arranged in the cylinder and a piston attached to one end, a pair of springs provided on both sides of the piston, and both ends. It consists of elastic cushioning materials installed inside the board.
One end of the spring is fixed to the piston, and a clearance portion is provided between the other end and the elastic cushioning material.
When the relative displacement between the superstructure and the foundation structure exceeds the clearance portion, a function of absorbing seismic energy by the elastic reaction force generated by the compression of the spring, a stopper function of preventing excessive deformation of the seismic isolation device, and a stopper function. A spring-type seismic damping damper characterized by having a function to restore the deformation of the seismic isolated building after an earthquake.
前記遊間部を前記免震装置の限界変形許容値の70〜80%とし、且つ、前記相対変位が前記免震装置の限界変形許容値に達する直前に、前記バネが密着するようにしてあること
を特徴とする請求項1に記載のバネ式制震ダンパー。
The clearance portion is set to 70 to 80% of the limit deformation allowable value of the seismic isolation device, and the spring is brought into close contact immediately before the relative displacement reaches the limit deformation allowable value of the seismic isolation device. The spring-type seismic isolation damper according to claim 1.
前記バネをコイルバネとし、該バネの内側に所要の隙間をもって複数の座屈防止材をシリンダ全長に亘って設置されること
を特徴とする請求項1または2に記載のバネ式制震ダンパー。
The spring-type vibration damping damper according to claim 1 or 2, wherein the spring is a coil spring, and a plurality of buckling prevention materials are installed inside the spring with a required gap over the entire length of the cylinder.
前記バネが少なくとも二つの異なるバネ係数を一連に長さ方向に組み合わせたものとすること
を特徴とする請求項1乃至3に記載のバネ式制震ダンパー。
The spring-type vibration damping damper according to claim 1, wherein the spring is a combination of at least two different spring coefficients in a series in the length direction.
JP2019213435A 2019-11-26 2019-11-26 Spring type damping damper Active JP6694195B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019213435A JP6694195B1 (en) 2019-11-26 2019-11-26 Spring type damping damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213435A JP6694195B1 (en) 2019-11-26 2019-11-26 Spring type damping damper

Publications (2)

Publication Number Publication Date
JP6694195B1 JP6694195B1 (en) 2020-05-13
JP2021085182A true JP2021085182A (en) 2021-06-03

Family

ID=70549849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213435A Active JP6694195B1 (en) 2019-11-26 2019-11-26 Spring type damping damper

Country Status (1)

Country Link
JP (1) JP6694195B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244589A1 (en) 2021-05-20 2022-11-24 国立研究開発法人産業技術総合研究所 Scaln layered body and method for producing same
KR102561055B1 (en) * 2022-05-13 2023-07-27 (주) 희림종합건축사사무소 Architecture of the damper

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460287B2 (en) 2020-12-23 2024-04-02 青木あすなろ建設株式会社 Seismic isolation braking device
CN112610652B (en) * 2021-01-21 2022-08-16 吕梁学院 Electromechanical device damping device
CN113833149B (en) * 2021-10-18 2023-02-03 湖南大学 Tuned inerter damping support
CN114960396A (en) * 2022-04-26 2022-08-30 中铁第四勘察设计院集团有限公司 Elasticity and locking limit constraint structure system of cable-stayed bridge
CN114961013B (en) * 2022-06-24 2024-02-20 兰州理工大学 Replaceable component type energy consumption support, self-resetting support and use method thereof
CN116448363B (en) * 2023-04-22 2023-11-24 江苏华科建设工程质量检测有限公司 Anti-seismic detection device and detection method for assembled building structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016294U (en) * 1995-03-28 1995-09-26 厚生 梶原 Home seismic isolation device
JP2017078432A (en) * 2015-10-19 2017-04-27 株式会社免制震ディバイス Spring mechanism and vibration suppression device having spring mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016294U (en) * 1995-03-28 1995-09-26 厚生 梶原 Home seismic isolation device
JP2017078432A (en) * 2015-10-19 2017-04-27 株式会社免制震ディバイス Spring mechanism and vibration suppression device having spring mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244589A1 (en) 2021-05-20 2022-11-24 国立研究開発法人産業技術総合研究所 Scaln layered body and method for producing same
KR102561055B1 (en) * 2022-05-13 2023-07-27 (주) 희림종합건축사사무소 Architecture of the damper

Also Published As

Publication number Publication date
JP6694195B1 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP2021085182A (en) Spring type vibration control damper
JP6613443B1 (en) Spring-type damping damper
US9206616B2 (en) Negative stiffness device and method
Constantinou et al. Seismic response of structures with supplemental damping
US8857110B2 (en) Negative stiffness device and method
JP2006241934A (en) Damper device
US20150361657A1 (en) Variable stiffness bracing device
US20210123257A1 (en) Structural connector
JP2007278411A (en) Damper device
JP4468212B2 (en) Fall bridge prevention device
CN214994679U (en) Anti-seismic device
KR20140034268A (en) Aseismic damper
KR101402479B1 (en) Aseismic Damper
KR102019718B1 (en) Automatic Restoration and Self-Healing Damper System Utilizing Smart Material
KR101028239B1 (en) Hybrid vibration control apparatus using viscoelasticity and hysteresis
JP5199687B2 (en) Damping device, damping structure, and damping panel
JP4902330B2 (en) Seismic isolation devices and seismic isolation structures
KR101734318B1 (en) Safety door for earthquake disaster prevention
JP5911743B2 (en) Damping damper and damping structure
Mitu et al. Passive and semi-active bracing systems for seismic protection: a comparative study
Nikam et al. Seismic energy dissipation of a building using friction damper
JP6869015B2 (en) Wind lock mechanism
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP6148045B2 (en) Double-sided slide support device for structures
JP2002340085A (en) Vibration damper device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200403

R150 Certificate of patent or registration of utility model

Ref document number: 6694195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250