JP2022053721A - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
JP2022053721A
JP2022053721A JP2020160513A JP2020160513A JP2022053721A JP 2022053721 A JP2022053721 A JP 2022053721A JP 2020160513 A JP2020160513 A JP 2020160513A JP 2020160513 A JP2020160513 A JP 2020160513A JP 2022053721 A JP2022053721 A JP 2022053721A
Authority
JP
Japan
Prior art keywords
vehicle
engine
deceleration
mode
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020160513A
Other languages
English (en)
Inventor
貴博 木下
Takahiro Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2020160513A priority Critical patent/JP2022053721A/ja
Publication of JP2022053721A publication Critical patent/JP2022053721A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Figure 2022053721000001
【課題】走行モードを適切なタイミングで切り替える。
【解決手段】車両に設けられる車両用制御装置であって、車輪に動力伝達経路を介して接続されるエンジンと、動力伝達経路に設けられるクラッチと、車両に作用する加速力、車両に作用する減速力、および車両質量に基づいて、車両減速度Daを算出する減速度算出部と、クラッチが締結されるエンジン走行モードと、クラッチが解放されるセーリング走行モードと、を実行する走行制御部と、を有し、走行制御部は、車両減速度Daが所定範囲を外れる場合に、エンジン走行モードを実行する(S16)一方、車両減速度Daが所定範囲に収まる場合に、セーリング走行モードを実行する(S15)。
【選択図】図7

Description

本発明は、車両に設けられる車両用制御装置に関する。
車両の走行モードとして、エンジンと車輪との間に設けられたクラッチを解放することにより、車輪からエンジンを切り離して車両を走行させるセーリング走行モードがある(特許文献1および2参照)。このセーリング走行モードを実行することにより、車両の燃費性能を高めることができる。
特開2016-153681号公報 特開2016-172495号公報
ところで、クラッチを解放するセーリング走行モードについては、車両が緩やかに減速するタイミングで実行することが望ましいが、この実行タイミングを適切に判定することは困難となっていた。例えば、アクセルペダルが微小なストロークで踏まれた場合に、セーリング走行モードを実行することも考えられるが、車両は様々な要因によって加減速してしまうことから、アクセル開度だけで実行タイミングを適切に判定することは困難であった。
本発明の目的は、走行モードを適切なタイミングで切り替えることにある。
本発明の車両用制御装置は、車両に設けられる車両用制御装置であって、車輪に動力伝達経路を介して接続されるエンジンと、前記動力伝達経路に設けられるクラッチと、車両に作用する加速力、車両に作用する減速力、および車両質量に基づいて、車両減速度を算出する減速度算出部と、前記クラッチが締結される第1走行モードと、前記クラッチが解放される第2走行モードと、を実行する走行制御部と、を有し、前記走行制御部は、前記車両減速度が所定範囲を外れる場合に、前記第1走行モードを実行する一方、前記車両減速度が前記所定範囲に収まる場合に、前記第2走行モードを実行する。
本発明によれば、車両に作用する加速力、車両に作用する減速力、および車両質量に基づいて車両減速度が算出され、車両減速度が所定範囲に収まる場合に、第2走行モードが実行される。これにより、走行モードを適切なタイミングで切り替えることができる。
