JP6601317B2 - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP6601317B2
JP6601317B2 JP2016112031A JP2016112031A JP6601317B2 JP 6601317 B2 JP6601317 B2 JP 6601317B2 JP 2016112031 A JP2016112031 A JP 2016112031A JP 2016112031 A JP2016112031 A JP 2016112031A JP 6601317 B2 JP6601317 B2 JP 6601317B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat
heat transfer
thermoelectric conversion
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016112031A
Other languages
Japanese (ja)
Other versions
JP2017220492A (en
Inventor
友宏 早瀬
健一 奈良
徹 岡村
文継 前田
和利 桑山
知之 岸田
要次郎 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2016112031A priority Critical patent/JP6601317B2/en
Publication of JP2017220492A publication Critical patent/JP2017220492A/en
Application granted granted Critical
Publication of JP6601317B2 publication Critical patent/JP6601317B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Description

この明細書における開示は、ゼーベック効果により熱エネルギを電力エネルギに変換する熱電発電装置に関する。   The disclosure in this specification relates to a thermoelectric generator that converts thermal energy into electric energy by the Seebeck effect.

特許文献1に記載の排熱発電装置においては、排気管内の排ガス通路を流れる排ガスの温度がエンジンの負荷により大きく変動し、場合によっては熱電変換素子の使用上限温度を超える高温になることがある。そこで、熱電変換素子の高温端側の温度が使用上限温度を超えそうな場合に、エアコンプレッサ等の外気加圧装置を駆動して、排気管内の排ガス通路に外気を流し込み、排気管の表面温度を下げて熱電変換素子の温度上昇を抑制している。   In the exhaust heat power generator described in Patent Document 1, the temperature of the exhaust gas flowing through the exhaust gas passage in the exhaust pipe largely fluctuates depending on the load of the engine, and in some cases, the temperature exceeds the upper limit temperature of use of the thermoelectric conversion element. . Therefore, when the temperature on the high temperature end side of the thermoelectric conversion element is likely to exceed the upper limit temperature, the outside air pressurizing device such as an air compressor is driven to flow outside air into the exhaust gas passage in the exhaust pipe, and the surface temperature of the exhaust pipe To suppress the temperature rise of the thermoelectric conversion element.

特開2000−18095号公報JP 2000-18095 A

特許文献1の装置によれば、排ガス通路に圧縮空気を導入する冷却方式であるため、最も高温になりうる、排ガス流れの最上流に位置する熱電変換素子を冷却する効果が十分ではなく、改良の余地がある。さらに特許文献1の装置は、排ガス通路に圧縮空気を導入するためのデバイスを必要とし、圧縮空気を供給するための動力エネルギも大きく、この点においても改良の余地がある。   According to the apparatus of Patent Document 1, since it is a cooling system that introduces compressed air into the exhaust gas passage, the effect of cooling the thermoelectric conversion element located at the uppermost stream of the exhaust gas flow, which can reach the highest temperature, is not sufficient and improved. There is room for. Furthermore, the apparatus of Patent Document 1 requires a device for introducing compressed air into the exhaust gas passage, and the power energy for supplying the compressed air is large, and there is room for improvement in this respect.

このような課題に鑑み、この明細書における開示の目的は、動力エネルギを抑えるとともに、排ガス流れの最上流に位置する熱電変換素子について温度上昇の抑制を図る熱電発電装置を提供することである。   In view of such a problem, an object of the disclosure in this specification is to provide a thermoelectric power generation device that suppresses power energy and suppresses a rise in temperature of a thermoelectric conversion element located at the uppermost stream of an exhaust gas flow.

この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。   A plurality of aspects disclosed in this specification adopt different technical means to achieve each purpose. In addition, the reference numerals in the parentheses described in the claims and in this section are examples showing the correspondence with the specific means described in the embodiments described later as one aspect, and limit the technical scope. is not.

開示された熱電発電装置のひとつは、エンジンから排出された排ガスが流れる排ガス通路(2a)を形成する排ガス通路部材(2)と、内部に排ガスよりも低温である低温流体が流れる低温通路(40)を形成する低温通路部材(4)と、各熱電変換素子について一方側部(30L)が低温流体との間で熱移動可能に設けられ、他方側部(30H)が排ガスとの間で熱移動可能に設けられて、排ガスの流れ方向に沿って並ぶ複数の熱電変換素子(30)と、複数の熱電変換素子のうち、排ガス流れの最上流に位置する第1の素子(30a)の他方側部と第1の素子よりも下流側に位置する少なくとも一つの第2の素子(30b;30c)の他方側部とを排ガス通路側において連結する伝熱部材(33)と、排ガス通路部材から第1の素子へ移動する熱流束を排ガス通路部材から第2の素子へ移動する熱流束よりも小さくするように排ガス通路部材と伝熱部材との間に設けられた、熱伝導性を有する熱量調整部材(5;105;6;106;7;107)と、を備え、熱量調整部材は、排ガスの流れ方向について第1の素子に対応する位置で排ガス通路部材と伝熱部材との間に隙間(23)を形成し、第1の素子に隣接する下流の素子に対応する位置において排ガス通路部材と伝熱部材とを連結するように構成されている。 One of the disclosed thermoelectric generators includes an exhaust gas passage member (2) that forms an exhaust gas passage (2a) through which exhaust gas discharged from an engine flows, and a low-temperature passage (40) in which a low-temperature fluid that is lower in temperature than exhaust gas flows. ) And the one side part (30L) of each thermoelectric conversion element is provided so as to be able to transfer heat between the low temperature fluid and the other side part (30H) is heated between the exhaust gas and the exhaust gas. A plurality of thermoelectric conversion elements (30) provided movably and arranged along the flow direction of the exhaust gas, and the other of the first elements (30a) located at the most upstream of the exhaust gas flow among the plurality of thermoelectric conversion elements A heat transfer member (33) for connecting the side part and the other side part of at least one second element (30b; 30c) located downstream of the first element on the exhaust gas passage side; Move to first element Heat quantity adjusting member (5; 105) having thermal conductivity provided between the exhaust gas passage member and the heat transfer member so as to make the heat flux to be smaller than the heat flux moving from the exhaust gas passage member to the second element. 6; 106 ; 7 ; 107), and the calorific value adjustment member forms a gap (23) between the exhaust gas passage member and the heat transfer member at a position corresponding to the first element in the flow direction of the exhaust gas. and, that is configured to connect the exhaust passage member and the heat transfer member at a position corresponding to the downstream of the element adjacent to the first element.

この熱電発電装置によれば、排ガス通路部材から第1の素子へ移動する熱流束を第2の素子へ移動する熱流束よりも小さくする熱量調整部材を備えることにより、第1の素子に到達する熱量は第2の素子に到達する熱量よりも小さくなる。これにより、最も温度が上がりやすい最上流側の第1の素子に移動する熱量を下流側の素子に移動する熱量よりも抑えることができるので、第1の素子について温度上昇を抑制することができる。さらにこの効果は熱量調整部材の配置構成によって実現できるため、冷却性能を発揮するために従来技術のような動力エネルギを必要としない。以上より、この熱電発電装置によれば、動力エネルギを抑えるとともに、排ガス流れの最上流側の熱電変換素子について温度上昇の抑制を図ることができる。
開示された熱電発電装置のひとつは、エンジンから排出された排ガスが流れる排ガス通路(2a)を形成する排ガス通路部材(2)と、内部に排ガスよりも低温である低温流体が流れる低温通路(40)を形成する低温通路部材(4)と、各熱電変換素子について一方側部(30L)が低温流体との間で熱移動可能に設けられ、他方側部(30H)が排ガスとの間で熱移動可能に設けられて、排ガスの流れ方向に沿って並ぶ複数の熱電変換素子(30)と、複数の熱電変換素子のうち、排ガス流れの最上流に位置する第1の素子(30a)の他方側部と第1の素子よりも下流側に位置する少なくとも一つの第2の素子(30b;30c)の他方側部とを排ガス通路側において連結する伝熱部材(33)と、排ガス通路部材から第1の素子へ移動する熱流束を排ガス通路部材から第2の素子へ移動する熱流束よりも小さくするように排ガス通路部材と伝熱部材との間に設けられた、熱伝導性を有する熱量調整部材(5;105;6;106;306;7;107)と、複数の熱電変換素子を収容するモジュールケース(31;131)と、を備え、熱量調整部材は、熱伝導性および絶縁性を有し、モジュールケースの外面と排ガス通路部材とに挟まれた第1調整部材(5;105)、または熱伝導性を有しモジュールケースの内面と伝熱部材とに挟まれた第2調整部材(6;106)を含んで構成される。
According to this thermoelectric power generation device, the first element is reached by including the heat amount adjusting member that makes the heat flux moving from the exhaust gas passage member to the first element smaller than the heat flux moving to the second element. The amount of heat is smaller than the amount of heat reaching the second element. Thereby, since the amount of heat that moves to the first upstream element that is most likely to rise in temperature can be suppressed from the amount of heat that moves to the downstream element, the temperature rise of the first element can be suppressed. . Further, since this effect can be realized by the arrangement configuration of the calorific value adjusting member, it does not require motive energy as in the prior art in order to exhibit the cooling performance. As described above, according to this thermoelectric power generation apparatus, it is possible to suppress the motive energy and to suppress the temperature rise of the thermoelectric conversion element on the most upstream side of the exhaust gas flow.
One of the disclosed thermoelectric generators includes an exhaust gas passage member (2) that forms an exhaust gas passage (2a) through which exhaust gas discharged from an engine flows, and a low-temperature passage (40) in which a low-temperature fluid that is lower in temperature than exhaust gas flows. ) And the one side part (30L) of each thermoelectric conversion element is provided so as to be able to transfer heat between the low temperature fluid and the other side part (30H) is heated between the exhaust gas and the exhaust gas. A plurality of thermoelectric conversion elements (30) provided movably and arranged along the flow direction of the exhaust gas, and the other of the first elements (30a) located at the most upstream of the exhaust gas flow among the plurality of thermoelectric conversion elements A heat transfer member (33) for connecting the side part and the other side part of at least one second element (30b; 30c) located downstream of the first element on the exhaust gas passage side; Move to first element Heat quantity adjusting member (5; 105) having thermal conductivity provided between the exhaust gas passage member and the heat transfer member so as to make the heat flux to be smaller than the heat flux moving from the exhaust gas passage member to the second element. 6; 106; 306; 7; 107) and a module case (31; 131) for accommodating a plurality of thermoelectric conversion elements, and the heat quantity adjusting member has thermal conductivity and insulation, and is a module case. First adjustment member (5; 105) sandwiched between the outer surface of the gas and the exhaust gas passage member, or a second adjustment member (6; 106) sandwiched between the inner surface of the module case and the heat transfer member having thermal conductivity It is comprised including.

開示された熱電発電装置のひとつは、エンジンから排出された排ガスが流れる排ガス通路(2a)を形成する排ガス通路部材(2)と、内部に排ガスよりも低温である低温流体が流れる低温通路(40)を形成する低温通路部材(4)と、各熱電変換素子について一方側部(30L)が低温流体との間で熱移動可能に設けられ他方側部(30H)が排ガスとの間で熱移動可能に設けられて排ガスの流れ方向に沿って並ぶ複数の熱電変換素子(30)と、熱伝導性を有し、排ガス通路部材の内壁面に接触しかつ排ガスの流れ方向に沿って延びるように排ガス通路に設けられた伝熱促進部(120;220;320)と、を備える。伝熱促進部は、伝熱促進部の最上流端が、複数の熱電変換素子のうち排ガス流れの最上流に位置する第1の素子(30a)に隣接する下流の素子に対応する位置となるように排ガス通路に設けられている。 One of the disclosed thermoelectric generators includes an exhaust gas passage member (2) that forms an exhaust gas passage (2a) through which exhaust gas discharged from an engine flows, and a low-temperature passage (40) in which a low-temperature fluid that is lower in temperature than exhaust gas flows. ) And the one side part (30L) of each thermoelectric conversion element is provided so as to be able to transfer heat between the low temperature fluid and the other side part (30H) is transferred to the exhaust gas. A plurality of thermoelectric conversion elements (30) that are provided and arranged along the flow direction of the exhaust gas, and have thermal conductivity so as to contact the inner wall surface of the exhaust gas passage member and extend along the flow direction of the exhaust gas And a heat transfer promoting part (120; 220; 320) provided in the exhaust gas passage. In the heat transfer promotion part, the most upstream end of the heat transfer promotion part is a position corresponding to a downstream element adjacent to the first element (30a) located in the most upstream of the exhaust gas flow among the plurality of thermoelectric conversion elements. Thus, it is provided in the exhaust gas passage.

この熱電発電装置によれば、伝熱促進部の最上流端が最上流の第1の素子よりも下流の熱電変換素子に対応する位置となるように排ガス通路に設けられているため、伝熱促進部は第1の素子に対応する位置には存在していない。この構成により、排ガスから伝熱促進部に伝わる熱経路は伝熱促進部、伝熱部材の順に移動し、伝熱部材において第1の素子よりも下流の素子に対応する位置で下流の素子に移動する熱量と伝熱部材を介して第1の素子に移動する熱量とに分かれる。このとき第1の素子に移動する熱量は、熱が伝熱部材を排ガス上流側に移動してから第1の素子に向かうため、下流の素子に移動する熱量よりも、小さくなる。この熱量分配により、最も温度が上がりやすい最上流の第1の素子について温度上昇を抑制することができる。さらにこの効果は伝熱促進部の配置構成によって実現できるため、従来技術のような動力エネルギを必要としない。この熱電発電装置によれば、動力エネルギを抑えつつ排ガス流れの最上流側の熱電変換素子について温度上昇の抑制を図ることができる。   According to this thermoelectric generator, since the most upstream end of the heat transfer promoting part is provided in the exhaust gas passage so as to be located at a position corresponding to the thermoelectric conversion element downstream from the first upstream element, The promoting portion does not exist at a position corresponding to the first element. With this configuration, the heat path transmitted from the exhaust gas to the heat transfer promoting portion moves in the order of the heat transfer promoting portion and the heat transfer member, and in the heat transfer member to the downstream element at a position corresponding to the element downstream of the first element. It is divided into the amount of heat that moves and the amount of heat that moves to the first element via the heat transfer member. At this time, the amount of heat moving to the first element is smaller than the amount of heat moving to the downstream element because the heat moves to the first element after moving the heat transfer member to the exhaust gas upstream side. By this heat distribution, it is possible to suppress the temperature rise of the most upstream first element whose temperature is most likely to rise. Furthermore, since this effect can be realized by the arrangement configuration of the heat transfer promoting portion, it does not require motive energy as in the prior art. According to this thermoelectric generator, it is possible to suppress the temperature rise of the thermoelectric conversion element on the most upstream side of the exhaust gas flow while suppressing the motive energy.

開示された熱電発電装置のひとつは、エンジンから排出された排ガスが流れる排ガス通路(102a)を形成する排ガス通路部材(102)と、内部に排ガスよりも低温である低温流体が流れる低温通路(40)を形成する低温通路部材(104)と、各熱電変換素子について一方側部(30L)が低温流体との間で熱移動可能に設けられ他方側部(30H)が排ガスとの間で熱移動可能に設けられて排ガスの流れ方向に沿って並ぶ複数の熱電変換素子(30)と、複数の熱電変換素子のうち、排ガス流れの最上流に位置する第1の素子(30a)の他方側部と第1の素子よりも下流側に位置する少なくとも一つの第2の素子(30b)の他方側部とを排ガス通路側において連結する伝熱部材(33)と、排ガス通路に設けられて伝熱部材と熱移動可能な状態で複数の熱電変換素子を収容するモジュールケース(231)と、排ガスの流れ方向について第1の素子に対応する位置でモジュールケースに接触しないで第2の素子に対応する位置でモジュールケースに接触するように排ガス通路に設けられている熱量調整部材(108)と、を備える。   One of the disclosed thermoelectric generators includes an exhaust gas passage member (102) that forms an exhaust gas passage (102a) through which exhaust gas discharged from an engine flows, and a low-temperature passage (40) in which a low-temperature fluid that is cooler than exhaust gas flows. ) And one side (30L) of each thermoelectric conversion element is provided so as to be able to transfer heat between the low-temperature fluid and the other side (30H) is transferred to the exhaust gas. A plurality of thermoelectric conversion elements (30) that are provided and lined up in the flow direction of the exhaust gas, and the other side of the first element (30a) located at the most upstream of the exhaust gas flow among the plurality of thermoelectric conversion elements And a heat transfer member (33) for connecting the other side of at least one second element (30b) located downstream of the first element on the exhaust gas passage side, and a heat transfer member provided in the exhaust gas passage. Parts and A module case (231) that accommodates a plurality of thermoelectric conversion elements in a movable state, and a module at a position corresponding to the second element without contacting the module case at a position corresponding to the first element in the exhaust gas flow direction And a calorific value adjusting member (108) provided in the exhaust gas passage so as to come into contact with the case.

この熱電発電装置によれば、熱量調整部材は第1の素子に対応する位置でモジュールケースに接触しないで第2の素子に対応する位置でモジュールケースに接触する。この構成により、排ガスから熱量調整部材に伝わる熱経路は、熱量調整部材、モジュールケース、伝熱部材の順に移動し、伝熱部材において第2の素子に対応する位置で第2の素子に移動する熱量と伝熱部材を介して第1の素子に移動する熱量とに分かれる。このとき第1の素子に移動する熱量は、熱が伝熱部材を排ガス上流側に移動してから第1の素子に向かうため、第2の素子に移動する熱量よりも、小さくなる。この熱量分配により、最も温度が上がりやすい最上流側の第1の素子について温度上昇を抑制することができる。さらにこの効果は熱量調整部材の配置構成によって実現できるため、従来技術のような動力エネルギを必要としない。この熱電発電装置によれば、動力エネルギを抑えるとともに排ガス流れの最上流側の熱電変換素子について温度上昇の抑制を図ることができる。   According to this thermoelectric generator, the heat quantity adjusting member does not contact the module case at a position corresponding to the first element, but contacts the module case at a position corresponding to the second element. With this configuration, the heat path transmitted from the exhaust gas to the heat quantity adjustment member moves in the order of the heat quantity adjustment member, the module case, and the heat transfer member, and moves to the second element at a position corresponding to the second element in the heat transfer member. It is divided into the amount of heat and the amount of heat transferred to the first element via the heat transfer member. At this time, the amount of heat transferred to the first element is smaller than the amount of heat transferred to the second element because the heat moves to the first element after moving the heat transfer member to the exhaust gas upstream side. By this heat distribution, the temperature rise of the first element on the most upstream side where the temperature is most likely to rise can be suppressed. Further, since this effect can be realized by the arrangement configuration of the calorific value adjusting member, no motive energy is required as in the prior art. According to this thermoelectric power generation device, it is possible to suppress the motive energy and suppress the temperature rise of the thermoelectric conversion element on the most upstream side of the exhaust gas flow.

第1実施形態の熱電発電装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the thermoelectric generator of 1st Embodiment. 第1実施形態の熱電発電装置の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the thermoelectric generator of 1st Embodiment. 第1実施形態の熱電発電装置において他の熱量調整部材を備えることを示す概要図である。It is a schematic diagram which shows providing the other calorie | heat amount adjustment member in the thermoelectric generator of 1st Embodiment. 第2実施形態の熱電発電装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the thermoelectric generator of 2nd Embodiment. 第2実施形態の熱電発電装置において他の熱量調整部材を備えることを示す概要図である。It is a schematic diagram which shows providing the other calorie | heat amount adjustment member in the thermoelectric generator of 2nd Embodiment. 第3実施形態の熱電発電装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the thermoelectric power generator of 3rd Embodiment. 第3実施形態の熱電発電装置において他の熱量調整部材を備えることを示す概要図である。It is a schematic diagram which shows providing the other calorie | heat amount adjustment member in the thermoelectric generator of 3rd Embodiment. 第4実施形態の熱電発電装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the thermoelectric generator of 4th Embodiment. 第4実施形態の熱電発電装置において他の熱量調整部材を備えることを示す概要図である。It is a schematic diagram which shows providing the other calorie | heat amount adjustment member in the thermoelectric generator of 4th Embodiment. 第5実施形態の熱電発電装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the thermoelectric power generator of 5th Embodiment. 第5実施形態の熱電発電装置において他の熱量調整部材を備えることを示す概要図である。It is a schematic diagram which shows providing the other calorie | heat amount adjustment member in the thermoelectric generator of 5th Embodiment. 第6実施形態の熱電発電装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the thermoelectric generator of 6th Embodiment. 第6実施形態の熱電発電装置において他の熱量調整部材を備えることを示す概要図である。It is a schematic diagram which shows providing the other calorie | heat amount adjustment member in the thermoelectric generator of 6th Embodiment. 第7実施形態の熱電発電装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the thermoelectric generator of 7th Embodiment. 第7実施形態の熱電発電装置において排ガスに接触する他の伝熱促進部を備えることを示す概要図である。It is a schematic diagram which shows providing the other heat-transfer promotion part which contacts waste gas in the thermoelectric generator of 7th Embodiment. 第8実施形態の熱電発電装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the thermoelectric power generator of 8th Embodiment. 第9実施形態の熱電発電装置において排ガスに接触する他の伝熱促進部を備えることを示す概要図である。It is a schematic diagram which shows providing the other heat-transfer promotion part which contacts exhaust gas in the thermoelectric generator of 9th Embodiment.

以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。   Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also a combination of the embodiments even if they are not clearly specified unless there is a problem with the combination. It is also possible.

(第1実施形態)
第1実施形態の熱電発電装置1について、図1〜図3を参照して説明する。熱電発電装置1は、ゼーベック効果により熱エネルギを電力エネルギに変換して発電することができる装置である。熱電発電装置1は、熱電変換素子30において一方側部と他方側部とに温度差が与えられると、電位差が生じて電子が流れる現象を利用して発電する。熱電発電装置1は、ゼーベック効果により熱エネルギを電力エネルギに変換する装置である。熱電発電装置1では、排ガスと排ガスよりも低温である低温流体とを用いて熱電変換素子30の両側に温度差を与える。低温流体には排ガスと温度差を与えることが可能な任意の流体を採用することができる。この実施形態では、任意に選択可能な低温流体の一例として、自動車のエンジンの冷却水を用いる場合について説明する。
(First embodiment)
The thermoelectric generator 1 of 1st Embodiment is demonstrated with reference to FIGS. 1-3. The thermoelectric generator 1 is an apparatus that can generate electric power by converting thermal energy into electric power energy by the Seebeck effect. The thermoelectric generator 1 generates electric power by utilizing a phenomenon in which, when a temperature difference is given between one side and the other side of the thermoelectric conversion element 30, a potential difference is generated and electrons flow. The thermoelectric generator 1 is a device that converts thermal energy into electric power energy by the Seebeck effect. In the thermoelectric generator 1, a temperature difference is given to both sides of the thermoelectric conversion element 30 using exhaust gas and a low-temperature fluid that is lower in temperature than the exhaust gas. As the low temperature fluid, any fluid capable of giving a temperature difference from the exhaust gas can be adopted. In this embodiment, a case where cooling water of an automobile engine is used as an example of an arbitrarily selectable low-temperature fluid will be described.

熱電発電装置1は、エンジンに接続した排気管2に対して熱移動可能な状態で設置されている。排気管2は熱伝導性に優れた材質で形成されている。エンジンは、例えばガソリンエンジンまたはディーゼルエンジンに適用される。   The thermoelectric generator 1 is installed in a state in which heat transfer is possible with respect to the exhaust pipe 2 connected to the engine. The exhaust pipe 2 is formed of a material having excellent thermal conductivity. The engine is applied to, for example, a gasoline engine or a diesel engine.

図1および図2に示すように、熱電発電装置1は、高温流体の排ガスが流れる排ガス通路2aと、低温流体の冷却水が流れる低温通路40と、排ガスの流れ方向に沿って並ぶ複数の熱電変換素子30と、を備える。熱電発電装置1は、熱電変換素子30の低温側部に接触する伝熱部材32と、熱電変換素子30の高温側部に接触する伝熱部材33と、排気管2から伝熱部材33に伝わる熱移動量を調整可能な構成を有する熱量調整部材5と、を備える。複数の熱電変換素子30は、各熱電変換素子について一方側部の低温端30Lが低温流体との間で熱移動可能に設けられ、他方側部の高温端30Hが排ガスとの間で熱移動可能に設けられる。   As shown in FIGS. 1 and 2, the thermoelectric generator 1 includes an exhaust gas passage 2a through which exhaust gas of a high-temperature fluid flows, a low-temperature passage 40 through which cooling water of a low-temperature fluid flows, and a plurality of thermoelectric devices arranged along the exhaust gas flow direction. Conversion element 30. The thermoelectric generator 1 is transmitted from the exhaust pipe 2 to the heat transfer member 33, the heat transfer member 32 in contact with the low temperature side portion of the thermoelectric conversion element 30, the heat transfer member 33 in contact with the high temperature side portion of the thermoelectric conversion element 30. A heat quantity adjusting member 5 having a configuration capable of adjusting the amount of heat transfer. The plurality of thermoelectric conversion elements 30 are provided such that the low temperature end 30L on one side of each thermoelectric conversion element is capable of heat transfer with the low temperature fluid, and the high temperature end 30H on the other side is heat transferable with the exhaust gas. Provided.

熱発電モジュール3は複数の熱電変換素子30を有する。熱発電モジュール3は排ガス通路2aに沿うように並ぶ複数の熱電変換素子30を有する。複数の熱電変換素子30のうち、排ガス流れの最上流側に位置する第1の素子は、熱電変換素子30aであり、排ガスからの熱によって最も高温になりやすい素子である。したがって、熱電変換素子30aが熱発電モジュール3の素子のうち早く使用上限温度に達する可能性が高いことになる。   The thermoelectric generator module 3 has a plurality of thermoelectric conversion elements 30. The thermoelectric generator module 3 has a plurality of thermoelectric conversion elements 30 arranged along the exhaust gas passage 2a. Of the plurality of thermoelectric conversion elements 30, the first element located on the most upstream side of the exhaust gas flow is the thermoelectric conversion element 30a, which is the element that is most likely to reach the highest temperature due to heat from the exhaust gas. Therefore, there is a high possibility that the thermoelectric conversion element 30a will reach the use upper limit temperature early among the elements of the thermoelectric generation module 3.

熱電変換素子30は、交互に配列されるP型半導体素子とN型半導体素子とが網状に連結されて構成されている。熱電変換素子30は、扁平状の箱体であるモジュールケース31の内部に複数個収納されている。モジュールケース31の内部には、複数の熱電変換素子30が排ガスの流れ方向に並んで設置されている。熱電変換素子30の酸化防止のため、モジュールケース31の内部は、例えば、真空状態であったり、不活性ガスが充填されたりする。モジュールケース31は内部の空間を封止する気密ケースでもある。モジュールケース31は、例えばステンレス材により形成されている。また、モジュールケース31は熱伝導性に優れたアルミニウムまたはアルミニウム合金で形成してもよい。   The thermoelectric conversion element 30 is configured by connecting alternately arranged P-type semiconductor elements and N-type semiconductor elements in a mesh pattern. A plurality of thermoelectric conversion elements 30 are housed inside a module case 31 that is a flat box. Inside the module case 31, a plurality of thermoelectric conversion elements 30 are arranged side by side in the exhaust gas flow direction. In order to prevent oxidation of the thermoelectric conversion element 30, the inside of the module case 31 is, for example, in a vacuum state or filled with an inert gas. The module case 31 is also an airtight case that seals the internal space. The module case 31 is made of, for example, a stainless material. The module case 31 may be formed of aluminum or aluminum alloy having excellent thermal conductivity.

低温端30Lは、熱伝導性を有する伝熱部材32を介してモジュールケース31の低温通路40側の壁部または低温通路部材4に接触している。高温端30Hは、熱伝導性を有する伝熱部材33を介してモジュールケース31の排ガス通路2a側の壁部に接触している。また、伝熱部材32は低温通路部材4やモジュールケース31を介さないで直接低温流体に接触する形態でもよい。伝熱部材32は熱伝導性と絶縁性を有する材質で形成されている。伝熱部材32は、例えばセラミックによって形成することができる。伝熱部材33は、熱発電モジュール3に含まれる複数の熱電変換素子30に対して接触する一つの部材によって構成してもよいし、排ガス通路2aに沿って並ぶ複数の部材によって構成してもよい。伝熱部材33は熱伝導性と絶縁性を有する材質で形成されている。伝熱部材33は、例えばセラミックによって形成することができる。   The low temperature end 30L is in contact with the wall portion on the low temperature passage 40 side of the module case 31 or the low temperature passage member 4 through the heat transfer member 32 having thermal conductivity. The high temperature end 30H is in contact with the wall portion of the module case 31 on the exhaust gas passage 2a side via a heat transfer member 33 having thermal conductivity. Further, the heat transfer member 32 may be in direct contact with the low temperature fluid without passing through the low temperature passage member 4 or the module case 31. The heat transfer member 32 is formed of a material having thermal conductivity and insulation. The heat transfer member 32 can be formed of, for example, ceramic. The heat transfer member 33 may be configured by a single member that contacts the plurality of thermoelectric conversion elements 30 included in the thermoelectric generation module 3, or may be configured by a plurality of members arranged along the exhaust gas passage 2a. Good. The heat transfer member 33 is formed of a material having thermal conductivity and insulation. The heat transfer member 33 can be formed of ceramic, for example.

複数の部材によって伝熱部材33を構成する場合、例えば、図2に図示するように、伝熱部材33は、排ガス通路2aに沿って並ぶ第1部材330と第2部材331とを少なくとも備えて構成される。第1部材330は、熱電変換素子30aの高温端30Hと、熱電変換素子30aよりも排ガス流れの下流側に隣接する熱電変換素子30bの高温端30Hと、を排ガス通路2a側において連結する。第2部材331は、熱電変換素子30bよりも下流側に隣接する熱電変換素子30cの高温端30Hと、熱電変換素子30cよりも下流側に位置する少なくとも一つの素子の高温端30Hと、を排ガス通路2a側において連結する。したがって、伝熱部材33は、複数の熱電変換素子30のうち、熱電変換素子30aの高温端30Hと熱電変換素子30aよりも下流側に位置する少なくとも一つの熱電変換素子の高温端30Hとを排ガス通路2a側において連結する熱伝導性部材である。   When the heat transfer member 33 is configured by a plurality of members, for example, as illustrated in FIG. 2, the heat transfer member 33 includes at least a first member 330 and a second member 331 arranged along the exhaust gas passage 2a. Composed. The first member 330 connects the high temperature end 30H of the thermoelectric conversion element 30a and the high temperature end 30H of the thermoelectric conversion element 30b adjacent to the downstream side of the exhaust gas flow from the thermoelectric conversion element 30a on the exhaust gas passage 2a side. The second member 331 exhausts the high temperature end 30H of the thermoelectric conversion element 30c adjacent to the downstream side of the thermoelectric conversion element 30b and the high temperature end 30H of at least one element located downstream of the thermoelectric conversion element 30c. It connects on the channel | path 2a side. Therefore, the heat transfer member 33 exhausts the high temperature end 30H of the thermoelectric conversion element 30a and the high temperature end 30H of at least one thermoelectric conversion element located downstream of the thermoelectric conversion element 30a among the plurality of thermoelectric conversion elements 30. It is a heat conductive member connected in the channel | path 2a side.

熱量調整部材5は、熱伝導性を有し、排気管2と伝熱部材33との間に設けられて、排ガスの熱を伝熱部材33に伝える機能を有する。熱量調整部材5は、図2に図示するように、熱電変換素子30bおよびこの素子よりも下流側の素子に対応する位置で排気管2に接触し、伝熱部材33に接触するモジュールケース31に接触している。熱量調整部材5は、最上流に位置する熱電変換素子30aに対応する位置で排気管2とモジュールケース31との両方に接触していない。この位置で排気管2とモジュールケース31の間には隙間23が形成され、排気管2と伝熱部材33は熱的に接続されてない。   The calorie adjusting member 5 has thermal conductivity and is provided between the exhaust pipe 2 and the heat transfer member 33 and has a function of transferring heat of the exhaust gas to the heat transfer member 33. As shown in FIG. 2, the calorific value adjusting member 5 contacts the exhaust pipe 2 at a position corresponding to the thermoelectric conversion element 30 b and an element downstream of the element, and is attached to the module case 31 that contacts the heat transfer member 33. In contact. The heat quantity adjusting member 5 is not in contact with both the exhaust pipe 2 and the module case 31 at a position corresponding to the thermoelectric conversion element 30a located at the most upstream. At this position, a gap 23 is formed between the exhaust pipe 2 and the module case 31, and the exhaust pipe 2 and the heat transfer member 33 are not thermally connected.

熱量調整部材5は、排ガス流れ方向について熱電変換素子30aに対応する位置で排気管2とモジュールケース31との間に隙間23を形成し、さらに熱電変換素子30bに対応する位置で排気管2と第2部材331とを連結している。熱量調整部材5は、熱電変換素子30bに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。この熱分岐路は、排ガス通路2aから熱電変換素子30bへ伝わる熱流束q2の経路と熱流束q2の経路から分岐して上流側に第1部材330を伝わり最上流の熱電変換素子30aへ伝わる熱流束q1の経路とで構成されている。図2に示す例では、熱電変換素子30cに対応する位置において、排ガス通路2aから熱電変換素子30cへ伝わる熱流束q3の熱移動経路を形成する。このq3は、熱流束q2の経路よりも下流側の経路に相当するため、熱電変換素子30bに対応する位置においてq1とq2とに分岐する前の熱流束よりも小さい値であると考えられる。   The heat quantity adjusting member 5 forms a gap 23 between the exhaust pipe 2 and the module case 31 at a position corresponding to the thermoelectric conversion element 30a in the exhaust gas flow direction, and further, the heat quantity adjusting member 5 is connected to the exhaust pipe 2 at a position corresponding to the thermoelectric conversion element 30b. The second member 331 is connected. The heat quantity adjusting member 5 forms a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the thermoelectric conversion element 30b. This heat branching path branches from the path of the heat flux q2 and the path of the heat flux q2 that are transmitted from the exhaust gas path 2a to the thermoelectric conversion element 30b, is transmitted to the upstream side of the first member 330, and is transferred to the most upstream thermoelectric conversion element 30a. And a path of the bundle q1. In the example shown in FIG. 2, the heat transfer path of the heat flux q3 transmitted from the exhaust gas passage 2a to the thermoelectric conversion element 30c is formed at a position corresponding to the thermoelectric conversion element 30c. Since q3 corresponds to a path downstream of the path of the heat flux q2, it is considered that the value is smaller than the heat flux before branching to q1 and q2 at a position corresponding to the thermoelectric conversion element 30b.

このような構成により、熱量調整部材5は、排気管2から熱電変換素子30aへ移動する熱流束q1を排気管2から熱電変換素子30bへ移動する熱流束q2よりも小さくするように排気管2と伝熱部材33との間に設けられている。ここでいう熱流束は、単位時間に単位面積を横切る熱量のことであり、例えばW/mの単位である。熱流束は、熱の流れ方向の温度勾配に比例するため、高温部と各素子との温度勾配を測定することによって、熱流束の大小関係を特定することができる。 With such a configuration, the heat quantity adjusting member 5 is configured so that the heat flux q1 moving from the exhaust pipe 2 to the thermoelectric conversion element 30a is smaller than the heat flux q2 moving from the exhaust pipe 2 to the thermoelectric conversion element 30b. And the heat transfer member 33. The heat flux here is the amount of heat that crosses the unit area per unit time, and is, for example, a unit of W / m 2 . Since the heat flux is proportional to the temperature gradient in the heat flow direction, the magnitude relationship between the heat fluxes can be specified by measuring the temperature gradient between the high temperature portion and each element.

また、熱量調整部材5は、排気管2から熱電変換素子30aへの熱抵抗t1を排気管2から熱電変換素子30bへの熱抵抗t2よりも大きくするように排気管2と伝熱部材33との間に設けられている。また、熱抵抗t1は、一つの素子における熱抵抗の2倍以下である。熱抵抗t1がこのような大きさであるため、第1部材330から最上流の熱電変換素子30aへの熱移動を起こすことができる。   Further, the heat quantity adjusting member 5 includes the exhaust pipe 2 and the heat transfer member 33 so that the thermal resistance t1 from the exhaust pipe 2 to the thermoelectric conversion element 30a is larger than the thermal resistance t2 from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between. The thermal resistance t1 is not more than twice the thermal resistance of one element. Since the thermal resistance t1 has such a magnitude, heat transfer from the first member 330 to the most upstream thermoelectric conversion element 30a can be caused.

排ガス通路2aは、排気管2の内部の通路であり、排ガスが熱発電モジュール3に対して熱を与える通路箇所2a1を含んでいる。通路箇所2a1の外側には、熱量調整部材5を介して熱発電モジュール3が設けられている。通路箇所2a1には、排ガスとの接触面積を拡大して熱交換性を高めることができる伝熱促進部20が設けられている。   The exhaust gas passage 2 a is a passage inside the exhaust pipe 2, and includes a passage portion 2 a 1 where the exhaust gas gives heat to the thermoelectric generator module 3. A thermoelectric generator module 3 is provided outside the passage location 2a1 via a heat quantity adjusting member 5. The passage location 2a1 is provided with a heat transfer promotion unit 20 that can increase the contact area with the exhaust gas and enhance heat exchange.

伝熱促進部20は、排ガスの流れ方向について最上流の熱電変換素子30aに対応する位置から最下流の熱電変換素子30に対応する位置にまで少なくとも延びるように、排気管2の内壁面に接触して排ガス通路2aに設けられている。伝熱促進部20は、多数のフィンによって構成することができる。伝熱促進部20は熱伝導性を有し、耐熱性の高い材質、例えばステンレスまたはステンレス合金で形成されている。また伝熱促進部20は、熱伝導性に優れたアルミニウムまたはアルミニウム合金で形成してもよい。伝熱促進部20は、排気管2の内壁面に接触する構成であってもよい。低温通路40は、排ガス通路2aを取り囲む通路であり、低温通路部材4の内部に形成されている。低温通路部材4は、横断面が環状である筒体をなしている。   The heat transfer promoting unit 20 contacts the inner wall surface of the exhaust pipe 2 so as to extend at least from a position corresponding to the most upstream thermoelectric conversion element 30a to a position corresponding to the most downstream thermoelectric conversion element 30 in the exhaust gas flow direction. And provided in the exhaust gas passage 2a. The heat transfer promoting unit 20 can be configured by a large number of fins. The heat transfer promoting unit 20 has thermal conductivity and is formed of a material having high heat resistance, such as stainless steel or a stainless alloy. Moreover, you may form the heat-transfer promotion part 20 with the aluminum or aluminum alloy excellent in thermal conductivity. The heat transfer promoting unit 20 may be configured to contact the inner wall surface of the exhaust pipe 2. The low-temperature passage 40 is a passage that surrounds the exhaust gas passage 2 a and is formed inside the low-temperature passage member 4. The low-temperature passage member 4 has a cylindrical body having a circular cross section.

低温流体入口40aから流入した冷却水は低温通路部材4内を通過したのち低温流体出口40bから流出する間に熱電変換素子30の低温端30Lを冷却する。排ガスは排ガス通路2aを流通する際に通路箇所2a1において伝熱促進部20や排気管2の内壁面に接触して熱電変換素子30の高温端30Hを加熱する。熱電変換素子30は、一方の面に高温流体や高温流体と熱伝達可能な高温部が接触し他方の面に低温流体や低温流体と熱伝達可能な低温部が接触することで、熱電変換素子30の一方側と他方側とに温度差が生じ電位差に起因する電子の移動によって発電する。   The cooling water flowing in from the low temperature fluid inlet 40a cools the low temperature end 30L of the thermoelectric conversion element 30 while passing through the low temperature passage member 4 and then flowing out from the low temperature fluid outlet 40b. When the exhaust gas flows through the exhaust gas passage 2a, it contacts the heat transfer promoting portion 20 and the inner wall surface of the exhaust pipe 2 at the passage location 2a1 to heat the high temperature end 30H of the thermoelectric conversion element 30. The thermoelectric conversion element 30 has a high-temperature fluid or a high-temperature portion capable of transferring heat with a high-temperature fluid on one surface, and a low-temperature portion capable of transferring heat with a low-temperature fluid or a low-temperature fluid on the other surface. A temperature difference occurs between one side and the other side of 30 and power is generated by the movement of electrons caused by the potential difference.

熱電発電装置1は図3に示す熱量調整部材105を備えるものでもよい。熱量調整部材105は、熱量調整部材5と同様の材質、機能を有する。熱量調整部材105は、図3に図示するように、熱電変換素子30cおよびこの素子よりも下流側の素子に対応する位置で排気管2に接触し、伝熱部材33に接触するモジュールケース31に接触している。熱量調整部材105は、熱電変換素子30aおよび熱電変換素子30bに対応する位置で排気管2とモジュールケース31との両方に接触していない。熱電変換素子30aおよび熱電変換素子30bに対応する位置で排気管2とモジュールケース31との間には隙間123が形成され、排気管2と伝熱部材33は伝熱部材によって熱的に接続されてない。   The thermoelectric generator 1 may include a calorie adjusting member 105 shown in FIG. The heat quantity adjusting member 105 has the same material and function as the heat quantity adjusting member 5. As shown in FIG. 3, the heat amount adjusting member 105 contacts the exhaust pipe 2 at a position corresponding to the thermoelectric conversion element 30 c and an element downstream of the element, and is attached to the module case 31 that contacts the heat transfer member 33. In contact. The heat amount adjusting member 105 is not in contact with both the exhaust pipe 2 and the module case 31 at a position corresponding to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b. A gap 123 is formed between the exhaust pipe 2 and the module case 31 at a position corresponding to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b, and the exhaust pipe 2 and the heat transfer member 33 are thermally connected by the heat transfer member. Not.

熱量調整部材105は、最上流の素子から数えて3番目の素子に対応する位置で排気管2と伝熱部材33とを連結している。熱量調整部材105は、最上流から3番目の熱電変換素子30cに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。この熱分岐路は、排ガス通路2aから熱電変換素子30cへ伝わる熱流束の経路とこの経路から分岐して上流側に伝熱部材33を伝わり最上流の素子と2番目の素子とにそれぞれ分かれる経路とで構成されている。   The heat quantity adjusting member 105 connects the exhaust pipe 2 and the heat transfer member 33 at a position corresponding to the third element counted from the most upstream element. The heat quantity adjusting member 105 forms a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the third thermoelectric conversion element 30c from the most upstream. This heat branch path is a path of a heat flux that is transmitted from the exhaust gas path 2a to the thermoelectric conversion element 30c and a path that is branched from this path and is transmitted to the upstream side through the heat transfer member 33 and is divided into the most upstream element and the second element. It consists of and.

このような構成により、熱量調整部材105は、排気管2から熱電変換素子30aや熱電変換素子30bへ移動する各熱流束を排気管2から熱電変換素子30cへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。   With such a configuration, the heat amount adjusting member 105 makes each heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30c. Are provided between the exhaust pipe 2 and the heat transfer member 33.

また、熱量調整部材105は、排気管2から熱電変換素子30aや熱電変換素子30bへの各熱抵抗を排気管2から熱電変換素子30cへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   Further, the calorific value adjusting member 105 is transmitted to the exhaust pipe 2 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30c. It is provided between the heat member 33.

次に、第1実施形態の熱電発電装置1がもたらす作用効果について説明する。熱電発電装置1は、エンジンから排出された排ガスが流れる排ガス通路2aを形成する排気管2と、内部に低温流体が流れる低温通路40を形成する低温通路部材4と、熱発電モジュール3と、伝熱部材33と、熱量調整部材5と、を備える。熱発電モジュール3は、それぞれについて低温端30Lが低温流体との間で熱移動可能に設けられ、高温端30Hが排ガスとの間で熱移動可能に設けられて排ガスの流れ方向に沿って並ぶ複数の熱電変換素子30を有する。伝熱部材33は、複数の熱電変換素子30のうち最上流側の第1の素子の高温端30Hとこの素子よりも下流側に位置する少なくとも一つの第2の素子の高温端30Hとを排ガス通路2a側において連結する。熱量調整部材5は、排気管2から第1の素子へ移動する熱流束q1を排気管2から第2の素子へ移動する熱流束q2よりも小さくするように排気管2と伝熱部材33との間に設けられている。   Next, the effect which the thermoelectric generator 1 of 1st Embodiment brings is demonstrated. The thermoelectric generator 1 includes an exhaust pipe 2 that forms an exhaust gas passage 2a through which exhaust gas discharged from an engine flows, a low-temperature passage member 4 that forms a low-temperature passage 40 through which a low-temperature fluid flows, a thermoelectric generator module 3, The heat member 33 and the heat quantity adjusting member 5 are provided. Each of the thermoelectric generator modules 3 is provided with a low temperature end 30 </ b> L so as to be capable of heat transfer with a low temperature fluid, and a high temperature end 30 </ b> H provided with heat transfer with the exhaust gas so as to line up along the flow direction of the exhaust gas. The thermoelectric conversion element 30 is provided. The heat transfer member 33 exhausts the high temperature end 30H of the first element on the most upstream side of the plurality of thermoelectric conversion elements 30 and the high temperature end 30H of at least one second element located downstream from the element. It connects on the channel | path 2a side. The heat quantity adjusting member 5 includes the exhaust pipe 2 and the heat transfer member 33 so that the heat flux q1 moving from the exhaust pipe 2 to the first element is smaller than the heat flux q2 moving from the exhaust pipe 2 to the second element. It is provided between.

この熱電発電装置1によれば、排気管2から第1の素子へ移動する熱流束q1を第2の素子へ移動する熱流束q2よりも小さくする熱量調整部材5を備えることにより、第1の素子への到達熱量は第2の素子への到達熱量よりも小さくなる。これにより、最上流にあって最も温度が上がりやすい第1の素子に移動する熱量をこれよりも下流側の素子に移動する熱量よりも抑えること可能になり、第1の素子について温度上昇を抑制でき、劣化等を抑制することができる。この効果は熱伝導性を有する熱量調整部材5によって実現できるので、従来技術のような動力エネルギを必要としない熱電発電装置1を提供できる。   According to this thermoelectric generator 1, by providing the heat quantity adjusting member 5 that makes the heat flux q1 moving from the exhaust pipe 2 to the first element smaller than the heat flux q2 moving to the second element, The amount of heat reaching the element is smaller than the amount of heat reaching the second element. As a result, it is possible to suppress the amount of heat transferred to the first element that is most upstream and most likely to rise in temperature than the amount of heat transferred to the downstream element, thereby suppressing the temperature rise of the first element. And deterioration can be suppressed. Since this effect is realizable by the calorie | heat amount adjustment member 5 which has heat conductivity, the thermoelectric generator 1 which does not require motive energy like the prior art can be provided.

熱量調整部材5または熱量調整部材105は、第1の素子に対応する位置で排気管2と伝熱部材33との間に隙間23または隙間123を形成し、さらに第2の素子に対応する位置で排気管2と伝熱部材33とを連結するように構成されている。   The heat amount adjusting member 5 or the heat amount adjusting member 105 forms a gap 23 or a gap 123 between the exhaust pipe 2 and the heat transfer member 33 at a position corresponding to the first element, and further corresponds to a second element. The exhaust pipe 2 and the heat transfer member 33 are connected to each other.

この構成によれば、排ガスからの熱は熱量調整部材、伝熱部材33の順に移動して、伝熱部材33において第2の素子に対応する位置で第2の素子に移動する熱量と伝熱部材33を介して第1の素子に移動する熱量とに分かれる。このとき、第1の素子に移動する熱量は、熱が伝熱部材33を上流側に移動してから第1の素子に向かうため、第2の素子に移動する熱量よりも小さくなる。したがって、最も温度が上がりやすい最上流側の第1の素子に移動する熱量を下流側の素子に移動する熱量よりも抑えることができるので、第1の素子の温度上昇を抑制できる熱分岐路を提供できる。   According to this configuration, the heat from the exhaust gas moves in the order of the heat amount adjusting member and the heat transfer member 33, and the heat amount and heat transfer that move to the second element at the position corresponding to the second element in the heat transfer member 33. The amount of heat transferred to the first element through the member 33 is divided. At this time, the amount of heat transferred to the first element is smaller than the amount of heat transferred to the second element because the heat moves toward the first element after moving the heat transfer member 33 upstream. Therefore, since the amount of heat that moves to the first element on the most upstream side where the temperature is most likely to rise can be less than the amount of heat that moves to the element on the downstream side, a thermal branch that can suppress the temperature rise of the first element is provided. Can be provided.

熱電発電装置1は、熱伝導性を有し、排ガスの流れ方向について最上流の第1の素子に対応する位置から最下流の素子に対応する位置にまで延びるように、排気管2の内壁面に接触して排ガス通路2aに設けられた伝熱促進部20を備える。この構成によれば、伝熱促進部20によって排ガスの熱量が排気管2に伝わりやすくなるため、発電性能を高めるとともに、第1の素子の温度上昇を抑制可能な熱電発電装置1を提供できる。   The thermoelectric generator 1 has thermal conductivity and has an inner wall surface of the exhaust pipe 2 that extends from a position corresponding to the most upstream first element to a position corresponding to the most downstream element in the exhaust gas flow direction. Is provided with a heat transfer promoting part 20 provided in the exhaust gas passage 2a. According to this configuration, since the heat quantity of the exhaust gas is easily transmitted to the exhaust pipe 2 by the heat transfer promotion unit 20, it is possible to provide the thermoelectric power generator 1 that can improve the power generation performance and suppress the temperature rise of the first element.

熱電発電装置1は、熱伝導性を有しモジュールケース31の外面と排気管2とに挟まれた第1調整部材としての熱量調整部材5や熱量調整部材105を備えている。この構成によれば、モジュールケース31と排気管2との間の熱経路を構築して、第1の素子の温度上昇を抑制可能な熱分岐路を実現できる熱量調整部材を提供することができる。   The thermoelectric generator 1 includes a heat amount adjusting member 5 and a heat amount adjusting member 105 as a first adjusting member having thermal conductivity and sandwiched between the outer surface of the module case 31 and the exhaust pipe 2. According to this configuration, it is possible to provide a heat amount adjusting member that can construct a heat path between the module case 31 and the exhaust pipe 2 and realize a heat branch path that can suppress the temperature rise of the first element. .

(第2実施形態)
第2実施形態の熱電発電装置101について図4、図5を参照して説明する。図4、図5において第1実施形態の図面と同じ符号を付した構成は、第1実施形態と同様である。第2実施形態で特に説明しない構成、処理、作用、効果については、第1実施形態と同様であり、以下、第1実施形態と異なる点についてのみ説明する。
(Second Embodiment)
A thermoelectric generator 101 according to a second embodiment will be described with reference to FIGS. 4 and 5. 4 and 5 are the same as those in the first embodiment, with the same reference numerals as those in the first embodiment. The configuration, processing, operation, and effects not particularly described in the second embodiment are the same as those in the first embodiment, and only differences from the first embodiment will be described below.

熱電発電装置101は、モジュールケース131の内部で、伝熱部材33とモジュールケース131の内面とに接触する熱量調整部材6を備えている。モジュールケース131は排気管2の外表面に接触している。したがって、排ガスの熱は、排気管2、モジュールケース131、熱量調整部材6、伝熱部材33の順に移動して各熱電変換素子30に伝わる。   The thermoelectric generator 101 includes a heat amount adjusting member 6 that contacts the heat transfer member 33 and the inner surface of the module case 131 inside the module case 131. The module case 131 is in contact with the outer surface of the exhaust pipe 2. Therefore, the heat of the exhaust gas moves in the order of the exhaust pipe 2, the module case 131, the heat quantity adjustment member 6, and the heat transfer member 33 and is transmitted to each thermoelectric conversion element 30.

熱量調整部材6は、熱伝導性および絶縁性を有しモジュールケース131の壁と伝熱部材33との間に設けられて、排ガスの熱を伝熱部材33に伝える機能を有する。熱量調整部材6は、熱量調整部材5と同様に、熱電変換素子30bおよびこの素子よりも下流側の素子に対応する位置でモジュールケース131と伝熱部材33に接触している。熱量調整部材6は、最上流に位置する熱電変換素子30aに対応する位置でモジュールケース131と伝熱部材33との両方に接触していない。この位置で伝熱部材33とモジュールケース31の間には隙間23が形成され、排気管2と伝熱部材33は伝熱部材によって熱的に接続されてない。   The heat amount adjusting member 6 has heat conductivity and insulation, and is provided between the wall of the module case 131 and the heat transfer member 33, and has a function of transferring heat of exhaust gas to the heat transfer member 33. Similarly to the heat quantity adjusting member 5, the heat quantity adjusting member 6 is in contact with the module case 131 and the heat transfer member 33 at a position corresponding to the thermoelectric conversion element 30 b and the downstream element. The heat quantity adjusting member 6 is not in contact with both the module case 131 and the heat transfer member 33 at a position corresponding to the thermoelectric conversion element 30a located at the most upstream. At this position, a gap 23 is formed between the heat transfer member 33 and the module case 31, and the exhaust pipe 2 and the heat transfer member 33 are not thermally connected by the heat transfer member.

熱量調整部材6は、熱電変換素子30bに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。この熱分岐路は、排ガス通路2aから熱電変換素子30bへ伝わる熱流束の経路とこの熱流束の経路から分岐して上流側に伝熱部材33を伝わり最上流の熱電変換素子30aへ伝わる熱流束の経路とで構成されている。   The heat quantity adjusting member 6 forms a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the thermoelectric conversion element 30b. This heat branching path is a heat flux path that is transmitted from the exhaust gas path 2a to the thermoelectric conversion element 30b and a heat flux that is branched from this heat flux path and is transmitted upstream through the heat transfer member 33 to the most upstream thermoelectric conversion element 30a. And is composed of the route.

このような構成により、熱量調整部材6は、排気管2から熱電変換素子30aへ移動する熱流束を排気管2から熱電変換素子30bへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材6は、排気管2から熱電変換素子30aへの熱抵抗を排気管2から熱電変換素子30bへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   With such a configuration, the heat quantity adjusting member 6 is transferred to the exhaust pipe 2 so that the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a is smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the heat member 33. Further, the heat quantity adjusting member 6 is provided between the exhaust pipe 2 and the heat transfer member 33 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30b. Is provided.

熱電発電装置101は図5に示す熱量調整部材106を備えるものでもよい。熱量調整部材106は、熱量調整部材6と同様の材質、機能を有する。熱量調整部材106は、熱電変換素子30cおよびこの素子よりも下流側の素子に対応する位置で伝熱部材33とモジュールケース131とに接触している。熱量調整部材106は、熱電変換素子30aおよび熱電変換素子30bに対応する位置で伝熱部材33とモジュールケース131との両方に接触していない。熱電変換素子30aおよび熱電変換素子30bに対応する位置で伝熱部材33とモジュールケース131との間には隙間123が形成され、排気管2と伝熱部材33は熱的に接続されてない。   The thermoelectric generator 101 may include a calorie adjusting member 106 shown in FIG. The heat quantity adjusting member 106 has the same material and function as the heat quantity adjusting member 6. The heat amount adjusting member 106 is in contact with the heat transfer member 33 and the module case 131 at a position corresponding to the thermoelectric conversion element 30c and an element downstream of the element. The heat quantity adjusting member 106 is not in contact with both the heat transfer member 33 and the module case 131 at a position corresponding to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b. A gap 123 is formed between the heat transfer member 33 and the module case 131 at a position corresponding to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b, and the exhaust pipe 2 and the heat transfer member 33 are not thermally connected.

熱量調整部材106は、最上流の素子から数えて3番目の素子に対応する位置で伝熱部材33とモジュールケース131とを連結している。熱量調整部材106は、最上流から3番目の熱電変換素子30cに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。この熱分岐路は、排ガス通路2aから熱電変換素子30cへ伝わる熱流束の経路と、この経路から分岐して上流側に伝熱部材33を伝わり最上流の素子と2番目の素子とにそれぞれ分かれる経路とである。   The heat amount adjusting member 106 connects the heat transfer member 33 and the module case 131 at a position corresponding to the third element counted from the most upstream element. The heat amount adjusting member 106 forms a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the third thermoelectric conversion element 30c from the most upstream. The heat branching path is divided into a heat flux path that is transmitted from the exhaust gas path 2a to the thermoelectric conversion element 30c, and a most upstream element and a second element that are branched from the path and are transmitted upstream through the heat transfer member 33. With the route.

このような構成により、熱量調整部材106は、排気管2から熱電変換素子30aや熱電変換素子30bへ移動する各熱流束を排気管2から熱電変換素子30cへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。   With such a configuration, the heat quantity adjusting member 106 makes each heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30c. Are provided between the exhaust pipe 2 and the heat transfer member 33.

また、熱量調整部材106は、排気管2から熱電変換素子30aや熱電変換素子30bへの各熱抵抗を排気管2から熱電変換素子30cへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   Further, the heat quantity adjusting member 106 is transmitted to the exhaust pipe 2 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30c. It is provided between the heat member 33.

熱電発電装置101は、モジュールケース131の内面と伝熱部材33とに挟まれた第2調整部材としての熱量調整部材6や熱量調整部材106を備えている。この構成によれば、熱電変換素子30とモジュールケース131とを絶縁するとともに、第1の素子の温度上昇を抑制可能な熱分岐路を実現できる熱量調整部材を提供することができる。したがって、第1の素子の温度上昇を抑制可能な熱電発電装置1について部品点数を低減することができる。   The thermoelectric generator 101 includes a heat amount adjusting member 6 and a heat amount adjusting member 106 as second adjusting members sandwiched between the inner surface of the module case 131 and the heat transfer member 33. According to this configuration, it is possible to provide a heat adjustment member that can insulate the thermoelectric conversion element 30 and the module case 131 and can realize a heat branch path that can suppress the temperature rise of the first element. Therefore, it is possible to reduce the number of parts of the thermoelectric generator 1 that can suppress the temperature rise of the first element.

(第2実施形態)
第2実施形態の熱電発電装置101について図4、図5を参照して説明する。図4、図5において第1実施形態の図面と同じ符号を付した構成は、第1実施形態と同様である。第2実施形態で特に説明しない構成、処理、作用、効果については、第1実施形態と同様であり、以下、第1実施形態と異なる点についてのみ説明する。
(Second Embodiment)
A thermoelectric generator 101 according to a second embodiment will be described with reference to FIGS. 4 and 5. 4 and 5 are the same as those in the first embodiment, with the same reference numerals as those in the first embodiment. The configuration, processing, operation, and effects not particularly described in the second embodiment are the same as those in the first embodiment, and only differences from the first embodiment will be described below.

熱電発電装置101は、モジュールケース131の内部で、伝熱部材33とモジュールケース131の内面とに接触する熱量調整部材6を備えている。モジュールケース131は排気管2の外表面に接触している。したがって、排ガスの熱は、排気管2、モジュールケース131、熱量調整部材6、伝熱部材33の順に移動して各熱電変換素子30に伝わる。   The thermoelectric generator 101 includes a heat amount adjusting member 6 that contacts the heat transfer member 33 and the inner surface of the module case 131 inside the module case 131. The module case 131 is in contact with the outer surface of the exhaust pipe 2. Therefore, the heat of the exhaust gas moves in the order of the exhaust pipe 2, the module case 131, the heat quantity adjustment member 6, and the heat transfer member 33 and is transmitted to each thermoelectric conversion element 30.

熱量調整部材6は、熱伝導性および絶縁性を有しモジュールケース131の壁と伝熱部材33との間に設けられて、排ガスの熱を伝熱部材33に伝える機能を有する。熱量調整部材6は、熱量調整部材5と同様に、熱電変換素子30bおよびこの素子よりも下流側の素子に対応する位置でモジュールケース131と伝熱部材33に接触している。熱量調整部材6は、最上流に位置する熱電変換素子30aに対応する位置でモジュールケース131と伝熱部材33との両方に接触していない。この位置で伝熱部材33とモジュールケース31の間には隙間23が形成され、排気管2と伝熱部材33は伝熱部材によって熱的に接続されてない。   The heat amount adjusting member 6 has heat conductivity and insulation, and is provided between the wall of the module case 131 and the heat transfer member 33, and has a function of transferring heat of exhaust gas to the heat transfer member 33. Similarly to the heat quantity adjusting member 5, the heat quantity adjusting member 6 is in contact with the module case 131 and the heat transfer member 33 at a position corresponding to the thermoelectric conversion element 30 b and the downstream element. The heat quantity adjusting member 6 is not in contact with both the module case 131 and the heat transfer member 33 at a position corresponding to the thermoelectric conversion element 30a located at the most upstream. At this position, a gap 23 is formed between the heat transfer member 33 and the module case 31, and the exhaust pipe 2 and the heat transfer member 33 are not thermally connected by the heat transfer member.

熱量調整部材6は、熱電変換素子30bに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。この熱分岐路は、排ガス通路2aから熱電変換素子30bへ伝わる熱流束の経路とこの熱流束の経路から分岐して上流側に伝熱部材33を伝わり最上流の熱電変換素子30aへ伝わる熱流束の経路とで構成されている。   The heat quantity adjusting member 6 forms a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the thermoelectric conversion element 30b. This heat branching path is a heat flux path that is transmitted from the exhaust gas path 2a to the thermoelectric conversion element 30b and a heat flux that is branched from this heat flux path and is transmitted upstream through the heat transfer member 33 to the most upstream thermoelectric conversion element 30a. And is composed of the route.

このような構成により、熱量調整部材6は、排気管2から熱電変換素子30aへ移動する熱流束を排気管2から熱電変換素子30bへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材6は、排気管2から熱電変換素子30aへの熱抵抗を排気管2から熱電変換素子30bへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   With such a configuration, the heat quantity adjusting member 6 is transferred to the exhaust pipe 2 so that the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a is smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the heat member 33. Further, the heat quantity adjusting member 6 is provided between the exhaust pipe 2 and the heat transfer member 33 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30b. Is provided.

熱電発電装置101は図5に示す熱量調整部材106を備えるものでもよい。熱量調整部材106は、熱量調整部材6と同様の材質、機能を有する。熱量調整部材106は、熱電変換素子30cおよびこの素子よりも下流側の素子に対応する位置で伝熱部材33とモジュールケース131とに接触している。熱量調整部材106は、熱電変換素子30aおよび熱電変換素子30bに対応する位置で伝熱部材33とモジュールケース131との両方に接触していない。熱電変換素子30aおよび熱電変換素子30bに対応する位置で伝熱部材33とモジュールケース131との間には隙間123が形成され、排気管2と伝熱部材33は熱的に接続されてない。   The thermoelectric generator 101 may include a calorie adjusting member 106 shown in FIG. The heat quantity adjusting member 106 has the same material and function as the heat quantity adjusting member 6. The heat amount adjusting member 106 is in contact with the heat transfer member 33 and the module case 131 at a position corresponding to the thermoelectric conversion element 30c and an element downstream of the element. The heat quantity adjusting member 106 is not in contact with both the heat transfer member 33 and the module case 131 at a position corresponding to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b. A gap 123 is formed between the heat transfer member 33 and the module case 131 at a position corresponding to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b, and the exhaust pipe 2 and the heat transfer member 33 are not thermally connected.

熱量調整部材106は、最上流の素子から数えて3番目の素子に対応する位置で伝熱部材33とモジュールケース131とを連結している。熱量調整部材106は、最上流から3番目の熱電変換素子30cに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。この熱分岐路は、排ガス通路2aから熱電変換素子30cへ伝わる熱流束の経路と、この経路から分岐して上流側に伝熱部材33を伝わり最上流の素子と2番目の素子とにそれぞれ分かれる経路とである。   The heat amount adjusting member 106 connects the heat transfer member 33 and the module case 131 at a position corresponding to the third element counted from the most upstream element. The heat amount adjusting member 106 forms a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the third thermoelectric conversion element 30c from the most upstream. The heat branching path is divided into a heat flux path that is transmitted from the exhaust gas path 2a to the thermoelectric conversion element 30c, and a most upstream element and a second element that are branched from the path and are transmitted upstream through the heat transfer member 33. With the route.

このような構成により、熱量調整部材106は、排気管2から熱電変換素子30aや熱電変換素子30bへ移動する各熱流束を排気管2から熱電変換素子30cへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。   With such a configuration, the heat quantity adjusting member 106 makes each heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30c. Are provided between the exhaust pipe 2 and the heat transfer member 33.

また、熱量調整部材106は、排気管2から熱電変換素子30aや熱電変換素子30bへの各熱抵抗を排気管2から熱電変換素子30cへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   Further, the heat quantity adjusting member 106 is transmitted to the exhaust pipe 2 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30c. It is provided between the heat member 33.

熱電発電装置101は、モジュールケース131の内面と伝熱部材33とに挟まれた第2調整部材としての熱量調整部材6や熱量調整部材106を備えている。この構成によれば、熱電変換素子30とモジュールケース131とを絶縁するとともに、第1の素子の温度上昇を抑制可能な熱分岐路を実現できる熱量調整部材を提供することができる。したがって、第1の素子の温度上昇を抑制可能な熱電発電装置1について部品点数を低減することができる。   The thermoelectric generator 101 includes a heat amount adjusting member 6 and a heat amount adjusting member 106 as second adjusting members sandwiched between the inner surface of the module case 131 and the heat transfer member 33. According to this configuration, it is possible to provide a heat adjustment member that can insulate the thermoelectric conversion element 30 and the module case 131 and can realize a heat branch path that can suppress the temperature rise of the first element. Therefore, it is possible to reduce the number of parts of the thermoelectric generator 1 that can suppress the temperature rise of the first element.

(第3実施形態)
第3実施形態の熱電発電装置201について図6、図7を参照して説明する。図6、図7において前述の実施形態の図面と同じ符号を付した構成は、前述の実施形態と同様である。第3実施形態で特に説明しない構成、処理、作用、効果については、前述の実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Third embodiment)
A thermoelectric generator 201 according to a third embodiment will be described with reference to FIGS. 6 and 7. 6 and 7, the same reference numerals as those in the above-described embodiment are the same as those in the above-described embodiment. The configuration, processing, operation, and effect not particularly described in the third embodiment are the same as those in the above-described embodiment, and only differences from the above-described embodiment will be described below.

熱電発電装置201は、第1実施形態の熱量調整部材5と第2実施形態の熱量調整部材6との両方を備えている。モジュールケース131は熱量調整部材5を介して排気管2と熱移動可能に構成されている。伝熱部材33は熱量調整部材6を介してモジュールケース131と熱移動可能に構成されている。したがって、排ガスの熱は、排気管2、熱量調整部材5、モジュールケース131、熱量調整部材6、伝熱部材33の順に移動して各熱電変換素子30に伝わる。   The thermoelectric generator 201 includes both the heat amount adjusting member 5 of the first embodiment and the heat amount adjusting member 6 of the second embodiment. The module case 131 is configured to be able to move heat with the exhaust pipe 2 via the heat amount adjusting member 5. The heat transfer member 33 is configured to be capable of heat transfer with the module case 131 via the heat amount adjusting member 6. Accordingly, the heat of the exhaust gas moves in the order of the exhaust pipe 2, the heat amount adjusting member 5, the module case 131, the heat amount adjusting member 6, and the heat transfer member 33, and is transmitted to each thermoelectric conversion element 30.

熱量調整部材5および熱量調整部材6は、熱電変換素子30bに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。このような構成により、熱量調整部材5および熱量調整部材6は、排気管2から熱電変換素子30aへ移動する熱流束を排気管2から熱電変換素子30bへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材5および熱量調整部材6は、排気管2から熱電変換素子30aへの熱抵抗を排気管2から熱電変換素子30bへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   The heat quantity adjusting member 5 and the heat quantity adjusting member 6 form a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the thermoelectric conversion element 30b. With such a configuration, the heat amount adjusting member 5 and the heat amount adjusting member 6 make the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the exhaust pipe 2 and the heat transfer member 33. Further, the heat amount adjusting member 5 and the heat amount adjusting member 6 transfer heat with the exhaust pipe 2 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the member 33.

熱電発電装置201は図7に示す第1実施形態の熱量調整部材105と第1実施形態の熱量調整部材106とを備えるものでもよい。熱電変換素子30aおよび熱電変換素子30bに対応する位置で伝熱部材33と排気管2との間には、モジュールケース131の壁が介在する隙間123が形成され、排気管2と伝熱部材33は熱的に接続されてない。   The thermoelectric generator 201 may include the heat amount adjusting member 105 of the first embodiment and the heat amount adjusting member 106 of the first embodiment shown in FIG. A gap 123 in which the wall of the module case 131 is interposed is formed between the heat transfer member 33 and the exhaust pipe 2 at a position corresponding to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b, and the exhaust pipe 2 and the heat transfer member 33 are formed. Are not thermally connected.

熱量調整部材105および熱量調整部材106は、排気管2から熱電変換素子30aや熱電変換素子30bへ移動する各熱流束を排気管2から熱電変換素子30cへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材105および熱量調整部材106は、排気管2から熱電変換素子30aや熱電変換素子30bへの各熱抵抗を排気管2から熱電変換素子30cへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   The heat amount adjusting member 105 and the heat amount adjusting member 106 are configured so that each heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b is smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30c. It is provided between the exhaust pipe 2 and the heat transfer member 33. Further, the heat amount adjusting member 105 and the heat amount adjusting member 106 are configured so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30c. It is provided between the exhaust pipe 2 and the heat transfer member 33.

また、熱量調整部材6や熱量調整部材106は、第1の素子に対応する位置で伝熱部材33とモジュールケース131とに部分的に接触してもよい。熱量調整部材5や熱量調整部材105は、第1の素子に対応する位置でモジュールケース131と排気管2とに部分的に接触してもよい。この構成によれば、排ガスの熱は熱分岐経路を形成することなく熱量調整部材を介して第1の素子の一部に移動し、一方、排ガスの熱は熱量調整部材を介して第2の素子の全体に移動することになる。このため、排ガスの熱は、伝熱部材33において第1の素子の一部に対応する位置で第1の素子に直接移動する熱量と伝熱部材33を介して第1の素子の残りの部分に移動する熱量とに分かれる。したがって、最も温度が上がりやすい第1の素子に移動する熱量を下流側の素子に移動する熱量よりも抑えることができるので、第1の素子の劣化を抑制することに寄与する。   Further, the heat amount adjusting member 6 and the heat amount adjusting member 106 may partially contact the heat transfer member 33 and the module case 131 at a position corresponding to the first element. The heat quantity adjusting member 5 and the heat quantity adjusting member 105 may partially contact the module case 131 and the exhaust pipe 2 at a position corresponding to the first element. According to this configuration, the heat of the exhaust gas moves to a part of the first element via the heat quantity adjusting member without forming a heat branching path, while the heat of the exhaust gas passes through the second heat quantity adjusting member. It moves to the whole element. Therefore, the heat of the exhaust gas is directly transferred to the first element at a position corresponding to a part of the first element in the heat transfer member 33 and the remaining part of the first element via the heat transfer member 33. Divided into the amount of heat transferred to. Therefore, the amount of heat that moves to the first element that is most likely to rise in temperature can be suppressed more than the amount of heat that moves to the downstream element, which contributes to suppressing deterioration of the first element.

熱量調整部材6は第1の素子に対応する位置で伝熱部材33とモジュールケース131との両方に接触しないように設けられている。熱量調整部材5は第1の素子に対応する位置でモジュールケース131と排気管2との両方に接触しないように設けられている。この構成によれば、排ガスの熱は熱量調整部材5および熱量調整部材6を介して第2の素子の全体に直接移動するが、第1の素子には直接移動できない。排ガスの熱は、第2の素子に直接移動する熱経路から分岐して伝熱部材33を介して第1の素子に移動する熱経路に分かれて第1の素子を加熱する。したがって、最も温度が上がりやすい第1の素子に移動する熱量を下流側の素子に移動する熱量よりも抑えることができる熱分岐経路により、第1の素子の劣化を抑制可能な熱電発電装置201を提供できる。   The heat quantity adjusting member 6 is provided so as not to contact both the heat transfer member 33 and the module case 131 at a position corresponding to the first element. The heat amount adjusting member 5 is provided so as not to contact both the module case 131 and the exhaust pipe 2 at a position corresponding to the first element. According to this configuration, the heat of the exhaust gas moves directly to the entire second element via the calorie adjusting member 5 and the calorie adjusting member 6, but cannot move directly to the first element. The heat of the exhaust gas is branched from the heat path that directly moves to the second element and is divided into the heat path that moves to the first element via the heat transfer member 33 to heat the first element. Therefore, the thermoelectric power generation apparatus 201 capable of suppressing the deterioration of the first element by the heat branch path that can suppress the amount of heat that moves to the first element that is most likely to rise in temperature than the amount of heat that moves to the downstream element. Can be provided.

(第4実施形態)
第4実施形態の熱電発電装置301について図8、図9を参照して説明する。図8、図9において前述の実施形態の図面と同じ符号を付した構成は、前述の実施形態と同様である。第4実施形態で特に説明しない構成、処理、作用、効果については、前述の実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Fourth embodiment)
A thermoelectric generator 301 according to a fourth embodiment will be described with reference to FIGS. 8 and 9, the same reference numerals as those in the above-described embodiment are the same as those in the above-described embodiment. The configuration, processing, operation, and effects not particularly described in the fourth embodiment are the same as those in the above-described embodiment, and only differences from the above-described embodiment will be described below.

熱電発電装置301は、熱量調整部材205と第2実施形態の熱量調整部材6とを備えている。熱量調整部材205は、排ガスの流れ方向について最上流の熱電変換素子30aに対応する位置から最下流の熱電変換素子30に対応する位置にまで延びる長さを有する。熱量調整部材205は、その長さ方向全体に渡って排気管2とモジュールケース131に接触している。モジュールケース131は熱量調整部材205を介して排気管2と熱移動可能に構成されている。したがって、排ガスの熱は、排気管2、熱量調整部材205、モジュールケース131、熱量調整部材6、伝熱部材33の順に移動して各熱電変換素子30に伝わる。   The thermoelectric generator 301 includes a heat amount adjusting member 205 and the heat amount adjusting member 6 of the second embodiment. The heat quantity adjusting member 205 has a length extending from a position corresponding to the most upstream thermoelectric conversion element 30a to a position corresponding to the most downstream thermoelectric conversion element 30 in the exhaust gas flow direction. The heat amount adjusting member 205 is in contact with the exhaust pipe 2 and the module case 131 over the entire length direction. The module case 131 is configured to be able to move heat with the exhaust pipe 2 via a heat amount adjusting member 205. Accordingly, the heat of the exhaust gas moves in the order of the exhaust pipe 2, the heat amount adjusting member 205, the module case 131, the heat amount adjusting member 6, and the heat transfer member 33 and is transmitted to each thermoelectric conversion element 30.

熱量調整部材205および熱量調整部材6は、排気管2から熱電変換素子30aへ移動する熱流束を排気管2から熱電変換素子30bへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材205および熱量調整部材6は、排気管2から熱電変換素子30aへの熱抵抗を排気管2から熱電変換素子30bへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   The heat quantity adjusting member 205 and the heat quantity adjusting member 6 transfer heat with the exhaust pipe 2 so that the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a is smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the member 33. Further, the heat amount adjusting member 205 and the heat amount adjusting member 6 transfer heat with the exhaust pipe 2 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the member 33.

熱電発電装置301は図9に示す第1実施形態の熱量調整部材5と熱量調整部材206とを備えるものでもよい。熱量調整部材206は、排ガスの流れ方向について最上流の熱電変換素子30aに対応する位置から最下流の熱電変換素子30に対応する位置にまで延びる長さを有する。熱量調整部材206は、その長さ方向全体に渡って、伝熱部材33とモジュールケース131に接触している。したがって、モジュールケース131は熱量調整部材206を介して伝熱部材33と熱移動可能に構成されている。排ガスの熱は、排気管2、熱量調整部材5、モジュールケース131、熱量調整部材206、伝熱部材33の順に移動して各熱電変換素子30に伝わる。   The thermoelectric generator 301 may include the heat amount adjusting member 5 and the heat amount adjusting member 206 of the first embodiment shown in FIG. The heat quantity adjusting member 206 has a length extending from a position corresponding to the most upstream thermoelectric conversion element 30a to a position corresponding to the most downstream thermoelectric conversion element 30 in the exhaust gas flow direction. The heat amount adjusting member 206 is in contact with the heat transfer member 33 and the module case 131 over the entire length direction. Therefore, the module case 131 is configured to be capable of heat transfer with the heat transfer member 33 via the heat amount adjusting member 206. The heat of the exhaust gas moves in the order of the exhaust pipe 2, the heat amount adjustment member 5, the module case 131, the heat amount adjustment member 206, and the heat transfer member 33 and is transmitted to each thermoelectric conversion element 30.

熱量調整部材5および熱量調整部材206は、排気管2から熱電変換素子30aへ移動する熱流束を排気管2から熱電変換素子30bへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材5および熱量調整部材206は、排気管2から熱電変換素子30aへの熱抵抗を排気管2から熱電変換素子30bへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   The heat quantity adjusting member 5 and the heat quantity adjusting member 206 transfer heat with the exhaust pipe 2 so that the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a is smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the member 33. Further, the heat amount adjusting member 5 and the heat amount adjusting member 206 transfer heat with the exhaust pipe 2 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the member 33.

熱電発電装置301によれば、第1調整部材と第2調整部材のいずれか一方が、排ガスの流れ方向について第1の素子に対応する位置で設けられておらず、排ガスの流れ方向について第2の素子に対応する位置で設けられている。第1調整部材は、排気管2とモジュールケース131との間に介在する熱量調整部材である。第2調整部材は、伝熱部材33とモジュールケース131の内面とで挟まれる熱量調整部材である。この構成によれば、伝熱部材33とモジュールケース131の電気絶縁を確保しつつ、最も温度が上がりやすい第1の素子に移動する熱量を下流側の素子に移動する熱量よりも抑えることができる熱分岐路を提供できる。   According to the thermoelectric generator 301, either the first adjustment member or the second adjustment member is not provided at a position corresponding to the first element in the exhaust gas flow direction, and the second exhaust gas flow direction is the second. It is provided at a position corresponding to the element. The first adjustment member is a heat amount adjustment member interposed between the exhaust pipe 2 and the module case 131. The second adjustment member is a heat amount adjustment member that is sandwiched between the heat transfer member 33 and the inner surface of the module case 131. According to this configuration, while ensuring electrical insulation between the heat transfer member 33 and the module case 131, the amount of heat that moves to the first element that is most likely to rise in temperature can be suppressed from the amount of heat that moves to the downstream element. A thermal branch can be provided.

(第5実施形態)
第5実施形態の熱電発電装置401について図10、図11を参照して説明する。図10、図11において前述の実施形態の図面と同じ符号を付した構成は、前述の実施形態と同様である。第5実施形態で特に説明しない構成、処理、作用、効果については、前述の実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Fifth embodiment)
A thermoelectric generator 401 according to a fifth embodiment will be described with reference to FIGS. 10 and 11. 10 and 11, the same reference numerals as those in the above-described embodiment are the same as those in the above-described embodiment. The configuration, processing, operation, and effects not particularly described in the fifth embodiment are the same as those in the above-described embodiment, and only differences from the above-described embodiment will be described below.

図10に示すように、熱電発電装置401は、第1実施形態の熱電発電装置1に対してモジュールケースを備えない装置である。したがって、熱量調整部材7は、熱電変換素子30bおよびこの素子よりも下流側の素子に対応する位置で伝熱部材33と排気管2との両方に接触している。また、低温通路部材4は伝熱部材32と接触している。   As shown in FIG. 10, the thermoelectric generator 401 is an apparatus that does not include a module case with respect to the thermoelectric generator 1 of the first embodiment. Therefore, the heat quantity adjusting member 7 is in contact with both the heat transfer member 33 and the exhaust pipe 2 at a position corresponding to the thermoelectric conversion element 30b and an element downstream of the element. The low temperature passage member 4 is in contact with the heat transfer member 32.

熱量調整部材7は、熱電変換素子30bおよびこの素子よりも下流側の素子に対応する位置で伝熱部材33と排気管2との両方に接触している。熱量調整部材7は、熱電変換素子30bに対応する位置で排気管2と伝熱部材33とを連結している。熱量調整部材7は、最上流に位置する熱電変換素子30aに対応する位置で伝熱部材33と排気管2との両方に接触していない。この位置で伝熱部材33と排気管2との間には隙間23が形成され、排気管2と伝熱部材33は熱的に接続されてない。排ガスの熱は、排気管2、熱量調整部材7、伝熱部材33の順に移動して各熱電変換素子30に伝わる。   The heat quantity adjusting member 7 is in contact with both the heat transfer member 33 and the exhaust pipe 2 at a position corresponding to the thermoelectric conversion element 30b and an element downstream of the element. The heat quantity adjusting member 7 connects the exhaust pipe 2 and the heat transfer member 33 at a position corresponding to the thermoelectric conversion element 30b. The heat amount adjusting member 7 is not in contact with both the heat transfer member 33 and the exhaust pipe 2 at a position corresponding to the thermoelectric conversion element 30a located at the most upstream. At this position, a gap 23 is formed between the heat transfer member 33 and the exhaust pipe 2, and the exhaust pipe 2 and the heat transfer member 33 are not thermally connected. The heat of the exhaust gas moves in the order of the exhaust pipe 2, the heat amount adjusting member 7, and the heat transfer member 33 and is transmitted to each thermoelectric conversion element 30.

熱量調整部材7は、熱電変換素子30bに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。この熱分岐路は、排ガス通路2aから熱電変換素子30bへ伝わる熱流束の経路と熱流束の経路から分岐して上流側に伝熱部材33を伝わり最上流の熱電変換素子30aへ伝わる熱流束の経路とで構成されている。   The heat quantity adjusting member 7 forms a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the thermoelectric conversion element 30b. This heat branching path is a part of the heat flux transmitted from the exhaust gas passage 2a to the thermoelectric conversion element 30b and from the heat flux path and from the heat flux path to the upstream side through the heat transfer member 33 and to the most upstream thermoelectric conversion element 30a. It consists of a route.

このような構成により、熱量調整部材7は、排気管2から熱電変換素子30aへ移動する熱流束を排気管2から熱電変換素子30bへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材7は、排気管2から熱電変換素子30aへの熱抵抗を排気管2から熱電変換素子30bへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   With such a configuration, the heat quantity adjusting member 7 is transferred to the exhaust pipe 2 so that the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a is smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the heat member 33. Further, the heat quantity adjusting member 7 is provided between the exhaust pipe 2 and the heat transfer member 33 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30b. Is provided.

熱電発電装置301は熱量調整部材7の代わりに図11に示す熱量調整部材107を備えるものでもよい。熱量調整部材107は、熱量調整部材7とは長さ寸法が異なり、熱電変換素子30cおよびこの素子よりも下流側の素子に対応する位置で排気管2と伝熱部材33とに接触している。熱量調整部材107は、熱電変換素子30aおよび熱電変換素子30bに対応する位置で排気管2と伝熱部材33との両方に接触していない。   The thermoelectric generator 301 may be provided with a heat adjustment member 107 shown in FIG. 11 instead of the heat adjustment member 7. The heat quantity adjusting member 107 is different in length from the heat quantity adjusting member 7 and is in contact with the exhaust pipe 2 and the heat transfer member 33 at a position corresponding to the thermoelectric conversion element 30c and an element downstream of the element. . The heat amount adjusting member 107 is not in contact with both the exhaust pipe 2 and the heat transfer member 33 at a position corresponding to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b.

熱量調整部材107は、最上流の素子から数えて3番目の素子に対応する位置で排気管2と伝熱部材33とを連結している。熱量調整部材107は、最上流から3番目の熱電変換素子30cに対応する位置における、排ガス通路2aから熱電変換素子30への熱移動経路に第1実施形態と同様の熱分岐路を形成する。   The heat quantity adjusting member 107 connects the exhaust pipe 2 and the heat transfer member 33 at a position corresponding to the third element counted from the most upstream element. The heat quantity adjusting member 107 forms the same heat branching path as in the first embodiment in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the third thermoelectric conversion element 30c from the most upstream.

このような構成により、熱量調整部材107は、排気管2から熱電変換素子30aや熱電変換素子30bへ移動する各熱流束を排気管2から熱電変換素子30cへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材107は、排気管2から熱電変換素子30aや熱電変換素子30bへの各熱抵抗を排気管2から熱電変換素子30cへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   With such a configuration, the heat quantity adjusting member 107 makes each heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30c. Are provided between the exhaust pipe 2 and the heat transfer member 33. Further, the heat quantity adjusting member 107 is transferred to the exhaust pipe 2 so that each thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a and the thermoelectric conversion element 30b is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30c. It is provided between the heat member 33.

熱電発電装置401によれば、熱量調整部材7または熱量調整部材107は、排ガスの流れ方向について第1の素子に対応する位置で排気管2と伝熱部材33との間に隙間23または隙間123を形成する。さらに熱量調整部材7または熱量調整部材107は、第2の素子に対応する位置で排気管2と伝熱部材33とを連結するように構成されている。   According to the thermoelectric generator 401, the calorie adjusting member 7 or the calorie adjusting member 107 has a gap 23 or a gap 123 between the exhaust pipe 2 and the heat transfer member 33 at a position corresponding to the first element in the exhaust gas flow direction. Form. Further, the heat amount adjusting member 7 or the heat amount adjusting member 107 is configured to connect the exhaust pipe 2 and the heat transfer member 33 at a position corresponding to the second element.

この構成によれば、排ガスからの熱は熱量調整部材、伝熱部材33の順に移動し、伝熱部材33において第2の素子に対応する位置で第2の素子に移動する熱量と伝熱部材33を介して第1の素子に移動する熱量とに分かれる。このとき第1の素子に移動する熱量は、熱が伝熱部材33を上流側に移動してから第1の素子に向かうため、第2の素子に移動する熱量よりも小さくなる。したがって、最も温度が上がりやすい最上流側の第1の素子に移動する熱量を下流側の素子に移動する熱量よりも抑えることができるので、第1の素子の温度上昇を抑制可能な熱分岐路を有する熱電発電装置401を提供できる。   According to this configuration, the heat from the exhaust gas moves in the order of the heat amount adjusting member and the heat transfer member 33, and the heat amount and the heat transfer member move to the second element at the position corresponding to the second element in the heat transfer member 33. And the amount of heat that moves to the first element via 33. At this time, the amount of heat transferred to the first element is smaller than the amount of heat transferred to the second element because the heat moves toward the first element after moving the heat transfer member 33 upstream. Therefore, since the amount of heat that moves to the first element on the most upstream side where the temperature is most likely to rise can be suppressed from the amount of heat that moves to the element on the downstream side, the heat branch path that can suppress the temperature rise of the first element Can be provided.

(第6実施形態)
第6実施形態の熱電発電装置501について図12、図13を参照して説明する。図12、図13において前述の実施形態の図面と同じ符号を付した構成は、前述の実施形態と同様である。第6実施形態で特に説明しない構成、処理、作用、効果については、前述の実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Sixth embodiment)
A thermoelectric generator 501 according to a sixth embodiment will be described with reference to FIGS. 12 and 13. 12 and 13, the same reference numerals as those in the above-described embodiment are the same as those in the above-described embodiment. The configuration, processing, operation, and effect not particularly described in the sixth embodiment are the same as those in the above-described embodiment, and only differences from the above-described embodiment will be described below.

図12に示すように熱電発電装置501は、モジュールケース131の内部に、排ガス流れ方向に並ぶ所定個数の熱電変換素子30をそれぞれ有して排ガス流れ方向に間隔をあけて設けられた複数の熱発電モジュールを備える。排ガス流れの最上流側に位置する最上流側モジュールとしての熱発電モジュール103は、伝熱部材133が最上流の熱電変換素子30aに対応する位置で熱量調整部材306と部分的に接触する。熱発電モジュール103は、熱電変換素子30aよりも下流側の熱電変換素子30bおよびこれより下流の素子に対応する位置の全体に渡って熱量調整部材306と接触する。熱量調整部材306が伝熱部材133と接触していない位置で、伝熱部材133とモジュールケース131の内面との間には隙間223が形成され、排気管2と伝熱部材133は熱的に接続されてない。排ガスの熱は、排気管2、熱量調整部材205、熱量調整部材306、伝熱部材133の順に移動して熱発電モジュール103の各熱電変換素子30に伝わる。   As shown in FIG. 12, the thermoelectric generator 501 includes a plurality of heats provided in the module case 131, each having a predetermined number of thermoelectric conversion elements 30 arranged in the exhaust gas flow direction and spaced in the exhaust gas flow direction. A power generation module is provided. The thermoelectric generator module 103 as the most upstream module located on the most upstream side of the exhaust gas flow partially contacts the heat amount adjusting member 306 at a position where the heat transfer member 133 corresponds to the most upstream thermoelectric conversion element 30a. The thermoelectric generator module 103 contacts the heat quantity adjusting member 306 over the entire thermoelectric conversion element 30b on the downstream side of the thermoelectric conversion element 30a and the position corresponding to the downstream element. A gap 223 is formed between the heat transfer member 133 and the inner surface of the module case 131 at a position where the heat quantity adjusting member 306 is not in contact with the heat transfer member 133, and the exhaust pipe 2 and the heat transfer member 133 are thermally Not connected. The heat of the exhaust gas moves in the order of the exhaust pipe 2, the heat amount adjustment member 205, the heat amount adjustment member 306, and the heat transfer member 133 and is transmitted to each thermoelectric conversion element 30 of the thermoelectric generator module 103.

所定の間隔をあけて熱発電モジュール103よりも下流側に位置する熱発電モジュール203は、伝熱部材233が最上流の熱電変換素子30aに対応する位置で熱量調整部材306と部分的に接触する。熱発電モジュール203は、熱電変換素子30aよりも下流側の熱電変換素子30bおよびこれより下流の素子に対応する位置の全体に渡って熱量調整部材306と接触する。排ガスの熱は、排気管2、熱量調整部材205、熱量調整部材306、伝熱部材133の順に移動して熱発電モジュール203の各熱電変換素子30に伝わる。   The thermoelectric generator module 203 located downstream of the thermoelectric generator module 103 at a predetermined interval partially contacts the heat quantity adjusting member 306 at a position where the heat transfer member 233 corresponds to the most upstream thermoelectric conversion element 30a. . The thermoelectric generator module 203 contacts the heat quantity adjusting member 306 over the entire thermoelectric conversion element 30b downstream of the thermoelectric conversion element 30a and the position corresponding to the downstream element. The heat of the exhaust gas moves in the order of the exhaust pipe 2, the heat amount adjustment member 205, the heat amount adjustment member 306, and the heat transfer member 133 and is transmitted to each thermoelectric conversion element 30 of the thermoelectric generator module 203.

熱量調整部材306は、熱電変換素子30bに対応する位置において排ガス通路2aから熱電変換素子30への熱移動経路に熱分岐路を形成する。この熱分岐路は、排ガス通路2aから熱電変換素子30aの一部へ伝わる熱流束の経路とこの熱流束の経路から分岐して上流側に伝熱部材33を伝わり熱電変換素子30aの上流側部分へ伝わる熱流束の経路とで構成されている。このような構成により、熱量調整部材306は、排気管2から熱電変換素子30aへ移動する熱流束を排気管2から熱電変換素子30bへ移動する熱流束よりも小さくするように排気管2と伝熱部材33との間に設けられている。また、熱量調整部材306は、排気管2から熱電変換素子30aへの熱抵抗を排気管2から熱電変換素子30bへの熱抵抗よりも大きくするように排気管2と伝熱部材33との間に設けられている。   The heat quantity adjusting member 306 forms a heat branch path in the heat transfer path from the exhaust gas passage 2a to the thermoelectric conversion element 30 at a position corresponding to the thermoelectric conversion element 30b. The heat branch path is a path of a heat flux that is transmitted from the exhaust gas passage 2a to a part of the thermoelectric conversion element 30a, and a part of the heat flux that branches off from the path of the heat flux and is transmitted to the upstream side of the heat transfer member 33. And the path of the heat flux that travels to. With this configuration, the heat quantity adjusting member 306 is transferred to the exhaust pipe 2 so that the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a is smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30b. It is provided between the heat member 33. Further, the heat quantity adjusting member 306 is provided between the exhaust pipe 2 and the heat transfer member 33 so that the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a is larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30b. Is provided.

また、熱量調整部材306は、第1の素子に対応する位置で、伝熱部材133と連結する第1の素子の部分の半分以上と重ならない。熱量調整部材306は、さらに第2の素子に対応する位置で伝熱部材133と連結する第2の素子の全体と重なって、排気管2と伝熱部材133とを連結している。この構成によれば、排ガスの熱は熱分岐経路を形成することなく熱量調整部材306を介して第1の素子表面の半分以下の部分から第1の素子に移動し、一方、排ガスの熱は熱量調整部材306を介して第2の素子の全体に移動することになる。このため、排ガスの熱は、伝熱部材133において第1の素子の一部に対応する位置で第1の素子に直接移動する熱量と伝熱部材133を介して第1の素子の残りの部分に移動する熱量とに分かれる。したがって、最も温度が上がりやすい第1の素子に移動する熱量を下流側の素子に移動する熱量よりも抑えられるので、第1の素子の劣化を抑制することに寄与する。   Further, the heat amount adjusting member 306 does not overlap with more than half of the portion of the first element connected to the heat transfer member 133 at a position corresponding to the first element. The heat amount adjusting member 306 further overlaps the entire second element connected to the heat transfer member 133 at a position corresponding to the second element, and connects the exhaust pipe 2 and the heat transfer member 133. According to this configuration, the heat of the exhaust gas moves from the portion of the first element surface less than half of the surface of the first element to the first element via the heat amount adjusting member 306 without forming a heat branch path, while the heat of the exhaust gas is It moves to the whole of the second element via the heat amount adjusting member 306. Therefore, the heat of the exhaust gas is directly transferred to the first element at a position corresponding to a part of the first element in the heat transfer member 133 and the remaining part of the first element through the heat transfer member 133. Divided into the amount of heat transferred to. Therefore, the amount of heat that moves to the first element, which is most likely to rise in temperature, can be suppressed more than the amount of heat that moves to the downstream element, which contributes to suppressing deterioration of the first element.

熱電発電装置501は、熱発電モジュール103よりも下流側に位置する熱発電モジュール203への熱量調整手段として、図13に示す熱量調整部材406を備えるものでもよい。下流側に位置する熱発電モジュール203は、最上流の熱電変換素子30aから最下流の素子に対応する位置の全体に渡って熱量調整部材406と接触する。熱発電モジュール203においては、伝熱部材233と排気管2との間には隙間が形成されていない。したがって、複数の熱発電モジュールのうち、最上流側に位置する最上流側モジュールの方が、下流側モジュールよりも熱量調整部材との接触面積が小さくなっている。この構成によれば、熱量調整部材306は、最上流側モジュールにおいて排気管2から熱電変換素子30aへ移動する熱流束を排気管2から熱電変換素子30bへ移動する熱流束よりも小さくすることができる。また、熱量調整部材306は、排気管2から熱電変換素子30aへの熱抵抗を排気管2から熱電変換素子30bへの熱抵抗よりも大きくすることができる。   The thermoelectric generator 501 may include a heat amount adjusting member 406 shown in FIG. 13 as heat amount adjusting means for the thermoelectric generator module 203 located on the downstream side of the thermoelectric generator module 103. The thermoelectric generator module 203 located on the downstream side contacts the heat amount adjusting member 406 throughout the position corresponding to the most downstream element from the most upstream thermoelectric conversion element 30a. In the thermoelectric generator module 203, no gap is formed between the heat transfer member 233 and the exhaust pipe 2. Accordingly, among the plurality of thermoelectric generator modules, the most upstream module located on the most upstream side has a smaller contact area with the heat amount adjusting member than the downstream module. According to this configuration, the heat quantity adjusting member 306 can make the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30a smaller than the heat flux moving from the exhaust pipe 2 to the thermoelectric conversion element 30b in the most upstream module. it can. Further, the heat quantity adjusting member 306 can make the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30a larger than the thermal resistance from the exhaust pipe 2 to the thermoelectric conversion element 30b.

(第7実施形態)
第7実施形態の熱電発電装置601について図14、図15を参照して説明する。図14、図15において前述の実施形態の図面と同じ符号を付した構成は、前述の実施形態と同様である。第7実施形態で特に説明しない構成、処理、作用、効果については、前述の実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Seventh embodiment)
A thermoelectric generator 601 according to a seventh embodiment will be described with reference to FIGS. 14 and 15. In FIG. 14 and FIG. 15, the same reference numerals as those in the previous embodiment are the same as those in the previous embodiment. The configuration, processing, operation, and effects not particularly described in the seventh embodiment are the same as those in the above-described embodiment, and only differences from the above-described embodiment will be described below.

図14に示すように、熱電発電装置601は、第1実施形態の装置に対して、排ガスから第1の素子に移動する熱量を他の素子への移動熱量よりも小さくするための手段が相違している。熱電発電装置601は、第4実施形態と同様の熱量調整部材205を備えている。熱量調整部材205は、すべての熱電変換素子30に対応する長さ全体に渡って排気管2とモジュールケース131に接触している。   As shown in FIG. 14, the thermoelectric generator 601 is different from the apparatus of the first embodiment in the means for making the amount of heat transferred from the exhaust gas to the first element smaller than the amount of heat transferred to other elements. is doing. The thermoelectric generator 601 includes a heat amount adjusting member 205 similar to that of the fourth embodiment. The heat quantity adjusting member 205 is in contact with the exhaust pipe 2 and the module case 131 over the entire length corresponding to all the thermoelectric conversion elements 30.

熱電発電装置601は、熱伝導性を有し、排気管2の内壁面に接触しかつ排ガスの流れ方向に沿って延びるように排ガス通路2aに設けられた伝熱促進部120を備える。伝熱促進部120は、伝熱促進部120の最上流端が、複数の熱電変換素子30のうち排ガス流れの最上流に位置する第1の素子よりも下流に設けられた熱電変換素子に対応する位置となるように排ガス通路2aに設けられている。すなわち、伝熱促進部120は、第1実施形態の伝熱促進部20とはその設置箇所が異なる。伝熱促進部120は、熱電変換素子30aよりも排ガス流れの下流側の素子、例えば熱電変換素子30b以降の素子に対応する位置において排ガス通路2aに設けられていため、熱電変換素子30aへの熱移動量が他の素子への熱移動量よりも小さくなる。   The thermoelectric generator 601 has heat conductivity, and includes a heat transfer promotion unit 120 provided in the exhaust gas passage 2a so as to contact the inner wall surface of the exhaust pipe 2 and extend along the flow direction of the exhaust gas. The heat transfer promoting unit 120 corresponds to a thermoelectric conversion element provided at the most upstream end of the heat transfer promoting unit 120 downstream of the first element located at the most upstream of the exhaust gas flow among the plurality of thermoelectric conversion elements 30. It is provided in the exhaust gas passage 2a so as to be in a position where That is, the installation location of the heat transfer promotion unit 120 is different from that of the heat transfer promotion unit 20 of the first embodiment. The heat transfer promoting part 120 is provided in the exhaust gas passage 2a at a position corresponding to an element downstream of the exhaust gas flow from the thermoelectric conversion element 30a, for example, an element after the thermoelectric conversion element 30b, and thus heat to the thermoelectric conversion element 30a. The amount of movement is smaller than the amount of heat transfer to other elements.

熱電発電装置601は、図15に示す伝熱促進部220を備えるものでもよい。伝熱促進部220は、伝熱促進部120に対して、伝熱促進部220の下流端部が最下流の素子に対応する位置よりもさらに下流まで延びている点が相違する。   The thermoelectric generator 601 may include a heat transfer promotion unit 220 shown in FIG. The heat transfer promoting part 220 is different from the heat transfer promoting part 120 in that the downstream end of the heat transfer promoting part 220 extends further downstream than the position corresponding to the most downstream element.

この熱電発電装置601によれば、伝熱促進部120,220の最上流端が最上流の第1の素子よりも下流の熱電変換素子に対応する位置となるように排ガス通路2aに設けられているため、伝熱促進部は第1の素子に対応する位置には存在していない。排ガスから伝熱促進部120,220に伝わる熱経路は、伝熱促進部から排気管2等を経て伝熱部材33に移動する。伝熱部材33において第1の素子よりも下流の素子に対応する位置で、下流の素子に移動する熱量と伝熱部材33を介して第1の素子に移動する熱量とに分かれる。このとき第1の素子に移動する熱量は、熱が伝熱部材33を排ガス上流側に移動してから第1の素子に向かうため、下流の素子に移動する熱量よりも小さくなる。この熱量分配により、最も温度が上がりやすい最上流の第1の素子について温度上昇を抑制できる。さらにこの効果は伝熱促進部120,220の配置構成によって実現できるため、従来技術のような動力エネルギを必要としない熱電発電装置601を提供できる。   According to this thermoelectric generator 601, the most upstream end of the heat transfer promoting portions 120, 220 is provided in the exhaust gas passage 2 a so that it is located at a position corresponding to the thermoelectric conversion element downstream from the most upstream first element. Therefore, the heat transfer promoting part does not exist at a position corresponding to the first element. The heat path transmitted from the exhaust gas to the heat transfer promotion units 120 and 220 moves from the heat transfer promotion unit to the heat transfer member 33 through the exhaust pipe 2 and the like. The heat transfer member 33 is divided into a heat amount moving to the downstream element and a heat amount moving to the first element via the heat transfer member 33 at a position corresponding to the element downstream of the first element. At this time, the amount of heat transferred to the first element is smaller than the amount of heat transferred to the downstream element because the heat moves toward the first element after moving the heat transfer member 33 to the exhaust gas upstream side. By this heat distribution, the temperature rise can be suppressed for the most upstream first element whose temperature is most likely to rise. Further, since this effect can be realized by the arrangement configuration of the heat transfer promoting portions 120 and 220, it is possible to provide the thermoelectric generator 601 that does not require motive energy as in the prior art.

(第8実施形態)
第8実施形態の熱電発電装置701について図16を参照して説明する。図16において前述の実施形態の図面と同じ符号を付した構成は、前述の実施形態と同様である。第8実施形態で特に説明しない構成、処理、作用、効果については、前述の実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Eighth embodiment)
A thermoelectric generator 701 according to an eighth embodiment will be described with reference to FIG. In FIG. 16, the same reference numerals as those in the above-described embodiment are the same as those in the above-described embodiment. The configuration, processing, operation, and effects not particularly described in the eighth embodiment are the same as those in the above-described embodiment, and only differences from the above-described embodiment will be described below.

図16に示すように、熱電発電装置701は、排気管102内の排ガス通路102aに低温通路部材104とモジュールケース231とが設けられた構成である。したがって、モジュールケース231の外周面には、熱伝導性を有する熱伝導性部材8が設けられている。熱伝導性部材8は、排ガスの熱が高温端30H側の伝熱部材32に効率的に伝わる機能を有している。通路箇所102a1には、伝熱促進部320が設けられている。伝熱促進部320は、第7実施形態の伝熱促進部220と同様の構成であり、伝熱促進部120や伝熱促進部220と同様の作用効果を奏する。この熱電発電装置701によれば、前述した熱電発電装置601と同様の作用、効果を奏する。   As shown in FIG. 16, the thermoelectric generator 701 has a configuration in which the low temperature passage member 104 and the module case 231 are provided in the exhaust gas passage 102 a in the exhaust pipe 102. Therefore, the heat conductive member 8 having heat conductivity is provided on the outer peripheral surface of the module case 231. The heat conductive member 8 has a function of efficiently transferring the heat of the exhaust gas to the heat transfer member 32 on the high temperature end 30H side. A heat transfer promoting portion 320 is provided in the passage location 102a1. The heat transfer promoting unit 320 has the same configuration as the heat transfer promoting unit 220 of the seventh embodiment, and has the same effects as the heat transfer promoting unit 120 and the heat transfer promoting unit 220. According to the thermoelectric generator 701, the same operations and effects as the thermoelectric generator 601 described above are exhibited.

(第9実施形態)
第9実施形態の熱電発電装置801について図17を参照して説明する。図17において前述の実施形態の図面と同じ符号を付した構成は、前述の実施形態と同様である。第9実施形態で特に説明しない構成、処理、作用、効果については、前述の実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
(Ninth embodiment)
A thermoelectric generator 801 according to a ninth embodiment will be described with reference to FIG. In FIG. 17, the configuration denoted by the same reference numeral as that of the above-described embodiment is the same as that of the above-described embodiment. The configuration, processing, operation, and effect not particularly described in the ninth embodiment are the same as those in the above-described embodiment, and only differences from the above-described embodiment will be described below.

図17に示すように、熱電発電装置801は、第8実施形態の熱電発電装置801に対して、熱量調整部材108と伝熱促進部420とが相違する。熱量調整部材108は、熱伝導性部材8に対して、その設置箇所が相違する。熱量調整部材108は、図17に図示するように、熱電変換素子30bおよびこの素子よりも下流側の素子に対応する位置でモジュールケース231に接触している。熱量調整部材108は、最上流に位置する熱電変換素子30aに対応する位置でモジュールケース231に接触していない。   As shown in FIG. 17, the thermoelectric power generation device 801 is different from the thermoelectric power generation device 801 of the eighth embodiment in a heat amount adjusting member 108 and a heat transfer promotion unit 420. The installation amount of the heat amount adjusting member 108 is different from that of the heat conductive member 8. As shown in FIG. 17, the heat quantity adjusting member 108 is in contact with the module case 231 at a position corresponding to the thermoelectric conversion element 30 b and an element downstream of the element. The heat amount adjusting member 108 is not in contact with the module case 231 at a position corresponding to the thermoelectric conversion element 30a located at the most upstream.

伝熱促進部420は、排ガスの流れ方向について最上流の熱電変換素子30aに対応する位置から最下流の熱電変換素子30に対応する位置にまで少なくとも占める長さを有する。   The heat transfer promotion unit 420 has at least a length from the position corresponding to the most upstream thermoelectric conversion element 30a to the position corresponding to the most downstream thermoelectric conversion element 30 in the exhaust gas flow direction.

熱電発電装置801によれば、排ガスの流れ方向について第1の素子に対応する位置でモジュールケース231に接触しないで第2の素子に対応する位置でモジュールケース231に接触するように排ガス通路2aに設けられる熱量調整部材108を備える。   According to the thermoelectric generator 801, the exhaust gas passage 2a is not contacted with the module case 231 at the position corresponding to the first element with respect to the flow direction of the exhaust gas, but is contacted with the module case 231 at the position corresponding to the second element. A heat quantity adjusting member 108 is provided.

この構成によれば、排ガスから熱量調整部材108に伝わる熱経路は、熱量調整部材108、モジュールケース231、伝熱部材33の順に移動する。伝熱部材33において第2の素子に対応する位置で第2の素子に移動する熱量と伝熱部材33を介して第1の素子に移動する熱量とに分かれる。このとき第1の素子に移動する熱量は、熱が伝熱部材33を排ガス上流側に移動してから第1の素子に向かうため、第2の素子に移動する熱量よりも小さくなる。この熱量分配によって、最も温度が上がりやすい最上流側の第1の素子について温度上昇を抑制できる。このように熱電発電装置801は、前述した熱電発電装置601と同様の作用、効果を奏する。   According to this configuration, the heat path transmitted from the exhaust gas to the heat quantity adjusting member 108 moves in the order of the heat quantity adjusting member 108, the module case 231, and the heat transfer member 33. The heat transfer member 33 is divided into a heat amount that moves to the second element at a position corresponding to the second element and a heat amount that moves to the first element via the heat transfer member 33. At this time, the amount of heat that moves to the first element is smaller than the amount of heat that moves to the second element because the heat moves to the first element after moving the heat transfer member 33 to the upstream side of the exhaust gas. This heat distribution can suppress the temperature rise of the first element on the most upstream side where the temperature is most likely to rise. As described above, the thermoelectric generator 801 has the same operations and effects as the thermoelectric generator 601 described above.

熱電発電装置801もよれば、伝熱促進部420は、伝熱促進部420の最下流端が、複数の熱電変換素子30のうち排ガス流れの最下流に位置する熱電変換素子30よりも下流に位置するように、設けられている。この構成によれば、伝熱促進部420が最下流の熱電変換素子30に対応する位置よりも下流側に長く排ガス通路2aに設けられている。これにより、排ガスからの熱回収量を向上できるので、高温端30Hへの移動熱量を大きくして、発電量の向上を図ることができる。   According to the thermoelectric power generation device 801, the heat transfer promotion unit 420 has the most downstream end of the heat transfer promotion unit 420 downstream of the thermoelectric conversion element 30 located at the most downstream of the exhaust gas flow among the plurality of thermoelectric conversion elements 30. It is provided to be located. According to this configuration, the heat transfer promoting portion 420 is provided in the exhaust gas passage 2a longer on the downstream side than the position corresponding to the most downstream thermoelectric conversion element 30. Thereby, since the amount of heat recovered from the exhaust gas can be improved, the amount of heat transferred to the high temperature end 30H can be increased, and the amount of power generation can be improved.

(他の実施形態)
この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品、要素の組み合わせに限定されず、種々変形して実施することが可能である。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品、要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品、要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示される技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものと解されるべきである。
(Other embodiments)
The disclosure of this specification is not limited to the illustrated embodiments. The disclosure encompasses the illustrated embodiments and variations by those skilled in the art based thereon. For example, the disclosure is not limited to the combination of components and elements shown in the embodiments, and various modifications can be made. The disclosure can be implemented in various combinations. The disclosure may have additional parts that can be added to the embodiments. The disclosure includes those in which the components and elements of the embodiment are omitted. The disclosure encompasses parts, element replacements, or combinations between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments. The technical scope disclosed is indicated by the description of the claims, and should be understood to include all modifications within the meaning and scope equivalent to the description of the claims.

第1実施形態から第6実施形態では、排ガス通路2aに伝熱促進部20を備えているが、熱電発電装置は伝熱促進部20を備えない構成でもよい。   In the first to sixth embodiments, the exhaust gas passage 2 a includes the heat transfer promotion unit 20, but the thermoelectric generator may not include the heat transfer promotion unit 20.

前述の実施形態では、熱発電モジュール3は、排気管2の外周面を取り囲むように排気管2に熱移動可能に接触しているが、このような設置形態に限定するものでない。熱発電モジュール3は、排ガス通路2aを形成する部材の外面に接触する形態であればよく、この部材の外周面において部分的に接触する形態でもよい。   In the above-described embodiment, the thermoelectric generator module 3 is in contact with the exhaust pipe 2 so as to be able to move heat so as to surround the outer peripheral surface of the exhaust pipe 2, but is not limited to such an installation form. The thermoelectric generator module 3 may be in a form that comes into contact with the outer surface of a member that forms the exhaust gas passage 2a, or may be in a form that makes partial contact with the outer peripheral surface of this member.

第7実施形態の熱電発電装置601において、熱量調整部材205を、排ガス流れ方向の長さ寸法が短い熱量調整部材5や熱量調整部材105に置き換えるように構成してもよい。   In the thermoelectric generator 601 of the seventh embodiment, the heat quantity adjustment member 205 may be replaced with the heat quantity adjustment member 5 or the heat quantity adjustment member 105 having a short length in the exhaust gas flow direction.

前述の実施形態では、1つの発電ユニットからなる熱電発電装置を開示しているが、熱電発電装置は発電ユニットを複数積層して構成してもよい。   In the above-described embodiment, the thermoelectric power generation apparatus including one power generation unit is disclosed, but the thermoelectric power generation apparatus may be configured by stacking a plurality of power generation units.

前述の実施形態において、低温通路部材4と熱発電モジュール3との間や、排気管2と熱発電モジュール3との間には、熱伝導に優れたグリスやシート等の熱的連絡部材を設けてもよい。この熱的連絡部材は、排気管2、低温通路部材4よりも、外力によって変形しやすく硬度が低い部材であることが好ましい。この構成によれば、熱的連絡部材は、各部材の膨張や収縮に応じて変形可能であるため、排気管2、低温通路部材4に対して熱発電モジュール3を変位させやすくできる。したがって、高温流体および低温流体によってもたらされる温度差によって各部材が膨張や収縮したとしても、熱発電モジュール3は変位しやすいので、各部材の歪みによる応力を軽減したり、部材間の熱膨張差を吸収したりする効果を高めることができる。   In the above-described embodiment, a thermal communication member such as grease or a sheet excellent in heat conduction is provided between the low temperature passage member 4 and the thermoelectric generation module 3 or between the exhaust pipe 2 and the thermoelectric generation module 3. May be. This thermal communication member is preferably a member that is more easily deformed by an external force and has a lower hardness than the exhaust pipe 2 and the low temperature passage member 4. According to this configuration, the thermal communication member can be deformed according to the expansion and contraction of each member, so that the thermoelectric generation module 3 can be easily displaced with respect to the exhaust pipe 2 and the low temperature passage member 4. Therefore, even if each member expands and contracts due to a temperature difference caused by the high temperature fluid and the low temperature fluid, the thermoelectric generator module 3 is easily displaced. Therefore, stress due to distortion of each member is reduced, or a difference in thermal expansion between the members. The effect which absorbs can be heightened.

前述の実施形態において、低温流体と高温流体は、互いに逆向きに流れる対向流を形成しているが、両者の流れ方向はこの関係に限定するものではない。   In the above-described embodiment, the low-temperature fluid and the high-temperature fluid form counterflows that flow in opposite directions, but the flow directions of both are not limited to this relationship.

2…排気管(排ガス通路部材)、 2a…排ガス通路
4…低温通路部材、 5,105…熱量調整部材(第1調整部材)
6,106…熱量調整部材(第2調整部材)
30…熱電変換素子、 30a…熱電変換素子(第1の素子)
30b,30c…熱電変換素子(第2の素子)、 30H…高温側端(他方側部)
30L…低温側端(一方側部)、 33…伝熱部材、 40…低温通路
2 ... Exhaust pipe (exhaust gas passage member), 2a ... Exhaust gas passage 4 ... Low temperature passage member, 5,105 ... Heat quantity adjustment member (first adjustment member)
6,106 ... Calorie adjustment member (second adjustment member)
30 ... thermoelectric conversion element, 30a ... thermoelectric conversion element (first element)
30b, 30c ... thermoelectric conversion element (second element), 30H ... high temperature side end (the other side part)
30L ... low temperature side end (one side), 33 ... heat transfer member, 40 ... low temperature passage

Claims (15)

エンジンから排出された排ガスが流れる排ガス通路(2a)を形成する排ガス通路部材(2)と、
内部に前記排ガスよりも低温である低温流体が流れる低温通路(40)を形成する低温通路部材(4)と、
各熱電変換素子について一方側部(30L)が前記低温流体との間で熱移動可能に設けられ、他方側部(30H)が前記排ガスとの間で熱移動可能に設けられて、前記排ガスの流れ方向に沿って並ぶ複数の熱電変換素子(30)と、
複数の前記熱電変換素子のうち、排ガス流れの最上流に位置する第1の素子(30a)の前記他方側部と前記第1の素子よりも下流側に位置する少なくとも一つの第2の素子(30b;30c)の前記他方側部とを前記排ガス通路側において連結する伝熱部材(33)と、
前記排ガス通路部材から前記第1の素子へ移動する熱流束を前記排ガス通路部材から前記第2の素子へ移動する熱流束よりも小さくするように前記排ガス通路部材と前記伝熱部材との間に設けられた、熱伝導性を有する熱量調整部材(5;105;6;106;306;7;107)と、
複数の前記熱電変換素子を収容するモジュールケース(31;131)と、
を備え
前記熱量調整部材は、熱伝導性および絶縁性を有し、前記モジュールケースの外面と前記排ガス通路部材とに挟まれた第1調整部材(5;105)、または熱伝導性を有し前記モジュールケースの内面と前記伝熱部材とに挟まれた第2調整部材(6;106)を含んで構成される熱電発電装置。
An exhaust gas passage member (2) forming an exhaust gas passage (2a) through which exhaust gas discharged from the engine flows;
A low-temperature passage member (4) forming a low-temperature passage (40) through which a low-temperature fluid having a temperature lower than that of the exhaust gas flows;
For each thermoelectric conversion element, one side (30L) is provided so as to be able to transfer heat with the low-temperature fluid, and the other side (30H) is provided so as to be able to transfer heat with the exhaust gas. A plurality of thermoelectric conversion elements (30) arranged along the flow direction;
Among the plurality of thermoelectric conversion elements, at least one second element (on the other side of the first element (30a) located on the most upstream side of the exhaust gas flow and on the downstream side of the first element ( A heat transfer member (33) for connecting the other side portion of 30b; 30c) on the exhaust gas passage side;
Between the exhaust gas passage member and the heat transfer member, the heat flux moving from the exhaust gas passage member to the first element is smaller than the heat flux moving from the exhaust gas passage member to the second element. A calorie adjusting member (5; 105; 6; 106; 306; 7; 107) provided with heat conductivity;
A module case (31; 131) for housing a plurality of the thermoelectric conversion elements;
Equipped with a,
The heat quantity adjusting member has thermal conductivity and insulation, and is a first adjusting member (5; 105) sandwiched between an outer surface of the module case and the exhaust gas passage member, or the module having thermal conductivity. second adjustment member that is sandwiched case of the inner surface and the said heat transfer member (6; 106) thermoelectric generator in which the containing Ru is configured to.
前記熱量調整部材(5;105;6;106;7;107)は、前記排ガスの流れ方向について前記第1の素子に対応する位置で前記排ガス通路部材と前記伝熱部材との間に隙間(23;123)を形成し、さらに前記第2の素子に対応する位置で前記排ガス通路部材と前記伝熱部材とを連結するように構成されている請求項1に記載の熱電発電装置。   The calorific value adjustment member (5; 105; 6; 106; 7; 107) has a gap (between the exhaust gas passage member and the heat transfer member at a position corresponding to the first element in the flow direction of the exhaust gas. 23; 123), and the exhaust gas passage member and the heat transfer member are connected to each other at a position corresponding to the second element. 前記熱量調整部材(306)は、前記排ガスの流れ方向について前記第1の素子に対応する位置で、前記伝熱部材と連結する前記第1の素子の部分の半分以上と重ならず、さらに前記第2の素子に対応する位置で、前記伝熱部材と連結する前記第2の素子の全体と重なって、前記排ガス通路部材と前記伝熱部材とを連結するように構成されている請求項1に記載の熱電発電装置。   The calorific value adjustment member (306) does not overlap with more than half of the portion of the first element connected to the heat transfer member at a position corresponding to the first element in the flow direction of the exhaust gas, and 2. The exhaust gas passage member and the heat transfer member are connected to each other so as to overlap the entire second element connected to the heat transfer member at a position corresponding to the second element. The thermoelectric power generator described in 1. 熱伝導性を有し、前記排ガスの流れ方向について前記第1の素子に対応する位置から最下流の前記熱電変換素子に対応する位置にまで延びるように、前記排ガス通路部材の内壁面に接触して前記排ガス通路に設けられた伝熱促進部(20)を備える請求項1から請求項3のいずれか一項に記載の熱電発電装置。   It has thermal conductivity and contacts the inner wall surface of the exhaust gas passage member so as to extend from a position corresponding to the first element to a position corresponding to the most downstream thermoelectric conversion element in the flow direction of the exhaust gas. The thermoelectric power generator according to any one of claims 1 to 3, further comprising a heat transfer promotion part (20) provided in the exhaust gas passage. エンジンから排出された排ガスが流れる排ガス通路(2a)を形成する排ガス通路部材(2)と、
内部に前記排ガスよりも低温である低温流体が流れる低温通路(40)を形成する低温通路部材(4)と、
各熱電変換素子について一方側部(30L)が前記低温流体との間で熱移動可能に設けられ、他方側部(30H)が前記排ガスとの間で熱移動可能に設けられて、前記排ガスの流れ方向に沿って並ぶ複数の熱電変換素子(30)と、
複数の前記熱電変換素子のうち、排ガス流れの最上流に位置する第1の素子(30a)の前記他方側部と前記第1の素子よりも下流側に位置する少なくとも一つの第2の素子(30b;30c)の前記他方側部とを前記排ガス通路側において連結する伝熱部材(33)と、
前記排ガス通路部材から前記第1の素子へ移動する熱流束を前記排ガス通路部材から前記第2の素子へ移動する熱流束よりも小さくするように前記排ガス通路部材と前記伝熱部材との間に設けられた、熱伝導性を有する熱量調整部材(5;105;6;106;7;107)と、
を備え、
前記熱量調整部材は、前記排ガスの流れ方向について前記第1の素子に対応する位置で前記排ガス通路部材と前記伝熱部材との間に隙間(23)を形成し、前記第1の素子に隣接する下流の素子に対応する位置において前記排ガス通路部材と前記伝熱部材とを連結するように構成されている熱電発電装置。
An exhaust gas passage member (2) forming an exhaust gas passage (2a) through which exhaust gas discharged from the engine flows;
A low-temperature passage member (4) forming a low-temperature passage (40) through which a low-temperature fluid having a temperature lower than that of the exhaust gas flows;
For each thermoelectric conversion element, one side (30L) is provided so as to be able to transfer heat with the low-temperature fluid, and the other side (30H) is provided so as to be able to transfer heat with the exhaust gas. A plurality of thermoelectric conversion elements (30) arranged along the flow direction;
Among the plurality of thermoelectric conversion elements, at least one second element (on the other side of the first element (30a) located on the most upstream side of the exhaust gas flow and on the downstream side of the first element ( A heat transfer member (33) for connecting the other side portion of 30b; 30c) on the exhaust gas passage side;
Between the exhaust gas passage member and the heat transfer member, the heat flux moving from the exhaust gas passage member to the first element is smaller than the heat flux moving from the exhaust gas passage member to the second element. A heat quantity adjusting member (5; 105; 6; 106; 7; 107) having thermal conductivity provided;
With
The heat adjustment member forms a gap (23) between the exhaust gas passage member and the heat transfer member at a position corresponding to the first element in the exhaust gas flow direction, and is adjacent to the first element. thermoelectric generator which is configured to connecting the heat transfer member and the exhaust gas channel member at a position corresponding to the downstream of the element.
熱伝導性を有し、前記排ガスの流れ方向について前記第1の素子に対応する位置から最下流の前記熱電変換素子に対応する位置にまで延びるように、前記排ガス通路部材の内壁面に接触して前記排ガス通路に設けられた伝熱促進部(20)を備える請求項5に記載の熱電発電装置。 It has thermal conductivity and contacts the inner wall surface of the exhaust gas passage member so as to extend from a position corresponding to the first element to a position corresponding to the most downstream thermoelectric conversion element in the flow direction of the exhaust gas. thermoelectric generator according to claim 5, Ru with a heat transfer enhancing portion (20) provided in the exhaust gas passage Te. 複数の前記熱電変換素子を収容するモジュールケース(31;131)を備え、
前記熱量調整部材は、熱伝導性および絶縁性を有し、前記モジュールケースの外面と前記排ガス通路部材とに挟まれた第1調整部材(5;105)、または熱伝導性を有し前記モジュールケースの内面と前記伝熱部材とに挟まれた第2調整部材(6;106)を含んで構成され請求項5または請求項6に記載の熱電発電装置。
A module case (31; 131) for accommodating a plurality of the thermoelectric conversion elements;
The heat quantity adjusting member has thermal conductivity and insulation, and is a first adjusting member (5; 105) sandwiched between an outer surface of the module case and the exhaust gas passage member , or the module having thermal conductivity. thermoelectric generator according to; (106 6) Ru is configured to include a claim 5 or claim 6 second adjustment member that is sandwiched case of the inner surface and the said heat transfer member.
前記熱量調整部材は、前記第1調整部材と前記第2調整部材とを含んで構成され、
前記排ガスの流れ方向について前記第1の素子に対応する位置で、前記第2調整部材は前記伝熱部材と前記モジュールケースとに部分的に接触し、前記第1調整部材は前記モジュールケースと前記排ガス通路部材とに部分的に接触する請求項1から請求項4、請求項7のいずれか一項に記載の熱電発電装置。
The calorific value adjusting member is configured to include the first adjusting member and the second adjusting member,
The second adjustment member partially contacts the heat transfer member and the module case at a position corresponding to the first element in the flow direction of the exhaust gas, and the first adjustment member includes the module case and the module case. exhaust passage member partially contacting to that claim 1 to claim 4, the thermoelectric generator according to any one of claims 7.
前記熱量調整部材は、前記第1調整部材と前記第2調整部材とを含んで構成され、
前記排ガスの流れ方向について前記第1の素子に対応する位置で、前記第2調整部材は前記伝熱部材と前記モジュールケースとの両方に接触しないように設けられ、前記第1調整部材は前記モジュールケースと前記排ガス通路部材との両方に接触しないように設けられている請求項1から請求項4、請求項7のいずれか一項に記載の熱電発電装置。
The calorific value adjusting member is configured to include the first adjusting member and the second adjusting member,
The second adjustment member is provided so as not to contact both the heat transfer member and the module case at a position corresponding to the first element in the exhaust gas flow direction, and the first adjustment member is the module. case and the exhaust passage member and the claims 1 to claim 4 both that provided so as not to contact the the thermoelectric power generating device according to any one of claims 7.
前記第1調整部材と前記第2調整部材のいずれか一方が、前記排ガスの流れ方向について前記第1の素子に対応する位置で設けられておらず、前記排ガスの流れ方向について前記第2の素子に対応する位置で設けられている請求項1から請求項4、請求項7のいずれか一項に記載の熱電発電装置。 Either one of the first adjustment member and the second adjustment member is not provided at a position corresponding to the first element in the flow direction of the exhaust gas, and the second element in the flow direction of the exhaust gas. The thermoelectric power generator according to any one of claims 1 to 4 and claim 7, which is provided at a position corresponding to . 複数の前記熱電変換素子(30)は、排ガス流れ方向に並ぶ所定個数の前記熱電変換素子をそれぞれ有して排ガス流れ方向に間隔をあけて設けられた複数の熱発電モジュール(103,203)を構成す請求項1から請求項10のいずれか一項に記載の熱電発電装置。 The plurality of thermoelectric conversion elements (30) includes a plurality of thermoelectric modules (103, 203) each having a predetermined number of the thermoelectric conversion elements arranged in the exhaust gas flow direction and provided at intervals in the exhaust gas flow direction. thermoelectric generator according to any one of claims 1 to 10 that make up. 複数の前記熱発電モジュールのうち排ガス流れの最上流に位置する最上流側モジュール(103)の方が、前記最上流側モジュールよりも下流側に位置する下流側モジュール(203)よりも前記熱量調整部材との接触面積が小さい請求項11に記載の熱電発電装置。 Of the plurality of thermoelectric generator modules, the most upstream module (103) located at the most upstream side of the exhaust gas flow adjusts the amount of heat more than the downstream module (203) located downstream from the most upstream module. The thermoelectric generator according to claim 11, wherein a contact area with the member is small . エンジンから排出された排ガスが流れる排ガス通路(2a)を形成する排ガス通路部材(2)と、
内部に前記排ガスよりも低温である低温流体が流れる低温通路(40)を形成する低温通路部材(4)と、
各熱電変換素子について一方側部(30L)が前記低温流体との間で熱移動可能に設けられ他方側部(30H)が前記排ガスとの間で熱移動可能に設けられて前記排ガスの流れ方向に沿って並ぶ複数の熱電変換素子(30)と、
熱伝導性を有し、前記排ガス通路部材の内壁面に接触しかつ前記排ガスの流れ方向に沿って延びるように前記排ガス通路に設けられた伝熱促進部(120;220;320)と、
を備え、
前記伝熱促進部は、前記伝熱促進部の最流端が、複数の前記熱電変換素子のうち排ガス流れの最流に位置する第1の素子(30a)に隣接する下流の素子に対応する位置となるように、前記排ガス通路に設けられている熱電発電装置。
An exhaust gas passage member (2) forming an exhaust gas passage (2a) through which exhaust gas discharged from the engine flows;
A low-temperature passage member (4) forming a low-temperature passage (40) through which a low-temperature fluid having a temperature lower than that of the exhaust gas flows;
For each thermoelectric conversion element, one side (30L) is provided so as to be able to transfer heat between the low-temperature fluid, and the other side (30H) is provided so as to be able to transfer heat between the exhaust gases, so that the flow direction of the exhaust gas A plurality of thermoelectric conversion elements (30) arranged along
A heat transfer facilitating portion (120; 220; 320) provided in the exhaust gas passage so as to have thermal conductivity and to be in contact with the inner wall surface of the exhaust gas passage member and to extend along the flow direction of the exhaust gas;
With
The heat transfer promotion section, top upper upstream end of the heat transfer promoting portion, downstream of the elements adjacent to the first element positioned in the outermost upper stream of the exhaust gas flow among the plurality of the thermoelectric conversion element (30a) such that the corresponding position, the thermoelectric generator that provided in the exhaust gas passage.
エンジンから排出された排ガスが流れる排ガス通路(102a)を形成する排ガス通路部材(102)と、  An exhaust gas passage member (102) forming an exhaust gas passage (102a) through which exhaust gas discharged from the engine flows;
内部に前記排ガスよりも低温である低温流体が流れる低温通路(40)を形成する低温通路部材(104)と、  A low-temperature passage member (104) that forms a low-temperature passage (40) through which a low-temperature fluid having a temperature lower than that of the exhaust gas flows;
各熱電変換素子について一方側部(30L)が前記低温流体との間で熱移動可能に設けられ他方側部(30H)が前記排ガスとの間で熱移動可能に設けられて前記排ガスの流れ方向に沿って並ぶ複数の熱電変換素子(30)と、  For each thermoelectric conversion element, one side (30L) is provided so as to be able to transfer heat between the low-temperature fluid, and the other side (30H) is provided so as to be able to transfer heat between the exhaust gases, so that the flow direction of the exhaust gas A plurality of thermoelectric conversion elements (30) arranged along
複数の前記熱電変換素子のうち、排ガス流れの最上流に位置する第1の素子(30a)の前記他方側部と前記第1の素子よりも下流側に位置する少なくとも一つの第2の素子(30b,30c)の前記他方側部とを前記排ガス通路側において連結する伝熱部材(33)と、  Among the plurality of thermoelectric conversion elements, at least one second element (on the other side of the first element (30a) located on the most upstream side of the exhaust gas flow and on the downstream side of the first element ( 30b, 30c) and the other side of the heat transfer member (33) connecting the exhaust gas passage side,
前記排ガス通路に設けられて前記伝熱部材と熱移動可能な状態で複数の前記熱電変換素子を収容するモジュールケース(231)と、  A module case (231) which is provided in the exhaust gas passage and accommodates a plurality of the thermoelectric conversion elements in a state in which heat transfer is possible with the heat transfer member;
前記排ガスの流れ方向について前記第1の素子に対応する位置で前記モジュールケースに接触しないで前記第2の素子に対応する位置で前記モジュールケースに接触するように前記排ガス通路に設けられている熱量調整部材(108)と、  The amount of heat provided in the exhaust gas passage so as to contact the module case at a position corresponding to the second element without contacting the module case at a position corresponding to the first element in the flow direction of the exhaust gas An adjustment member (108);
を備える熱電発電装置。  A thermoelectric generator.
熱伝導性を有し、前記排ガス通路部材の内壁面に接触しかつ前記排ガスの流れ方向に沿って延びるように前記排ガス通路に設けられた伝熱促進部(420)を備え、  A heat transfer facilitating part (420) provided in the exhaust gas passage so as to have thermal conductivity and to be in contact with the inner wall surface of the exhaust gas passage member and to extend along the flow direction of the exhaust gas;
前記伝熱促進部は、前記伝熱促進部の最下流端が、複数の前記熱電変換素子のうち前記排ガス流れの最下流に位置する前記熱電変換素子よりも下流に位置するように、設けられている請求項14に記載の熱電発電装置。  The heat transfer promotion part is provided so that the most downstream end of the heat transfer promotion part is located downstream of the thermoelectric conversion element located at the most downstream of the exhaust gas flow among the plurality of thermoelectric conversion elements. The thermoelectric generator according to claim 14.
JP2016112031A 2016-06-03 2016-06-03 Thermoelectric generator Expired - Fee Related JP6601317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016112031A JP6601317B2 (en) 2016-06-03 2016-06-03 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016112031A JP6601317B2 (en) 2016-06-03 2016-06-03 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2017220492A JP2017220492A (en) 2017-12-14
JP6601317B2 true JP6601317B2 (en) 2019-11-06

Family

ID=60657760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112031A Expired - Fee Related JP6601317B2 (en) 2016-06-03 2016-06-03 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP6601317B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016110625A1 (en) * 2016-06-09 2017-12-14 Eberspächer Exhaust Technology GmbH & Co. KG Thermoelectric generator for exhaust systems and contact element for a thermoelectric generator
WO2019171915A1 (en) * 2018-03-08 2019-09-12 住友電気工業株式会社 Thermoelectric material element, power generator, light sensor, and method for manufacturing thermoelectric material element
JP7187899B2 (en) * 2018-08-31 2022-12-13 日産自動車株式会社 thermoelectric generator
CN112345849B (en) * 2020-10-20 2022-07-08 湖北工业大学 Waste heat thermoelectric power generation performance test platform and test method thereof
WO2022095008A1 (en) * 2020-11-09 2022-05-12 常州机电职业技术学院 Waste heat recycling device for automobile exhaust system and recycling method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290590A (en) * 1997-04-15 1998-10-27 Honda Motor Co Ltd Exhaust heat energy collector
JP2000352313A (en) * 1999-06-09 2000-12-19 Nissan Motor Co Ltd Exhaust heat power generation system for automobile
JP2009087955A (en) * 2005-01-12 2009-04-23 Showa Denko Kk Waste heat recovery system having thermoelectric conversion system
JP5673426B2 (en) * 2011-08-08 2015-02-18 トヨタ自動車株式会社 Thermoelectric generator
JP5954103B2 (en) * 2012-10-19 2016-07-20 トヨタ自動車株式会社 Thermoelectric generator
JP6064591B2 (en) * 2012-12-27 2017-01-25 トヨタ自動車株式会社 Thermoelectric generator
JP6096562B2 (en) * 2013-03-29 2017-03-15 ヤンマー株式会社 Thermoelectric generator and ship equipped with the same
JP6149754B2 (en) * 2014-02-17 2017-06-21 トヨタ自動車株式会社 Thermoelectric generator

Also Published As

Publication number Publication date
JP2017220492A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6601317B2 (en) Thermoelectric generator
JP6008966B2 (en) Gas turbine device, power plant and method of operating the power plant
JP4460219B2 (en) Thermoelectric generator and method for improving efficiency in a system of a thermoelectric generator
KR101285061B1 (en) Device for producing electrical energy from exhaust gas heat
US20130340801A1 (en) Thermoelectric Power Generation System Using Gradient Heat Exchanger
US9166138B2 (en) Thermoelectric transducer and heat exchange pipe
Kumar et al. Experimental study on waste heat recovery from an IC engine using thermoelectric technology
JP5787755B2 (en) Heat exchange tube bundle provided with device for generating electric energy, and heat exchanger provided with this tube bundle
JP2006214350A (en) Thermoelectric generator
JP6078412B2 (en) Thermoelectric power generator
JP2012167671A (en) Exhaust manifold
US20130283764A1 (en) Muffler
JP2011165976A (en) Thermoelectric converter and thermoelectric conversion method
JP2014095362A (en) Exhaust heat recovery device
KR20140020908A (en) Exhaust train having an integrated thermoelectric generator
JP2014105605A (en) Thermoelectric generator
KR101703955B1 (en) Thermoelectric generation system and hybrid boiler using the same
KR20130096410A (en) Thermoelectric power generator
JP6350297B2 (en) Thermoelectric generator
KR20110118615A (en) Exhaust gas cooler for an internal combustion engine
JP2015140713A (en) Thermoelectric generation device
JP2003348867A (en) Waste heat power generator
WO2017212822A1 (en) Thermoelectric generator
JPH0638560A (en) Generator by exhaust gas
JP2006002704A (en) Thermoelectric power generation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R150 Certificate of patent or registration of utility model

Ref document number: 6601317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees