JP6149754B2 - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP6149754B2
JP6149754B2 JP2014027575A JP2014027575A JP6149754B2 JP 6149754 B2 JP6149754 B2 JP 6149754B2 JP 2014027575 A JP2014027575 A JP 2014027575A JP 2014027575 A JP2014027575 A JP 2014027575A JP 6149754 B2 JP6149754 B2 JP 6149754B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer member
thermoelectric
case
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014027575A
Other languages
Japanese (ja)
Other versions
JP2015154640A (en
Inventor
入山 要次郎
要次郎 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014027575A priority Critical patent/JP6149754B2/en
Publication of JP2015154640A publication Critical patent/JP2015154640A/en
Application granted granted Critical
Publication of JP6149754B2 publication Critical patent/JP6149754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱電発電装置に関し、特に高温側の熱媒体と低温側の熱媒体とを通しつつ両熱媒体の温度差を利用して熱電発電する熱電発電装置に関する。   The present invention relates to a thermoelectric power generator, and more particularly to a thermoelectric power generator that performs thermoelectric power generation using a temperature difference between both heat media while passing a high temperature heat medium and a low temperature heat medium.

高温熱源と低温熱源の間に複数の熱電素子を配置して熱電発電する従来の熱電発電装置として、内燃機関の排気ガスの持つ排熱を電気エネルギに変換しつつ回収する排熱回収型の熱電発電装置が知られている。   As a conventional thermoelectric generator that arranges a plurality of thermoelectric elements between a high-temperature heat source and a low-temperature heat source, the exhaust heat recovery type thermoelectric that recovers the exhaust heat of the exhaust gas of the internal combustion engine while converting it into electrical energy A power generation device is known.

このような熱電発電装置としては、例えばモジュール化した複数の熱電素子を内蔵する筒状の熱電発電ユニットを排気ガスまた冷却水を通す一方の通路中に垂直に配置し、各熱電発電ユニットの内部に冷却水または排気ガスを通す他方の通路を形成して、並列する複数の筒状の熱電発電ユニットの内外の温度差を利用して熱電発電するものがある(例えば、特許文献1参照)。   As such a thermoelectric power generation device, for example, a cylindrical thermoelectric power generation unit containing a plurality of modular thermoelectric elements is arranged vertically in one passage through which exhaust gas or cooling water passes, and the inside of each thermoelectric power generation unit The other passage through which the cooling water or the exhaust gas passes is formed, and thermoelectric power generation is performed using the temperature difference between the inside and outside of the plurality of cylindrical thermoelectric power generation units arranged in parallel (see, for example, Patent Document 1).

また、それぞれモジュール化した複数の熱電素子を内蔵する筒状の熱電発電ユニットにフィンを装着してカートリッジ化し、複数のカートリッジ化した熱電発電ユニットを並列配置する熱電発電システムも知られている(例えば、特許文献2参照)。   A thermoelectric power generation system is also known in which fins are attached to a cylindrical thermoelectric power generation unit containing a plurality of thermoelectric elements each modularized to form a cartridge, and a plurality of thermoelectric power generation units arranged in parallel are arranged in parallel (for example, , See Patent Document 2).

なお、PTC(Positive Temperature Coefficient)ヒータを有するヒータエレメントとそれを支持するケースとの間に絶縁部材を設けるのに加えて、その絶縁部材とケースとの間に弾性部材を介在させることで、ヒータエレメントの熱膨張を吸収して、ヒータエレメントの変形防止を図るようにしたものが知られている(例えば、特許文献3参照)。   In addition to providing an insulating member between a heater element having a PTC (Positive Temperature Coefficient) heater and a case supporting the heater element, an elastic member is interposed between the insulating member and the case, thereby providing a heater. A device that absorbs thermal expansion of an element to prevent deformation of the heater element is known (for example, see Patent Document 3).

特表2012−533972号公報Special table 2012-533972 gazette 米国特許出願公開2013/0186448号明細書US Patent Application Publication No. 2013/0186448 特開2009−257114号公報JP 2009-257114 A

しかしながら、上述のような従来の熱電発電装置にあっては、例えばカートリッジ化した熱電発電ユニットを支持するケースが排気ガス通路を形成する場合に、そのケースの排気ガス通路形成部分の熱膨張量が大きくなるのに対して、内部に冷却水を通す熱電発電ユニット、特にその内周側に冷却水通路を形成する配管等(以下、冷却水配管という)の熱膨張が小さくなるため、熱電発電ユニットのケースへの固定部分に熱応力や熱歪が発生し易くなっていた。   However, in the conventional thermoelectric power generation apparatus as described above, for example, when the case supporting the thermoelectric power generation unit formed as a cartridge forms the exhaust gas passage, the thermal expansion amount of the exhaust gas passage formation portion of the case is small. Thermoelectric power generation units that allow cooling water to pass through inside, especially pipes that form cooling water passages on the inner periphery thereof (hereinafter referred to as cooling water piping) are reduced in thermal expansion. Thermal stress and thermal strain were likely to occur in the fixed part of the case.

すなわち、熱電発電ユニットおよびケースのうち排気ガス通路側の部材では熱膨張量が大きくなるのに対して、冷却水通路側の部材では熱膨張量が小さくなるため、両者の結合部に応力や歪が発生し易くなっていた。   That is, in the thermoelectric power generation unit and the case, the member on the exhaust gas passage side has a large amount of thermal expansion, whereas the member on the cooling water passage side has a small amount of thermal expansion. It was easy to occur.

そのため、例えば熱電発電装置の小型化等によって前記結合部からの応力や歪が熱電発電ユニット内の熱電発電素子に波及し易くなるような場合に、熱電発電装置の発電性能の低下が懸念される。   For this reason, there is a concern that the power generation performance of the thermoelectric generator may be reduced when, for example, the stress or strain from the coupling portion is easily transmitted to the thermoelectric generator in the thermoelectric generator unit due to downsizing of the thermoelectric generator or the like. .

これに対し、カートリッジ化した熱電発電ユニットの端部にベローズ(蛇腹部)を設けて熱応力を緩和することができる(特許文献2の段落0214、図30B参照)。しかし、モジュール化した熱電素子群の内外に配置される高温側および低温側の2つの筒状体にそれぞれベローズ部を設けると、構造面からも組付けの面からも熱電発電装置の小型化および高効率化の要求に応え難いという難点がある。   On the other hand, a thermal stress can be relieved by providing a bellows (bellows) at the end of the thermoelectric power generation unit formed into a cartridge (see paragraph 0214 of FIG. 30 and FIG. 30B). However, if the bellows portions are provided in the two high temperature side and low temperature side cylindrical bodies arranged inside and outside the modular thermoelectric element group, the thermoelectric power generator can be reduced in size from both the structural and assembly aspects. There is a drawback that it is difficult to meet the demand for higher efficiency.

そこで、本発明は、構造や組付けの複雑化を招くことなく、高温熱媒体側の部材と低温熱媒体側の部材の間に大きな応力や歪が発生するのを有効に抑制して、発電効率や熱回収効率を高めた小型化および高効率化の要求に応え得る熱電発電装置を提供することを目的とする。   Therefore, the present invention effectively suppresses the generation of large stress and strain between the high temperature heat medium side member and the low temperature heat medium side member without incurring the complexity of the structure and the assembly. An object of the present invention is to provide a thermoelectric generator that can meet demands for miniaturization and high efficiency with improved efficiency and heat recovery efficiency.

