JP2022052975A - 分析方法、設計方法、製造方法、及びプログラム - Google Patents

分析方法、設計方法、製造方法、及びプログラム Download PDF

Info

Publication number
JP2022052975A
JP2022052975A JP2020159531A JP2020159531A JP2022052975A JP 2022052975 A JP2022052975 A JP 2022052975A JP 2020159531 A JP2020159531 A JP 2020159531A JP 2020159531 A JP2020159531 A JP 2020159531A JP 2022052975 A JP2022052975 A JP 2022052975A
Authority
JP
Japan
Prior art keywords
steel beam
steel
steel frame
analysis method
lateral buckling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020159531A
Other languages
English (en)
Other versions
JP7436849B2 (ja
Inventor
聡 北岡
Satoshi Kitaoka
公司 半谷
Koji Hanya
政樹 有田
Masaki Arita
哲 廣嶋
Satoru Hiroshima
涼平 桑田
Ryohei Kuwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020159531A priority Critical patent/JP7436849B2/ja
Publication of JP2022052975A publication Critical patent/JP2022052975A/ja
Application granted granted Critical
Publication of JP7436849B2 publication Critical patent/JP7436849B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】両端部が支持部材に剛接合又は半剛接合され反り拘束されていない状態で鉛直等分布荷重が作用する梁を、大梁及び小梁に関係なく高い精度で分析できる分析方法を提供する。【解決手段】両端部10aが支持部材20に支持された鉄骨梁10に床スラブ40から鉛直等分布荷重が作用する場合の鉄骨梁の横座屈耐力を評価するための分析方法であって、上フランジ11と下フランジ12とがウェブ13で連結された形鋼が用いられる鉄骨梁を対象とし、鉄骨梁の材軸方向Zの両端部のうち、少なくとも一方の端部が支持部材に剛接合又は半剛接合されるとともに、鉄骨梁の材軸方向の中間部10bにおいて、上フランジの幅方向Xの横移動が拘束されて、且つ上フランジに上方から等分布荷重である中間荷重が作用し、且つ鉄骨梁の材軸方向の両端部に端荷重が作用する条件下で、鉄骨梁の横座屈耐力を、数式から算出する。【選択図】図4

Description

本発明は、分析方法、設計方法、製造方法、及びプログラムに関する。
従来、建築物において、両端部が柱に固定された大梁(支持部材)の横座屈耐力を算出することが行われている(例えば、特許文献1参照)。
国際公開第2018/151298号
しかしながら、特許文献1の分析方法では、以下のように構成された梁(鉄骨梁)の横座屈耐力を、精度良く分析することができなかった。前記梁とは、両端部が支持部材に剛接合又は半剛接合された梁のうち、支持部材である大梁の中間部に接合された梁や、支持部材の柱に対して上下フランジの少なくとも一方を接合しない梁のように、両端部が反り拘束されていない状態で鉛直等分布荷重が作用する梁である。
本発明は、このような問題点に鑑みてなされたものであって、両端部が支持部材に剛接合又は半剛接合された梁のうち、支持部材である大梁の中間部に接合された梁や、支持部材の柱に対して上下フランジの少なくとも一方を接合しない梁のように、両端部が反り拘束されていない状態で鉛直等分布荷重が作用する梁を、大梁及び小梁に関係なく高い精度で分析できる分析方法、この分析方法に基づいた設計方法及び製造方法、分析方法を実行させるためのプログラムを提供することを目的とする。
前記課題を解決するために、この発明は以下の手段を提案している。
(1)本発明の第1態様に係る分析方法は、両端部が支持部材に支持された鉄骨梁に床スラブから鉛直等分布荷重が作用する場合の前記鉄骨梁の横座屈耐力を評価するための分析方法であって、上フランジと下フランジとがウェブで連結された形鋼が用いられる前記鉄骨梁を対象とし、前記鉄骨梁の材軸方向の両端部のうち、少なくとも一方の前記端部が前記支持部材に剛接合又は半剛接合されるとともに、前記鉄骨梁の材軸方向の中間部において、前記上フランジの幅方向の横移動が拘束されて、且つ前記上フランジに上方から等分布荷重である中間荷重が作用し、且つ前記鉄骨梁の材軸方向の両端部に端荷重が作用する条件下で、前記鉄骨梁の横座屈耐力Mcrを、(1)式から(5)式から算出することを特徴としている。
Figure 2022052975000002
ここで、β,γは、前記鉄骨梁の曲げモーメント分布によって(6)式及び(7)式から決まる係数である。M,Mは、前記鉄骨梁の両端部それぞれに作用する曲げモーメントで、(8)式を満たす。前記曲げモーメントM,Mは、前記鉄骨梁の前記下フランジが圧縮となる場合を正とする。
また、Lは前記鉄骨梁の材軸方向の長さ、Eはヤング係数、Iは前記下フランジの弱軸まわりの断面二次モーメント、Gはせん断弾性係数、Jはサン・ブナンのねじり定数、dは前記上フランジと前記下フランジとの板厚中心間距離、zは前記鉄骨梁の材軸方向の基準となる一端部から前記鉄骨梁の材軸方向の任意の点までの長さである。wは前記等分布荷重の大きさである。φは、横座屈によって前記鉄骨梁に生じるねじり角である。φ’はφの一階微分、φ’’はφの二階微分を表す。tは積分のための助変数である。前記ねじり角φは、aを第n項目の未定係数としたときに、非対称座屈の場合には(9)式により算出され、対称座屈の場合には(10)式により算出される。
Figure 2022052975000003
(2)前記(1)に記載の分析方法では、前記係数β,γを、(11)式及び(12)式による範囲の実数として決定してもよい。
Figure 2022052975000004
(3)前記(1)又は(2)に記載の分析方法では、前記鉄骨梁は鉄骨小梁であり、前記支持部材は大梁であってもよい。
(4)本発明の第2態様に係る設計方法は、(1)から(3)のいずれかに記載の分析方法に基づき、前記横座屈耐力Mcrを算出する工程と、前記横座屈耐力Mcrに基づき、前記鉄骨梁の断面寸法を決定する工程と、を含むことを特徴としている。
(5)本発明の第3態様に係る製造方法は、(1)から(3)のいずれかに記載の分析方法に基づき、前記横座屈耐力Mcrを算出する工程と、前記横座屈耐力Mcrに基づき、前記鉄骨梁の断面寸法を決定する工程と、を含むことを特徴としている。
(6)本発明の第4態様に係るプログラムは、コンピュータ装置に(1)から(3)のいずれかに記載の分析方法を実行させることを特徴としている。
(7)本発明の第5態様に係るプログラムは、コンピュータ装置に(4)に記載の設計方法を実行させることを特徴としている。
本発明の分析方法、設計方法、製造方法、及びプログラムによれば、両端部が支持部材に剛接合又は半剛接合された状態で鉛直等分布荷重が作用する梁を、大梁及び小梁に関係なく分析することができる。
本実施形態に係る分析方法の対象となる鉄骨小梁が用いられる建築物を模式的に示す斜視図である。 同鉄骨小梁に荷重が作用していないときの正面図である。 同鉄骨小梁に荷重が作用していないときの側面図である。 同建築物の要部における断面図である。 同建築物の他の例における平面図である。 (a)は同鉄骨小梁の仮想変位の一例を表す側面図であり、(b)は(a)の底面図であり、(c)は(a)の切断線A1-A1の断面図である。 同鉄骨小梁において第1上フランジの横移動が拘束された場合の、FEMによる線形座屈解析結果例を示す斜視図である。 同鉄骨小梁において第1上フランジの横移動が拘束されない場合の、FEMによる線形座屈解析結果例を示す斜視図である。 同鉄骨小梁の曲げモーメント分布の一例を示す概略側面図である。 同鉄骨小梁の曲げモーメント分布の他の例を示す概略側面図である。 同鉄骨小梁の曲げモーメント分布の他の例を示す概略側面図である。 本実施形態に係る分析方法の対象となる鉄骨小梁が用いられる建築物の変形例における、要部の断面図である。 本実施形態に係る分析方法の対象となる鉄骨小梁が用いられる建築物の他の変形例における、要部の断面図である。 本実施形態に係る分析方法の対象となる鉄骨小梁が用いられる建築物の他の変形例における、要部の断面図である。 本実施形態に係る分析方法の対象となる鉄骨小梁が用いられる建築物の他の変形例における、要部の断面図である。 実施例の分析方法を、FEMによる解析結果と比較した結果を示す図である。 比較例の分析方法を、FEMによる解析結果と比較した結果を示す図である。
以下、本発明を適用した分析方法を実施するための形態について、図面を参照しながら詳細に説明する。本実施形態に係る分析方法は、図1に例示するような、建築物1の床構造、土間構造又は骨組構造等の構造材となる鉄骨小梁(鉄骨梁)10を対象とする。ここで言う鉄骨小梁10とは、鉄骨造の小梁のことを意味する。大梁とは、両端部がそれぞれ柱に接合された梁のことを意味する。一方で、小梁とは、両端部がそれぞれ大梁に接合された梁のことを意味する。
本実施形態に係る分析方法は、鉄骨小梁10の横座屈耐力を算出して評価するために用いられる方法である。鉄骨小梁10には、主にH形鋼が用いられる。鉄骨小梁10には、第1上フランジ(上フランジ)11と第1下フランジ(下フランジ)12とが第1ウェブ(ウェブ)13で連結された形鋼が用いられている。
図2に示すように、鉄骨小梁10では、幅方向Xに延びる第1上フランジ11と第1下フランジ12とが上下一対に設けられている。鉄骨小梁10では、上下一対の第1上フランジ11と第1下フランジ12とが第1ウェブ13で連結されている。鉄骨小梁10は、例えば、第1上フランジ11及び第1下フランジ12の幅方向Xの略中央に第1ウェブ13の上下端部が接続されることで、断面略H形状に形成されている。
図3に示すように、鉄骨小梁10全体が、鉄骨小梁10の材軸方向Zに延びている。鉄骨小梁10の材軸方向Zの長さは、Lである。そして、第1上フランジ11の板厚の中心と第1下フランジ12の板厚の中心との高さ方向Yの距離が、第1上フランジ11と第1下フランジ12との板厚中心間距離dである。
なお、板厚中心間距離dは、第1上フランジ11の上面から第1下フランジ12の上面までの高さ方向Yの距離、又は第1上フランジ11の下面から第1下フランジ12の下面までの高さ方向Yの距離と、略同一のものとして取り扱うこともできる。さらに、板厚中心間距離dは、第1上フランジ11の下面から第1下フランジ12の上面までの高さ方向Yの距離、又は鉄骨小梁10のせいと、略同一のものとして取り扱うこともできる。
図2及び図3に示すように、鉄骨小梁10では、第1上フランジ11及び第1下フランジ12が幅方向Xに延びて形成されて、第1ウェブ13が高さ方向Yに延びて形成される。これにより、幅方向Xが強軸(したがって、幅方向Xを軸とした回転方向が強軸まわり)となる。そして、鉄骨小梁10では、高さ方向Yが弱軸(したがって、高さ方向Yを軸とした回転方向が弱軸まわり)となる。
鉄骨小梁10では、材軸方向Z及び高さ方向Yの構面に対して第1下フランジ12が幅方向Xにはらみだすことで、横座屈が発生する。
図4に示すように、鉄骨小梁10では、材軸方向Zの両端部10aが大梁(支持部材)20に支持されている。より詳しく説明すると、鉄骨小梁10では、両端部10aが大梁20にそれぞれ剛接合されている。鉄骨小梁10の両端部10aは、溶接接合又は高力ボルト接合されることで、大梁20に剛接合されている。
例えば、大梁20には、鉄骨小梁10よりもせいが高いH形鋼が用いられている。大梁20では、第2上フランジ21と第2下フランジ22とが第2ウェブ23で連結されている。
第2上フランジ21は、高さ方向Yにおいて鉄骨小梁10の第1上フランジ11と同等の位置に配置されている。第2下フランジ22は、鉄骨小梁10の第1下フランジ12よりも下方に配置されている。第2上フランジ21及び第2ウェブ23にガセットプレート25が溶接等により接合されている。ガセットプレート25の下端は、高さ方向Yにおいて鉄骨小梁10の第1下フランジ12と同等の位置に配置されている。すなわち、ガセットプレート25と第2下フランジ22との間には、隙間が形成されている。
第2ウェブ23におけるガセットプレート25の下端に相当する位置には、水平リブ26が溶接等により固定されている。
大梁20の第2上フランジ21と鉄骨小梁10上フランジ11とは、溶接により形成された溶接部27により互いに接合されている。ガセットプレート25と鉄骨小梁10の第1ウェブ13とは、高力ボルト等の締結部材28により互いに接合されている。水平リブ26と鉄骨小梁10の第1下フランジ12とは、溶接により形成された溶接部29により互いに接合されている。
図1に示すように、大梁20は、柱35に支持されている。
鉄骨小梁10の両端部10aは、鉄骨小梁10の横座屈変形に対して第1下フランジ12の反り拘束はないものとする。すなわち、鉄骨小梁10の第1下フランジ12の端面に反りが生じようとした場合、これにともなって大梁20がねじれてしまうことから、鉄骨小梁10の第1下フランジ12の端面の反りは拘束されない状態となる。
鉄骨小梁10では、両端部10aが大梁20に半剛接合で固定されてもよい。なお、半剛接合とは、大梁20に対する鉄骨小梁10の回転移動をある程度拘束した接合形式を言う。半剛接合では、大梁20と鉄骨小梁10との間で伝達できる曲げ応力が、完全な剛接合と比較して小さい。
そして、半剛接合の定義は、欧州設計基準(Eurocode3 Part1-8)に準拠するものとする。ただし、鉄骨小梁10の両端部10aでのねじれが固定された状態である必要がある。
なお、鉄骨小梁10の両端部10aのうち、少なくとも一方の端部10aが大梁20に剛接合又は半剛接合されていればよい。この場合、両端部10aのうち、残りの端部10aは、大梁20にピン接合されていてもよい。
図4に示すように、鉄骨小梁10には、材軸方向Zの中間部10bにおいて、上フランジ11の上方に床スラブ40が設けられている。ここで言う中間部10bとは、鉄骨小梁10の両端部10aにおける端面を除く、鉄骨小梁10の部分のことを意味する。
床スラブ40には、コンクリート41、配筋(鉄筋)42、及び鋼製等のデッキプレート43を主構造としたデッキ合成スラブが用いられている。なお、床スラブには、コンクリートを主構造としたコンクリートスラブが用いられてもよい。
鉄骨小梁10には、床スラブ40から鉛直等分布荷重が作用している。
以下では、床スラブ40を例示している。しかし、第1上フランジ11の上方に屋根を構成する部材の一部が設けられ、屋根の自重及び積載荷重等による中間荷重が作用し、かつ、第1上フランジ11の幅方向Xの横移動が拘束されてもよい。
また、鉄骨小梁10には、材軸方向Zの中間部10bにおいて、複数の頭付きスタッド等のシヤコネクタ15が設けられている。複数のシヤコネクタ15は、第1上フランジ11の上面に互いに間隔を空けて設けられている。なお、鉄骨小梁10に設けられるシヤコネクタ15の数は特に限定されず、1つでもよい。
シヤコネクタ15は、鉄骨小梁10の第1上フランジ11の上面から上方に突出させて設けられている。シヤコネクタ15は、鉄骨小梁10の第1上フランジ11の上方で床スラブ40のコンクリート41等に埋設等されている。シヤコネクタ15が床スラブ40に埋設等されることで、鉄骨小梁10は、材軸方向Zの中間部10bにおいて、第1上フランジ11の幅方向Xの横移動が拘束されている。
鉄骨小梁10では、床スラブ40によって第1上フランジ11の横移動が拘束されている。なお、鉄骨小梁10の中間部10bの第1上フランジ11以外の箇所は、全く拘束されていなくてもよいし、拘束されていてもよい。
なお、広く一般に用いられている頭付きスタッドの他に、打ち込み鋲や、床スラブ40としてデッキ合成スラブを用いる場合の焼抜き栓溶接等をシヤコネクタとして用いることができる。これらのシヤコネクタを用いることで、鉄骨小梁10の第1上フランジ11の幅方向Xの横移動が拘束される程度に、鉄骨小梁10の第1上フランジ11が床スラブ40に固着される。
また、図5に示すように、鉄骨小梁10の材軸方向Zの長さLの1/3程度の長さlで床スラブ40に開口40aが形成されている場合でも、本実施形態に係る分析方法を適用することができる。なお、図5では、床スラブ40を透過させてハッチングのみで示している。
