JP2003348867A - Waste heat power generator - Google Patents

Waste heat power generator

Info

Publication number
JP2003348867A
JP2003348867A JP2002149705A JP2002149705A JP2003348867A JP 2003348867 A JP2003348867 A JP 2003348867A JP 2002149705 A JP2002149705 A JP 2002149705A JP 2002149705 A JP2002149705 A JP 2002149705A JP 2003348867 A JP2003348867 A JP 2003348867A
Authority
JP
Japan
Prior art keywords
heat
exhaust
power generator
thermoelectric element
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002149705A
Other languages
Japanese (ja)
Other versions
JP4082090B2 (en
Inventor
Kiyohito Murata
清仁 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002149705A priority Critical patent/JP4082090B2/en
Publication of JP2003348867A publication Critical patent/JP2003348867A/en
Application granted granted Critical
Publication of JP4082090B2 publication Critical patent/JP4082090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat power generator which improves power generating efficiency by the improvement in heat resistance and thermal conductivity, and which also improves the strength and workability. <P>SOLUTION: The waste heat power generator transfers a heat energy of an exhaust gas to a thermoelectric element by heat exchange fins disposed in the exhaust passage of an internal combustion engine, and converts the energy into electric power. In the power generator, the fins 11 having high heat conductivity of ceramics or the like are fixed by a structural member 2 having heat resistance, brought into contact, and sealed by a coating material 3 having high heat conductivity from the circumference, to efficiently introduce the heat of the exhaust gas to the thermoelectric element 5 via the fins 11, the member 3 and the insulator 4. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排熱エ
ネルギーを電力に変換して回収する排熱発電装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat power generator for converting exhaust heat energy of an internal combustion engine into electric power and recovering the electric power.

【0002】[0002]

【従来の技術】内燃機関からは高温の排ガスが排出され
るが、この熱エネルギーを回収する技術として特開平1
0−234194号に開示されている技術がある。この
技術は、排気管に熱電変換モジュール(熱電素子)の高
温端面を密着配置し、低温端面を冷却配管に密着配置す
ることで、排気ガスと冷却水との温度差により発電を行
うものである。
2. Description of the Related Art A high-temperature exhaust gas is emitted from an internal combustion engine.
There is a technique disclosed in Japanese Patent Application No. 0-234194. In this technology, a high-temperature end face of a thermoelectric conversion module (thermoelectric element) is closely attached to an exhaust pipe, and a low-temperature end face is closely attached to a cooling pipe, so that power is generated by a temperature difference between exhaust gas and cooling water. .

【0003】[0003]

【発明が解決しようとする課題】熱電素子では、素子の
高温端面と低温端面との温度差が大きいほど発電性能が
向上する。そのためには、素子の高温端面側に排気の熱
を導く熱伝導部材(例えば、フィン)として高熱伝達
率、高熱伝導率の部材を用いて広い表面積を確保すると
ともに、排気温度の高い位置に配置する必要がある。
In a thermoelectric element, the power generation performance improves as the temperature difference between the high-temperature end face and the low-temperature end face of the element increases. For this purpose, a high heat transfer and high heat conductivity member is used as a heat conducting member (for example, a fin) for guiding the heat of the exhaust to the high temperature end face side of the element, and a large surface area is secured, and the heat dissipating member is disposed at a position where the exhaust temperature is high There is a need to.

【0004】高熱伝達率、高熱伝導率の部材、例えばア
ルミ等では、耐熱性が十分でないので高温の排気ガスを
導くことができない。また、セラミックスを用いると耐
熱性は確保できるが、加工性、強度の面から配管をセラ
ミックスのみで構成することは困難である。反対に、強
度、加工性のよいSUS等は熱伝達率、熱伝導率がアル
ミ等に比べて低いため、これを熱伝導部材とした場合、
素子の高温端面側の温度を上げることが困難であり、発
電効率が低下する。両者を組み合わせて形成する場合、
熱膨張率が異なるため、歪みが生じ、構成部品間での接
触熱抵抗が増大し、十分な伝熱特性が得られない。
[0004] A member having a high heat transfer coefficient and a high heat conductivity, for example, aluminum or the like cannot guide high-temperature exhaust gas because of insufficient heat resistance. In addition, heat resistance can be ensured by using ceramics, but it is difficult to form a pipe using only ceramics in terms of workability and strength. Conversely, SUS and the like with good strength and workability have a lower heat transfer coefficient and heat conductivity than aluminum and the like.
It is difficult to raise the temperature on the high-temperature end face side of the element, and the power generation efficiency decreases. When forming by combining both,
Since the thermal expansion coefficients are different, distortion occurs, the contact thermal resistance between the components increases, and sufficient heat transfer characteristics cannot be obtained.