本発明に係る熱電発電装置は、上記目的達成のため、高温側の熱媒体を通す一方の熱媒体通路を有するケースと、それぞれ内周側に低温側の熱媒体を通す他方の熱媒体通路を形成する筒状の複数の熱電発電ユニットと、を備え、前記熱電発電ユニットが、前記一方の熱媒体通路中に前記高温側の熱媒体の流れ方向に対し略直交するよう前記ケースに支持される熱電発電装置であって、前記熱電発電ユニットは、それぞれに、前記他方の熱媒体通路を形成する内側の筒状伝熱部材と、前記内側の筒状伝熱部材を取り囲む外側の筒状伝熱部材と、前記内側の筒状伝熱部材および前記外側の筒状伝熱部材の間に介装された複数の熱電素子を有する熱電素子モジュールとを含んで構成され、前記熱電発電ユニットのそれぞれの前記内側の筒状伝熱部材および前記ケースのうち少なくとも一方側の部材に、前記ケースに対する前記内側の筒状伝熱部材の伸縮を弾性変形により吸収する可撓部が設けられるとともに、前記ケースには、前記熱電発電ユニットのそれぞれの前記外側の筒状伝熱部材の少なくとも一方側の端部を軸方向に摺動可能に支持する複数の摺動支持部が設けられており前記ケースは、前記それぞれの内側の筒状伝熱部材に対し前記摺動支持部より前記熱電発電ユニットの外方側で気密的に結合された外側板部と、前記複数の摺動支持部を介して前記それぞれの前記外側の筒状伝熱部材を支持する内側板部とを有し、前記外側板部および前記内側板部の間に、前記複数の摺動部の摺動隙間に通じる端末室が形成されているものである。 In order to achieve the above object, the thermoelectric generator according to the present invention includes a case having one heat medium passage through which a high-temperature side heat medium passes and a heat medium passage through which the low-temperature side heat medium passes through each inner circumferential side. A plurality of cylindrical thermoelectric generator units to be formed, and the thermoelectric generator units are supported by the case so as to be substantially orthogonal to the flow direction of the heat medium on the high temperature side in the one heat medium passage. A thermoelectric generator, wherein each of the thermoelectric generator units includes an inner cylindrical heat transfer member that forms the other heat medium passage, and an outer cylindrical heat transfer member that surrounds the inner cylindrical heat transfer member. A thermoelectric module having a plurality of thermoelectric elements interposed between the inner cylindrical heat transfer member and the outer cylindrical heat transfer member . The inner cylindrical heat transfer member On at least one side of the member of the pre said casing, together with the flexible portion to absorb expansion by elastic deformation of said inner cylindrical heat transfer member with respect to the casing is provided, in the case, each of the thermoelectric power generation unit A plurality of sliding support portions for slidably supporting at least one end of the outer cylindrical heat transfer member in the axial direction are provided , and the case includes the respective inner cylindrical heat transfer members. an outer plate portion which is airtightly coupled with the outer side of the thermoelectric power generation unit from the sliding support portion of the heat transfer member, a cylindrical heat transfer of the outside of the respective through the plurality of sliding support portions And a terminal chamber that communicates with the sliding gaps of the plurality of sliding portions is formed between the outer plate portion and the inner plate portion .

この構成により、本発明では、内側の筒状伝熱部材とケースとのうち少なくとも一方側の部材に設けられる可撓部によって、ケースに対する内側の筒状伝熱部材の伸縮が吸収されるとともに、外側の筒状伝熱部材の少なくとも一方側の端部がケースの摺動支持部に摺動可能に支持されることで、ケースに対する外側の筒状伝熱部材の伸縮や軸方向変位が許容される。そして、内側の筒状伝熱部材およびケースがケースの摺動支持部より熱電発電ユニットの外方側で気密的に結合されることで、ケース外への高温側の熱媒体の漏れが防止される。したがって、カートリッジ化された熱電発電ユニットの端部に二重管構造の結合部を設けたりすることなく、熱電発電ユニットの固定部における熱応力の緩和やシール等が可能となり、構造や組付けの複雑化あるいはそれによる大型化を招くことなく、高温熱媒体側の部材と低温熱媒体側の部材の間に発生する熱応力や熱歪が抑えられる。その結果、発電効率や熱回収効率を高めた、小型化および高効率化の要求に応え得る熱電発電装置となる。   With this configuration, in the present invention, expansion and contraction of the inner cylindrical heat transfer member with respect to the case is absorbed by the flexible portion provided on at least one of the inner cylindrical heat transfer member and the case, At least one end portion of the outer cylindrical heat transfer member is slidably supported by the sliding support portion of the case, so that the outer cylindrical heat transfer member can be expanded and contracted and axially displaced with respect to the case. The The inner cylindrical heat transfer member and the case are hermetically coupled to the outer side of the thermoelectric power generation unit from the sliding support portion of the case, thereby preventing the heat medium on the high temperature side from leaking out of the case. The Therefore, it is possible to relieve thermal stress and seal the fixed part of the thermoelectric power generation unit without providing a double tube structure coupling part at the end of the thermoelectric power generation unit that is made into a cartridge. Thermal stress and thermal strain generated between the member on the high temperature heat medium side and the member on the low temperature heat medium side can be suppressed without complicating or increasing the size. As a result, it becomes a thermoelectric power generation apparatus that can meet the demands for miniaturization and high efficiency with improved power generation efficiency and heat recovery efficiency.

本発明によれば、構造や組付けの複雑化を招くことなく、高温熱媒体側の部材と低温熱媒体側の部材との間に大きな応力や歪が発生するのを有効に抑制して、発電効率や熱回収効率を高めた小型化および高効率化の要求に応え得る熱電発電装置を提供することができる。   According to the present invention, without significantly complicating the structure and assembly, it is possible to effectively suppress the occurrence of large stress and strain between the member on the high temperature heat medium side and the member on the low temperature heat medium side, It is possible to provide a thermoelectric generator that can meet the demands for miniaturization and high efficiency with improved power generation efficiency and heat recovery efficiency.

本発明の第1実施形態に係る熱電発電装置の概略構成図である。1 is a schematic configuration diagram of a thermoelectric generator according to a first embodiment of the present invention. 図2(a)は、本発明の第1実施形態に係る熱電発電装置のカートリッジ化した筒状の熱電発電ユニットの縦断面図、図2(b)は、本発明の第1実施形態に係る熱電発電装置のカートリッジ化した筒状の熱電発電ユニットの横断面図である。FIG. 2A is a longitudinal sectional view of a cylindrical thermoelectric power generation unit formed as a cartridge of the thermoelectric power generation device according to the first embodiment of the present invention, and FIG. 2B is related to the first embodiment of the present invention. It is a cross-sectional view of the cylindrical thermoelectric power generation unit formed into a cartridge of the thermoelectric power generation device. 本発明の第1実施形態に係る熱電発電装置の要部断面を含む概略平面図である。1 is a schematic plan view including a cross section of a main part of a thermoelectric power generator according to a first embodiment of the present invention. 本発明の第2実施形態に係る熱電発電装置の概略構成図である。It is a schematic block diagram of the thermoelectric power generating apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る熱電発電装置の概略構成図である。It is a schematic block diagram of the thermoelectric power generating apparatus which concerns on 3rd Embodiment of this invention.

以下、本発明の好ましい実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1ないし図3は、本発明の第1実施形態に係る熱電発電装置の概略構成を示している。
(First embodiment)
1 to 3 show a schematic configuration of the thermoelectric generator according to the first embodiment of the present invention.

なお、本実施形態の熱電発電装置は、高温側の熱媒体として内燃機関の排気ガスを、低温側の熱媒体として内燃機関の冷却水等の冷却媒体(水に限定されず、低温側の熱媒体として好適な冷却材)を用いるものである。この熱電発電装置は、高温熱源と低温熱源の間に複数の熱電素子を熱的には並列に電気的には専ら直列に配置して熱電発電することにより、内燃機関の排気ガスの持つ排熱を電気エネルギに変換しつつ回収する排熱回収機能を有している。   Note that the thermoelectric generator of the present embodiment uses the exhaust gas of the internal combustion engine as the high temperature side heat medium, and the cooling medium such as the cooling water of the internal combustion engine as the low temperature side heat medium (not limited to water, the low temperature side heat medium). A suitable coolant) is used as a medium. This thermoelectric power generation apparatus is configured to exhaust heat of exhaust gas of an internal combustion engine by thermoelectrically generating a plurality of thermoelectric elements between a high-temperature heat source and a low-temperature heat source in a thermal parallel manner and electrically exclusively in series. It has a waste heat recovery function that recovers while converting to electrical energy.

まず、本実施形態の熱電発電装置の構成について説明する。   First, the configuration of the thermoelectric power generator according to this embodiment will be described.

図1に示すように、本実施形態の熱電発電装置10は、例えば一対の凹状のケース部材を突き合わせて溶接したケース11を備えており、ケース11には、ガス状の高温側の熱媒体を通す一方の熱媒体通路として排気ガス通路12が形成されている。   As shown in FIG. 1, the thermoelectric power generation apparatus 10 of the present embodiment includes, for example, a case 11 in which a pair of concave case members are abutted and welded. In the case 11, a gaseous high-temperature heat medium is provided. An exhaust gas passage 12 is formed as one heat medium passage through which the gas passes.