本発明の一実施の形態である車両用制御装置を備えた車両を示す図である。 車両に搭載される電源回路の一例を示した図である。 電源回路を簡単に示した回路図である。 車両用制御装置の制御系の一例を示す概略図である。 (A)はエンジン走行モードの実行状況を示す図であり、(B)はセーリング走行モードの実行状況を示す図である。 エンジンに設定される出力特性の一例を示した図である。 走行モード切替制御の実行手順の一例を示したフローチャートである。 車両11に作用する加速力や減速力を示す図である。 走行モード切替制御の実行手順の他の例を示したフローチャートである。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
[車両構成]
図1は本発明の一実施の形態である車両用制御装置10を備えた車両11を示す図である。図1に示すように、車両11には、エンジン12および無段変速機13を備えたパワートレイン14が搭載されている。無段変速機13は、入力側のプライマリプーリ15と出力側のセカンダリプーリ16とを有している。エンジン12のクランク軸17とプライマリプーリ15のプライマリ軸18との間には、トルクコンバータ19、タービン軸20および前進クラッチ(クラッチ)21が設けられている。また、セカンダリプーリ16のセカンダリ軸22と車輪23との間には、出力軸24、デファレンシャル機構25および車軸26が設けられている。このように、エンジン12と車輪23とは、トルクコンバータ19、タービン軸20、前進クラッチ21、無段変速機13、出力軸24、デファレンシャル機構25および車軸26等からなる動力伝達経路27を介して互いに接続されている。なお、動力伝達経路27に設けられる前進クラッチ21は、図示しない遊星歯車列等からなる前後進切替機構28に組み込まれるクラッチである。
エンジン12のクランク軸17には、ベルト機構30を介してスタータジェネレータ31が連結されている。このスタータジェネレータ31は、発電機および電動機として機能する所謂ISG(Integrated Starter Generator)である。また、エンジン12の吸気管32には、吸入空気量を制御するスロットルバルブ33が設けられるとともに、吸入空気量を検出するエアフローセンサ34が設けられている。さらに、エンジン12には、吸気ポートやシリンダ内に燃料を噴射するインジェクタ35が設けられるとともに、イグナイタや点火プラグ等からなる点火装置36が設けられている。また、車両11には、車輪23を制動するブレーキ装置37が設けられている。このブレーキ装置37は、ブレーキペダル38に連動してブレーキ液圧を出力するマスターシリンダ39と、車輪23のディスクロータ40を制動するキャリパ41と、各キャリパ41に供給されるブレーキ液圧を制御するアクチュエータ42と、を有している。
[電源回路]
車両11に搭載される電源回路50について説明する。図2は車両11に搭載される電源回路50の一例を示した図であり、図3は電源回路50を簡単に示した回路図である。図2および図3に示すように、電源回路50は、スタータジェネレータ31に電気的に接続されるリチウムイオンバッテリ51と、これと並列にスタータジェネレータ31に電気的に接続される鉛バッテリ52と、を備えている。なお、リチウムイオンバッテリ51を積極的に放電させるため、リチウムイオンバッテリ51の端子電圧は、鉛バッテリ52の端子電圧よりも高く設計されている。また、リチウムイオンバッテリ51を積極的に充放電させるため、リチウムイオンバッテリ51の内部抵抗は、鉛バッテリ52の内部抵抗よりも小さく設計されている。
スタータジェネレータ31の正極端子31aには正極ライン53が接続され、リチウムイオンバッテリ51の正極端子51aには正極ライン54が接続され、鉛バッテリ52の正極端子52aには正極ライン55を介して正極ライン56が接続される。これらの正極ライン53,54,56は、接続点57を介して互いに接続されている。また、スタータジェネレータ31の負極端子31bには負極ライン58が接続され、リチウムイオンバッテリ51の負極端子51bには負極ライン59が接続され、鉛バッテリ52の負極端子52bには負極ライン60が接続される。これらの負極ライン58,59,60は、基準電位点61を介して互いに接続されている。さらに、鉛バッテリ52の正極ライン55には、正極ライン62が接続されている。この正極ライン62には、各種アクチュエータや各種コントローラ等の電気機器63からなる電気機器群64が接続されている。また、鉛バッテリ52の負極ライン60には、充放電電流や端子電圧等を検出するバッテリセンサ65が設けられている。