【0005】そこで本発明は、強度、加工性、発電効率
を向上させた排熱発電装置を提供することを課題とす
る。
[0005] Therefore, an object of the present invention is to provide a waste heat power generator with improved strength, workability, and power generation efficiency.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
本発明に係る排熱発電装置は、内燃機関の排気通路内に
配置した熱交換フィンによって排気の熱エネルギーを熱
電素子へと伝導させ電力に変換する排熱発電装置におい
て、この熱交換フィンはセラミックスからなり、耐熱金
属製の取り付け部材により取り付けられるとともに、熱
交換フィンと取り付け部材を外側から封止するとともに
前記熱交換フィンの外側表面に密着する高熱伝導性の被
覆部材を備えているものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an exhaust heat power generation apparatus according to the present invention transmits heat energy of exhaust gas to a thermoelectric element by heat exchange fins arranged in an exhaust passage of an internal combustion engine. In the waste heat power generation device, the heat exchange fins are made of ceramics, are attached by a heat-resistant metal attachment member, seal the heat exchange fins and the attachment member from the outside, and attach the heat exchange fins to the outer surface of the heat exchange fins. It is provided with a high thermal conductive coating member that is in close contact.

【0007】このように構成することで、熱交換フィン
の耐熱性、熱伝達特性を向上させるとともに、配管部分
の加工性が向上する。さらに、フィンに密着する被覆部
材で外側から封止することで、シール性を確保してい
る。また、この被覆部材として高熱伝導性の部材を用い
ることで、排ガスの熱をフィンと被覆部材を介して効率
的に熱電素子へと導くことができ、発電効率を向上させ
ることができる。
With this configuration, the heat resistance and heat transfer characteristics of the heat exchange fins are improved, and the workability of the pipe portion is improved. Furthermore, sealing is ensured by sealing from the outside with a covering member that is in close contact with the fin. Further, by using a member having high thermal conductivity as the covering member, the heat of the exhaust gas can be efficiently guided to the thermoelectric element via the fins and the covering member, and the power generation efficiency can be improved.

【0008】この被覆部材と熱電素子との間に流動性を
有するとともに、熱抵抗の小さい部材が封入された緩衝
材が配置されていることが好ましい。あるいは、この緩
衝材を上記被覆部材に代えて用いてもよい。流動性を有
する部材が封入された緩衝材を用いることで、構成部品
の熱膨張率に差がある場合でも歪みの発生を抑制し、熱
抵抗の増大を抑制して、熱電素子へ排気の熱エネルギー
を効率よく導くことができる。
[0008] It is preferable that a buffer material having fluidity and having a small thermal resistance enclosed therein is disposed between the covering member and the thermoelectric element. Alternatively, this cushioning material may be used in place of the covering member. By using a buffer material in which a fluid member is sealed, even if there is a difference in the coefficient of thermal expansion of the components, the generation of distortion is suppressed, the increase in thermal resistance is suppressed, and the heat of the exhaust gas is supplied to the thermoelectric element. Energy can be efficiently guided.

【0009】[0009]

【発明の実施の形態】以下、添付図面を参照して本発明
の好適な実施の形態について詳細に説明する。説明の理
解を容易にするため、各図面において同一の構成要素に
対しては可能な限り同一の参照番号を附し、重複する説
明は省略する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components are denoted by the same reference numerals as much as possible in each drawing, and redundant description is omitted.