ケース11は、例えばエンジンからの排気ガスを通す排気管Pの一部を構成しており、排気ガス通路12には、図外の車両走行駆動用のエンジン(内燃機関)から排出された排気ガスGが流入するようになっている。   The case 11 constitutes a part of an exhaust pipe P through which exhaust gas from the engine passes, for example, and the exhaust gas passage 12 has exhaust gas discharged from a vehicle driving engine (internal combustion engine) (not shown). G flows in.

ケース11の内部には、排気ガス通路12の軸線方向に対し略直角に交差する略円筒状の複数の熱電発電ユニット13が、互いに平行にかつ等間隔に並列配置されている。そして、これら熱電発電ユニット13の内部には、それぞれ液体状の低温側の熱媒体であるエンジン冷却水W(冷却媒体)を通す冷却水通路31(他方の熱媒体通路)が形成されている。   Inside the case 11, a plurality of substantially cylindrical thermoelectric power generation units 13 that intersect substantially at right angles to the axial direction of the exhaust gas passage 12 are arranged in parallel and at equal intervals in parallel. A cooling water passage 31 (the other heat medium passage) through which engine cooling water W (cooling medium), which is a liquid low-temperature heat medium, passes, is formed inside these thermoelectric power generation units 13.

複数の熱電発電ユニット13の冷却水通路31は、排気ガス通路12の上流側から下流側へと直列に接続されており、全体としてケース11内の排気ガス通路12の上流端側に近い冷却水入口30aおよび排気ガス通路12の下流端側に近い冷却水出口30bを有する冷却水通路30が形成されている。なお、冷却水通路30は、ケース11内で並列に分岐する構成であってもよい。   The cooling water passages 31 of the plurality of thermoelectric power generation units 13 are connected in series from the upstream side to the downstream side of the exhaust gas passage 12, and the cooling water close to the upstream end side of the exhaust gas passage 12 in the case 11 as a whole. A cooling water passage 30 having a cooling water outlet 30b close to the inlet 30a and the downstream end side of the exhaust gas passage 12 is formed. The cooling water passage 30 may be configured to branch in parallel in the case 11.

図2(a)および図2(b)に示すように、各熱電発電ユニット13は、内側の筒状伝熱部材32と、外側の筒状伝熱部材33と、内側の筒状伝熱部材32および外側の筒状伝熱部材33の間に介装された複数の熱電素子34a、34bを有する熱電素子モジュール35とを含んで構成されている。   As shown in FIG. 2A and FIG. 2B, each thermoelectric power generation unit 13 includes an inner cylindrical heat transfer member 32, an outer cylindrical heat transfer member 33, and an inner cylindrical heat transfer member. 32 and a thermoelectric element module 35 having a plurality of thermoelectric elements 34 a and 34 b interposed between the outer cylindrical heat transfer member 33.

内側の筒状伝熱部材32は、その内部に冷却水Wを通す冷却水通路31を形成する内周壁面32aを有しており、冷却水通路31が軸線方向に延びる略円筒状のパイプとなっている。また、冷却水通路30を形成するように、ケース11内で並列する複数の内側の筒状伝熱部材32が複数の熱電発電ユニット13の一端側の冷却水配管51と複数の熱電発電ユニット13の他端側の冷却水配管52とによって直列的に接続されるとともに、それらの両端側に冷却水導入側および冷却水排出側の冷却水配管53、54が接続されている。   The inner cylindrical heat transfer member 32 has an inner peripheral wall surface 32a that forms a cooling water passage 31 through which the cooling water W passes, and a substantially cylindrical pipe in which the cooling water passage 31 extends in the axial direction. It has become. Further, a plurality of inner cylindrical heat transfer members 32 arranged in parallel in the case 11 so as to form the cooling water passage 30 are provided with cooling water pipes 51 on one end side of the plurality of thermoelectric generation units 13 and the plurality of thermoelectric generation units 13. Are connected in series with the cooling water pipe 52 on the other end side, and the cooling water pipes 53 and 54 on the cooling water introduction side and the cooling water discharge side are connected to both ends thereof.

外側の筒状伝熱部材33は、内側の筒状伝熱部材32の外径より大径の内周面33aと、排気ガス通路12中で排気ガスGに接触する外周壁面33bとを有している。   The outer cylindrical heat transfer member 33 has an inner peripheral surface 33 a having a diameter larger than the outer diameter of the inner cylindrical heat transfer member 32 and an outer peripheral wall surface 33 b that contacts the exhaust gas G in the exhaust gas passage 12. ing.

この外側の筒状伝熱部材33は、内側の筒状伝熱部材32を外周側から取り囲むとともに内側の筒状伝熱部材32の外周面32bに対し所定の径方向離間距離を隔てるように、内側の筒状伝熱部材32と同軸に(同一中心軸線上に)配置されている。   The outer cylindrical heat transfer member 33 surrounds the inner cylindrical heat transfer member 32 from the outer peripheral side and is spaced from the outer peripheral surface 32b of the inner cylindrical heat transfer member 32 by a predetermined radial distance. The inner cylindrical heat transfer member 32 is arranged coaxially (on the same central axis).

複数の熱電素子34a、34bは、例えばゼーベック効果により温度差に応じた起電力を発生するN型およびP型の熱電変換素子の複数対で構成されており、N型の熱電素子34aおよびP型の熱電素子34bが内側の電極36aおよび外側の電極36bを介して周方向に直列に電気接続されることで、熱電素子モジュール35が構成されている。   The plurality of thermoelectric elements 34a and 34b are configured by, for example, a plurality of pairs of N-type and P-type thermoelectric conversion elements that generate an electromotive force according to a temperature difference by the Seebeck effect, and the N-type thermoelectric elements 34a and P-type The thermoelectric element 34b is electrically connected in series in the circumferential direction via the inner electrode 36a and the outer electrode 36b, so that the thermoelectric element module 35 is configured.

また、複数の熱電素子34a、34bは、内側の筒状伝熱部材32および外側の筒状伝熱部材33の周方向に等角度間隔に平行配置された棒状のものであり、それぞれの長さが排気ガス通路12の直径に近い長さになっている。   Further, the plurality of thermoelectric elements 34a and 34b are rod-shaped elements arranged in parallel at equal angular intervals in the circumferential direction of the inner cylindrical heat transfer member 32 and the outer cylindrical heat transfer member 33, and the lengths of the respective elements. Is a length close to the diameter of the exhaust gas passage 12.

なお、本実施形態では、各熱電発電ユニット13が、棒状の複数の熱電素子34a、34bを等角度間隔に平行配置した熱電素子モジュール35を構成するものとするが、それぞれ環状または筒状に形成したN型およびP型の熱電素子を軸方向に交互に複数対配置するものであってもよい。また、複数の棒状または板状の熱電素子34a、34bを軸方向に複数に分割したりそれら分割体の配置を周方向にずらしたりできることはいうまでもない。また、ここでは、内側の電極36aまたは外側の電極36bのいずれかと共にいわゆるπ型構造をなす各一対の熱電素子34a、34bが熱的には並列に電気的には直列に接続されるが、本発明は、π型構造以外にも適用できる。   In the present embodiment, each thermoelectric power generation unit 13 constitutes a thermoelectric element module 35 in which a plurality of rod-shaped thermoelectric elements 34a and 34b are arranged in parallel at equal angular intervals. A plurality of pairs of N-type and P-type thermoelectric elements arranged alternately in the axial direction may be used. Further, it goes without saying that the plurality of rod-like or plate-like thermoelectric elements 34a, 34b can be divided into a plurality of parts in the axial direction and the arrangement of these divided bodies can be shifted in the circumferential direction. Further, here, each of the pair of thermoelectric elements 34a and 34b having a so-called π-type structure together with either the inner electrode 36a or the outer electrode 36b is thermally connected in parallel and electrically in series. The present invention can be applied to other than the π-type structure.

内側の筒状伝熱部材32は、少なくとも複数の内側の電極36aに接する中央側(両端部以外)の外周面部分において、複数の内側の電極36a同士を電気的に絶縁する電気絶縁性を有している。   The inner cylindrical heat transfer member 32 has an electrical insulation property that electrically insulates the plurality of inner electrodes 36a from each other at least on the outer peripheral surface portion on the center side (other than both ends) in contact with the plurality of inner electrodes 36a. doing.

また、外側の筒状伝熱部材33は、少なくとも複数の外側の電極36bに接する内周部分において、複数の外側の電極36b同士を電気的に絶縁する電気絶縁性を有している。   In addition, the outer cylindrical heat transfer member 33 has an electrical insulation property that electrically insulates the plurality of outer electrodes 36b from each other at least in an inner peripheral portion in contact with the plurality of outer electrodes 36b.

さらに、各熱電素子モジュール35の配置空間である内側の筒状伝熱部材32と外側の筒状伝熱部材33の間の円筒状の空間Sは、図2(a)に示すように、一対の環状閉止部材37a、37bによって閉止されており、その内部に熱電素子モジュール35の酸化劣化防止剤として例えば不活性ガスが封入されている。   Furthermore, as shown in FIG. 2A, a cylindrical space S between the inner cylindrical heat transfer member 32 and the outer cylindrical heat transfer member 33, which is an arrangement space of each thermoelectric element module 35, is a pair. Are closed by an annular closing member 37a, 37b, and an inert gas, for example, is enclosed as an oxidation deterioration preventing agent for the thermoelectric element module 35 therein.

ところで、複数の熱電発電ユニット13は、内部の熱電素子モジュール35同士を電気的に接続するように素子リード線38等の電気配線によって相互に接続されるとともに、図外のバッテリ充電回路に接続されている。これにより、複数の熱電発電ユニット13は、排気ガスの持つ排熱から回収した電気エネルギをバッテリに蓄え得るようになっている。   By the way, the plurality of thermoelectric power generation units 13 are connected to each other by electrical wiring such as an element lead wire 38 so as to electrically connect the internal thermoelectric element modules 35 to each other and to a battery charging circuit (not shown). ing. Thereby, the some thermoelectric generation unit 13 can store the electrical energy collect | recovered from the exhaust heat which exhaust gas has in a battery.

素子リード線38は、ケース11の長手方向(排気ガス通路12の軸線方向)における伸びに追従できるよう、隣り合う各一対の熱電発電ユニット13の熱電素子モジュール35の間で略U字形状またはアーチ状に湾曲する状態に配置されており、ケース11の長手方向における伸びに追従可能な余長が設定されている。   The element lead wires 38 are substantially U-shaped or arched between the thermoelectric element modules 35 of each pair of adjacent thermoelectric power generation units 13 so as to follow the elongation in the longitudinal direction of the case 11 (the axial direction of the exhaust gas passage 12). The surplus length that can follow the elongation in the longitudinal direction of the case 11 is set.

また、複数の熱電発電ユニット13は、それぞれの外周側に複数のフィン41を有している。これら複数のフィン41は、それぞれ外側の筒状伝熱部材33から放射外方に一定高さで突出する円環板状のもので、各熱電発電ユニット13の外周側に、冷却水通路31の軸線方向で互いに一定間隔で離間するように配置されている。   Further, the plurality of thermoelectric power generation units 13 have a plurality of fins 41 on the respective outer peripheral sides. Each of the plurality of fins 41 is an annular plate that protrudes radially outward from the outer cylindrical heat transfer member 33 at a certain height, and on the outer peripheral side of each thermoelectric power generation unit 13, It arrange | positions so that it may mutually space apart at a fixed interval in an axial direction.

さらに、これらのフィン41は、排気ガス通路12中を流れる排気ガスからの熱伝達により排気ガスの持つ排熱を吸収しつつ、高温側の受熱材である外側の筒状伝熱部材33に効率よく熱伝導する吸熱フィンとなっている。各熱電発電ユニット13の放射外方への突出高さは、例えば図2(b)に示すように軸方向および周方向の全域で一定になっているが、突出高さが部分的に相違してもよいし、複数の熱電発電ユニット13が同一のフィン41に結合されるように、フィン41がケース11内全域に拡張されてもよい。   Further, these fins 41 absorb the exhaust heat of the exhaust gas by the heat transfer from the exhaust gas flowing in the exhaust gas passage 12, and are efficient for the outer cylindrical heat transfer member 33 that is the heat receiving material on the high temperature side. It is an endothermic fin that conducts heat well. The protrusion height of each thermoelectric power generation unit 13 to the outside of the radiation is constant throughout the entire axial direction and circumferential direction as shown in FIG. 2B, for example, but the protrusion height is partially different. Alternatively, the fins 41 may be extended throughout the case 11 so that the plurality of thermoelectric generation units 13 are coupled to the same fin 41.

一方、内側の筒状伝熱部材32およびケース11のうち少なくとも一方側の部材には、例えば内側の筒状伝熱部材32側には、ケース11に対する内側の筒状伝熱部材32の相対的な伸縮を弾性変形により吸収する可撓部55が設けられている。   On the other hand, at least one of the inner cylindrical heat transfer member 32 and the case 11 has a relative position of the inner cylindrical heat transfer member 32 with respect to the case 11, for example, on the inner cylindrical heat transfer member 32 side. A flexible portion 55 is provided that absorbs elastic expansion and contraction by elastic deformation.

この可撓部55は、例えば内側の筒状伝熱部材32の両端側に配置されており、それぞれ蛇腹状をなしている。   This flexible part 55 is arrange | positioned at the both ends of the inner cylindrical heat-transfer member 32, for example, and has comprised the bellows shape, respectively.

なお、図2(a)中では、それぞれ可撓部55を有する冷却水配管51、52を内側の筒状伝熱部材32の両端側に結合させて、ケース11内で内側の筒状伝熱部材32の両端側に位置する一対の可撓部55を構成している。しかし、これら一対の可撓部55を内側の筒状伝熱部材32の両端部に一体に形成してもよい。また、可撓部55の壁面の横断面が波形でなくU字形やアーチ形であってもよい。   In FIG. 2A, the cooling water pipes 51 and 52 each having a flexible portion 55 are coupled to both end sides of the inner cylindrical heat transfer member 32 so that the inner cylindrical heat transfer in the case 11. A pair of flexible portions 55 located on both ends of the member 32 are configured. However, the pair of flexible portions 55 may be integrally formed at both end portions of the inner cylindrical heat transfer member 32. Further, the cross section of the wall surface of the flexible portion 55 may be U-shaped or arched instead of corrugated.

また、可撓部55は、内側の筒状伝熱部材32の熱変形等による伸縮を弾性変形により吸収できればよいので、図2(a)に示すケース11の左右両端側に位置する第1側板部11a、11bのうち少なくとも一方に、ケース11に対する内側の筒状伝熱部材32の熱変形等による伸縮を弾性変形により吸収する環状の可撓部11f(図2(a)中に点線で図示)を設けてもよい。あるいは、内側の筒状伝熱部材32の少なくとも一端側に、外周側でケース11に固定されるフランジ状の環状撓み板部を設けてもよい。   Further, the flexible portion 55 only needs to be able to absorb expansion and contraction due to thermal deformation or the like of the inner cylindrical heat transfer member 32 by elastic deformation. Therefore, the first side plate located on the left and right ends of the case 11 shown in FIG. At least one of the portions 11a and 11b has an annular flexible portion 11f (illustrated by a dotted line in FIG. 2A) that absorbs expansion / contraction due to thermal deformation or the like of the inner cylindrical heat transfer member 32 with respect to the case 11 by elastic deformation. ) May be provided. Alternatively, at least one end side of the inner cylindrical heat transfer member 32 may be provided with a flange-shaped annular flexible plate portion fixed to the case 11 on the outer peripheral side.

外側の筒状伝熱部材33の少なくとも一方側の端部、例えば外側の筒状伝熱部材33の両端側の外周面部33f、33g(両端部)は、それぞれケース11の第2側板部11c、11d(摺動支持部)に対して軸方向に摺動可能に支持されている。   At least one end portion of the outer cylindrical heat transfer member 33, for example, outer peripheral surface portions 33f and 33g (both end portions) on both end sides of the outer cylindrical heat transfer member 33 are the second side plate portion 11c of the case 11, respectively. 11d (sliding support portion) is supported so as to be slidable in the axial direction.