この区間辺りで鉄骨小梁10の第1上フランジ11が横移動しないように、開口40aの両側で鉄骨小梁10の第1上フランジ11が開口補強材45や直交鉄骨小梁(不図示)によって適切に拘束する。このように構成することで、本実施形態に係る分析方法を好ましく用いることができる。
ここで、図6に鉄骨小梁10の仮想変位の一例を表す。図6において、実線は、鉄骨小梁10のフリーボディ(荷重が作用していないときの形状)を表す。破線は、横座屈によって鉄骨小梁10のフリーボディに生じる仮想変位の一例を表す。図6(a)及び図6(b)におけるO-O’は、第1上フランジ11の中心線を示す。
鉄骨小梁10の中間部10bにおいて、第1上フランジ11に上方から中間荷重が作用する。中間荷重は、床スラブ40の自重、及び床スラブ40に積載された積載荷重等によるものである。この例では、中間荷重は、大きさがwの等分布荷重wとして与えられる。
さらに、鉄骨小梁10の両端部10aには、端荷重が作用している。
また、本実施形態に係る分析方法で対象となる鉄骨小梁10は、孫梁や横補剛材等の補強部材による補強がなされていないものが対象となる。しかし、本実施形態に係る分析方法は、補強部材による補強がなされている鉄骨小梁の座屈耐力を安全側に評価するものであるため、これを対象とすることもできる。なお、鉄筋は補強部材には含まれない。
図7に示すように、本実施形態に係る分析方法では、床スラブ40により第1上フランジ11の幅方向Xの横移動が拘束されている。なお、図7中には、鉄骨小梁10がねじれる前後の様子も示している。ねじれる前の鉄骨小梁10を実線で示し、ねじれた後の鉄骨小梁10を二点鎖線で示している。後述する図8中においても同様である。
このため、鉄骨小梁10は略中心線O-O’まわりに回転し、鉄骨小梁10が早期に座屈耐力に達しない。本実施形態に係る分析方法は、このような横移動の拘束を利用した鉄骨小梁10の横座屈抑制効果を評価するための方法である。図7に示すφは、鉄骨小梁10の材軸方向Zに直交する断面において、横座屈によって鉄骨小梁10に生じるねじり角である。
これに対して、図8に示すように鉄骨小梁10の幅方向Xの横移動が拘束されない場合は、鉄骨小梁10が横座屈を起こして早期に耐力劣化する。
本実施形態に係る分析方法は、鉄骨小梁10を対象として、前記接合条件及び荷重条件下で、鉄骨小梁10の横座屈耐力Mcrを評価し、鉄骨小梁10の横座屈耐力Mcrを算出する分析方法である。
図6に示すように、以下では、鉄骨小梁10の左側の端部10a(以下、端部10a1とも言う)で固定された局所座標系X-Y-Zを用いて説明する。鉄骨小梁10の回転は、右ねじの進む方向を正とする。
<幾何学的境界条件>
鉄骨小梁10の第1上フランジ11は、その中心線O-O’上でX方向の変位(横移動)が拘束されているものとする。鉄骨小梁10の端部10aの幾何学的境界条件は、横座屈変形を近似する級数の端末条件によって規定される。
なお、鉄骨小梁10は、横座屈によって中心線O-O’を既定の回転軸とする曲げねじりが生じるとともに、二次の微小変形としてたわみが生じる。この解析では、第1上フランジ11、第1下フランジ12、及び第1ウェブ13を平板として扱う。そして、横座屈に対する鉄骨小梁10の強さは、第1上フランジ11及び第1下フランジ12の面内の曲げ剛性と、第1上フランジ11、第1下フランジ12、及び第1ウェブ13のねじり剛性に支配されるものとする。
<力学的境界条件>
鉄骨小梁10の中間部10bで中心線O-O’上に中間荷重として上方から等分布荷重wが作用するものとする。また、鉄骨小梁10の右側の端部10a(以下、端部10a2とも言う)に、曲げモーメントM及びせん断力Vが作用するとする。そして、端部10a1に、曲げモーメントM及びせん断力Vが作用するとする。ただし、曲げモーメントM,Mは、鉄骨小梁10の第1下フランジ12が圧縮となる場合を正とする。すなわち、鉄骨小梁10が上に凸の曲げ(負曲げ)となる場合に、曲げモーメントM,Mが正になる。
曲げモーメントM,Mは、(21)式を満たす。
Figure 2022052975000005
このとき、曲げモーメントM、せん断力V、及び等分布荷重wの関係は、力のつり合いと鉄骨小梁10の曲げ剛性及び両端部10aの固定条件より、(24)式から(27)式のように求めることができる。
Figure 2022052975000006
ここに、Lは鉄骨小梁10の材軸方向Zの長さであり、zは鉄骨小梁10の材軸方向Zの基準となる一端部(図6に示す鉄骨小梁10の場合、端部10a1)から鉄骨小梁10の材軸方向Zの任意の点までの長さである。β,γは鉄骨小梁10の曲げモーメント分布を表す係数である。係数γを用いることで、鉄骨小梁10の曲げモーメント分布を考慮した横座屈耐力Mcrを求めることができる。係数β,γは、(26)式及び(27)式による範囲の実数として決定される。
なお、鉄骨小梁10の両端部10aに作用する端荷重は、曲げモーメントM,M、せん断力V,Vを含む。
係数β,γは、(30)式及び(31)式から決まる。
Figure 2022052975000007
なお、鉄骨小梁10の曲げモーメント分布と係数γとの関係を、図9から図11において例示する。図9では、係数βが1.0の場合の曲げモーメント分布を示す。同様に、図10では係数βが0.5の場合の曲げモーメント分布を示し、図11は係数βが0の場合の曲げモーメント分布を示す。
図9から図11のいずれにおいても、以下のように示している。すなわち、横軸に鉄骨小梁10における位置を示し、縦軸に曲げモーメントを示す。図の左端に曲げモーメントMを示し、図の右端に曲げモーメントMを示す。実線は、係数γが2の場合の曲げモーメント分布である。同様に、点線は係数γが6の場合の曲げモーメント分布であり、一点鎖線は係数γが10の場合の曲げモーメント分布である。二点鎖線は係数γが12の場合の曲げモーメント分布であり、太線の実線は係数γが24の場合の曲げモーメント分布である。
実物の鉄骨小梁10に生じる範囲の曲げモーメント分布は、図9から図11に示すように、0≦β≦1の場合、鉄骨小梁10の左右の部材端の少なくとも一方で負曲げ(鉄骨小梁10の下フランジ11が圧縮となる方向の曲げ)となり、鉄骨小梁10の左右の部材端はいずれも正曲げ(鉄骨小梁10の下フランジ11が引張となる方向の曲げ)とはならない。
なお、鉄骨小梁10の中間部10bに等分布荷重wが作用する場合、梁端の固定度に応じて係数βの値を調整し、中間荷重の大きさに応じて係数γの値を調整することで、任意の曲げモーメント分布を表現することができる。鉄骨小梁10のように、左右の部材端の曲げモーメントが、少なくとも一方で負曲げとなり、いずれも正曲げとはならない梁に等分布荷重が作用する場合は、γ>0となる。さらに、合成梁や左右の部材端が支持部材に半剛接合された梁の場合は、γ>6-2βとなる場合が多い。
本実施形態に係る分析方法では、このようにして決定した係数β及びγを用いることで、すなわち、実物の鉄骨小梁10に生じる曲げモーメント分布に対応するように係数β及びγを決定することで、実物の鉄骨小梁10に生じる曲げモーメント分布に対応する横座屈耐力の解析解を求めている。
<横座屈変形の近似>
本実施形態に係る分析方法では、前記接合条件及び荷重条件における鉄骨小梁10の横座屈変形として、(34)式又は(35)式で与えられる級数で、鉄骨小梁10のねじり角φを近似して算出することができる。
Figure 2022052975000008
ここで、aは第n項目の未定係数(係数)である。係数aは、ねじり角φを(34)式又は(35)式により表す際に、これらの級数において級数を構成する各項の重みを表す。Nは、自然数である。
(34)式は、鉄骨小梁10が非対称座屈する場合に用いられる式である。(35)式は、鉄骨小梁10が対称座屈する場合に用いられる式である。具体的には、β>0のときに(34)式、β=0のときに(35)式を用いることで、任意のモーメント分布に対する鉄骨小梁10のねじり角φを近似して算出することができる。
本実施形態に係る分析方法では、両端部10aを横座屈に対して固定端、反りに対して自由端とした鉄骨小梁10を対象としており、級数の各項はそれぞれにこの材端条件を満足している。これによって、横座屈に対する材端の境界条件を、係数aの値によらず表すことが可能となる。
<横座屈耐力の導出>
最小ポテンシャルエネルギーの原理より、横座屈耐力の基本式として、鉄骨小梁10の横座屈耐力Mcrを算出するための(38)式を得ることができる。
Figure 2022052975000009
ここに、係数A,B,C,及びDは、(41)式から(44)式に示すねじり角φの汎関数である。
Figure 2022052975000010
ここで、Eは、鉄骨小梁10のヤング係数である。Iは、第1下フランジ12の弱軸まわりの断面二次モーメント、Gは、鉄骨小梁10のせん断弾性係数、Jは、鉄骨小梁10のサン・ブナンのねじり定数である。φ’はねじり角φの(zによる)一階微分であり、φ’’はねじり角φの(zによる)二階微分を表す。tは、積分のための助変数である。
<最小条件>
停留原理に基づき前記(38)式を最小にする未定係数列(a)を求めることで、横座屈の一次モードに対応する最小の解析解、すなわち横座屈耐力Mcrの解析解を求める。
(38)式を最小にするための必要条件は、(47)式である。(47)式における偏微分を行うことで、横座屈耐力Mcrの解析解として、(48)式を得る。
Figure 2022052975000011
前記(48)式中のfnmは、(49)式により得られる。(48)式以降の式中のn及びmは、計算のためのテンソル表記番号を表す。
Figure 2022052975000012
ここで、前記(49)式中のLnm,Mnm,Nnm,Onmは、(52)式から(55)式により得られる。Lnm,Mnm,Nnm,Onmは、(52)式から(55)式にねじり角φを代入して積分することによって得られる。
Figure 2022052975000013
ここで、φは、ねじり角φを近似する級数の第n番目の基底関数を表す。例えば前記(35)式に対する第n番目の基底関数φは、(58)式となる。
Figure 2022052975000014
ここに、φ’及びφ’’は、それぞれ、φの(zによる)一階微分及び二階微分を表す。n,mはそれぞれ、前記(34)式又は(35)式による級数のn番目、m番目の項に対応する。
さらに、M、Mは(59)式及び(60)式で定義される、鉄骨小梁10の断面寸法と長さによって決まる値である。
Figure 2022052975000015
<解析解>
前記(48)式は、N次の連立方程式を表す。(48)式が未定係数a,a,…,aの少なくとも1つに対して0以外の値を与えるとき、鉄骨小梁10が横座屈変形する可能性が生じる。すなわち、(38)式が、鉄骨小梁10が横座屈するときの荷重(=横座屈耐力)であるためには、前記(48)式が未定係数a,a,…,aの少なくとも1つに対して0以外の値を与える必要がある。このためには、(48)式の係数行列の行列式は0でなければならない。
すなわち、(61)式のn次方程式を解くことで、横座屈耐力Mcrの解析解を得ることができる。
Figure 2022052975000016
また、前記(34)式又は(35)式の級数の第3項部分和によってねじり角φを近似する場合の横座屈耐力Mcrの解析解は、(64)式から(71)式で与えられる。
Figure 2022052975000017
Figure 2022052975000018
Figure 2022052975000019
設計時の荷重条件である係数γを、(70)式へ代入する。さらに、鉄骨小梁10の諸条件であるヤング係数E、断面二次モーメントI、鉄骨小梁10の長さL、上下フランジ11,12の板厚中心間距離d、せん断弾性係数G、及びサン・ブナンのねじり定数Jを(71)式へ代入する。すると、横座屈耐力Mcrの解析解を算出することができる。
このとき、前記(64)式の実数解の中の最小の正値が、鉄骨小梁10の1次の横座屈耐力Mcrとなる。
なお、本実施形態の設計方法(鉄骨小梁10の設計方法)は、前記分析方法に基づき、横座屈耐力Mcrを算出する工程と、さらにこの分析方法に基づいて得られた横座屈耐力Mcrに基づき、鉄骨小梁10の断面寸法を決定する工程と、を含む。具体的には、決定する工程では、横座屈耐力Mcrが、想定される荷重等により鉄骨小梁10に生じる曲げモーメントの値以上になるように鉄骨小梁10の断面寸法を決定する。この際に、安全率を考慮して鉄骨小梁10の断面寸法を決定してもよい。
また、本実施形態の製造方法(鉄骨小梁10の製造方法)は、前記分析方法に基づき、横座屈耐力Mcrを算出する工程と、横座屈耐力Mcrに基づき、鉄骨小梁10の断面寸法を決定する工程と、決定された鉄骨小梁10の断面寸法に基づき、鉄骨小梁10を製造する工程と、を含む。この製造方法における鉄骨小梁10の断面寸法も、前記のように決定されてもよい。
また、本実施形態のプログラムは、コンピュータ装置(不図示)に前記分析方法を実行させるためのプログラムである。また、本実施形態のプログラムは、コンピュータ装置に前記設計方法を実行させるためのプログラムである。
例えば、コンピュータ装置は、図示はしないが、CPU(Central Processing Unit)と、記憶部と、入出力部と、記録・再生部と、を備えている。記憶部は、ハードディスクドライブ装置等である。記憶部には、プログラムが記憶されている。このプログラムは、記録・再生部が再生可能な記録媒体に格納されてもよい。そして、記録・再生部が記録媒体を再生したときに、記録媒体に格納されたプログラムが記憶部に記憶されてもよい。
これらのプログラムは、コンピュータ装置を、鉄骨小梁10の横座屈耐力Mcrを算出する算出部等として機能させる。
なお、本実施形態では、鉄骨梁が鉄骨小梁10であり、支持部材が大梁20であるとした。しかし、鉄骨梁が鉄骨大梁であり、支持部材が柱である場合でも、本実施形態の分析方法、設計方法、製造方法、及びプログラムと同様の効果を奏することができる。
(実施例)
以下では、本発明の実施例及び比較例を具体的に示してより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
図16に、本発明の実施例の分析方法を、FEM(Finite Element Method:有限要素法)による解析結果と比較した結果を示す。図16において、横軸は、無次元化横座屈細長比(√(M/Mcr))を表す。ここに、Mは鉄骨梁の全塑性耐力であり、Mcrは(24)式による横座屈耐力である。縦軸は、FEMの固有値解析による弾性横座屈耐力MFEM又は横座屈耐力Mcrを、全塑性耐力Mで除して基準化した値を表す。図16中において、縦軸が(MFEM/M)の場合を○印のプロットで表し、縦軸が(Mcr/M)の場合を太線の実線で表す。従って、○印のプロットが実線に重なるほど、実施例の分析方法を用いて横座屈耐力Mcrを高い精度で分析できることを意味する。
なお、分析方法の検討対象とした鉄骨梁は、3種類の梁サイズについて、鉄骨梁の長さLを梁せいHで除した値(L/H)を6~100まで変化させた合計500ケース以上の多数とした。3種類の梁サイズは、H400x400x13x21,H588x300x12x20、及びH600x200x11x17とした。鉄骨梁の上フランジは幅方向への横移動を拘束し、両端部は反り拘束なしとした。
図17に、比較例の分析方法を、FEMによる解析結果と比較した結果を示す。比較例の分析方法には、非特許文献(”Specification for Structural Steel Buildings”, AISC(American Institute of Steel Construction) Committee on Specifications, 2010)に開示された分析方法を用いた。
図17における横軸、縦軸、○印のプロット、及び太線の実線が表す内容は、図16と同様である。
図16及び図17を比較することで、実施例の分析方法は、比較例の分析方法に比べて、高い精度で横座屈耐力Mcrを分析できることが分かった。
以上説明したように、本実施形態の分析方法では、前記接合条件及び荷重条件において、横移動が拘束された鉄骨小梁の横座屈変形が複雑となるにもかかわらず、鉄骨梁の横座屈耐力Mcrを(21)式、及び(26)式から(44)式を用いて算出することで、両端部が支持部材に剛接合又は半剛接合された状態で反り拘束されていなく、鉛直等分布荷重が作用する梁を、大梁及び小梁に関係なく高い精度で分析することができる。
具体的には、横座屈変形によって生じる鉄骨梁のねじり角(ねじり角分布)φを表す関数について、特許文献1の(10a)式及び(10b)式では、両端(z=0及びz=L)におけるねじり角φの変化率φ’がゼロではない場合、すなわち反り拘束されていない場合のねじり角を評価することができなかった。これに対し本発明の変位関数(34)式又は(35)式を用いれば、両端が反り拘束されていない鉄骨梁についてねじり角φを適切に表現することができ、ねじれ変形によって生じるポテンシャルエネルギーを精緻に評価することができる。
なお、本発明が対象とする鉄骨梁においては、係数β,γを、(26)式及び(27)式による範囲の実数として決定する。特に両端部10aが大梁20に剛接合又は半剛接合された鉄骨小梁10に床スラブ40から鉛直等分布荷重が作用する場合の係数γは、6以上である。仮に、鉄骨小梁10の両端部10aが大梁20にピン接合されている場合は、係数γは無限大に近づく。従って、本実施形態の係数γを、有限な正の値に安定させることができる。
また、本実施形態の設計方法では、両端部が支持部材に剛接合又は半剛接合された状態で鉛直等分布荷重が作用する梁を、大梁及び小梁に関係なく高い精度で分析することができる設計方法を用いることができる。その際に、設計方法で算出された横座屈耐力Mcrに基づいて、鉄骨梁の断面寸法を決定することができる。
また、本実施形態の製造方法では、両端部が支持部材に剛接合又は半剛接合された状態で鉛直等分布荷重が作用する梁を、大梁及び小梁に関係なく高い精度で分析することができる設計方法を用いることができる。その際に、設計方法で算出された横座屈耐力Mcrに基づいて決定された断面寸法の鉄骨梁を、製造することができる。
また、本実施形態のプログラムでは、コンピュータ装置に、梁を高い精度で分析することができる分析方法を実行させることができる。
また、本実施形態のプログラムでは、コンピュータ装置に、梁を高い精度で分析することができる設計方法を実行させることができる。その際に、このプログラムでは、設計方法で算出された横座屈耐力Mcrに基づいて、鉄骨梁の断面寸法を決定することができる。
なお、本実施形態では、鉄骨小梁10と大梁20との接合構造は、図4に示す建築物1の形状に限定されない。
図12に示す建築物1Aでは、建築物1に対して、大梁20の第2上フランジ21と鉄骨小梁10上フランジ11とが溶接部27により接合されず、互いに離間している。
図13に示す建築物1Bは、変形例の建築物1Aに対して、溶接部29に代えて接続部50を備えている。接続部50は、水平リブ26と鉄骨小梁10の第1下フランジ12とを、メタルタッチにより互いに接続している。
図14に示す建築物1Cでは、変形例の建築物1Aに対して、溶接部29に代えて、スプライスプレート55及び締結部材56を備えている。スプライスプレート55は、鉄骨小梁10の第1下フランジ12を高さ方向Yに挟むように一対配置されている。スプライスプレート55は、ガセットプレート25に溶接等により接合されている。
締結部材56は、高力ボルト等である。締結部材56は、第1下フランジ12を挟んだ一対のスプライスプレート55を、第1下フランジ12に接合している。
図15に示す建築物1Dでは、変形例の建築物1Aに対して、ガセットプレート25及び溶接部29に代えて、ガセットプレート60を備えている。ガセットプレート60の下端は、第2下フランジ22に溶接等により接合されている。
図12~15の例では、鉄骨小梁10の第1下フランジ12は、幅方向Xへの反り拘束をされていない、もしくは大梁のねじれ抵抗により部分的に反り拘束を受けている。本発明の分析方法に従って、これらの鉄骨小梁10の反り拘束を無視することで、鉄骨小梁10の横座屈耐力を安全側に(実際より小さめに)評価することができる。
以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
例えば、前記実施形態では、係数βは0より小さくてもよいし、1より大きくてもよい。係数γは、0以下でもよい。
10 鉄骨小梁(鉄骨梁)
10a 端部
10b 中間部
11 第1上フランジ(上フランジ)
12 第1下フランジ(下フランジ)
13 第1ウェブ(ウェブ)
20 大梁(支持部材)
40 床スラブ
X 幅方向
Z 材軸方向

Claims (7)

  1. 両端部が支持部材に支持された鉄骨梁に床スラブから鉛直等分布荷重が作用する場合の前記鉄骨梁の横座屈耐力を評価するための分析方法であって、
    上フランジと下フランジとがウェブで連結された形鋼が用いられる前記鉄骨梁を対象とし、
    前記鉄骨梁の材軸方向の両端部のうち、少なくとも一方の前記端部が前記支持部材に剛接合又は半剛接合されるとともに、前記鉄骨梁の材軸方向の中間部において、前記上フランジの幅方向の横移動が拘束されて、且つ前記上フランジに上方から等分布荷重である中間荷重が作用し、且つ前記鉄骨梁の材軸方向の両端部に端荷重が作用する条件下で、
    前記鉄骨梁の横座屈耐力Mcrを、(1)式から(5)式から算出する分析方法。
    Figure 2022052975000020
    ここで、β,γは、前記鉄骨梁の曲げモーメント分布によって(6)式及び(7)式から決まる係数である。M,Mは、前記鉄骨梁の両端部それぞれに作用する曲げモーメントで、(8)式を満たす。前記曲げモーメントM,Mは、前記鉄骨梁の前記下フランジが圧縮となる場合を正とする。
    また、Lは前記鉄骨梁の材軸方向の長さ、Eはヤング係数、Iは前記下フランジの弱軸まわりの断面二次モーメント、Gはせん断弾性係数、Jはサン・ブナンのねじり定数、dは前記上フランジと前記下フランジとの板厚中心間距離、zは前記鉄骨梁の材軸方向の基準となる一端部から前記鉄骨梁の材軸方向の任意の点までの長さである。wは前記等分布荷重の大きさである。φは、横座屈によって前記鉄骨梁に生じるねじり角である。φ’はφの一階微分、φ’’はφの二階微分を表す。tは積分のための助変数である。前記ねじり角φは、aを第n項目の未定係数としたときに、非対称座屈の場合には(9)式により算出され、対称座屈の場合には(10)式により算出される。
    Figure 2022052975000021
  2. 前記係数β,γを、(11)式及び(12)式による範囲の実数として決定する請求項1に記載の分析方法。
    Figure 2022052975000022
  3. 前記鉄骨梁は鉄骨小梁であり、
    前記支持部材は大梁である請求項1又は2に記載の分析方法。
  4. 請求項1から3のいずれか一項に記載の分析方法に基づき、前記横座屈耐力Mcrを算出する工程と、
    前記横座屈耐力Mcrに基づき、前記鉄骨梁の断面寸法を決定する工程と、
    を含む設計方法。
  5. 請求項1から3のいずれか一項に記載の分析方法に基づき、前記横座屈耐力Mcrを算出する工程と、
    前記横座屈耐力Mcrに基づき、前記鉄骨梁の断面寸法を決定する工程と、
    決定された前記鉄骨梁の前記断面寸法に基づき、前記鉄骨梁を製造する工程と、
    を含む製造方法。
  6. コンピュータ装置に請求項1から3のいずれか一項に記載の分析方法を実行させるためのプログラム。
  7. コンピュータ装置に請求項4に記載の設計方法を実行させるためのプログラム。
JP2020159531A 2020-09-24 2020-09-24 分析方法、設計方法、製造方法、及びプログラム Active JP7436849B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020159531A JP7436849B2 (ja) 2020-09-24 2020-09-24 分析方法、設計方法、製造方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020159531A JP7436849B2 (ja) 2020-09-24 2020-09-24 分析方法、設計方法、製造方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2022052975A true JP2022052975A (ja) 2022-04-05
JP7436849B2 JP7436849B2 (ja) 2024-02-22

Family

ID=80963244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020159531A Active JP7436849B2 (ja) 2020-09-24 2020-09-24 分析方法、設計方法、製造方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP7436849B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340276B2 (ja) 2014-07-17 2018-06-06 新日鐵住金株式会社 鉄骨梁の設計方法
WO2018151298A1 (ja) 2017-02-17 2018-08-23 新日鐵住金株式会社 分析方法、設計方法、製造方法、及びプログラム
JP2018131883A (ja) 2017-02-17 2018-08-23 新日鐵住金株式会社 床構造

Also Published As

Publication number Publication date
JP7436849B2 (ja) 2024-02-22

Similar Documents

Publication Publication Date Title
JP6414374B1 (ja) 分析方法、設計方法、製造方法、及びプログラム
Ma et al. Cross-sectional optimization of cold-formed steel channels to Eurocode 3
Jahanpour et al. Evaluation of ultimate capacity of semi-supported steel shear walls
Quinn et al. Non-prismatic sub-stiffening for stiffened panel plates—Stability behaviour and performance gains
JP2018131883A (ja) 床構造
Mofid et al. On the characteristics of new ductile knee bracing systems
Bernuzzi et al. Unbraced pallet rack design in accordance with European practice–Part 1: Selection of the method of analysis
De’nan et al. Finite element analysis on lateral torsional buckling behaviour of I-beam with web opening
Dehghani et al. The ultimate shear capacity of longitudinally stiffened steel-concrete composite plate girders
JP7348509B2 (ja) 連続梁の評価方法及び連続梁の評価プログラム
JP7436849B2 (ja) 分析方法、設計方法、製造方法、及びプログラム
Klein et al. Effects of warping shear deformation on the torsional load-bearing behaviour of assembled half-shell structures for wind energy towers
Szymczak et al. Sensitivity analysis of beams and frames made of thin-walled members
Kamal Encased beam with variable upper steel flange position
JP6895282B2 (ja) 合成梁の設計方法及び合成梁
Bajer et al. Lateral torsional buckling of selected cross-section types
Belega et al. Effects of axial-shear-flexure interaction in static and dynamic responses of steel beams
Barnat et al. Experimental Analysis of Lateral Torsional Buckling of Beams with Selected Cross-Section Types
JP6652161B2 (ja) 梁接合構造及び梁接合構造の回転剛性算出方法
JP2022152732A (ja) 最大せん断耐力の分析方法及び最大せん断耐力の分析プログラム
Hayatdavoodi et al. Investigation on the collapse behavior of diagonal stiffened composite plate girders subjected to shear loading
WO2021100693A1 (ja) 連続梁の評価方法、連続梁の評価プログラム、及び合成梁の評価方法
De’nan et al. The effects of the depth of web on the bending behaviour of triangular web profile steel beam section
Shokouhfar et al. A finite element analysis of slab opening effects on the column removal scenarios in large buildings
Masaoka et al. Compressive strength of stiffened plates with imperfections: Simple design equations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230519

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R151 Written notification of patent or utility model registration

Ref document number: 7436849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151