【0010】図1は、本発明に係る排熱発電装置の外観
斜視図であり、図2はそのII−II線断面図である。この
排熱発電装置100は図示していないエンジンの排気系
に配置されるものであって、好ましくは三元触媒等の排
気浄化装置より上流側のできるだけエンジンに近接した
位置に配置される。
FIG. 1 is an external perspective view of an exhaust heat power generator according to the present invention, and FIG. 2 is a sectional view taken along line II-II. The exhaust heat power generator 100 is disposed in an exhaust system of an engine (not shown), and is preferably disposed at a position as close to the engine as possible on the upstream side of an exhaust gas purification device such as a three-way catalyst.

【0011】排熱発電装置100は中央に断面が略矩形
の排気通路100aが配置されている。この排気通路1
00aの外殻は、SUS等の耐熱金属からなる構造部材
2により形成されている。この構造部材2の天井面と床
面には、それぞれ図3、図4に示されるように排ガス流
動方向に沿って細長い矩形状の孔2aが複数個、所定の
間隔で配置されている。排気通路100a内には、上下
から突出するフィン11が配置されている。フィン11
は、図5に示されるように基板10と一体成形されてフ
ィン構造体1を形成しており、例えば、AlN、SiC
等の高熱伝導性のセラミックスからなる。そして、前述
の構造部材2の孔2aにそれぞれのフィン11が差し込
まれて排気通路100a内に配置されている。フィン1
1は、図に示されるように排ガスの流動方向に沿って形
成されていると、排ガスとの接触面積を確保しつつ、そ
の流動を阻害することがないため、高い熱伝達係数を確
保できるため好ましい。
The exhaust heat generator 100 has an exhaust passage 100a having a substantially rectangular cross section at the center. This exhaust passage 1
The outer shell of 00a is formed by a structural member 2 made of a heat-resistant metal such as SUS. On the ceiling surface and the floor surface of the structural member 2, a plurality of elongated rectangular holes 2a are arranged at predetermined intervals along the exhaust gas flow direction as shown in FIGS. Fins 11 projecting from above and below are arranged in the exhaust passage 100a. Fin 11
Is formed integrally with the substrate 10 to form the fin structure 1 as shown in FIG. 5, for example, AlN, SiC
Made of ceramics with high thermal conductivity. The respective fins 11 are inserted into the holes 2a of the structural member 2 described above, and are arranged in the exhaust passage 100a. Fin 1
1 is formed along the flow direction of the exhaust gas as shown in the figure, while ensuring a contact area with the exhaust gas and not obstructing the flow, and thus can secure a high heat transfer coefficient. preferable.

【0012】フィン構造体1の周囲には、アルミ製の被
覆部材3が密着配置される。この被覆部材3は、フィン
構造体1を構造部材2に取り付けた後でアルミを鋳込む
ことで形成され、フィン構造体1が取り付けられた構造
部材2を外側から封止している。被覆部材3の外側に
は、AlN、Al23等の薄板状の絶縁体4をはさんで
熱電素子5が配置されており、熱電素子5の外側には、
絶縁体4と同様の薄板状の絶縁体6をはさんで内部に冷
却水を流通させる冷却配管7が配置されている。この冷
却配管7は例えばアルミ製である。冷却配管7の外側に
はケーシング8が配置され、ボルト9によって締結され
ている。
Around the fin structure 1, an aluminum covering member 3 is arranged in close contact. The covering member 3 is formed by casting aluminum after attaching the fin structure 1 to the structural member 2, and seals the structural member 2 to which the fin structure 1 is attached from the outside. Outside the covering member 3, a thermoelectric element 5 is disposed with a thin plate-shaped insulator 4 such as AlN or Al 2 O 3 interposed therebetween, and outside the thermoelectric element 5,
A cooling pipe 7 for circulating cooling water is disposed inside a thin plate-like insulator 6 similar to the insulator 4. The cooling pipe 7 is made of, for example, aluminum. A casing 8 is arranged outside the cooling pipe 7 and is fastened by bolts 9.

【0013】図5は、熱電素子5の構成を示す図であ
り、代表的なものとしてはBi2Te3等からなるp型と
n型の2種類の半導体50、51を複数個用意し、これ
らを電極52、53によって電気的には直列に、熱的に
は並列に配置することで、熱エネルギーと電気エネルギ
ーの変換を行うものである。
FIG. 5 is a diagram showing the structure of the thermoelectric element 5. As a typical example, a plurality of two types of semiconductors 50 and 51 of p-type and n-type made of Bi 2 Te 3 or the like are prepared. By arranging them electrically in series and thermally in parallel by the electrodes 52 and 53, the heat energy and the electric energy are converted.

【0014】次に、この排熱発電装置100の動作につ
いて説明する。排熱発電装置100の排気通路100a
には高温の排ガスが導入される。一方、冷却配管7に
は、エンジン冷却水が流通されている。
Next, the operation of the exhaust heat power generator 100 will be described. Exhaust passage 100a of exhaust heat power generator 100
A high-temperature exhaust gas is introduced into the tank. On the other hand, the engine cooling water flows through the cooling pipe 7.

【0015】排気通路100a内を流れる排ガスの熱
は、フィン11からフィン構造体1、被覆部材3、絶縁
体4を介して熱電素子5へと導かれる。熱電素子5の反
対の側は、絶縁体5、冷却配管7を介してエンジン冷却
水により冷却される。フィン構造体1、被覆部材3とし
て高熱伝導性の部材を用い、それぞれの部材を密着させ
ているので、熱抵抗が低く抑えられ、熱電素子5の両面
の温度差を大きくすることができ、発電効率を向上させ
ることができる。
The heat of the exhaust gas flowing in the exhaust passage 100a is guided from the fin 11 to the thermoelectric element 5 via the fin structure 1, the covering member 3, and the insulator 4. The opposite side of the thermoelectric element 5 is cooled by engine cooling water via the insulator 5 and the cooling pipe 7. Since a member having high thermal conductivity is used as the fin structure 1 and the covering member 3 and the members are adhered to each other, the thermal resistance can be suppressed low, and the temperature difference between both surfaces of the thermoelectric element 5 can be increased, and power generation can be performed. Efficiency can be improved.

【0016】本実施形態では、構造部材2に耐熱性のS
US等を用いることで、強度、耐久性が確保できる。こ
の構造部材2は熱伝導性が低いが、熱伝導性の高いセラ
ミックスからなるフィン11を構造部材2を介して排気
通路内に配置し、このフィン11から高熱伝導性の被覆
部材3を介して熱電素子5へと排気の熱を伝えることで
排気から熱電素子5への熱伝達を良好なものとしてい
る。また、フィン構造体1の構造は図5に示されるよう
に簡単な構造ですむため、形成が容易であり、また装置
自体の組み立ても容易で加工性が向上する。
In this embodiment, the structural member 2 is made of heat-resistant S
By using US or the like, strength and durability can be secured. The structural member 2 has a low thermal conductivity, but a fin 11 made of ceramics having a high thermal conductivity is arranged in the exhaust passage through the structural member 2 and is then separated from the fin 11 by a covering member 3 having a high thermal conductivity. By transmitting the heat of the exhaust to the thermoelectric element 5, the heat transfer from the exhaust to the thermoelectric element 5 is improved. Further, since the fin structure 1 has a simple structure as shown in FIG. 5, the fin structure 1 can be easily formed, and the device itself can be easily assembled, so that workability is improved.

【0017】次に、他の実施形態について説明する。図
7は、本発明に係る排熱発電装置の第2の実施形態にお
ける図2、つまり図1のII−II線断面図に相当する断面
図である。この実施形態の排熱発電装置101は、図2
に示される排熱発電装置100の被覆部材3と絶縁体4
の間に内部にHg等の熱抵抗が少なく、流動性を有する
部材を膜状の部材内に封入した緩衝材30を配置したも
のである。緩衝材30の外側の膜としては、金属膜や各
種の無機膜、耐熱樹脂膜等を用いることができる。特に
絶縁性の膜を用いれば、絶縁体4を設ける必要はない。
Next, another embodiment will be described. FIG. 7 is a sectional view corresponding to FIG. 2, that is, a sectional view taken along line II-II of FIG. 1 in the second embodiment of the exhaust heat power generator according to the present invention. The exhaust heat power generation device 101 according to this embodiment has the configuration shown in FIG.
The cover member 3 and the insulator 4 of the exhaust heat power generation device 100 shown in FIG.
A cushioning material 30 in which a member having a low thermal resistance such as Hg and having fluidity is enclosed in a film-like member is disposed. As the film outside the buffer material 30, a metal film, various inorganic films, a heat-resistant resin film, or the like can be used. In particular, if an insulating film is used, the insulator 4 need not be provided.