電源回路50には、リチウムイオンバッテリ51およびスタータジェネレータ31からなる第1電源系71が設けられており、鉛バッテリ52および電気機器63からなる第2電源系72が設けられている。そして、第1電源系71と第2電源系72との間に設けられる正極ライン56を介して、リチウムイオンバッテリ51と鉛バッテリ52とは互いに並列接続されている。この正極ライン56には、電力ヒューズ73が設けられるとともに、オン状態とオフ状態とに制御される第1スイッチSW1が設けられている。また、リチウムイオンバッテリ51の正極ライン54には、オン状態とオフ状態とに制御される第2スイッチSW2が設けられている。
スイッチSW1をオン状態に制御することにより、第1電源系71と第2電源系72とを互いに接続することができる一方、スイッチSW1をオフ状態に制御することにより、第1電源系71と第2電源系72とを互いに切り離すことができる。また、スイッチSW2をオン状態に制御することにより、スタータジェネレータ31とリチウムイオンバッテリ51とを互いに接続することができる一方、スイッチSW2をオフ状態に制御することにより、スタータジェネレータ31とリチウムイオンバッテリ51とを互いに切り離すことができる。なお、スイッチSW1,SW2は、MOSFET等の半導体素子によって構成されるスイッチであっても良く、電磁力等を用いて接点を機械的に開閉させるスイッチであっても良い。
図2に示すように、電源回路50には、バッテリモジュール74が設けられている。このバッテリモジュール74は、リチウムイオンバッテリ51を有するとともに、スイッチSW1,SW2を有している。また、バッテリモジュール74は、マイコンや各種センサ等からなるバッテリコントローラ75を有している。さらに、バッテリモジュール74には、リチウムイオンバッテリ51の充放電電流、端子電圧および温度等を検出するバッテリセンサ76が設けられている。また、バッテリコントローラ75は、バッテリセンサ76から送信される充放電電流等に基づいて、リチウムイオンバッテリ51の充電状態であるSOC(State of Charge)を算出する機能を有している。
[スタータジェネレータ制御]
電源回路50のスタータジェネレータ31は、リチウムイオンバッテリ51のSOCに基づき、燃焼発電状態と発電停止状態とに制御される。つまり、リチウムイオンバッテリ51のSOCが所定値を下回る場合には、スタータジェネレータ31によってリチウムイオンバッテリ51を充電するため、スタータジェネレータ31はエンジン動力によって発電する燃焼発電状態に制御される。このように、スタータジェネレータ31を燃焼発電状態に制御する際には、スタータジェネレータ31の発電電圧が、鉛バッテリ52およびリチウムイオンバッテリ51の端子電圧よりも上げられる。一方、リチウムイオンバッテリ51のSOCが所定値を上回る場合には、リチウムイオンバッテリ51を積極的に放電させるため、スタータジェネレータ31は発電を停止する発電停止状態に制御される。このように、スタータジェネレータ31を発電停止状態に制御する際には、スタータジェネレータ31の発電電圧が、鉛バッテリ52およびリチウムイオンバッテリ51の端子電圧よりも下げられる。
また、車両減速時には多くの運動エネルギーを回収して燃費性能を高めることが求められる。そこで、後述するエンジン走行モードでの車両減速時には、スタータジェネレータ31の発電電圧が引き上げられ、スタータジェネレータ31は回生発電状態に制御される。スタータジェネレータ31を回生発電状態に制御する際には、前述した燃焼発電状態よりもスタータジェネレータ31の発電電圧が上げられる。なお、スタータジェネレータ31を燃焼発電状態、回生発電状態および発電停止状態に制御する際には、双方のスイッチSW1,SW2がオン状態に保持される。
また、アイドリングストップ制御においてエンジン12を再始動させる場合や、発進時や加速時にエンジン12を補助するモータアシスト制御には、スタータジェネレータ31が力行状態に制御される。なお、スタータジェネレータ31を力行状態に制御する際には、電気機器群64に対する電源電圧の過度な低下を防止する観点から、スタータジェネレータ31の消費電力に応じて、スイッチSW1がオフ状態に制御される。つまり、スタータジェネレータ31の消費電力が大きい場合には、スイッチSW1がオフ状態に制御される一方、スタータジェネレータ31の消費電力が小さい場合には、スイッチSW1がオン状態に保持される。