具体的には、図2(a)および図3に示すように、外側の筒状伝熱部材33の両端側の外周面部33f、33gとケース11の間には、それぞれ高温での弾力性および若干の通気性を持つ耐熱性素材で構成される耐熱弾性リング56が介装されており、耐熱弾性リング56は環状取付板11sを介してケース11の第2側板部11c、11dに支持されている。これら耐熱弾性リング56は、外側の筒状伝熱部材33の両端側を軸方向に摺動可能に支持(スライド支持)するよう第2側板部11c、11dに設けられた摺動支持部となっている。   Specifically, as shown in FIG. 2A and FIG. 3, between the outer peripheral surface portions 33f and 33g on the both ends of the outer cylindrical heat transfer member 33 and the case 11, elasticity at high temperatures and A heat-resistant elastic ring 56 made of a heat-resistant material having a slight air permeability is interposed, and the heat-resistant elastic ring 56 is supported by the second side plate portions 11c and 11d of the case 11 via an annular mounting plate 11s. Yes. These heat-resistant elastic rings 56 become sliding support portions provided on the second side plate portions 11c and 11d so as to support (slide support) both ends of the outer cylindrical heat transfer member 33 so as to be slidable in the axial direction. ing.

より具体的には、耐熱弾性リング56は、例えば円筒状に筒編みされた細いステンレス線材等からなる金属メッシュで構成されており、外側の筒状伝熱部材33やケース11の熱変形による拡縮径や径方向変位を吸収可能な可撓性または弾力性を有している。また、耐熱弾性リング56は、排気熱に耐え得る耐熱性、排気成分を含む凝縮水等に対する耐食性、粉塵等に対するフィルタ特性および若干の通気性等を有している。   More specifically, the heat-resistant elastic ring 56 is made of, for example, a metal mesh made of a thin stainless steel wire knitted in a cylindrical shape, and is expanded or contracted by thermal deformation of the outer cylindrical heat transfer member 33 or the case 11. It has flexibility or elasticity that can absorb diameter and radial displacement. Further, the heat-resistant elastic ring 56 has heat resistance that can withstand exhaust heat, corrosion resistance to condensed water containing exhaust components, filter characteristics against dust and the like, and some air permeability.

これにより、外側の筒状伝熱部材33の両端側の外周面部33f、33gは、一対の耐熱弾性リング56を介して、ケース11の第2側板部11c、11dに対する熱変形程度以上の一定範囲内での軸方向変位(摺動)と拡・縮径および径方向変位とが可能なように支持されている。   Thereby, the outer peripheral surface parts 33f and 33g of the both ends of the outer cylindrical heat transfer member 33 are in a certain range that is equal to or more than the degree of thermal deformation with respect to the second side plate parts 11c and 11d of the case 11 via the pair of heat-resistant elastic rings 56. It is supported so that axial displacement (sliding) and expansion / contraction and radial displacement are possible.

また、内側の筒状伝熱部材32およびケース11は、外側の筒状伝熱部材33の両端側の外周面部33f、33gより熱電発電ユニット13の外方側で、例えばアーク溶接等による固着形態で気密的に結合されている。   Further, the inner cylindrical heat transfer member 32 and the case 11 are fixed to each other on the outer side of the thermoelectric generation unit 13 from the outer peripheral surface portions 33f and 33g on both ends of the outer cylindrical heat transfer member 33, for example, by arc welding. Are tightly coupled with each other.

そして、ケース11の第1側板部11a、11bと第2側板部11c、11dとの間には、ケース11の外周近傍の外気からは遮断された一対の端末室57、58が形成されている。これら一対の端末室57、58は、第2側板部11c、11dおよび耐熱弾性リング56により排気ガス通路12からは概ね遮断されるものの、それぞれ温度変化に伴う呼吸が可能な程度にケース11と外側の筒状伝熱部材33との摺動隙間部分に排気ガス通路12からの漏れ(ガスリーク)が生じ得るものとなる。   A pair of terminal chambers 57 and 58 are formed between the first side plate portions 11 a and 11 b and the second side plate portions 11 c and 11 d of the case 11 so as to be shielded from the outside air near the outer periphery of the case 11. . Although the pair of terminal chambers 57 and 58 are generally cut off from the exhaust gas passage 12 by the second side plate portions 11c and 11d and the heat-resistant elastic ring 56, the case 11 and the outside of the case 11 and the outside of the pair of terminal chambers 57 and 58 can be breathed due to temperature changes. Leakage (gas leak) from the exhaust gas passage 12 can occur in the sliding gap portion with the cylindrical heat transfer member 33.

なお、図1中の矢印Frは車両の前方向を、図1中の矢印Rhは車両の右方向を示しており、上下方向に薄い扁平形状の熱電発電装置10の概略の設置方向を示している。   An arrow Fr in FIG. 1 indicates the front direction of the vehicle, an arrow Rh in FIG. 1 indicates the right direction of the vehicle, and indicates an approximate installation direction of the thin flat thermoelectric generator 10 in the vertical direction. Yes.

次に、作用について説明する。   Next, the operation will be described.

上述のように構成された本実施形態の熱電発電装置10においては、内燃機関の運転中に、排気ガス通路12中を高温側の熱媒体である高温の排気ガスが通過するとともに、複数の熱電発電ユニット13内を通る冷却水通路30中を低温側の熱媒体である内燃機関の冷却水が通過する。   In the thermoelectric power generation apparatus 10 of the present embodiment configured as described above, a high-temperature exhaust gas that is a high-temperature side heat medium passes through the exhaust gas passage 12 during operation of the internal combustion engine, and a plurality of thermoelectric generators. The cooling water of the internal combustion engine, which is a low-temperature heat medium, passes through the cooling water passage 30 passing through the power generation unit 13.

この状態においては、ケース11が高温の排気ガスからの熱により膨張する一方、冷却水を通す複数の熱電発電ユニット13の熱膨張、特にその内側の筒状伝熱部材32の熱膨張が抑えられ、ケース11に対して内側の筒状伝熱部材32が相対的に短くなる収縮状態が生じる。したがって、仮に、ケース11に対して複数の熱電発電ユニット13が単に固定されているとすれば、その固定部分に熱応力や熱歪が集中し得ることになる。   In this state, the case 11 expands due to heat from the high-temperature exhaust gas, while the thermal expansion of the plurality of thermoelectric power generation units 13 through which the cooling water passes, particularly the thermal expansion of the cylindrical heat transfer member 32 inside thereof is suppressed. A contraction state occurs in which the inner cylindrical heat transfer member 32 is relatively short with respect to the case 11. Therefore, if a plurality of thermoelectric power generation units 13 are simply fixed to the case 11, thermal stress and thermal strain can concentrate on the fixed portion.

本実施形態では、内側の筒状伝熱部材32とケース11とのうち少なくとも一方側の部材に設けられる可撓部55(または/および環状の可撓部11f)により、ケース11に対する内側の筒状伝熱部材32の相対的な収縮が可撓部55の撓みによって吸収される。したがって、ケース11に対する複数の熱電発電ユニット13の固定部分に熱応力や熱歪が集中し難くなる。   In the present embodiment, the inner cylinder with respect to the case 11 is provided by the flexible portion 55 (or / and the annular flexible portion 11f) provided on at least one member of the inner cylindrical heat transfer member 32 and the case 11. The relative contraction of the heat transfer member 32 is absorbed by the bending of the flexible portion 55. Therefore, it becomes difficult for thermal stress and thermal strain to concentrate on the fixed portion of the plurality of thermoelectric power generation units 13 with respect to the case 11.

また、外側の筒状伝熱部材33が両端側で耐熱弾性リング56を介してケース11に摺動可能に支持されることで、ケース11に対する外側の筒状伝熱部材33の伸縮や軸方向変位、熱変形に伴う拡縮径および径方向変位等が許容される。   Further, the outer cylindrical heat transfer member 33 is slidably supported by the case 11 via the heat-resistant elastic rings 56 at both ends, so that the outer cylindrical heat transfer member 33 extends and contracts with respect to the case 11 and in the axial direction. Displacement, expansion / contraction diameter and radial displacement associated with thermal deformation are allowed.

そして、外側の筒状伝熱部材33の両端側の外周面部33f、33gを支持するケース11の耐熱弾性リング56よりも熱電発電ユニット13の外方側で、内側の筒状伝熱部材32およびケース11が気密的に結合されることにより、ケース11外への排気ガス(ガス状の高温側の熱媒体)の漏れが防止される。   Then, the inner cylindrical heat transfer member 32 and the outer cylindrical heat transfer member 33 on the outer side of the thermoelectric generator unit 13 than the heat-resistant elastic ring 56 of the case 11 that supports the outer peripheral surface portions 33f and 33g on both ends of the outer cylindrical heat transfer member 33 and Since the case 11 is hermetically coupled, leakage of exhaust gas (a gaseous high-temperature heat medium) to the outside of the case 11 is prevented.

したがって、カートリッジ化された複数の熱電発電ユニット13の端部にケース11に結合するために二重管構造の結合部を設けたりすることなく、その結合部における熱応力や熱歪の緩和およびシール等が可能となる。その結果、構造や組付けの複雑化を招くことなく、排気ガス通路12側のケース11と冷却水通路31側の熱電発電ユニット13との結合部分に大きな熱応力や熱歪が発生することを有効に抑制でき、熱電発電装置10の発電効率や熱回収効率を高めることができる。   Therefore, the thermal stress and thermal strain can be alleviated and sealed at the joints without providing a joint part of the double tube structure to join the case 11 at the end parts of the plurality of thermoelectric generator units 13 formed into cartridges. Etc. are possible. As a result, a large thermal stress or thermal strain is generated at the joint portion between the case 11 on the exhaust gas passage 12 side and the thermoelectric power generation unit 13 on the cooling water passage 31 side without complicating the structure and assembly. It can suppress effectively and can improve the power generation efficiency and heat recovery efficiency of the thermoelectric generator 10.

しかも、本実施形態では、耐熱弾性リング56によってケース11に対する外側の筒状伝熱部材33の伸縮や軸方向変位のみならず、熱変形に伴う外側の筒状伝熱部材33の拡縮径およびケース11に対する径方向変位も許容されるので、ケース11と外側の筒状伝熱部材33の結合部分における熱応力や熱歪がより有効に抑制される。   In addition, in the present embodiment, not only expansion and contraction and axial displacement of the outer cylindrical heat transfer member 33 with respect to the case 11 by the heat-resistant elastic ring 56, but also the expansion and contraction diameter and the case of the outer cylindrical heat transfer member 33 accompanying thermal deformation. 11 is also allowed to be displaced in the radial direction, so that thermal stress and thermal strain at the joint portion of the case 11 and the outer cylindrical heat transfer member 33 are more effectively suppressed.

さらに、本実施形態では、ケース11に、第1側板部11a、11bおよび第2側板部11c、11dの間に位置する端末室57、58が形成され、そこに素子リード線38等の電気配線や内側の筒状伝熱部材32と冷却水配管51、52との接続部分等が収納されている。したがって、それらを、水、泥、小石等のピッチングや熱から有効に保護することができる。   Further, in the present embodiment, terminal chambers 57 and 58 positioned between the first side plate portions 11a and 11b and the second side plate portions 11c and 11d are formed in the case 11, and electrical wiring such as the element lead wire 38 is formed there. A connecting portion between the inner cylindrical heat transfer member 32 and the cooling water pipes 51 and 52 is accommodated. Therefore, they can be effectively protected from pitting and heat of water, mud, pebbles and the like.

加えて、カートリッジ状の複数の熱電発電ユニット13の間で、略U字形やアーチ状に湾曲する素子リード線38等の電気配線が、ケース11の長手方向の熱変形による伸縮に十分に追従可能となる。   In addition, between the plurality of cartridge-like thermoelectric generator units 13, the electrical wiring such as the element lead wire 38 that is curved in a substantially U shape or arch shape can sufficiently follow the expansion and contraction due to thermal deformation in the longitudinal direction of the case 11. It becomes.

このように、本実施形態によれば、構造や組付けの複雑化を招くことなく、高温熱媒体側の部材であるケース11と低温熱媒体側の部材である熱電発電ユニット13との間に大きな応力や歪が発生するのを有効に抑制して、発電効率や熱回収効率を高めた小型化および高効率化の要求に応え得る熱電発電装置10を提供することができる。   As described above, according to the present embodiment, the structure and the assembly are not complicated, and between the case 11 that is a member on the high-temperature heat medium side and the thermoelectric power generation unit 13 that is a member on the low-temperature heat medium side. It is possible to provide the thermoelectric power generation apparatus 10 that can effectively suppress the occurrence of large stresses and strains and can meet the demands for downsizing and high efficiency in which power generation efficiency and heat recovery efficiency are increased.

(第2実施形態)
図4は、本発明の第2実施形態に係る熱電発電装置の概略構成を示している。
(Second Embodiment)
FIG. 4 shows a schematic configuration of the thermoelectric generator according to the second embodiment of the present invention.

なお、以下に説明する各実施形態の熱電発電装置は、複数の熱電発電ユニット13の隣り合う冷却水配管31同士を接続する接続配管の配置が前述の第1実施形態とは相違するものの、他の構成は、前述の第1実施形態と類似するものである。よって、以下の各実施形態の説明においては、先行する実施形態と同一であるか類似する構成については図1ないし図3中の対応する構成要素と同一の符号を用いつつ、第1実施形態または先行する実施形態との相違点を中心に説明する。   In addition, the thermoelectric power generation apparatus of each embodiment described below is different from the first embodiment described above in that the arrangement of connection pipes connecting adjacent cooling water pipes 31 of a plurality of thermoelectric power generation units 13 is different. The configuration is similar to that of the first embodiment described above. Therefore, in the following description of each embodiment, the same or similar components as those of the preceding embodiment are denoted by the same reference numerals as the corresponding components in FIGS. The description will focus on the differences from the preceding embodiment.

本実施形態の熱電発電装置10は、複数の前記熱電発電ユニット13が排気ガス通路12中に排気流れ方向に対し略直交(交差)するよう並列配置されている点では、第1の実施の形態と同様である。   The thermoelectric generator 10 of the present embodiment is the first embodiment in that a plurality of the thermoelectric generator units 13 are arranged in parallel in the exhaust gas passage 12 so as to be substantially orthogonal to (intersect) the exhaust flow direction. It is the same.

しかし、第1の実施の形態では、複数の熱電発電ユニット13の内側の筒状伝熱部材32同士を接続する冷却水配管51、52がケース11の外部に露出していた。   However, in the first embodiment, the cooling water pipes 51 and 52 that connect the cylindrical heat transfer members 32 inside the plurality of thermoelectric power generation units 13 are exposed to the outside of the case 11.

これに対し、本実施形態においては、内側の筒状伝熱部材32およびケース11が、複数の熱電発電ユニット13の内側の筒状伝熱部材32を直列に接続する冷却水配管51、52を、第2側板部11c、11dより熱電発電ユニット13の外方側であってケース11の内部に収納している。   On the other hand, in this embodiment, the inner cylindrical heat transfer member 32 and the case 11 include the cooling water pipes 51 and 52 that connect the inner cylindrical heat transfer members 32 of the plurality of thermoelectric power generation units 13 in series. The second side plate portions 11c and 11d are housed inside the case 11 on the outer side of the thermoelectric power generation unit 13.

すなわち、本実施形態では、複数の内側の筒状伝熱部材32同士を接続する冷却水配管51、52がケース11の外部に露出していない。   That is, in this embodiment, the cooling water pipes 51 and 52 that connect the plurality of inner cylindrical heat transfer members 32 are not exposed to the outside of the case 11.

本実施形態においても、構造や組付けの複雑化を招くことなく、高温熱媒体側の部材であるケース11と低温熱媒体側の部材である熱電発電ユニット13との間に大きな応力や歪が発生するのを有効に抑制して、発電効率や熱回収効率を高めた小型化および高効率化の要求に応え得る熱電発電装置10を提供することができる。   Also in the present embodiment, large stress and distortion are generated between the case 11 that is a member on the high temperature heat medium side and the thermoelectric power generation unit 13 that is a member on the low temperature heat medium side without complicating the structure and assembly. It is possible to provide the thermoelectric power generation apparatus 10 that can effectively suppress the generation and meet the demands for downsizing and high efficiency with increased power generation efficiency and heat recovery efficiency.

しかも、本実施形態では、冷却水配管51、52がケース11の外部に露出しないので、冷却水配管51、52やそれらの内側の筒状伝熱部材32との配管接続部分に対する保護機能をより向上させることができる。   In addition, in this embodiment, since the cooling water pipes 51 and 52 are not exposed to the outside of the case 11, the protection function for the pipe connection portions with the cooling water pipes 51 and 52 and the cylindrical heat transfer member 32 inside them is further improved. Can be improved.

(第3実施形態)
図5は、本発明の第3実施形態に係る熱電発電装置の概略構成を示している。
(Third embodiment)
FIG. 5 shows a schematic configuration of a thermoelectric generator according to the third embodiment of the present invention.

本実施形態の熱電発電装置10においては、第1の実施の形態と同様に、内側の筒状伝熱部材32およびケース11が、第2側板部11c、11dにおける外側の筒状伝熱部材33の摺動支持部である耐熱弾性リング56よりも熱電発電ユニット13の外方側であってケース11の内部に、その摺動支持隙間部分を介して排気ガス通路12に通じる端末室57、58が形成されている。   In the thermoelectric generator 10 of the present embodiment, as in the first embodiment, the inner cylindrical heat transfer member 32 and the case 11 are connected to the outer cylindrical heat transfer member 33 in the second side plate portions 11c and 11d. Terminal chambers 57 and 58 that communicate with the exhaust gas passage 12 through the sliding support gap portion on the outer side of the thermoelectric power generation unit 13 with respect to the heat-resistant elastic ring 56 that is the sliding support portion and inside the case 11. Is formed.

しかし、第1実施形態では、端末室57、58が温度変化に伴う呼吸が可能な程度にケース11と外側の筒状伝熱部材33との摺動隙間部分に漏れ(ガスリーク)が生じ得るものであったのに対して、本実施形態では、過給圧導入配管61、62および導入制御弁63を介して、端末室57、58内に内燃機関の過給圧が選択的に導入されるようになっている。   However, in the first embodiment, the terminal chambers 57 and 58 may leak (gas leak) in the sliding gap portion between the case 11 and the outer cylindrical heat transfer member 33 to such an extent that breathing accompanying temperature change is possible. In contrast, in the present embodiment, the supercharging pressure of the internal combustion engine is selectively introduced into the terminal chambers 57 and 58 via the supercharging pressure introduction pipes 61 and 62 and the introduction control valve 63. It is like that.

すなわち、本実施形態の熱電発電装置10が図示しない過給機を装備した内燃機関と併用される車両において、端末室57、58内にその過給機によって正圧に加圧された過給空気、例えば排気ガス通路12内の排気ガス圧力以上の圧力に加圧された過給空気が導入されることで、排気ガス通路12側から端末室57、58内への排気ガスの漏れが抑制されるようになっている。   That is, in the vehicle in which the thermoelectric generator 10 of the present embodiment is used in combination with an internal combustion engine equipped with a turbocharger (not shown), the supercharged air pressurized to a positive pressure by the turbocharger in the terminal chambers 57 and 58. For example, by introducing supercharged air pressurized to a pressure equal to or higher than the exhaust gas pressure in the exhaust gas passage 12, leakage of exhaust gas from the exhaust gas passage 12 side into the terminal chambers 57 and 58 is suppressed. It has become so.

具体的には、過給圧導入配管61、62は、上流側で合流するとともに、過給機を装備した内燃機関(過給エンジン)の吸気管に接続されている。また、導入制御弁63は、過給圧導入配管61、62の合流した上流側通路上に配置されたソレノイド弁で構成され、図外の電子制御ユニットからの開閉制御信号に応じて開閉する。そして、この導入制御弁63の開閉により、過給機を装備した内燃機関(過給エンジン)の吸気管から過給圧導入配管61、62を通して、端末室57、58内に過給空気が選択的に導入される。   Specifically, the supercharging pressure introduction pipes 61 and 62 merge on the upstream side and are connected to an intake pipe of an internal combustion engine (supercharged engine) equipped with a supercharger. The introduction control valve 63 is composed of a solenoid valve disposed on the upstream passage where the supercharging pressure introduction pipes 61 and 62 merge, and opens and closes in response to an opening / closing control signal from an electronic control unit (not shown). Then, by opening and closing the introduction control valve 63, the supercharged air is selected in the terminal chambers 57 and 58 from the intake pipe of the internal combustion engine (supercharged engine) equipped with the supercharger through the supercharging pressure introduction pipes 61 and 62. Introduced.

本実施形態においても、構造や組付けの複雑化を招くことなく、高温熱媒体側の部材であるケース11と低温熱媒体側の部材である熱電発電ユニット13との間に大きな応力や歪が発生するのを有効に抑制して、発電効率や熱回収効率を高めた小型化および高効率化の要求に応え得る熱電発電装置10を提供することができる。   Also in the present embodiment, large stress and distortion are generated between the case 11 that is a member on the high temperature heat medium side and the thermoelectric power generation unit 13 that is a member on the low temperature heat medium side without complicating the structure and assembly. It is possible to provide the thermoelectric power generation apparatus 10 that can effectively suppress the generation and meet the demands for downsizing and high efficiency with increased power generation efficiency and heat recovery efficiency.

しかも、本実施形態では、排気ガス通路12側から端末室57、58内への排気ガスの漏れが有効に抑制されるので、素子リード線38等の電気配線や内側の筒状伝熱部材32と冷却水配管51、52との接続部分等が、排気ガス成分によって腐食するようなことが防止される。   In addition, in the present embodiment, since leakage of exhaust gas from the exhaust gas passage 12 side into the terminal chambers 57 and 58 is effectively suppressed, electrical wiring such as the element lead wires 38 and the inner cylindrical heat transfer member 32 are suppressed. It is possible to prevent the connection portion between the coolant pipes 51 and 52 from being corroded by the exhaust gas component.

なお、上述の各実施形態においては、複数の熱電発電ユニット13がそれぞれ円筒状の内側の筒状伝熱部材32および外側の筒状伝熱部材33を有するものとしたが、多角形状その他の非円形断面形状を有するもの、あるいは、扁平管であってもよい。また、熱電発電ユニット13は、真っ直ぐな軸線を有するものに限定されるものではない。   In each of the above-described embodiments, each of the plurality of thermoelectric power generation units 13 includes the cylindrical inner cylindrical heat transfer member 32 and the outer cylindrical heat transfer member 33. It may have a circular cross-sectional shape or a flat tube. Further, the thermoelectric power generation unit 13 is not limited to one having a straight axis.

さらに、上述の各実施形態では、熱電発電装置10を内燃機関の排気ガスの持つ排熱を電気エネルギに変換しつつ回収する排熱回収機能を有するものとして、一方の熱媒体通路を排気ガス通路とし、熱電発電ユニットの内方に形成される他方の熱媒体通路をエンジン冷却水を通す冷却媒体通路とした。しかし、熱電発電装置10を内燃機関の排熱回収以外に適用する場合に、熱媒体がエンジンの排気ガスおよび冷却水に限定されないことはいうまでもない。   Further, in each of the above-described embodiments, the heat medium passage 10 has an exhaust heat recovery function of recovering while converting the exhaust heat of the exhaust gas of the internal combustion engine into electric energy, and one heat medium passage is an exhaust gas passage. The other heat medium passage formed inside the thermoelectric power generation unit was used as a cooling medium passage through which engine cooling water passes. However, when the thermoelectric generator 10 is applied to other than the exhaust heat recovery of the internal combustion engine, it goes without saying that the heat medium is not limited to the exhaust gas and cooling water of the engine.

以上説明したように、本発明は、構造や組付けの複雑化を招くことなく、高温熱媒体側の部材と低温熱媒体側の部材の間に大きな応力や歪が発生するのを有効に抑制して、小型化および高効率化の要求に応え得る熱電発電装置を提供できるものであり、高温側の熱媒体と低温側の熱媒体とを通しつつ両熱媒体の温度差を利用して熱電発電する熱電発電装置全般に有用である。   As described above, the present invention effectively suppresses the occurrence of large stress and strain between the member on the high temperature heat medium side and the member on the low temperature heat medium side without complicating the structure and assembly. Thus, it is possible to provide a thermoelectric generator that can meet the demands for miniaturization and higher efficiency, and use the temperature difference between the two heat mediums while passing the heat medium on the high temperature side and the heat medium on the low temperature side. It is useful for all thermoelectric generators that generate electricity.

10…熱電発電装置、11…ケース、11a,11b…第1側板部、11c,11d…第2側板部(摺動支持部)、11f…環状の可撓部、11s…環状取付板、12…排気ガス通路、13…熱電発電ユニット、30…冷却水通路、30a…冷却水入口、30b…冷却水出口、31…冷却水通路(冷却媒体通路)、32…内側の筒状伝熱部材、32a…内周壁面、32b…外周面、33…外側の筒状伝熱部材、33a…内周面、33b…外周壁面、33f,33g…外周面部(摺動面部)、34a,34b…熱電素子、35…熱電素子モジュール、36a,36b…電極、38…素子リード線、41…フィン、51,52…冷却水配管、53…冷却水導入側の冷却水配管、54…冷却水排出側の冷却水配管、55…可撓部、56…耐熱弾性リング(摺動支持部)、57,58…端末室、61,62…過給圧導入配管、63…導入制御弁 DESCRIPTION OF SYMBOLS 10 ... Thermoelectric generator, 11 ... Case, 11a, 11b ... 1st side board part, 11c, 11d ... 2nd side board part (sliding support part), 11f ... Annular flexible part, 11s ... Annular mounting plate, 12 ... Exhaust gas passage, 13 ... thermoelectric power generation unit, 30 ... cooling water passage, 30a ... cooling water inlet, 30b ... cooling water outlet, 31 ... cooling water passage (cooling medium passage), 32 ... inner cylindrical heat transfer member, 32a ... inner peripheral wall surface, 32b ... outer peripheral surface, 33 ... outer cylindrical heat transfer member, 33a ... inner peripheral surface, 33b ... outer peripheral wall surface, 33f, 33g ... outer peripheral surface portion (sliding surface portion), 34a, 34b ... thermoelectric element, 35 ... Thermoelectric element module, 36a, 36b ... Electrode, 38 ... Element lead wire, 41 ... Fin, 51, 52 ... Cooling water piping, 53 ... Cooling water piping on cooling water introduction side, 54 ... Cooling water on cooling water discharge side Piping, 55 ... flexible part, 56 ... heat-resistant elastic thread Grayed (sliding support portions) 57, 58 ... terminal chambers, 61, 62 ... supercharging pressure introduction pipe, 63 ... introduction control valve

Claims (1)

高温側の熱媒体を通す一方の熱媒体通路を有するケースと、それぞれ内周側に低温側の熱媒体を通す他方の熱媒体通路を形成する筒状の複数の熱電発電ユニットと、を備え、前記熱電発電ユニットが、前記一方の熱媒体通路中に前記高温側の熱媒体の流れ方向に対し略直交するよう前記ケースに支持される熱電発電装置であって、
前記熱電発電ユニットは、それぞれに、前記他方の熱媒体通路を形成する内側の筒状伝熱部材と、前記内側の筒状伝熱部材を取り囲む外側の筒状伝熱部材と、前記内側の筒状伝熱部材および前記外側の筒状伝熱部材の間に介装された複数の熱電素子を有する熱電素子モジュールとを含んで構成され、
前記熱電発電ユニットのそれぞれの前記内側の筒状伝熱部材および前記ケースのうち少なくとも一方側の部材に、前記ケースに対する前記内側の筒状伝熱部材の伸縮を弾性変形により吸収する可撓部が設けられるとともに、
前記ケースには、前記熱電発電ユニットのそれぞれの前記外側の筒状伝熱部材の少なくとも一方側の端部を軸方向に摺動可能に支持する複数の摺動支持部が設けられており
前記ケースは、前記それぞれの内側の筒状伝熱部材に対し前記摺動支持部より前記熱電発電ユニットの外方側で気密的に結合された外側板部と、前記複数の摺動支持部を介して前記それぞれの前記外側の筒状伝熱部材を支持する内側板部とを有し、前記外側板部および前記内側板部の間に、前記複数の摺動部の摺動隙間に通じる端末室が形成されていることを特徴とする熱電発電装置。
A case having one heat medium passage for passing the high temperature side heat medium, and a plurality of cylindrical thermoelectric power generation units forming the other heat medium passage for passing the low temperature side heat medium on the inner peripheral side, respectively , The thermoelectric generator unit is supported by the case so as to be substantially orthogonal to the flow direction of the heat medium on the high temperature side in the one heat medium passage,
Each of the thermoelectric generator units includes an inner cylindrical heat transfer member that forms the other heat medium passage, an outer cylindrical heat transfer member that surrounds the inner cylindrical heat transfer member, and the inner cylinder. A thermoelectric element module having a plurality of thermoelectric elements interposed between the outer heat transfer member and the outer cylindrical heat transfer member,
A flexible portion that absorbs expansion and contraction of the inner cylindrical heat transfer member with respect to the case by elastic deformation is provided on at least one of the inner cylindrical heat transfer member and the case of each of the thermoelectric generation units. As well as
The said casing, a plurality of sliding support unit slidably supported in the axial direction end portion of the at least one side of each of said outer tubular heat transfer member is provided in the thermoelectric power generation unit,
The case includes an outer plate portion which is airtightly coupled with the outer side of the thermoelectric power generation unit from the sliding support portion and the to respective inner tubular heat transfer member, the plurality of sliding support portions And an inner plate portion that supports each of the outer cylindrical heat transfer members, and a terminal that communicates with the sliding gaps of the plurality of sliding portions between the outer plate portion and the inner plate portion. A thermoelectric generator having a chamber formed therein .
JP2014027575A 2014-02-17 2014-02-17 Thermoelectric generator Expired - Fee Related JP6149754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014027575A JP6149754B2 (en) 2014-02-17 2014-02-17 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027575A JP6149754B2 (en) 2014-02-17 2014-02-17 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2015154640A JP2015154640A (en) 2015-08-24
JP6149754B2 true JP6149754B2 (en) 2017-06-21

Family

ID=53896368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027575A Expired - Fee Related JP6149754B2 (en) 2014-02-17 2014-02-17 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP6149754B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6424883B2 (en) * 2016-01-21 2018-11-21 株式会社デンソー Thermoelectric generator
JP6601317B2 (en) * 2016-06-03 2019-11-06 株式会社デンソー Thermoelectric generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303381A (en) * 1989-05-17 1990-12-17 Mitsubishi Electric Corp Cogeneration facility
JP2008177301A (en) * 2007-01-17 2008-07-31 Toyota Motor Corp Thermoelectric generator
JP2013165240A (en) * 2012-02-13 2013-08-22 Central Research Institute Of Electric Power Industry Thermoelectric conversion system

Also Published As

Publication number Publication date
JP2015154640A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
US9716217B2 (en) Exhaust system with thermoelectric generator
JP4872741B2 (en) Thermoelectric generator
ES2467970T3 (en) Module for a thermoelectric generator and a thermoelectric generator
US20140096807A1 (en) Thermoelectric assembly using a cartridge support fixture
KR101817913B1 (en) Thermoelectric generator unit
US9145811B2 (en) Thermoelectric generator of vehicle
JP5926261B2 (en) Thermoelectric module for automotive thermoelectric generator with sealing element
JP5724723B2 (en) Thermoelectric generator
JP6011485B2 (en) Thermoelectric generator
US9903612B2 (en) Solar heat collection tube
JP5498192B2 (en) Thermoelectric converter and thermoelectric conversion method
JP6601317B2 (en) Thermoelectric generator
JP6149754B2 (en) Thermoelectric generator
JP2013165240A (en) Thermoelectric conversion system
JP2014509172A (en) Thermoelectric module having means for compensating for thermal expansion
JP2008035595A (en) Thermal power generation equipment and its manufacturing method
JP5443952B2 (en) Thermoelectric generator
JP6237345B2 (en) Thermoelectric generator
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
JP2008205126A (en) Thermoelectric generation device
JP6350297B2 (en) Thermoelectric generator
JP2008177301A (en) Thermoelectric generator
JP2006266211A (en) Exhaust heat power generation plant of internal combustion engine
JP5141434B2 (en) Thermoelectric module
JP2004211981A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R151 Written notification of patent or utility model registration

Ref document number: 6149754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees