JP2022043666A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP2022043666A
JP2022043666A JP2020149066A JP2020149066A JP2022043666A JP 2022043666 A JP2022043666 A JP 2022043666A JP 2020149066 A JP2020149066 A JP 2020149066A JP 2020149066 A JP2020149066 A JP 2020149066A JP 2022043666 A JP2022043666 A JP 2022043666A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
jig
conversion module
outer shell
heat receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020149066A
Other languages
Japanese (ja)
Inventor
ユリア 大久保
Yulia Okubo
知丈 東平
Tomotake Tohira
玄也 能川
Genya Nokawa
武司 島田
Takeshi Shimada
三智子 松田
Michiko Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020149066A priority Critical patent/JP2022043666A/en
Publication of JP2022043666A publication Critical patent/JP2022043666A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a thermoelectric conversion device that can prevent the outflow of fluid due to the pressure difference between the inside and outside of the equipment due to the installation of the thermoelectric conversion module, easily collect heat from the fluid of the heat source, and further reduce the heat loss.SOLUTION: A thermoelectric conversion device includes: a thermoelectric conversion module 10; a heat receiving member 30 having a flat surface portion and a fin portion erected on one surface of the flat surface portion, and having the other surface of the flat surface portion closely arranged on one side of the thermoelectric conversion module; a cooling member 20 placed in close contact with the other side of the thermoelectric conversion module; a tubular outer shell member 40 arranged so as to surround the heat receiving member, the thermoelectric conversion module, and the cooling member; a first jig 50 that supports an end of the flat surface of the heat receiving member by sandwiching the end of the flat surface with the outer shell member; a second jig 60 that supports the thermoelectric conversion module by sandwiching the cooling member; and a sealing member 70 arranged between the flat surface portion of the heat receiving member and the outer shell member.SELECTED DRAWING: Figure 9

Description

本発明は、熱を直接電気に変換する熱電変換モジュールを用いた熱電変換装置に関する。 The present invention relates to a thermoelectric conversion device using a thermoelectric conversion module that directly converts heat into electricity.

近年、エネルギー消費低減のために、例えばボイラー、焼却炉、自動車の熱源からの排熱を電気として回収することが検討されている。特にゼーベック効果によって熱エネルギーを電気エネルギーに直接変換できる熱電素子を用いて、効率よく電気エネルギーを回収できる熱電変換モジュールが注目されている。熱電モジュールとは、P型とN型の熱電変換素子を、電極を介して交互に接続したもので、一方の面を高温側、他方の面を低温側とし、両面に温度差を生じさせることで、電力を発生させるものである。今まで捨てられていた排熱を有効利用できるクリーンな方法として、実用化が期待されている。特に、約300℃以上の高温環境で使用可能な材料の熱電変換素子を用いることで、大きな温度差から、大きな電気エネルギーを回収できる可能性があることから開発が進められている。 In recent years, in order to reduce energy consumption, it has been studied to recover waste heat from, for example, a boiler, an incinerator, or a heat source of an automobile as electricity. In particular, a thermoelectric conversion module that can efficiently recover electric energy by using a thermoelectric element that can directly convert thermal energy into electric energy by the Zeebeck effect is attracting attention. A thermoelectric module is one in which P-type and N-type thermoelectric conversion elements are alternately connected via electrodes. One surface is on the high temperature side and the other surface is on the low temperature side, causing a temperature difference on both sides. It generates electric power. It is expected to be put into practical use as a clean method that can effectively utilize the waste heat that has been discarded until now. In particular, by using a thermoelectric conversion element made of a material that can be used in a high temperature environment of about 300 ° C. or higher, there is a possibility that a large electric energy can be recovered from a large temperature difference, and therefore development is underway.

高温のガスなどの流体を利用して熱電変換モジュールに大きな温度差を与えるためには、高温側に流体からの熱を損失なく伝え、低温側への熱電変換素子以外からの熱伝達を低減し、高温側と低温側の温度差を大きくすることが重要である。 In order to give a large temperature difference to the thermoelectric conversion module using a fluid such as high temperature gas, heat from the fluid is transferred to the high temperature side without loss, and heat transfer from other than the thermoelectric conversion element to the low temperature side is reduced. It is important to increase the temperature difference between the high temperature side and the low temperature side.

例えば、特許文献1に熱電変換モジュールを受熱部材と冷却部材とで把持する熱電変換発電ユニットが開示されている。また、前記熱電変換発電ユニットが、加熱部と冷却部とを有し、これら加熱部および冷却部の内部で被加熱体を順次搬送するトンネル型炉に備えられた構成が開示されている。 For example, Patent Document 1 discloses a thermoelectric conversion power generation unit that grips a thermoelectric conversion module between a heat receiving member and a cooling member. Further, there is disclosed a configuration in which the thermoelectric conversion power generation unit has a heating unit and a cooling unit, and is provided in a tunnel type furnace in which a heated body is sequentially conveyed inside the heating unit and the cooling unit.

また、特許文献2に、炉の開口部に取り付けた受熱板に熱電変換モジュールの一方の面を配置し、熱電変換モジュールの他方の面を水冷板に密着、固定して取り付け、前記受熱板の、炉内の受熱側に、受熱フィンを形成した熱電変換装置が開示されている。 Further, in Patent Document 2, one surface of the thermoelectric conversion module is arranged on a heat receiving plate attached to the opening of the furnace, and the other surface of the thermoelectric conversion module is closely attached to and fixed to the water cooling plate and attached. , A thermoelectric conversion device having heat receiving fins formed on the heat receiving side in the furnace is disclosed.

特開2004-350479号公報Japanese Unexamined Patent Publication No. 2004-350479 特開2013-211471号公報Japanese Unexamined Patent Publication No. 2013-211471

特許文献1では、受熱部材と冷却部材とで把持する構成のため、受熱部材から冷却部材へ熱が伝導し、損失しやすいという課題があった。また、トンネル炉の加熱部と冷却部についても同様に熱損失が生じやすく、熱電変換モジュールにおいて大きな温度差を得にくいという課題があった。 In Patent Document 1, since the heat receiving member and the cooling member grip each other, there is a problem that heat is conducted from the heat receiving member to the cooling member and is easily lost. Further, there is a problem that heat loss is likely to occur in the heating part and the cooling part of the tunnel furnace, and it is difficult to obtain a large temperature difference in the thermoelectric conversion module.

特許文献2では、受熱板がケースに接触しており、受熱板で集めた熱がケースの部材内部を伝って水冷板との温度差が小さくなる可能性が考えられる。さらに、受熱側の高温ガスの圧力が炉外より高い場合、ケースと受熱板に隙間が発生する可能性も考えられる。 In Patent Document 2, it is conceivable that the heat receiving plate is in contact with the case, and the heat collected by the heat receiving plate is transmitted inside the member of the case to reduce the temperature difference from the water cooling plate. Furthermore, if the pressure of the high temperature gas on the heat receiving side is higher than that outside the furnace, it is possible that a gap may occur between the case and the heat receiving plate.

本発明の目的は、熱電変換モジュールを取り付けたことによる設備内外の圧力差による流体の流出を防止し、かつ、熱源の流体から熱を集めやすく、さらに熱の損失を小さくすることが可能な熱電変換装置を提供することである。 An object of the present invention is to prevent the outflow of fluid due to the pressure difference between the inside and outside of the equipment due to the attachment of the thermoelectric conversion module, to easily collect heat from the fluid of the heat source, and to further reduce the heat loss. It is to provide a conversion device.

本発明の熱電変換装置は、熱電変換モジュールと、
平坦面部と該平坦面部の一方の面に立設されたフィン部とを有し、前記熱電変換モジュールの一方側に前記平坦面部の他方の面を密着して配置された受熱部材と、
前記熱電変換モジュールの他方側に密着して配置された冷却部材と、
前記受熱部材と、前記熱電変換モジュールと、前記冷却部材と、を囲うように配置された筒状の外殻部材と、
前記受熱部材の平坦面部の端部を前記外殻部材との間に挟んで支持する第1の治具と、
前記冷却部材を挟んで前記熱電変換モジュールを支持する第2の治具と、
前記受熱部材の平坦面部と前記外殻部材との間に配置された封止部材と、
を有することを特徴とする。
The thermoelectric conversion device of the present invention includes a thermoelectric conversion module and
A heat receiving member having a flat surface portion and fin portions erected on one surface of the flat surface portion, and having the other surface of the flat surface portion closely arranged on one side of the thermoelectric conversion module.
A cooling member arranged in close contact with the other side of the thermoelectric conversion module, and
A tubular outer shell member arranged so as to surround the heat receiving member, the thermoelectric conversion module, and the cooling member.
A first jig that supports the end of the flat surface portion of the heat receiving member by sandwiching it between the outer shell member and the outer shell member.
A second jig that supports the thermoelectric conversion module by sandwiching the cooling member, and
A sealing member arranged between the flat surface portion of the heat receiving member and the outer shell member, and
It is characterized by having.

さらに、前記外殻部材が、前記封止部材が配置される位置に、溝を有することが好ましい。 Further, it is preferable that the outer shell member has a groove at a position where the sealing member is arranged.

さらに、前記第1の治具は、前記第2の治具と非接触であることが好ましい。 Further, it is preferable that the first jig is not in contact with the second jig.

さらに、前記第1の治具は、前記封止部材を介して前記受熱部材の平坦面部の端部を前記外殻部材に挟んで支持する挟持部と、前記挟持部を支持する柱部と、を有することが好ましい。 Further, the first jig includes a holding portion that supports the end of the flat surface portion of the heat receiving member by sandwiching the outer shell member via the sealing member, and a pillar portion that supports the holding portion. It is preferable to have.

さらに、前記フィン部と、外殻部材の一部と、が熱源流体に突出していることが好ましい。 Further, it is preferable that the fin portion and a part of the outer shell member project to the heat source fluid.

本発明によれば、熱電変換装置において、熱電変換モジュールを取り付けたことによる設備内外の圧力差による流体の流出を防止し、かつ、熱源の流体(高温流体)から熱を集めやすく、さらに熱の損失を小さくできる。 According to the present invention, in the thermoelectric conversion device, the outflow of fluid due to the pressure difference between the inside and outside of the equipment due to the attachment of the thermoelectric conversion module is prevented, and heat can be easily collected from the fluid (high temperature fluid) of the heat source, and the heat can be further increased. The loss can be reduced.

熱電変換モジュールの外観模式図Schematic diagram of the appearance of the thermoelectric conversion module 熱電変換モジュール一体型の冷却部材を示す斜視図A perspective view showing a cooling member integrated with a thermoelectric conversion module. 受熱部材の外観図External view of heat receiving member 外殻部材の断面斜視図Cross-sectional perspective view of the outer shell member 熱電変換装置の組立断面図Assembly sectional view of thermoelectric converter 取付先の配管の例Example of mounting piping 第1の治具の外観図External view of the first jig 第2の治具の外観図External view of the second jig 熱電変換装置の断面図Sectional view of thermoelectric converter ガス温度と各部位の温度との関係を示すグラフGraph showing the relationship between the gas temperature and the temperature of each part

本発明の熱電変換装置の実施の形態を以下に説明する。本発明の熱電変換装置を実施する形態は、
熱電変換モジュールと、
平坦面部と該平坦面部の一方の面に立設されたフィン部とを有し、前記熱電変換モジュールの一方側に前記平坦面部の他方の面を密着して配置された受熱部材と、
前記熱電変換モジュールの他方側に密着して配置された冷却部材と、
前記受熱部材と、前記熱電変換モジュールと、前記冷却部材と、を囲うように配置された筒状の外殻部材と、
前記受熱部材の平坦面部の端部を前記外殻部材との間に挟んで支持する第1の治具と、
前記冷却部材を挟んで前記熱電変換モジュールを支持する第2の治具と、
前記受熱部材の平坦面部と前記外殻部材との間に配置された封止部材と、
を有している。それぞれの構成を以下に説明する。
An embodiment of the thermoelectric conversion device of the present invention will be described below. The embodiment of the thermoelectric conversion device of the present invention is
Thermoelectric conversion module and
A heat receiving member having a flat surface portion and fin portions erected on one surface of the flat surface portion, and having the other surface of the flat surface portion closely arranged on one side of the thermoelectric conversion module.
A cooling member arranged in close contact with the other side of the thermoelectric conversion module, and
A tubular outer shell member arranged so as to surround the heat receiving member, the thermoelectric conversion module, and the cooling member.
A first jig that supports the end of the flat surface portion of the heat receiving member by sandwiching it between the outer shell member and the outer shell member.
A second jig that supports the thermoelectric conversion module by sandwiching the cooling member, and
A sealing member arranged between the flat surface portion of the heat receiving member and the outer shell member, and
have. Each configuration will be described below.

(熱電変換モジュール)
熱電変換モジュールの外観を模式的に図1に示す。P型とN型の熱電変換素子を、電極を介して接続したもので、一方の面を高温側、他方の面を低温側とし、両面に温度差を生じさせることで、電力変換を行うものである。このときN型の素子内では、高温側で密度の高くなった電子が低温側へ流れ、P型の素子内では、低温側で正の電荷を持つ正孔が高温側へ流れ、逆の電位差が生じることで電流が流れる。温度差によって熱起電力が生じる現象をゼーベック効果という。
(Thermoelectric conversion module)
Figure 1 schematically shows the appearance of the thermoelectric conversion module. A P-type and N-type thermoelectric conversion element connected via electrodes, with one side on the high temperature side and the other side on the low temperature side, and power conversion is performed by creating a temperature difference on both sides. Is. At this time, in the N-type device, electrons with high density on the high temperature side flow to the low temperature side, and in the P-type device, holes having a positive charge on the low temperature side flow to the high temperature side, and the opposite potential difference. Causes a current to flow. The phenomenon in which thermoelectromotive force is generated by the temperature difference is called the Zeebeck effect.

図1ではその一例として、P型素子11、N型素子12、高温側電極13、低温側電極14、絶縁基板15、電極の終端16として示している。また、素子や電極の配列状態を見せるために、絶縁基板15を、破断線を境界に取り去った状態で示している。P型とN型を電極で接続したものを1対とする。1対の発電量は、温度の差によるが1~100mA程度と極めて少ないが、これを複数接続することで、大きな発電量を得られるため好ましい。また、1対の電圧は低いが、電気的に直列になるよう並べて電圧を高くしても良く、さらに昇圧用のDC-DCコンバーターで昇圧することで、商用製品に使える電圧値を得てもよい。 In FIG. 1, as an example thereof, a P-type element 11, an N-type element 12, a high temperature side electrode 13, a low temperature side electrode 14, an insulating substrate 15, and an electrode termination 16 are shown. Further, in order to show the arrangement state of the elements and electrodes, the insulating substrate 15 is shown in a state where the breaking line is removed as a boundary. A pair is made by connecting P-type and N-type with electrodes. The amount of power generated in a pair is extremely small, about 1 to 100 mA, depending on the temperature difference, but it is preferable to connect a plurality of them because a large amount of power can be obtained. In addition, although the voltage of a pair is low, the voltage may be increased by arranging them in series electrically, and even if a voltage value that can be used for commercial products is obtained by boosting with a DC-DC converter for boosting. good.

熱電変換素子は、300℃以上の高温向けとして、Mg2Si系、シリサイド系、ハーフホイスラー系、スクッテルダイト系等の材料を使用することが好ましい。これらの材料は、高温域で大気中に晒されると酸化することがあるため、例えば、真空雰囲気で密閉する、つまり真空封止するなど、酸化を抑制することが好ましい。真空封止は、熱電変換モジュールの外周近傍領域だけを囲って封止しても良く、熱電変換モジュールの低温面が密着する冷却部材と一体として封止しても良い。 As the thermoelectric conversion element, it is preferable to use a material such as Mg 2 Si-based, silicide-based, half-Whisler-based, and scutterdite-based material for high temperatures of 300 ° C. or higher. Since these materials may oxidize when exposed to the atmosphere in a high temperature region, it is preferable to suppress the oxidation by, for example, sealing in a vacuum atmosphere, that is, vacuum sealing. The vacuum sealing may be performed by surrounding only the region near the outer periphery of the thermoelectric conversion module, or may be sealed integrally with the cooling member to which the low temperature surface of the thermoelectric conversion module is in close contact.

(冷却部材)
冷却部材とは、熱電変換モジュールの低温側を冷却するために使用するものである。冷却部材は1つ以上の平面を有し、冷却媒体(冷媒)によって冷やされる。この冷却部材の平面を熱電変換モジュールの低温側の面に密着させることで、熱電変換モジュールの低温側の面を冷却する。以下に冷却部材と熱電変換モジュールが一体の場合の例について説明する。図2に、熱電変換モジュール一体型の熱電変換装置の一部を模式的に分解した図を示す。それぞれ、熱電変換モジュール10、冷却部材20、キャップ22、冷媒配管23、端子24である。尚、冷却部材20は水冷板などとしても良く、上述の通り、熱電変換モジュールの低温側を冷却するための面を持っていれば、板状のほかに、主面の反対側に水路の構造体を有する形状などでも良い。
(Cooling member)
The cooling member is used to cool the low temperature side of the thermoelectric conversion module. The cooling member has one or more planes and is cooled by a cooling medium (refrigerant). By bringing the flat surface of this cooling member into close contact with the surface on the low temperature side of the thermoelectric conversion module, the surface on the low temperature side of the thermoelectric conversion module is cooled. An example of the case where the cooling member and the thermoelectric conversion module are integrated will be described below. Figure 2 shows a schematic disassembled view of a part of the thermoelectric conversion device integrated with the thermoelectric conversion module. The thermoelectric conversion module 10, the cooling member 20, the cap 22, the refrigerant pipe 23, and the terminal 24, respectively. The cooling member 20 may be a water cooling plate or the like, and as described above, if it has a surface for cooling the low temperature side of the thermoelectric conversion module, it has a water channel structure on the opposite side of the main surface in addition to the plate shape. It may have a shape having a body.

以下、冷媒として水を用いた場合の冷却部材を例に説明する。この場合、冷媒配管は水道管や水用ホース、水用チューブと読み替えても良い。冷却部材は、後述する外殻部材に余裕を持って入る大きさである。これによって、外殻部材の内側に間隙を維持して冷却部材を配置することが可能である。形状は、熱電変換モジュールの低温面が全て密着できるよう熱電変換モジュールより広い平坦面を有し、密着面が冷却媒体によって十分に冷える肉厚を有していれば、いずれの形状でも良い。
冷却部材の材質は一般的にアルミ、銅、ステンレスが用いられ、いずれでも良いが、熱伝導率が高いという観点で銅が望ましく、酸化防止のためニッケルメッキをするとさらに良い。
図2の冷却部材20は、冷却部材が円柱形の場合で、そこに水の出入口となる冷媒配管23を備えている図である。円柱形の片面に、熱電変換モジュール10の低温面を密着させ、キャップ22で覆い、キャップ22の外周を真空雰囲気中で冷却部材20に溶接することで、熱電変換モジュールを真空封止する。キャップ22は、熱電変換モジュールを完全に覆う大きさで、容器につばが付いた形状をしている。受熱部材に長時間接触しても問題無い耐熱性・耐酸化性があり、真空封止を保つ強度を有する材料として、ステンレス等が好ましい。さらに、受熱部材から受けた熱を低損失で熱電変換モジュール10の高温面に伝えるため、肉厚をできるだけ薄くすることが望ましい。
熱電変換モジュールで発生した電流を真空封止した空間の外へ取り出す際、端子24を用いる。端子24は、たとえば、1本の導線に、セラミックスやガラス等の絶縁材を介して、外周に溶接材を備えたものなどを用いればよい。導線および接合部の材質は、銅やステンレス、ニッケル、Fe-Ni-Co合金等が使われることが多い。電流を取り出すとき、例えばX-Y方向へ取り出すのであれば、小さい端子を使用してもよい。隣にある受熱部材に接触し、電流が漏れることを避けることと、絶縁部材が受熱部材に触れ、熱の逃げを避けるため、加熱源から離れるように電流を取り出すことが好ましい。例えば、端子を冷却部材側の方向に配置しても良い。この場合、具体的には冷却部材に、冷却媒体の流路と干渉しないように端子を溶接し、その端子の先を熱電変換モジュールの電極の終端16と接合することで、発生した電力を大気中へ取り出すことなどが考えられる。
熱電変換モジュールを冷却部材とキャップでz方向に挟み込む際、キャップと熱電変換モジュールの間にセラミックス基板を挟むことで絶縁を保ち、さらにグラファイトシートを挟むことで、密着性を高められるため好ましい。
Hereinafter, a cooling member when water is used as the refrigerant will be described as an example. In this case, the refrigerant pipe may be read as a water pipe, a water hose, or a water tube. The cooling member has a size that allows it to fit into the outer shell member described later with a margin. This makes it possible to maintain a gap inside the outer shell member and arrange the cooling member. The shape may be any shape as long as it has a flat surface wider than the thermoelectric conversion module so that all the low temperature surfaces of the thermoelectric conversion module can be in close contact with each other, and the contact surface has a wall thickness sufficiently cooled by the cooling medium.
Aluminum, copper, and stainless steel are generally used as the material of the cooling member, and copper is preferable from the viewpoint of high thermal conductivity, and nickel plating is more preferable to prevent oxidation.
The cooling member 20 in FIG. 2 is a diagram in which the cooling member has a cylindrical shape and is provided with a refrigerant pipe 23 that serves as an inlet / outlet for water. The low temperature surface of the thermoelectric conversion module 10 is brought into close contact with one side of the cylinder, covered with a cap 22, and the outer circumference of the cap 22 is welded to the cooling member 20 in a vacuum atmosphere to vacuum-seal the thermoelectric conversion module. The cap 22 is large enough to completely cover the thermoelectric conversion module and has a shape with a brim attached to the container. Stainless steel or the like is preferable as a material having heat resistance and oxidation resistance that does not cause any problem even if it comes into contact with a heat receiving member for a long time and has strength to maintain vacuum sealing. Further, in order to transfer the heat received from the heat receiving member to the high temperature surface of the thermoelectric conversion module 10 with low loss, it is desirable to make the wall thickness as thin as possible.
The terminal 24 is used when the current generated by the thermoelectric conversion module is taken out of the vacuum-sealed space. As the terminal 24, for example, one conducting wire may be provided with a welding material on the outer periphery thereof via an insulating material such as ceramics or glass. Copper, stainless steel, nickel, Fe-Ni-Co alloy, etc. are often used as the material of the conductor and the joint. When taking out the current, for example, if the current is taken out in the XY direction, a small terminal may be used. It is preferable to take out the current away from the heating source in order to prevent the current from leaking by contacting the adjacent heat receiving member and to prevent the insulating member from touching the heat receiving member and escaping the heat. For example, the terminals may be arranged in the direction toward the cooling member. In this case, specifically, the terminal is welded to the cooling member so as not to interfere with the flow path of the cooling medium, and the tip of the terminal is joined to the terminal 16 of the electrode of the thermoelectric conversion module, so that the generated power is transferred to the atmosphere. It is conceivable to take it out.
When the thermoelectric conversion module is sandwiched between the cooling member and the cap in the z direction, it is preferable to sandwich the ceramic substrate between the cap and the thermoelectric conversion module to maintain insulation, and further to sandwich the graphite sheet to improve the adhesion.

(受熱部材)
図3に受熱部材の外観を示す。図3の例では、受熱部材のフィン部32は、平板状の平坦面部31の一方の面に垂直に(z方向に)立設されている。ここで、平坦面部とは熱電変換モジュールの高温部に熱を伝えるための平坦面を有していれば良い。例えば、図3に示すような平板状であっても良く、多少の厚さの変化や、フィン部を構成するための溝等の構造体を有していても良い。平坦面部とフィン部は一体物でも、別々に成形や加工されて圧入等で組み合わせたものでもどちらでも構わない。材質は、熱を伝えやすいものが好ましく、例えば、アルミ、銅、鉄、ステンレス、モリブデン、窒化珪素、窒化アルミ等が挙げられる。フィン部の形状は、流体の粘度や速度、流れの方向に応じて、必ずしも板状(ひれ状)である必要はなく、円柱、角柱、角板、ピン等が挙げられる。
(Heat receiving member)
Figure 3 shows the appearance of the heat receiving member. In the example of FIG. 3, the fin portion 32 of the heat receiving member is erected vertically (in the z direction) on one surface of the flat plate-shaped flat surface portion 31. Here, the flat surface portion may have a flat surface for transferring heat to the high temperature portion of the thermoelectric conversion module. For example, it may have a flat plate shape as shown in FIG. 3, and may have a structure such as a slight change in thickness and a groove for forming a fin portion. The flat surface portion and the fin portion may be one piece or may be separately molded or processed and combined by press fitting or the like. The material is preferably one that easily conducts heat, and examples thereof include aluminum, copper, iron, stainless steel, molybdenum, silicon nitride, and aluminum nitride. The shape of the fin portion does not necessarily have to be plate-shaped (fin-shaped) depending on the viscosity and velocity of the fluid and the direction of flow, and examples thereof include a cylinder, a prism, a square plate, and a pin.

(外殻部材)
図4に外殻部材40の外観を示す。形状を分かりやすく示すため、中央断面にハッチングをかけて示す。外殻部材40は形状が筒状で、受熱部材を熱源流体(高温流体)が流れる配管に突き出すために必要である。熱源流体は、熱電変換モジュールの低温側より高温で、温度差を付けられる熱源であればよく、以後、高温流体を用いて説明することもある。外殻部材40は、筒41の高温流体側に受熱部材を取り付ける面を構成できるよう、筒41の軸方向(z方向)の一方側の端部に沿って引っ掛かり部42を備えている。図4では、引っ掛かり部42として筒状の部材に円環状の部材を取り付けた構成を示しているが、この引っ掛かり部とは、受熱部材の平坦面部の他方の面に垂直な方向から、挟んで支持することができるよう、突出、屈曲等によって、筒の径方向の内向きに設けられた凸部のことを指し、外殻部材の筒の内径が小さくなる方向に傾斜しているような構造でも良い。引っ掛かり部42は、外殻部材40の端面である外面42bと、それに対置された内面42aとを有し、内面42aに、後述する封止部材を挟むための溝43を有する。すなわち、外殻部材が、封止部材が配置される位置に、溝を有する。一方、この外殻部材を配管に取り付ける側の構造としては、例えば、高温流体の流れる主配管に対して取付配管が枝分かれし、その取付配管の先端がフランジの構造となっているとき、筒41の他方側に適合する同サイズのフランジ44を備えていても良い。外殻部材は、高温流体に直接接触するため、耐熱性と強度が必要で、鉄やステンレス等が望ましい。
(Outer shell member)
FIG. 4 shows the appearance of the outer shell member 40. In order to show the shape in an easy-to-understand manner, the central cross section is hatched. The outer shell member 40 has a tubular shape and is necessary for projecting the heat receiving member into the pipe through which the heat source fluid (high temperature fluid) flows. The heat source fluid may be any heat source that has a higher temperature than the low temperature side of the thermoelectric conversion module and can have a temperature difference, and may be described below using a high temperature fluid. The outer shell member 40 includes a hooking portion 42 along one end in the axial direction (z direction) of the cylinder 41 so that a surface for attaching the heat receiving member can be formed on the high temperature fluid side of the cylinder 41. FIG. 4 shows a configuration in which an annular member is attached to a tubular member as a hooking portion 42, and the hooking portion is sandwiched from a direction perpendicular to the other surface of the flat surface portion of the heat receiving member. It refers to a convex portion provided inward in the radial direction of the cylinder due to protrusion, bending, etc. so that it can be supported, and has a structure that is inclined in the direction in which the inner diameter of the cylinder of the outer shell member becomes smaller. But it's okay. The hooking portion 42 has an outer surface 42b which is an end surface of the outer shell member 40 and an inner surface 42a opposite to the outer surface 42b, and the inner surface 42a has a groove 43 for sandwiching a sealing member described later. That is, the outer shell member has a groove at a position where the sealing member is arranged. On the other hand, as a structure on the side where the outer shell member is attached to the pipe, for example, when the mounting pipe is branched with respect to the main pipe through which the high temperature fluid flows and the tip of the mounting pipe has a flange structure, the cylinder 41 It may be provided with a flange 44 of the same size that fits on the other side of the. Since the outer shell member comes into direct contact with a high-temperature fluid, heat resistance and strength are required, and iron, stainless steel, or the like is desirable.

(組立て時の構成)
図5に熱電変換装置を組み立てた時の断面図を示す。外殻部材40は、受熱部材30と、熱電変換モジュール10と、冷却部材20と、を囲うように配置される。ここで、囲うように配置とは、筒の軸方向から上面視したとき、外殻部材の内側に受熱部材や熱電変換モジュール、冷却部材が配置されることである。
このとき引っ掛かり部の端面42bの内側の空間45は、高温流体が流れ込みにくく、また流れたとしても乱流になり、フィン部32が熱を受けにくい。そのため、フィン部32は引っ掛かり部の端面42bより、確実に高温流体側に突き出していることが好ましい。
受熱部材は長期間の使用により損傷や劣化する可能性があるため、外殻部材から容易に分解、交換できることが好ましい。そのための締結方法としては、ボルト締結等が挙げられる。
(Configuration at the time of assembly)
FIG. 5 shows a cross-sectional view when the thermoelectric conversion device is assembled. The outer shell member 40 is arranged so as to surround the heat receiving member 30, the thermoelectric conversion module 10, and the cooling member 20. Here, the arrangement so as to surround means that the heat receiving member, the thermoelectric conversion module, and the cooling member are arranged inside the outer shell member when viewed from above in the axial direction of the cylinder.
At this time, the space 45 inside the end surface 42b of the hooked portion is difficult for the high-temperature fluid to flow in, and even if it does flow, it becomes a turbulent flow, and the fin portion 32 is difficult to receive heat. Therefore, it is preferable that the fin portion 32 surely protrudes toward the high temperature fluid side from the end surface 42b of the hook portion.
Since the heat receiving member may be damaged or deteriorated by long-term use, it is preferable that the heat receiving member can be easily disassembled and replaced from the outer shell member. Examples of the fastening method for this purpose include bolt fastening and the like.

(取付配管との関係)
外殻部材を高温流体が流れる主配管に取り付ける一例として、先に示した取付配管のフランジに取り付ける場合を詳細に説明する。フランジは例えばJIS(日本産業規格)に定められた範囲であれば、いずれの構成に適用しても良い。フランジに本発明の装置を取り付ける際、ガスケットを用いることで、規定の圧力に耐え、気密性を保ちやすいため好ましい。ガスケットは例えば、膨張黒鉛やPTFE材等で作られた軟質ガスケットや、メタルジャケットガスケット等のセミメタルガスケット、金属性のメタルガスケット、織布ガスケット等がある。
取り付け先の配管の一例として、図6のような形状が挙げられる。すなわち、高温流体が流れる主配管100の側面に、その配管と直交する向きに別の取付配管101が取り付けられており、その取付配管101の端部にフランジ102が取り付けられている構成である。このとき、取付配管101内は、高温流体の流れの淀みになると想定されため、受熱部材は、淀みの領域を避け、その先の主配管100内に突出していることが好ましい。
このことを、図5を用いて説明する。外殻部材の引っ掛かり部42の全部が、主配管の内壁100aよりも高温流体の流れる主配管内部に突き出し、かつ、フィン部32が引っ掛かり部の端面42bより突き出すことで、フィン部32を高温流体の流れの中に確実に配置する。この構成を、フィン部と、外殻部材の一部と、が熱源流体に突出していると言い換えても良い。
(Relationship with mounting piping)
As an example of attaching the outer shell member to the main pipe through which the high temperature fluid flows, the case of attaching to the flange of the mounting pipe shown above will be described in detail. The flange may be applied to any configuration as long as it is within the range specified in JIS (Japanese Industrial Standards), for example. When the apparatus of the present invention is attached to the flange, it is preferable to use a gasket because it can withstand a specified pressure and easily maintain airtightness. Examples of the gasket include a soft gasket made of expanded graphite, PTFE material, etc., a semi-metal gasket such as a metal jacket gasket, a metallic metal gasket, a woven gasket, and the like.
As an example of the pipe to be attached, the shape as shown in FIG. 6 can be mentioned. That is, another mounting pipe 101 is attached to the side surface of the main pipe 100 through which the high temperature fluid flows in a direction orthogonal to the pipe, and the flange 102 is attached to the end of the mounting pipe 101. At this time, since it is assumed that the inside of the mounting pipe 101 becomes a stagnation of the flow of the high-temperature fluid, it is preferable that the heat receiving member avoids the stagnation region and protrudes into the main pipe 100 beyond the region.
This will be described with reference to FIG. The entire hooked portion 42 of the outer shell member protrudes into the main pipe through which the high temperature fluid flows from the inner wall 100a of the main pipe, and the fin portion 32 protrudes from the end surface 42b of the hooked portion, so that the fin portion 32 is exposed to the high temperature fluid. Make sure to place it in the flow of. This configuration may be rephrased as a fin portion and a part of the outer shell member protruding from the heat source fluid.

(第1の治具)
図7に第1の治具の外観図を示すが、第1の治具の構成はこれに限定されるものではない。第1の治具50は、環状の挟持部51と、環状の挟持部51の軸方向を長手方向とする複数の柱部52と、環状の締結部53とを有する。複数の柱部52は、軸方向(z方向)の一端側と他端側において、それぞれ、環状(図7では円環状)の挟持部51及び締結部53に対して、回転対称的な位置で配置または接続されていることが好ましい。より好ましくは、周方向に等間隔で配置または接続されていることが好ましい。柱部52の数は3つ以上が好ましい。第1の治具の挟持部51で、受熱部材の平坦面部の端部を、外殻部材の引っ掛かり部との間に、前記受熱部材の平坦面部の他方の面に垂直な方向から挟むことで、受熱部材を支持する。締結部53は外殻部材のフランジに締結する。この時、他の部材との位置関係を考慮して、締結部の寸法や、外面53aなどの位置を設計すれば良い。
(1st jig)
FIG. 7 shows an external view of the first jig, but the configuration of the first jig is not limited to this. The first jig 50 has an annular holding portion 51, a plurality of pillar portions 52 whose axial direction is the axial direction of the annular holding portion 51, and an annular fastening portion 53. The plurality of pillars 52 are rotationally symmetric with respect to the annular (annular in FIG. 7) holding portion 51 and fastening portion 53 on one end side and the other end side in the axial direction (z direction), respectively. It is preferably placed or connected. More preferably, they are arranged or connected at equal intervals in the circumferential direction. The number of pillars 52 is preferably 3 or more. By sandwiching the end of the flat surface portion of the heat receiving member between the holding portion 51 of the first jig and the hooking portion of the outer shell member from a direction perpendicular to the other surface of the flat surface portion of the heat receiving member. , Supports the heat receiving member. The fastening portion 53 is fastened to the flange of the outer shell member. At this time, the dimensions of the fastening portion and the position of the outer surface 53a may be designed in consideration of the positional relationship with other members.

(第2の治具)
冷却部材を挟んで前記熱電変換モジュールを支持する第2の治具の外観図を図8に、形状を分かりやすく示すため、中央断面にハッチングをかけて示す。第2の治具の構成はこれに限定されるものではない。第2の治具60は、環状の押圧部61、環状の押圧部61の軸方向を長手方向とする複数の柱部62、環状の締結部63からなる。複数の柱部62は、軸方向(z方向)の一端側と他端側において、それぞれ、環状(図8では円環状)の押圧部61及び締結部63に対して、回転対称的な位置で配置または接続されていることが好ましい。より好ましくは、周方向に等間隔で配置または接続されていることが好ましい。柱部52の数は3つ以上が好ましい。第2の治具の押圧部は、冷却部材を挟んで、熱電変換モジュールを受熱部材に向かって押圧し、支持する。このとき、冷却部材の設置位置を定めるため、押圧部61に冷却部材20の外形と同一寸法の段付き部64を設け、そこに冷却部材を嵌めても良い。締結部63は外殻部材のフランジ44に締結する。
押圧は、例えば冷却部材が図2に示したような円柱形の場合、冷媒配管や端子を避けて押圧する。このとき、冷却部材および熱電変換モジュールに、十分な剛性であれば、冷却部材の中央のみを押圧しても良く、弾性変形による押圧荷重のバラツキを考慮して、冷却部材の外周部を押圧しても良い。締結部の内面63aや押圧部65が、第1の治具および第1の治具を外殻部材に締結するためのボルトと干渉することを避けるために、逃げ穴63bや切り欠き65等を設けても良い。
(Second jig)
An external view of the second jig that supports the thermoelectric conversion module across the cooling member is shown in FIG. 8 by hatching the central cross section in order to show the shape in an easy-to-understand manner. The configuration of the second jig is not limited to this. The second jig 60 includes an annular pressing portion 61, a plurality of pillar portions 62 whose longitudinal direction is the axial direction of the annular pressing portion 61, and an annular fastening portion 63. The plurality of pillar portions 62 are rotationally symmetric with respect to the annular (annular in FIG. 8) pressing portion 61 and fastening portion 63 on one end side and the other end side in the axial direction (z direction), respectively. It is preferably placed or connected. More preferably, they are arranged or connected at equal intervals in the circumferential direction. The number of pillars 52 is preferably 3 or more. The pressing portion of the second jig sandwiches the cooling member and presses and supports the thermoelectric conversion module toward the heat receiving member. At this time, in order to determine the installation position of the cooling member, the pressing portion 61 may be provided with a stepped portion 64 having the same dimensions as the outer shape of the cooling member 20, and the cooling member may be fitted therein. The fastening portion 63 is fastened to the flange 44 of the outer shell member.
For example, when the cooling member has a cylindrical shape as shown in FIG. 2, the pressing is performed while avoiding the refrigerant pipes and terminals. At this time, if the cooling member and the thermoelectric conversion module have sufficient rigidity, only the center of the cooling member may be pressed, and the outer peripheral portion of the cooling member is pressed in consideration of the variation in the pressing load due to elastic deformation. May be. In order to prevent the inner surface 63a of the fastening portion and the pressing portion 65 from interfering with the bolt for fastening the first jig and the first jig to the outer shell member, a relief hole 63b, a notch 65, etc. are provided. It may be provided.

(第1の治具から第2の治具への熱損失回避)
受熱部材が受けた熱を、熱電変換モジュールに伝えるために、次の2点の熱損失を抑えることが望ましい。1つ目は受熱部材から第1の治具へ逃げる熱、2つ目は第1の治具から他の部材へ逃げる熱である。
まず1つ目について、第1の治具は、高温環境下で受熱部材を支持できるだけの耐熱性や強度を有する材料として、鉄やステンレス等の金属材料が良いと考えられる。このとき挟持部は、受熱部材から受けた熱を柱部に伝えるか、外気に放つことで逃がしてしまう。これを最小限に抑えるには、挟持部の体積をなるべく減らして貯蔵できる熱容量を少なくし、さらに柱部の断面積をなるべく狭くして、挟持部から熱が移動し難くすることが好ましい。
2つ目について、第1の治具と第2の治具は近接しており、この第2の治具は冷却部材と接していることから温度が低く、第1の治具と比べると温度差が大きい。仮に第1の治具が第2の治具にいずれかの領域で接触すると、その接触領域で大きな熱の移動が生じる。すなわち、第1の治具から見れば、熱が奪われることになるため、熱電変換モジュールの高温側に伝える熱が失われることになる。一方で第2の治具から見れば、熱を受けて水冷部材を温めることになり、熱電変換モジュールの低温面を冷却する能力を減じさせることになる。そのため、第1の治具と第2の治具は、接触する領域を可能な限り小さくすることが好ましく、さらに接触していない、すなわち非接触であることが望ましい。
(Avoiding heat loss from the first jig to the second jig)
In order to transfer the heat received by the heat receiving member to the thermoelectric conversion module, it is desirable to suppress the heat loss at the following two points. The first is the heat that escapes from the heat receiving member to the first jig, and the second is the heat that escapes from the first jig to other members.
First, regarding the first jig, it is considered that a metal material such as iron or stainless steel is preferable as a material having heat resistance and strength sufficient to support a heat receiving member in a high temperature environment. At this time, the sandwiching portion releases the heat received from the heat receiving member to the pillar portion or by releasing it to the outside air. In order to minimize this, it is preferable to reduce the volume of the holding portion as much as possible to reduce the heat capacity that can be stored, and further to make the cross-sectional area of the pillar portion as narrow as possible to make it difficult for heat to transfer from the holding portion.
Regarding the second, the first jig and the second jig are close to each other, and since this second jig is in contact with the cooling member, the temperature is low, and the temperature is lower than that of the first jig. The difference is large. If the first jig comes into contact with the second jig in any region, a large heat transfer occurs in the contact region. That is, when viewed from the first jig, heat is taken away, so that the heat transferred to the high temperature side of the thermoelectric conversion module is lost. On the other hand, when viewed from the second jig, the water cooling member is heated by receiving heat, which reduces the ability to cool the low temperature surface of the thermoelectric conversion module. Therefore, it is preferable that the contact area between the first jig and the second jig is as small as possible, and it is desirable that the first jig and the second jig are not in contact with each other, that is, they are not in contact with each other.

このことを更に詳しく説明する。第1の治具と第2の治具が接する可能性のある部分は、第1の治具の柱部と第2の治具の柱部との間、または第1の治具の締結部と第2の治具の締結部との間である。柱部間の接触を避ける方法として、柱部の本数や太さ、各柱部の中心線を結んだ直径、取り付け角度等を変えても良い。締結部間の接触を避ける方法としては、第2の治具の柱部の長さを調整しても良い。
締結部間の接触を避ける方法について、図5を用いて説明する。第1の治具の締結部の外面53aと第2の治具の締結部の内面63aの間に隙間110を設けるよう第2の治具の柱を長くする。このとき第1の治具50を外殻部材40に締結するためのボルト501が、第2の治具60に干渉することを避けるため、第2の治具の締結部に逃げ穴63bを設けても良い。また、第2の治具60を外殻部材40に締結するためのボルト601が第1の治具の締結部53に干渉することを避けるため、その締結部の直径をボルト601が接触しない位置まで小さくして良い。
ここで、第1の治具の締結部の外面53aから第2の治具の締結部の内面63aまでの隙間110について、熱膨張率の観点から次のように計算する。計算式はΔL=α(T2-T1)Lを用いる。Lは熱膨張前の部材の長さ(mm)、T2-T1は温度変化(℃)、ΔL(デルタL)は熱膨張量(mm)を表す。例えば第1の治具の柱部と第2の治具の柱部の長さがそれぞれ100mmで、第2の治具は温度変化しないが、第1の治具は300℃温度上昇する場合を考える。材質は鉄またはステンレスの場合、熱膨張係数αは多く見積もっても17.8×10-6/℃程度であるため、計算結果はΔL=0.54mmとなる。熱膨張による、第1の治具の締結部と第2の治具の締結部との干渉を防ぐため、これ以上の隙間を空けることが好ましい。つまり、上記の例において、隙間110は、柱の長さに対して0.54%程度熱膨張する可能性が考えられ、このことから1%以上にすることが好ましい。一方で、隙間110の上限は、第2の治具の締結ボルト601が長く、その先端が外殻部材のフランジ部に締結する長さが短くなることを防ぎ、熱電発電モジュールを十分に隣接部材に密着させられるため、隙間110は5%以下が好ましい。第1の治具の締結部の外径から第2の治具の締結ボルトまでの距離111も、同様に熱膨張前の長さの1%以上5%以下とすることが好ましい。
以上の構成により、第1の治具が第2の治具と非接触としてもよい。
This will be described in more detail. The part where the first jig and the second jig may come into contact is between the pillar part of the first jig and the pillar part of the second jig, or the fastening part of the first jig. And between the fastening part of the second jig. As a method of avoiding contact between the pillars, the number and thickness of the pillars, the diameter connecting the center lines of each pillar, the mounting angle, and the like may be changed. As a method of avoiding contact between the fastening portions, the length of the pillar portion of the second jig may be adjusted.
A method of avoiding contact between the fastening portions will be described with reference to FIG. The pillar of the second jig is lengthened so as to provide a gap 110 between the outer surface 53a of the fastening portion of the first jig and the inner surface 63a of the fastening portion of the second jig. At this time, in order to prevent the bolt 501 for fastening the first jig 50 to the outer shell member 40 from interfering with the second jig 60, a relief hole 63b is provided at the fastening portion of the second jig. May be. Further, in order to prevent the bolt 601 for fastening the second jig 60 to the outer shell member 40 from interfering with the fastening portion 53 of the first jig, the diameter of the fastening portion is set at a position where the bolt 601 does not contact. You can make it as small as possible.
Here, the gap 110 from the outer surface 53a of the fastening portion of the first jig to the inner surface 63a of the fastening portion of the second jig is calculated as follows from the viewpoint of the thermal expansion rate. The calculation formula uses ΔL = α (T2-T1) L. L represents the length of the member before thermal expansion (mm), T2-T1 represents the temperature change (° C), and ΔL (delta L) represents the amount of thermal expansion (mm). For example, if the length of the pillar of the first jig and the pillar of the second jig are 100 mm each, the temperature of the second jig does not change, but the temperature of the first jig rises by 300 ° C. think. When the material is iron or stainless steel, the coefficient of thermal expansion α is estimated to be about 17.8 × 10 -6 / ° C, so the calculation result is ΔL = 0.54 mm. In order to prevent interference between the fastening portion of the first jig and the fastening portion of the second jig due to thermal expansion, it is preferable to leave a larger gap. That is, in the above example, the gap 110 may be thermally expanded by about 0.54% with respect to the length of the column, and from this, it is preferable to make it 1% or more. On the other hand, the upper limit of the gap 110 prevents the fastening bolt 601 of the second jig from being long and the tip of the bolt 601 being fastened to the flange of the outer shell member from being shortened, so that the thermoelectric power generation module can be sufficiently adjacent to the member. The gap 110 is preferably 5% or less because it can be brought into close contact with the water. Similarly, the distance 111 from the outer diameter of the fastening portion of the first jig to the fastening bolt of the second jig is preferably 1% or more and 5% or less of the length before thermal expansion.
With the above configuration, the first jig may be non-contact with the second jig.

(封止部材)
封止部材について図5を用いて説明する。封止部材70は、受熱部材の平坦面部31と外殻部材の引っ掛かり部の内面42aとの間から高温流体の漏れを防止するためにこれらの間に挟むように配置される。封止部材には、前述の外殻部材をフランジに取り付ける時と同様、一定の圧力に耐え、気密性を保つことが求められるため、ガスケット、もしくはOリングを使うことが望ましい。特にOリングは断面が円形で隣接する部材と点で接するため、熱移動が少ない。そのため、受熱部材が受けた熱を外殻部材に逃がさないようするためには、Oリングを使用する方が、より好ましい。
Oリングは、耐熱性を考慮して、金属製のメタルOリングで断面は中空が好ましい。材質はステンレスやインコネル、インコロイ等がある。メタルOリングのうち、約7.0MPaを超える高圧な環境で使用する場合は、バランス用の孔を内径側(内圧用)または外径側(外圧用)に備えたものを使用すると尚良い。また、気密性や耐食性を高めるために銀、ニッケル、銅、金等でメッキをしても良い。
メタルOリングを使用する場合、外殻部材の引っ掛かり部の内面に溝43を備えることが好ましい。溝の寸法は特に定めの無い時はJIS(日本産業規格)に準拠するのが一般的である。メタルOリングは、ゴム製より変形しにくいため、気密性を確保するために、Oリングが接する面、すなわちコの字型の溝43の底面と、受熱部材の平坦面部31を平坦にするのが良く、例えば算術平均粗さRaで1.6μm以下とすることが好ましい。これにより、Oリングに与える押し付け力とその反発力で密着させることができる。
(Sealing member)
The sealing member will be described with reference to FIG. The sealing member 70 is arranged so as to be sandwiched between the flat surface portion 31 of the heat receiving member and the inner surface 42a of the catching portion of the outer shell member in order to prevent leakage of the high temperature fluid. It is desirable to use a gasket or an O-ring for the sealing member because it is required to withstand a certain pressure and maintain airtightness as in the case of attaching the outer shell member to the flange. In particular, the O-ring has a circular cross section and is in contact with an adjacent member at a point, so that heat transfer is small. Therefore, it is more preferable to use an O-ring in order to prevent the heat received by the heat receiving member from escaping to the outer shell member.
The O-ring is preferably a metal O-ring made of metal and has a hollow cross section in consideration of heat resistance. Materials include stainless steel, Inconel, and Incoloy. When using a metal O-ring in a high-pressure environment exceeding about 7.0 MPa, it is better to use a metal O-ring with a hole for balance on the inner diameter side (for internal pressure) or the outer diameter side (for external pressure). Further, in order to improve airtightness and corrosion resistance, plating may be performed with silver, nickel, copper, gold or the like.
When using a metal O-ring, it is preferable to provide a groove 43 on the inner surface of the hooked portion of the outer shell member. Unless otherwise specified, the groove dimensions generally comply with JIS (Japanese Industrial Standards). Since the metal O-ring is less likely to be deformed than the rubber one, in order to ensure airtightness, the surface that the O-ring contacts, that is, the bottom surface of the U-shaped groove 43 and the flat surface portion 31 of the heat receiving member are flattened. For example, the arithmetic average roughness Ra is preferably 1.6 μm or less. As a result, the pressing force applied to the O-ring and its repulsive force can be brought into close contact with each other.

以下に実施例を説明する。
(熱電変換装置の構成)
熱電変換素子の材料はスクッテルダイト系で、図1のように素子を32対連結した熱電変換モジュールを使用した。冷却部材は、図2に示すように、銅製の円筒形の冷却板に水路が形成されたものを使用した。熱電変換モジュールと一体になるよう、ステンレス製のキャップで覆い、キャップの外周を冷却部材と溶接して真空封止した。受熱部材は銅で、図3に示すように、円板状の平坦面部に板状のフィンを9枚垂直に立てた形状とした。フィン部は平坦面部に貫通しない程度の深さに掘った溝に圧入した。フィン部一枚の板厚は5mm、板の長さは90mm、幅は円の中心を通る板が一番大きく、円の中心から離れるに従って小さくなり、26~69mmとした。外殻部材は、図4に示すような形状のステンレス製で、肉厚5mmの筒に、板厚6mmの引っ掛かり部を溶接した。引っ掛かり部の溝の底面は、算術平均粗さRaで0.8μmとした。取付配管と外殻部材との間にガスケットを用いた。第1の治具は、図7に示すような形状で、柱部は4本あり、材質はステンレスとした。第2の治具は、押圧部の材質は鉄とし、柱の数を12本として、その他は図8と同様の構成とした。第1の治具と第2の治具の柱部は、干渉しないように配置、すなわち非接触とした。この時、第1の治具の柱部52が、第2の治具の押圧部61に干渉するのを避けるため、押圧部に切り欠き65を設けた。また、第1の治具の締結部から第2の治具の締結部までの隙間110は距離2mmとし、第1の治具の締結部から締結ボルト601までの距離111は5mmとした。封止部材は、中空で円形断面の外径がφ2.4mmで、材質が321鋼のメタルOリングを使用した。外殻部材の引っ掛かり部には、JIS規格に則り前記のメタルOリングのサイズに合わせた溝を設けた。
Examples will be described below.
(Configuration of thermoelectric converter)
The material of the thermoelectric conversion element is a scutterdite system, and a thermoelectric conversion module in which 32 pairs of elements are connected as shown in Fig. 1 was used. As shown in FIG. 2, the cooling member used was a copper cylindrical cooling plate having a water channel formed therein. It was covered with a stainless steel cap so as to be integrated with the thermoelectric conversion module, and the outer circumference of the cap was welded to a cooling member and vacuum-sealed. The heat receiving member is copper, and as shown in Fig. 3, the shape is such that nine plate-shaped fins are vertically erected on a disk-shaped flat surface. The fin portion was press-fitted into a groove dug to a depth that did not penetrate the flat surface portion. The thickness of one fin part is 5 mm, the length of the plate is 90 mm, the width is the largest in the plate passing through the center of the circle, and becomes smaller as it goes away from the center of the circle, and is 26 to 69 mm. The outer shell member is made of stainless steel having the shape shown in Fig. 4, and a hooked part with a plate thickness of 6 mm is welded to a cylinder with a wall thickness of 5 mm. The bottom surface of the groove of the hooked part was set to 0.8 μm in arithmetic average roughness Ra. A gasket was used between the mounting pipe and the outer shell member. The first jig had the shape shown in Fig. 7, had four pillars, and was made of stainless steel. In the second jig, the material of the pressing portion was iron, the number of pillars was 12, and the other parts had the same configuration as in FIG. The pillars of the first jig and the second jig were arranged so as not to interfere with each other, that is, they were not in contact with each other. At this time, in order to prevent the pillar portion 52 of the first jig from interfering with the pressing portion 61 of the second jig, a notch 65 is provided in the pressing portion. Further, the gap 110 from the fastening portion of the first jig to the fastening portion of the second jig is set to a distance of 2 mm, and the distance 111 from the fastening portion of the first jig to the fastening bolt 601 is set to 5 mm. The sealing member used was a metal O-ring that was hollow, had a circular cross section with an outer diameter of φ2.4 mm, and was made of 321 steel. A groove matching the size of the metal O-ring is provided in the hooked portion of the outer shell member in accordance with JIS standards.

(組立て手順)
図9は、熱電変換装置を構成する各部材の組み立て順を分かりやすくするため、分解して一列に並べた図である。組み立ては3段階で行った。第1段階は、外殻部材から第1の治具までの組み立てである。外殻部材40の中に、封止部材70、受熱部材30、第1の治具50の順に配置していき、第1の治具50を外殻部材40にボルト締結することで、これらを一体に拘束した。第2段階は、さらに外殻部材40の筒の中に、熱電モジュール10と冷却部材20を一体化したものを挿入した後、第2の治具60を配置し、第2の治具60を外殻部材40にボルト締結することで、熱電変換装置を組み上げた。第3段階は、配管フランジのフランジにガスケットを介して外殻部材を取り付けた。この時、フィン部と、外殻部材の一部と、が高温流体に突出していた。その後、冷却部材20に水配管を接続し、熱電変換モジュール10に端子を介して電気配線を接続した。
(Assembly procedure)
FIG. 9 is a diagram in which the members constituting the thermoelectric conversion device are disassembled and arranged in a row in order to make it easy to understand the assembly order. Assembly was done in 3 steps. The first stage is the assembly from the outer shell member to the first jig. The sealing member 70, the heat receiving member 30, and the first jig 50 are arranged in this order in the outer shell member 40, and these are fastened to the outer shell member 40 by bolting the first jig 50. I restrained it all together. In the second stage, after inserting the thermoelectric module 10 and the cooling member 20 into the cylinder of the outer shell member 40, the second jig 60 is placed and the second jig 60 is placed. A thermoelectric conversion device was assembled by bolting to the outer shell member 40. In the third stage, the outer shell member was attached to the flange of the piping flange via a gasket. At this time, the fin portion and a part of the outer shell member protruded into the high temperature fluid. After that, a water pipe was connected to the cooling member 20, and an electric wiring was connected to the thermoelectric conversion module 10 via a terminal.

(試験条件と結果)
内燃機関の排気を高温流体とする主配管から枝分かれした取付配管に熱電変換装置を設置し、熱電変換モジュールを発電させる試験を行った。高温流体の温度は、293.0℃、340.5℃、387.1℃、443.0℃で、風速および内圧は、温度の上昇に比例して上昇した。K熱電対を4カ所に設置し、それぞれ高温流体の温度、受熱部材のフィン部の中間位置の温度、受熱部材の平坦面部の温度、冷却部材の温度を測定した。水は別置の冷却設備から、設定温度30℃の循環水を流した。試験中、熱電変換モジュールの高温面と低温面の温度を直接測定することはできないため、受熱部材の平坦面部の温度を、熱電変換モジュールの高温面温度と仮定し、冷却部材の温度を熱電変換モジュールの低温面温度と仮定し、これらの温度の差を簡易ΔT(デルタT)として求めた。
結果を図10に示す。横軸のガス温度(高温流体の温度)に対して、フィン部の温度が非常に近い値を示した。ガス温度を基準にすると、平坦面部への熱損失は約8.5%で、冷却板の温度上昇率は約4.8%であった。その結果、温度差ΔT(デルタT)は、理想値(=ガス温度-冷却設定温度)に比べ約9.6%の損失に抑えられた。冷却板の温度上昇よりも平坦面部の温度低下が大きい原因は、この差分の熱が、外気に放出されたためと推定する。ガス漏れに関しては、封止部材からの漏れは発生しなかった。
これにより、熱電変換モジュールを取り付けたことによる炉内外の圧力差による流体の流出を防止し、かつ、熱源の流体から熱を集めやすく、さらに熱の損失を小さくできた。
(Test conditions and results)
A thermoelectric conversion device was installed in the mounting piping branched from the main piping that uses the exhaust gas of the internal combustion engine as a high-temperature fluid, and a test was conducted to generate electricity from the thermoelectric conversion module. The temperature of the hot fluid was 293.0 ° C, 340.5 ° C, 387.1 ° C and 443.0 ° C, and the wind speed and internal pressure increased in proportion to the increase in temperature. K thermocouples were installed at four locations, and the temperature of the high-temperature fluid, the temperature at the intermediate position of the fins of the heat-receiving member, the temperature of the flat surface of the heat-receiving member, and the temperature of the cooling member were measured, respectively. As for water, circulating water with a set temperature of 30 ° C was flowed from a separately installed cooling facility. Since it is not possible to directly measure the temperature of the hot and cold surfaces of the thermoelectric conversion module during the test, the temperature of the flat surface of the heat receiving member is assumed to be the temperature of the high temperature surface of the thermoelectric conversion module, and the temperature of the cooling member is thermoelectrically converted. Assuming the low temperature of the module, the difference between these temperatures was calculated as a simple ΔT (delta T).
The results are shown in FIG. The temperature of the fin part showed a value very close to the gas temperature (temperature of high temperature fluid) on the horizontal axis. Based on the gas temperature, the heat loss to the flat surface was about 8.5%, and the temperature rise rate of the cooling plate was about 4.8%. As a result, the temperature difference ΔT (delta T) was suppressed to a loss of about 9.6% compared to the ideal value (= gas temperature-cooling set temperature). It is presumed that the reason why the temperature drop on the flat surface is larger than the temperature rise on the cooling plate is that the heat of this difference is released to the outside air. Regarding gas leakage, no leakage occurred from the sealing member.
As a result, it was possible to prevent the outflow of fluid due to the pressure difference between the inside and outside of the furnace due to the installation of the thermoelectric conversion module, to easily collect heat from the fluid of the heat source, and to reduce the heat loss.

10:熱電変換モジュール
11:P型素子
12:N型素子
13:高温側電極
14:低温側電極
15:絶縁基板
16:電極の終端
20:冷却部材
22:キャップ
23:冷媒配管
24:端子
30:受熱部材
31:平坦面部
32:フィン部
40:外殻部材
41:筒
41a:筒の内壁
42:引っ掛かり部
42a:引っ掛かり部の内面
42b:引っ掛かり部の端面
43:溝
44:フランジ
45:流体淀み空間
50:第1の治具
51:挟持部
52:柱部
53:締結部
53a:締結部の外面
60:第2の治具
61:押圧部
62:柱部
63:締結部
63a:締結部の内面
63b:逃げ穴
64:段付き部
65:切り欠き
70:封止部材
100:主配管
100a:主配管の内壁
101:取付配管
102:フランジ
110:第1の治具の締結部と第2の治具の締結部の隙間
111:第1の治具の締結部から第2の治具を外殻部材に締結するためのボルトまでの距離
501:締結ボルト
601:締結ボルト

10: Thermoelectric conversion module
11: P-type element
12: N-type element
13: High temperature side electrode
14: Low temperature side electrode
15: Insulated substrate
16: End of electrode
20: Cooling member
22: Cap
23: Refrigerant piping
24: Terminal
30: Heat receiving member
31: Flat surface
32: Fin part
40: Outer shell member
41: Cylinder
41a: Inner wall of the cylinder
42: Hooking part
42a: Inner surface of the hook
42b: End face of the hook
43: Groove
44: Flange
45: Fluid stagnation space
50: First jig
51: Holding part
52: Pillar part
53: Fastening part
53a: Outer surface of fastening part
60: Second jig
61: Pressing part
62: Pillar part
63: Fastening part
63a: Inner surface of fastening part
63b: escape hole
64: Stepped part
65: Notch
70: Sealing member
100: Main piping
100a: Inner wall of main pipe
101: Mounting piping
102: Flange
110: Gap between the fastening part of the first jig and the fastening part of the second jig
111: Distance from the fastening part of the first jig to the bolt for fastening the second jig to the outer shell member.
501: Fastening bolt
601: Fastening bolt

Claims (5)

熱電変換モジュールと、
平坦面部と該平坦面部の一方の面に立設されたフィン部とを有し、前記熱電変換モジュールの一方側に前記平坦面部の他方の面を密着して配置された受熱部材と、
前記熱電変換モジュールの他方側に密着して配置された冷却部材と、
前記受熱部材と、前記熱電変換モジュールと、前記冷却部材と、を囲うように配置された筒状の外殻部材と、
前記受熱部材の平坦面部の端部を前記外殻部材との間に、前記受熱部材の平坦面部の他方の面に垂直な方向から、挟んで支持する第1の治具と、
前記冷却部材を挟んで前記熱電変換モジュールを支持する第2の治具と、
前記受熱部材の平坦面部と前記外殻部材との間に配置された封止部材と、
を有することを特徴とする熱電変換装置。
Thermoelectric conversion module and
A heat receiving member having a flat surface portion and fin portions erected on one surface of the flat surface portion, and having the other surface of the flat surface portion closely arranged on one side of the thermoelectric conversion module.
A cooling member arranged in close contact with the other side of the thermoelectric conversion module, and
A tubular outer shell member arranged so as to surround the heat receiving member, the thermoelectric conversion module, and the cooling member.
A first jig that sandwiches and supports the end of the flat surface portion of the heat receiving member between the outer shell member and the outer shell member from a direction perpendicular to the other surface of the flat surface portion of the heat receiving member.
A second jig that supports the thermoelectric conversion module by sandwiching the cooling member, and
A sealing member arranged between the flat surface portion of the heat receiving member and the outer shell member, and
A thermoelectric conversion device characterized by having.
前記外殻部材が、前記封止部材が配置される位置に、溝を有することを特徴とする請求項1に記載の熱電変換装置。 The thermoelectric conversion device according to claim 1, wherein the outer shell member has a groove at a position where the sealing member is arranged. 前記第1の治具は、前記第2の治具と非接触であることを特徴とする請求項1又は請求項2に記載の熱電変換装置。 The thermoelectric conversion device according to claim 1 or 2, wherein the first jig is not in contact with the second jig. 前記第1の治具は、前記封止部材を介して前記受熱部材の平坦面部の端部を前記外殻部材に、前記受熱部材の平坦面部の他方の面に垂直な方向から、挟んで支持する挟持部と、前記挟持部を支持する柱部と、を有することを特徴とする請求項1から請求項3のいずれか一項に記載の熱電変換装置。 The first jig supports the heat receiving member by sandwiching and supporting the end portion of the flat surface portion of the heat receiving member with the outer shell member via the sealing member from a direction perpendicular to the other surface of the flat surface portion of the heat receiving member. The thermoelectric conversion device according to any one of claims 1 to 3, wherein the holding portion and the pillar portion supporting the holding portion are provided. 前記フィン部と、外殻部材の一部と、が熱源流体に突出していることを特徴とする請求項1から請求項4のいずれか一項に記載の熱電変換装置。 The thermoelectric conversion device according to any one of claims 1 to 4, wherein the fin portion and a part of the outer shell member project to the heat source fluid.
JP2020149066A 2020-09-04 2020-09-04 Thermoelectric conversion device Pending JP2022043666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020149066A JP2022043666A (en) 2020-09-04 2020-09-04 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020149066A JP2022043666A (en) 2020-09-04 2020-09-04 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2022043666A true JP2022043666A (en) 2022-03-16

Family

ID=80668585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020149066A Pending JP2022043666A (en) 2020-09-04 2020-09-04 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2022043666A (en)

Similar Documents

Publication Publication Date Title
US9003784B2 (en) Electrical conductor, thermoelectric generator and motor vehicle
JP2775410B2 (en) Thermoelectric module
US9293679B2 (en) Thermoelectric module for a thermoelectric generator of a vehicle and vehicle having thermoelectric modules
US10777725B2 (en) Thermoelectric generator
JPH10234194A (en) Waste-heat power generation apparatus
EP3579287B1 (en) Temperature difference power generation apparatus and measurement system
JP2017220492A (en) Thermoelectric generator
JP2015140713A (en) Thermoelectric generation device
JP2022043666A (en) Thermoelectric conversion device
US9385290B2 (en) Assembly comprising a thermoelectric element and a means for electrically connecting said thermoelectric element, module and thermoelectric device comprising such an assembly
US11957056B2 (en) Thermoelectric conversion unit
JP4706983B2 (en) Heating device including thermoelectric module
JP2009272327A (en) Thermoelectric conversion system
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
JP2003348867A (en) Waste heat power generator
JP2015164391A (en) Thermoelectric power generator
JP5988827B2 (en) Thermoelectric conversion module
JP5049533B2 (en) Thermoelectric converter
US20190035998A1 (en) Electrical connector for connecting thermoelectric elements and absorbing the stress thereof
JP6149754B2 (en) Thermoelectric generator
RU2736734C1 (en) Thermoelectric battery
JPH09199764A (en) Thermoelectric generator module
US20220238778A1 (en) Tubular heat exchanger with thermoelectric power generation function and its manufacturing method and thermoelectric power generation device using the same
JP2000341977A (en) Waste heat power generator
KR20110130550A (en) Thermoelectric generator using exhaust heat and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507