[制御系]
図4は車両用制御装置10の制御系の一例を示す概略図である。図4に示すように、車両用制御装置10には、パワートレイン14の作動状態を制御するため、マイコン等によって構成される各種コントローラ75,80~84が設けられている。これらのコントローラとして、前述したバッテリコントローラ75の他に、エンジン12を制御するエンジンコントローラ80があり、油圧系のバルブボディ86を介して無段変速機13や前進クラッチ21等を制御するミッションコントローラ81がある。また、コントローラとして、スタータジェネレータ31を制御するISGコントローラ82があり、ブレーキ装置37を制御するブレーキコントローラ83があり、各コントローラ50~54を統合的に制御するメインコントローラ84がある。これらのコントローラ75,80~84は、CANやLIN等の車載ネットワーク85を介して互いに通信自在に接続されている。
車両11の走行状況等を把握するため、メインコントローラ84には各種センサが接続されている。メインコントローラ84に接続されるセンサとして、アクセルペダルの操作状況を検出するアクセルセンサ90、ブレーキペダル38の操作状況を検出するブレーキセンサ91、車両11の走行速度である車速を検出する車速センサ92、エンジン12の回転速度であるエンジン回転数を検出するエンジン回転センサ93、エンジン12の出力特性を変更する際に操作されるセレクトスイッチ94等がある。また、メインコントローラ84には、エンジンコントローラ80から吸入空気量が入力され、ミッションコントローラ81から無段変速機13の変速比が入力され、ブレーキコントローラ83からキャリパ41のブレーキ液圧が入力される。なお、エンジン12の吸入空気量は、吸気管32に設けられたエアフローセンサ34によって検出され、キャリパ41に供給されるブレーキ液圧は、アクチュエータ42に設けられた圧力センサ95によって検出される。
メインコントローラ84には、エンジン12、無段変速機13、前進クラッチ21およびスタータジェネレータ31等を制御する走行制御部96が設けられている。メインコントローラ84の走行制御部96は、各種センサやコントローラから送信される情報に基づいてエンジン12、無段変速機13、前進クラッチ21およびスタータジェネレータ31等の制御目標を設定し、これらの制御目標に基づく制御信号を各コントローラ50~54に対して出力する。そして、メインコントローラ84から制御信号を受信した各コントローラ50~54は、エンジン12、無段変速機13、前進クラッチ21およびスタータジェネレータ31等を制御する。また、メインコントローラ84には、後述する走行モードの切り替えを判定するため、負側の車両加速度である車両減速度を算出する減速度算出部97が設けられている。
[走行モード]
続いて、車両用制御装置10によって制御される走行モードについて説明する。図5(A)はエンジン走行モードの実行状況を示す図であり、図5(B)はセーリング走行モードの実行状況を示す図である。また、図6はエンジン12に設定される出力特性の一例を示した図である。車両用制御装置10は、走行モードとして、エンジン走行モード(第1走行モード)およびセーリング走行モード(第2走行モード)を有している。エンジン走行モードは、前進クラッチ21を締結状態に制御することにより、車輪23に対してエンジン12を接続した状態で走行させる走行モードである。また、セーリング走行モードは、前進クラッチ21を解放状態に制御することにより、車輪23からエンジン12を切り離した状態で走行させる走行モードである。なお、セーリング走行モードは、慣性走行モードやコースティングとも呼ばれている。
図5(A)に示すように、エンジン走行モードにおいては、エンジン12が運転状態に制御され、前進クラッチ21が締結状態に制御される。このように、前進クラッチ21を締結することにより、車輪23に対してエンジン12を接続することができ、エンジン動力によって車両11を走行させることができる。このエンジン走行モードにおいては、動力源としてエンジン12が使用されるが、図6に示すように、エンジン12には複数の出力特性が設定されている。前述したように、車両11には走行モードを切り替えるセレクトスイッチ94が設けられており、このセレクトスイッチ94を操作することによって、エンジン12の出力特性モードが、例えば、高出力モード、通常モードあるいは低出力モードから選択される。そして、高出力モードが選択された場合には、特性線L1に沿ってエンジントルクが制御され、通常モードが設定された場合には、特性線L2に沿ってエンジントルクが制御され、低出力モードが設定された場合には、特性線L3に沿ってエンジントルクが制御される。つまり、エンジン走行モードにおいては、アクセルペダルの踏み込み量つまりアクセル開度が同一であっても、選択された出力特性モードに応じて出力されるエンジントルクの大きさが異なっている。
続いて、図5(B)に示すように、セーリング走行モードにおいては、車両走行中に、前進クラッチ21が解放状態に制御され、エンジン12が停止状態に制御される。このセーリング走行モードにおいては、前進クラッチ21が解放されることから、車輪23からエンジン12を切り離すことができ、燃料を消費することなく車両11を弱い減速度で走行させることができる。つまり、エンジンブレーキが作動したときの減速度よりも弱い減速度で車両11を走行させる場合であっても、車輪23とエンジン12とが互いに切り離されることから、エンジンブレーキを弱めるための燃料噴射を行うことなく車両11を走行させることができる。なお、セーリング走行モードが実行される弱い減速度とは、例えば、「-0.4m/s」を上回り且つ「-0.2m/s」を下回る範囲の減速度である。また、セーリング走行モードが実行される状況とは、アクセルペダルが微小なストロークで踏み込まれる状況、つまり車速を一定に維持するアクセル開度よりも小さな開度でアクセル操作が行われる状況である。なお、車速を一定に維持するアクセル開度は、例えば、R/L開度(Road Load開度)と呼ばれている。
[走行モード切替制御]
前述したように、前進クラッチ21が解放されるセーリング走行モードは、所定範囲の弱い減速度で実行される走行モードである。つまり、運転者が所定範囲の弱い減速度で走行しようとアクセル操作を行った場合に、セーリング走行モードを実行することが求められている。しかしながら、車両減速度は様々な要因によって増減することから、アクセル開度だけでセーリング走行モードを適切に実行することは困難であった。そこで、本実施形態の車両用制御装置10は、運動方程式を用いて算出された車両減速度に基づき、セーリング走行モードを実行するか否かを判定している。以下、車両減速度に基づいて走行モードを切り替える走行モード切替制御について説明する。図7は走行モード切替制御の実行手順の一例を示したフローチャートであり、図8は車両11に作用する加速力や減速力を示す図である。
図7に示すように、ステップS10では、車両11に作用する加速力として、エンジン出力Feoが算出される。図8に示すように、エンジン出力Feoは、車両11に対して加速側に作用する力、つまり車両11に作用する加速力である。このエンジン出力Feoは、以下の式(1)に基づき、エンジン12の仮想出力トルクTeoi、エンジン12の仮想回転速度Nei、および車速Vを用いて算出される。式(1)に示される「Teoi」は、エンジン12の仮想出力トルクであり、図6に示すように、選択された出力特性モード(例えば、高出力モード,通常モード,低出力モード)と、アクセルペダルの踏み込み量であるアクセル開度と、に基づき算出されるエンジントルクである。なお、エンジン12が停止するセーリング走行モードにおいては、アクセル開度および出力特性モードから仮想出力トルクが算出されるが、エンジン12が作動するエンジン走行モードにおいては、吸入空気量や燃料噴射量等から仮想出力トルクに相当するエンジントルクを算出しても良い。
また、式(1)に示される「Nei」は、車速および総合ギア比に基づいて算出されるエンジン12の仮想回転速度である。この仮想回転速度Neiの算出に用いられる総合ギア比は、エンジン12と車輪23とを接続する動力伝達経路27の総合ギア比、つまり無段変速機13の変速比や各種ギア列のギア比から算出される動力伝達経路全体のギア比である。このように、車速および総合ギア比から算出される仮想回転速度Neiは、エンジン走行モードにおいては実際のエンジン回転数に相当し、セーリング走行モードにおいては前進クラッチ21を締結したと仮定したときのエンジン回転数に相当する。なお、エンジン12が停止するセーリング走行モードにおいては、車速および総合ギア比から仮想回転速度Neiが算出されるが、エンジン12が作動するエンジン走行モードにおいては、エンジン回転センサ93によって仮想回転速度に相当するエンジン回転数を検出しても良い。なお、式(1)に示される「V」は、車速センサ92によって検出される車速である。
Feo[N]=Teoi[Nm]×Nei[rad/s]÷V[m/s] ・・(1)
ステップS11では、車両11に作用する減速力として、エンジン抵抗Fefが算出される。図8に示すように、エンジン抵抗Fefは、車両11に対して減速側に作用する力、つまり車両11に作用する減速力である。このエンジン抵抗Fefは、以下の式(2)に基づき、エンジン12の仮想抵抗トルクTefi、エンジン12の仮想回転速度Nei、および車速Vを用いて算出される。式(2)に示される「Tefi」は、エンジン12の仮想抵抗トルクであり、エンジン12のポンプロストルクおよびメカロストルクを合算したトルクである。ポンプロストルクとは、エンジン12の吸排気に伴って生じる回転抵抗トルクであり、吸入空気量およびエンジン回転数から算出される回転抵抗トルクである。また、メカロストルクとは、エンジン内部の摩擦抵抗による回転抵抗トルクであり、エンジン回転数から算出される回転抵抗トルクである。なお、エンジン12が停止するセーリング走行モードにおいては、仮想回転速度Nei、アクセル開度および出力特性モードからポンプロストルクを算出することができ、仮想回転速度Neiからメカロストルクを算出することができる。また、式(1)で説明したように、式(2)に示される「Nei」はエンジン12の仮想回転速度であり、「V」は車速である。
Fef[N]=Tefi[Nm]×Nei[rad/s]÷V[m/s] ・・(2)
ステップS12では、以下の式(3)に基づき転がり抵抗Rrが算出され、以下の式(4)に基づき空気抵抗Arが算出される。そして、以下の式(5)に示すように、転がり抵抗Rrと空気抵抗Arとを加算して走行抵抗Frを算出する。図8に示すように、走行抵抗Frは、車両11に対して減速側に作用する力、つまり車両11に作用する減速力である。つまり、以下の式(5)に基づき、車両11に作用する減速力として、走行抵抗Frが算出される。なお、式(3)に示した「μr」は転がり抵抗係数であり、「m」は車両質量であり、「g」は重力加速度である。また、式(4)に示した「μl」は空気抵抗係数であり、「ρ」は空気密度であり、「S」は前面投影面積であり、「V」は車速である。また、前述の説明では、転がり抵抗Rrと空気抵抗Arとを加算して走行抵抗Frを算出しているが、これに限られることはなく、転がり抵抗Rr、空気抵抗Arおよび勾配抵抗を加算して走行抵抗Frを算出しても良い。
Rr[N]=μr×m[kg]×g[m/s2] ・・(3)
Ar[N]=μl×ρ[kg/m3]×S[m2]×(V[m/s])2 ・・(4)
Fr[N]=Rr[N]+Ar[N] ・・(5)
続いて、ステップS13では、以下の式(6)を用いることにより、エンジン出力Feo、エンジン抵抗Tef、走行抵抗Frおよび車両質量mに基づいて、車両減速度Daが算出される。つまり、ステップS13では、エンジン出力Feo、エンジン抵抗Tefおよび走行抵抗Frに基づき車両11を加減速させる力が算出され、この車両11を加減速させる力を車両質量mで除算することによって車両減速度Daが算出される。
Da[m/s2]=(Feo[N]-Fef[N]-Fr[N])÷m[kg] ・・(6)
このように、ステップS13において車両減速度Daが算出されると、ステップS14に進み、車両減速度Daが所定範囲に含まれるか否かが判定される。つまり、ステップS14においては、車両減速度Daが「-0.4m/s」を上回り且つ「-0.2m/s」を下回るか否かが判定される。ステップS14において、車両減速度Daが「-0.4m/s」を上回り且つ「-0.2m/s」を下回る場合には、車両減速度Daが所定範囲に収まる場合であることから、ステップS15に進み、走行モードとしてセーリング走行モードが実行される。一方、ステップS14において、車両減速度Daが「-0.4m/s」以下である場合や、車両減速度Daが「-0.2m/s」以上である場合には、車両減速度Daが所定範囲から外れる場合であることから、ステップS16に進み、走行モードとしてエンジン走行モードが実行される。
これまで説明したように、車両11に作用する加速力、車両11に作用する減速力、および車両質量に基づき、車両減速度Daを算出し、この車両減速度Daを用いてセーリング走行モードを実行するか否かを判定している。つまり、アクセル開度だけを用いてセーリング走行モードを実行するか否かを判定するのではなく、運動方程式によって得られた車両減速度Daを用いてセーリング走行モードを実行するか否かを判定するようにしたので、セーリング走行モードを適切なタイミングで実行することができる。また、エンジン12の出力特性モードが切り替えられる車両11においては、同一のアクセル開度であっても出力特性モードによってエンジントルクの大きさが異なることから、アクセル開度だけを用いてセーリング走行モードの実行タイミングを適切に判定することは困難である。しかしながら、運動方程式によって得られる車両減速度Daを用いることにより、複数の出力特性モードを備えた車両11であってもセーリング走行モードを適切なタイミングで実行することかできる。
[他の実施形態]
前述の説明では、車両11に作用する減速力として、エンジン抵抗Fefおよび走行抵抗Frを算出しているが、これに限られることはなく、車両11に作用する減速力として、エンジン抵抗Fef、走行抵抗Frおよびブレーキ抵抗Fbrkを算出しても良い。ここで、図9は走行モード切替制御の実行手順の他の例を示したフローチャートである。図9において、図7に示したステップと同じステップについては、同一の符号を付してその説明を省略する。
図9に示すように、ステップS10においてエンジン出力Feoが算出され、ステップS11においてエンジン抵抗Fefが算出され、ステップS12において走行抵抗Frが算出されると、ステップS20に進み、車両11に作用する減速力として、ブレーキ抵抗Fbrkが算出される。図8に破線の矢印で示すように、ブレーキ抵抗Fbrkは、車両11に対して減速側に作用する力、つまり車両11に作用する減速力である。このブレーキ抵抗Fbrkは、各キャリパ41に供給されるブレーキ液圧に基づいて算出される。つまり、ブレーキ液圧が高い場合には、ブレーキ抵抗Fbrkが大きく算出され、ブレーキ液圧が低い場合には、ブレーキ抵抗Fbrkが小さく算出される。
続いて、ステップS21では、以下の式(7)を用いることにより、エンジン出力Feo、エンジン抵抗Tef、走行抵抗Fr、ブレーキ抵抗Fbrkおよび車両質量mに基づいて、車両減速度Daが算出される。つまり、ステップS21では、エンジン出力Feo、エンジン抵抗Tef、ブレーキ抵抗Fbrkおよび走行抵抗Frに基づき車両11を加減速させる力が算出され、この車両11を加減速させる力を車両質量mで除算することで車両減速度Daが算出される。
Da[m/s2]=(Feo[N]-Fef[N]-Fr[N]-Fbrk[N])÷m[kg] ・・(7)
このように、ブレーキ抵抗Fbrkを加味して車両減速度Daを算出することにより、ブレーキペダル38が踏み込まれた場合には、車両減速度Daを素早く増加させること、つまり車両加速度を負側に増加させることができる。これにより、セーリング走行モードが実行された状態のもとで、ブレーキペダル38が踏み込まれた場合には、車両減速度Daを素早く増加させることができ、走行モードを素早くエンジン走行モードに切り替えることができる。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。前述の説明では、セーリング走行モードが実行される車両減速度Daの所定範囲として、「-0.4m/s」を上回り且つ「-0.2m/s」を下回る範囲を例示しているが、これに限られることはなく、他の数値範囲であっても良いことはいうまでもない。また、図6に示すように、エンジン12の出力特性として、3つの出力特性を例示しているが、これに限られることはない。また、前述の説明では、メインコントローラ84に減速度算出部97および走行制御部96を設けているが、これに限られることはなく、他のコントローラに減速度算出部97や走行制御部96を設けても良い。
10 車両用制御装置
11 車両
12 エンジン
21 前進クラッチ(クラッチ)
23 車輪
27 動力伝達経路
96 走行制御部
97 減速度算出部
Feo エンジン出力(車両に作用する加速力)
Fef エンジン抵抗(車両に作用する減速力)
Fr 走行抵抗(車両に作用する減速力)
Fbrk ブレーキ抵抗(車両に作用する減速力)
m 車両質量
Da 車両減速度

Claims (4)

  1. 車両に設けられる車両用制御装置であって、
    車輪に動力伝達経路を介して接続されるエンジンと、
    前記動力伝達経路に設けられるクラッチと、
    車両に作用する加速力、車両に作用する減速力、および車両質量に基づいて、車両減速度を算出する減速度算出部と、
    前記クラッチが締結される第1走行モードと、前記クラッチが解放される第2走行モードと、を実行する走行制御部と、
    を有し、
    前記走行制御部は、前記車両減速度が所定範囲を外れる場合に、前記第1走行モードを実行する一方、前記車両減速度が前記所定範囲に収まる場合に、前記第2走行モードを実行する、
    車両用制御装置。
  2. 請求項1に記載の車両用制御装置において、
    前記減速度算出部は、
    前記車両に作用する加速力として、エンジン出力を算出し、
    前記車両に作用する減速力として、エンジン抵抗および走行抵抗を算出する、
    車両用制御装置。
  3. 請求項1に記載の車両用制御装置において、
    前記減速度算出部は、
    前記車両に作用する加速力として、エンジン出力を算出し、
    前記車両に作用する減速力として、エンジン抵抗、走行抵抗およびブレーキ抵抗を算出する、
    車両用制御装置。
  4. 請求項2または3に記載の車両用制御装置において、
    前記エンジンは、複数の出力特性を備える、
    車両用制御装置。
JP2020160513A 2020-09-25 2020-09-25 車両用制御装置 Pending JP2022053721A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020160513A JP2022053721A (ja) 2020-09-25 2020-09-25 車両用制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020160513A JP2022053721A (ja) 2020-09-25 2020-09-25 車両用制御装置

Publications (1)

Publication Number Publication Date
JP2022053721A true JP2022053721A (ja) 2022-04-06

Family

ID=80993949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020160513A Pending JP2022053721A (ja) 2020-09-25 2020-09-25 車両用制御装置

Country Status (1)

Country Link
JP (1) JP2022053721A (ja)

Similar Documents

Publication Publication Date Title
JP4655723B2 (ja) 車両およびその制御方法
JP5521340B2 (ja) ハイブリッド車両の制御装置
WO2012053360A1 (ja) ハイブリッド車両の急減速制御装置
JP4260385B2 (ja) ハイブリッド車両の制御装置
JP5292342B2 (ja) ハイブリッド駆動装置
JP6852802B2 (ja) ハイブリッド車両の制御方法および制御装置
JP5417225B2 (ja) ハイブリッド駆動装置
JP6637481B2 (ja) 車両用制御装置
US11207968B2 (en) Hybrid vehicle cruise control device
JP6988913B2 (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
WO2013190651A1 (ja) 車両の制御装置
JP3566142B2 (ja) ハイブリッド車両の制御装置
CN110871786A (zh) 混合动力车辆
JP6709187B2 (ja) 車両用制御装置
JP6056627B2 (ja) ハイブリッド車両の走行制御装置
JP2017210098A (ja) ハイブリッド車両のアイドル制御方法とアイドル制御装置
JP2022053721A (ja) 車両用制御装置
JP3909695B2 (ja) 車輌の制御装置
JP3649201B2 (ja) ハイブリッド車両の制御装置
JP6801220B2 (ja) ハイブリッド車両
JP6732852B2 (ja) 車両用制御装置
CN114954430A (zh) 车辆控制装置
JP4180559B2 (ja) 車両のエンジン自動停止装置
JP6736963B2 (ja) ハイブリッド車両
JP6720685B2 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430