【0018】本実施形態によれば、熱歪みによって内側
の構造部材2や被覆部材3が変形した場合であっても、
その変形を緩衝材30が吸収するため、熱電素子5から
フィン構造体1に至るまでの部材間に隙間が発生するこ
とがなく、接触熱抵抗を十分に小さく抑制することがで
きる。これにより、所望の伝熱特性を発揮できる。
According to this embodiment, even if the inner structural member 2 or the covering member 3 is deformed due to thermal strain,
Since the deformation is absorbed by the cushioning member 30, no gap is generated between the members from the thermoelectric element 5 to the fin structure 1, and the contact thermal resistance can be suppressed sufficiently small. Thereby, desired heat transfer characteristics can be exhibited.

【0019】図8は、本発明に係る排熱発電装置の第3
の実施形態における図2、つまり図1のII−II線断面図
に相当する断面図である。この実施形態の排熱発電装置
102は、図2に示される排熱発電装置100の被覆部
材3に代えて、図9に示される筒状の緩衝材32を配置
したものである。この緩衝材32は、図7に示される緩
衝材30と同様に、膜状の部材内にHg等の熱抵抗が少
なく、流動性を有する部材を封入して形成したものであ
る。
FIG. 8 shows a third embodiment of the exhaust heat power generator according to the present invention.
FIG. 2 is a cross-sectional view corresponding to the cross-sectional view taken along line II-II of FIG. 1 in the embodiment. The exhaust heat power generation device 102 of this embodiment has a tubular cushioning material 32 shown in FIG. 9 instead of the covering member 3 of the exhaust heat power generation device 100 shown in FIG. Similar to the cushioning member 30 shown in FIG. 7, the cushioning member 32 is formed by enclosing a member having low thermal resistance such as Hg and having fluidity in a film-like member.

【0020】本実施形態によれば、熱歪みによって内側
の構造部材2が変形した場合であっても、その変形を緩
衝材32が吸収するため、熱電素子5からフィン構造体
1に至るまでの部材間に隙間が発生することがなく、接
触熱抵抗を十分に小さく抑制することができる。これに
より、所望の伝熱特性を発揮できる。また、鋳込みを省
略できるため、製造が容易になるとともに、機器を小型
化できる利点がある。
According to the present embodiment, even when the inner structural member 2 is deformed due to thermal strain, the deformation is absorbed by the cushioning material 32, so that the distance from the thermoelectric element 5 to the fin structure 1 is reduced. There is no gap between the members, and the contact thermal resistance can be sufficiently reduced. Thereby, desired heat transfer characteristics can be exhibited. In addition, since casting can be omitted, there is an advantage that manufacturing can be facilitated and the device can be downsized.

【0021】第2、第3の実施形態では、緩衝材30、
32をそれぞれ熱電素子5の高温側にのみ配置したが、
低温側、つまり冷却配管7との間にも配置してもよい。
In the second and third embodiments, the cushioning material 30,
32 are arranged only on the high-temperature side of the thermoelectric element 5, respectively.
It may be arranged also on the low temperature side, that is, between the cooling pipe 7.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、高
熱伝導性のフィンと、被覆部材および/または緩衝材を
介して熱電素子へと熱を伝えることで、熱電素子への熱
入力を増大させることができ、発電効率が向上する。ま
た、緩衝材によって熱歪みを吸収することで熱抵抗の増
大を抑制することができる。
As described above, according to the present invention, heat input to the thermoelectric element is transmitted by transmitting heat to the thermoelectric element via the fin having high thermal conductivity and the covering member and / or the cushioning material. The power generation efficiency can be improved. In addition, absorption of thermal strain by the cushioning material can suppress an increase in thermal resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排熱発電装置の外観斜視図であ
る。
FIG. 1 is an external perspective view of a waste heat power generation device according to the present invention.

【図2】図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】図1の装置の構造部材を示す正面図である。FIG. 3 is a front view showing a structural member of the apparatus of FIG. 1;

【図4】図3のIV−IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 3;

【図5】図1の装置で用いられるフィン構造体を示す図
である。
FIG. 5 is a view showing a fin structure used in the apparatus of FIG. 1;

【図6】図1の装置で用いられる熱電素子の斜視図であ
る。
FIG. 6 is a perspective view of a thermoelectric element used in the apparatus of FIG.

【図7】本発明に係る排熱発電装置の第2の実施形態に
おける図1のII−II線断面図に相当する断面図である。
FIG. 7 is a cross-sectional view corresponding to a cross-sectional view taken along line II-II of FIG. 1 in a second embodiment of the exhaust heat power generator according to the present invention.

【図8】本発明に係る排熱発電装置の第3の実施形態に
おける図1のII−II線断面図に相当する断面図である。
FIG. 8 is a cross-sectional view corresponding to a cross-sectional view taken along line II-II of FIG. 1 in a third embodiment of the exhaust heat power generator according to the present invention.

【図9】図8の実施形態における緩衝材の斜視図であ
る。
FIG. 9 is a perspective view of the cushioning member in the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1…フィン構造体、2…構造部材、3…被覆部材、4、
6…絶縁体、5…熱電素子、7…冷却配管、8…ケーシ
ング、9…ボルト、10…基板、11…フィン、30、
32…緩衝材、100…排熱発電装置、100a…排気
通路。
DESCRIPTION OF SYMBOLS 1 ... Fin structure, 2 ... Structural member, 3 ... Coating member, 4,
6 insulator, 5 thermoelectric element, 7 cooling pipe, 8 casing, 9 bolt, 10 board, 11 fin, 30,
32: buffer material, 100: exhaust heat power generator, 100a: exhaust passage.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路内に配置した熱交換
フィンによって排気の熱エネルギーを熱電素子へと伝導
させ電力に変換する排熱発電装置において、 前記熱交換フィンはセラミックスからなり、耐熱金属製
の取り付け部材により取り付けられるとともに、前記熱
交換フィンと前記取り付け部材を外側から封止するとと
もに前記熱交換フィンの外側表面に密着する高熱伝導性
の被覆部材を備えている排熱発電装置。
1. An exhaust heat power generator in which heat energy of exhaust gas is transmitted to a thermoelectric element and converted into electric power by heat exchange fins disposed in an exhaust passage of an internal combustion engine, wherein the heat exchange fins are made of ceramics, A waste heat power generation device which is attached by a mounting member made of a metal, and has a highly heat conductive covering member which seals the heat exchange fin and the attachment member from the outside and adheres tightly to an outer surface of the heat exchange fin.
【請求項2】 前記被覆部材と前記熱電素子との間に流
動性を有するとともに、熱抵抗の小さい部材が封入され
た緩衝材が配置されている請求項1記載の排熱発電装
置。
2. The exhaust heat power generator according to claim 1, wherein a buffer material having fluidity and having a small thermal resistance is enclosed between the covering member and the thermoelectric element.
【請求項3】 内燃機関の排気通路内に配置した熱交換
フィンによって排気の熱エネルギーを熱電素子へと伝導
させ電力に変換する排熱発電装置において、 前記熱交換フィンはセラミックスからなり、耐熱金属製
の取り付け部材により取り付けられるとともに、流動性
を有するとともに熱抵抗の小さい部材が封入されて前記
熱交換フィンと前記取り付け部材を外側から封止する緩
衝材を備えている排熱発電装置。
3. An exhaust heat power generator for converting heat energy of exhaust gas into a thermoelectric element by a heat exchange fin disposed in an exhaust passage of an internal combustion engine to convert the heat energy into electric power, wherein the heat exchange fin is made of ceramics, A waste heat power generation device, which is attached by a mounting member made of stainless steel, includes a member having fluidity and low thermal resistance, and includes the heat exchange fins and a cushioning material for sealing the mounting member from the outside.
JP2002149705A 2002-05-23 2002-05-23 Waste heat power generator Expired - Fee Related JP4082090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149705A JP4082090B2 (en) 2002-05-23 2002-05-23 Waste heat power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149705A JP4082090B2 (en) 2002-05-23 2002-05-23 Waste heat power generator

Publications (2)

Publication Number Publication Date
JP2003348867A true JP2003348867A (en) 2003-12-05
JP4082090B2 JP4082090B2 (en) 2008-04-30

Family

ID=29767785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149705A Expired - Fee Related JP4082090B2 (en) 2002-05-23 2002-05-23 Waste heat power generator

Country Status (1)

Country Link
JP (1) JP4082090B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426546C (en) * 2004-04-30 2008-10-15 童秋月 Low-temperature solid-state thermoelectric energy converter and uses thereof
US20090188451A1 (en) * 2008-01-25 2009-07-30 Gm Global Technology Operations, Inc. Engine cover with cooling fins
EP2180534A1 (en) * 2008-10-27 2010-04-28 Corning Incorporated Energy conversion devices and methods
JP2011530176A (en) * 2008-08-01 2011-12-15 ビーエスエスティー エルエルシー Thermoelectric device with improved thermal separation
US20110308771A1 (en) * 2008-12-19 2011-12-22 Thomas Heckenberger Exhaust gas cooler for an internal combustion engine
KR101251329B1 (en) 2006-08-28 2013-04-05 한라공조주식회사 A Heat Exchanger using Thermoelectric Modules
CN103178753A (en) * 2011-12-23 2013-06-26 现代自动车株式会社 Thermoelectric generator of vehicle
JP2014195378A (en) * 2013-03-29 2014-10-09 Yanmar Co Ltd Thermoelectric generator and marine vessel with the same
KR20190064949A (en) * 2017-12-01 2019-06-11 삼성중공업 주식회사 Thermoelectric Generation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426546C (en) * 2004-04-30 2008-10-15 童秋月 Low-temperature solid-state thermoelectric energy converter and uses thereof
KR101251329B1 (en) 2006-08-28 2013-04-05 한라공조주식회사 A Heat Exchanger using Thermoelectric Modules
US20090188451A1 (en) * 2008-01-25 2009-07-30 Gm Global Technology Operations, Inc. Engine cover with cooling fins
JP2011530176A (en) * 2008-08-01 2011-12-15 ビーエスエスティー エルエルシー Thermoelectric device with improved thermal separation
EP2180534A1 (en) * 2008-10-27 2010-04-28 Corning Incorporated Energy conversion devices and methods
US20110308771A1 (en) * 2008-12-19 2011-12-22 Thomas Heckenberger Exhaust gas cooler for an internal combustion engine
CN103178753A (en) * 2011-12-23 2013-06-26 现代自动车株式会社 Thermoelectric generator of vehicle
JP2014195378A (en) * 2013-03-29 2014-10-09 Yanmar Co Ltd Thermoelectric generator and marine vessel with the same
KR20190064949A (en) * 2017-12-01 2019-06-11 삼성중공업 주식회사 Thermoelectric Generation device
KR102050920B1 (en) * 2017-12-01 2019-12-02 삼성중공업 주식회사 Thermoelectric Generation device

Also Published As

Publication number Publication date
JP4082090B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
US10062826B2 (en) Thermoelectric device
JP3564274B2 (en) Waste heat power generator
JP2007221895A (en) Thermal power generator
JPH1136981A (en) Exhaust heat power generating device
JP2010245265A (en) Thermoelectric module
JP2775410B2 (en) Thermoelectric module
JP2008072775A (en) Exhaust heat energy recovery system
JPH10234194A (en) Waste-heat power generation apparatus
JP2003348867A (en) Waste heat power generator
JP2017220492A (en) Thermoelectric generator
JP2010027986A (en) Thermoelectric conversion module and its production process
JP2011165976A (en) Thermoelectric converter and thermoelectric conversion method
JP2007019260A (en) Thermoelectric conversion system
JP2006217756A (en) Thermoelectric generator
JP6350297B2 (en) Thermoelectric generator
JP2006211780A (en) Thermoelectric generator
JPH08335722A (en) Thermoelectric conversion module
JP2006002704A (en) Thermoelectric power generation device
JPH0638560A (en) Generator by exhaust gas
JP2009272327A (en) Thermoelectric conversion system
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
JP2005057908A (en) Device for recovering exhaust heat energy
WO2017198029A1 (en) Heat dissipation apparatus and projection device
US11316091B2 (en) Thermoelectric module, frame for the same, and vehicle including the thermoelectric module
JP2017221066A (en) Thermoelectric generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees