JP6096562B2 - Thermoelectric generator and ship equipped with the same - Google Patents

Thermoelectric generator and ship equipped with the same Download PDF

Info

Publication number
JP6096562B2
JP6096562B2 JP2013071081A JP2013071081A JP6096562B2 JP 6096562 B2 JP6096562 B2 JP 6096562B2 JP 2013071081 A JP2013071081 A JP 2013071081A JP 2013071081 A JP2013071081 A JP 2013071081A JP 6096562 B2 JP6096562 B2 JP 6096562B2
Authority
JP
Japan
Prior art keywords
thermoelectric
heat
pipe
temperature side
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013071081A
Other languages
Japanese (ja)
Other versions
JP2014195011A (en
Inventor
亮輔 日向
亮輔 日向
勝美 清河
勝美 清河
勝 廣瀬
勝 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2013071081A priority Critical patent/JP6096562B2/en
Priority to PCT/JP2014/058432 priority patent/WO2014157287A1/en
Publication of JP2014195011A publication Critical patent/JP2014195011A/en
Application granted granted Critical
Publication of JP6096562B2 publication Critical patent/JP6096562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本願発明は、熱電発電装置及びこれを備えた船舶に関するものである。   The present invention relates to a thermoelectric generator and a ship equipped with the same.

従来、例えばタンカーや輸送船等の船舶においては、各種補機、荷役装置、照明、空調その他機器類の消費する電力量が膨大であり、これら電気系統に電力を供給するため、発電用ディーゼルエンジン(以下、発電用エンジンという)と、発電用エンジンの駆動によって発電する発電機とを組み合わせたディーゼル発電機を複数備えている(例えば特許文献1等参照)。船舶の主ディーゼルエンジン(以下、主エンジンという)から放出される廃熱を回収して高温高圧の蒸気を生成し、当該蒸気を発電用の動力源に用いたり、給湯用の熱源に用いたりする廃熱回収システムは公知である(例えば特許文献2等参照)。   Conventionally, in a ship such as a tanker or a transport ship, the amount of power consumed by various auxiliary machines, cargo handling devices, lighting, air conditioning, and other equipment is enormous. There are provided a plurality of diesel generators (hereinafter referred to as Patent Document 1, etc.) that combine a power generation engine (hereinafter referred to as a power generation engine) and a generator that generates power by driving the power generation engine. Waste heat released from the ship's main diesel engine (hereinafter referred to as the main engine) is recovered to generate high-temperature and high-pressure steam that is used as a power source for power generation or as a heat source for hot water supply. Waste heat recovery systems are known (see, for example, Patent Document 2).

特開2006−341742号公報JP 2006-341742 A 特開2007−1339号公報JP 2007-1339 A

各種エンジンの廃熱を電気エネルギーとして効率よく回収することは、各種エンジンのエネルギーコストの削減だけでなく、環境負荷の低減といった点からも重要である。しかし、特許文献1及び2に記載の技術では、発電用エンジンからの廃熱を電気エネルギーとして回収することを考慮していない。仮に、主エンジンに対する廃熱回収システムを各発電用エンジンに適用したとしても、廃熱回収システム全体として構造の大型化を招来するばかりか、構造も複雑化して製造工数及び部品点数が増大し、製造コストが嵩むことになると考えられる。   Efficiently recovering waste heat from various engines as electrical energy is important not only for reducing the energy cost of various engines, but also for reducing the environmental burden. However, the techniques described in Patent Documents 1 and 2 do not consider recovering waste heat from the power generation engine as electric energy. Even if the waste heat recovery system for the main engine is applied to each power generation engine, not only will the structure of the waste heat recovery system increase as a whole, but the structure will also become complicated and the number of manufacturing steps and parts will increase. Manufacturing costs will increase.

上記の点を解消する方策として、環境負荷の低いエネルギー変換技術の一つである熱電発電技術を、発電用エンジンに対する廃熱回収システムに適用することが挙げられる。熱電発電技術は、金属又は半導体等からなる熱電モジュールの両端側に温度差を与えて起電力を生じさせるゼーベック効果を利用したものであり、熱エネルギーを直接的に電気エネルギーに変換できる。本願発明者らは、このような熱電発電技術に着目し、更に改良を加えて本願発明を完成させるに至った。   As a measure for solving the above-mentioned problems, it is possible to apply a thermoelectric power generation technology, which is one of energy conversion technologies with a low environmental load, to a waste heat recovery system for a power generation engine. Thermoelectric power generation technology uses the Seebeck effect that generates an electromotive force by giving a temperature difference to both ends of a thermoelectric module made of metal, semiconductor, or the like, and can directly convert thermal energy into electrical energy. The inventors of the present application have paid attention to such a thermoelectric power generation technique, and have made further improvements to complete the present invention.

請求項1の発明は熱電発電装置に係るものであり、熱媒体が流れる配管と、低温側と高温側との温度差によって発電する平板状の熱電モジュールを有する複数の熱電ユニットとを備え、前記配管内には前記各熱電モジュールの高温側に設けた集熱フィンを突出させ、前記各集熱フィンを前記熱媒体で加熱する熱電発電装置において、前記各熱電モジュールの高温側と前記集熱フィンとの間に、前記各熱電モジュールの高温側への熱伝達を抑制する非液冷形の温度制御部材を介在させ、前記温度制御部材は、接触熱抵抗値が既知で再現性の高い金属板、セラミクス板又はこれらの組合せを積層して高温側の到達可能温度を調整するように構成しているというものである。
請求項2の発明は、請求項1に記載の熱電発電装置において、前記温度制御部材は、鋼板とアルミナ板とを交互に積層して構成しているというものである。
The invention of claim 1 relates to a thermoelectric power generation apparatus, comprising: a pipe through which a heat medium flows; and a plurality of thermoelectric units having a plate-like thermoelectric module that generates power by a temperature difference between a low temperature side and a high temperature side, In a thermoelectric generator that projects heat collection fins provided on the high temperature side of each thermoelectric module into the pipe and heats each heat collection fin with the heat medium, the high temperature side of each thermoelectric module and the heat collection fin In between, a non-liquid cooling type temperature control member that suppresses heat transfer to the high temperature side of each thermoelectric module is interposed, and the temperature control member is a metal plate with a known contact heat resistance value and high reproducibility. The ceramic plates or combinations thereof are laminated to adjust the reachable temperature on the high temperature side .
According to a second aspect of the present invention, in the thermoelectric generator according to the first aspect, the temperature control member is formed by alternately laminating steel plates and alumina plates.

請求項の発明は、請求項1又は2に記載の熱電発電装置において、前記各熱電モジュールに使用する材料として、ビスマスとテルルとを主成分とする材料を用いているというものである。 According to a third aspect of the present invention, in the thermoelectric power generator according to the first or second aspect , a material mainly composed of bismuth and tellurium is used as the material used for each of the thermoelectric modules.

請求項4の発明は船舶に係るものであり、請求項1〜3のうちいずれかに記載の熱電発電装置を、船体内に搭載した内燃機関の排気経路に配置しているというものである。   The invention of claim 4 relates to a ship, and the thermoelectric power generator according to any one of claims 1 to 3 is arranged in an exhaust path of an internal combustion engine mounted in a ship body.

本願発明によると、熱媒体が流れる配管と、低温側と高温側との温度差によって発電する平板状の熱電モジュールを有する複数の熱電ユニットとを備え、前記配管内には前記各熱電モジュールの高温側に設けた集熱フィンを突出させ、前記各集熱フィンを前記熱媒体で加熱する熱電発電装置において、前記各熱電モジュールの高温側と前記集熱フィンとの間に、前記各熱電モジュールの高温側への熱伝達を抑制する非液冷形の温度制御部材を介在させるから、前記各熱電モジュールの高温側の到達可能温度を制限するにあたって、前記温度制御部材によって前記各熱電モジュールの高温側の到達可能温度を調整することが可能になり、前記各熱電モジュールによる熱電発電を最も効率のよい温度域で実行できる。このため、前記各熱電モジュールの熱電発電効率を向上できる。前記温度制御部材によって前記各熱電モジュールの高温側への熱伝達のばらつきを抑制でき、伝熱性能を向上できる。また、熱媒体である排気ガスの温度や流量変化が前記各熱電モジュールの高温側に与える熱変形、熱衝撃及び熱変質を緩和できるから、前記各熱電モジュールの破損を確実に防止できる。   According to the present invention, it is provided with a pipe through which a heat medium flows and a plurality of thermoelectric units having a plate-like thermoelectric module that generates electricity by a temperature difference between a low temperature side and a high temperature side, and the high temperature of each thermoelectric module is included in the pipe. In the thermoelectric generator that projects the heat collecting fins provided on the side and heats the heat collecting fins with the heat medium, between the high temperature side of the thermoelectric modules and the heat collecting fins, Since a non-liquid cooling type temperature control member that suppresses heat transfer to the high temperature side is interposed, when the reachable temperature on the high temperature side of each thermoelectric module is limited, the temperature control member causes the high temperature side of each thermoelectric module to Therefore, the thermoelectric power generation by each thermoelectric module can be executed in the most efficient temperature range. For this reason, the thermoelectric power generation efficiency of each thermoelectric module can be improved. Variations in heat transfer to the high temperature side of each thermoelectric module can be suppressed by the temperature control member, and heat transfer performance can be improved. In addition, since the thermal deformation, thermal shock, and thermal alteration that the temperature and flow rate of the exhaust gas that is the heat medium give to the high temperature side of each thermoelectric module can be mitigated, the thermoelectric module can be reliably prevented from being damaged.

実施形態における船舶の全体側面図である。It is the whole ship side view in an embodiment. 図1のII−II視正面断面図である。It is II-II front sectional drawing of FIG. 排気経路に設けた熱電発電装置を示す概略正面図である。It is a schematic front view which shows the thermoelectric generator provided in the exhaust path. 図3のIV−IV視横断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. 図3のV−V視縦断面図である。FIG. 5 is a vertical sectional view taken along line VV in FIG. 3. 熱電ユニットの拡大概略図である。It is an expansion schematic of a thermoelectric unit.

以下に、本願発明を具体化した実施形態を、船舶に搭載される熱電発電装置に適用した場合の図面(図1〜図6)に基づいて説明する。   Hereinafter, an embodiment embodying the present invention will be described based on the drawings (FIGS. 1 to 6) when applied to a thermoelectric generator mounted on a ship.

図1に示すように、実施形態における船舶1は、船体2と、船体2の船尾側に設けたキャビン3(船橋)と、キャビン3の後方に配置したファンネル4(煙突)と、船体2の後方下部に設けたプロペラ5及び舵6とを備えている。この場合、船尾側の船底7にスケグ8を一体形成している。スケグ8には、プロペラ5を回転駆動させる推進軸9を軸支している。船体2内の船首側及び中央部には船倉10を設けている。船体2内の船尾側には機関室11を設けている。   As shown in FIG. 1, a ship 1 according to the embodiment includes a hull 2, a cabin 3 (bridge) provided on the stern side of the hull 2, a funnel 4 (chimney) disposed behind the cabin 3, and a hull 2. A propeller 5 and a rudder 6 provided at the rear lower part are provided. In this case, the skeg 8 is integrally formed on the bottom 7 of the stern side. A propeller shaft 9 that rotationally drives the propeller 5 is supported on the skeg 8. A hold 10 is provided on the bow side and the center in the hull 2. An engine room 11 is provided on the stern side in the hull 2.

機関室11には、プロペラ5の駆動源である主エンジン21(実施形態ではディーゼルエンジン)及び減速機22と、船体2内の電気系統に電力を供給するための発電装置23とを配置している。主エンジン21から減速機22を経由した回転動力によって、プロペラ5が回転駆動する。機関室11の内部は、上甲板13、第2甲板14、第3甲板15及び内底板16によって上下に仕切られている。実施形態では、機関室11最下段の内底板16上に主エンジン21及び減速機22を据え付け、機関室11中段の第3甲板15上に発電装置23を据え付けている。なお、詳細な図示は省略するが、船倉10は複数の区画に分割している。   In the engine room 11, a main engine 21 (diesel engine in the embodiment) and a speed reducer 22 that are driving sources of the propeller 5, and a power generation device 23 for supplying electric power to the electrical system in the hull 2 are arranged. Yes. The propeller 5 is rotationally driven by the rotational power from the main engine 21 via the speed reducer 22. The interior of the engine room 11 is partitioned vertically by an upper deck 13, a second deck 14, a third deck 15, and an inner bottom plate 16. In the embodiment, the main engine 21 and the speed reducer 22 are installed on the inner bottom plate 16 at the lowermost stage of the engine room 11, and the power generator 23 is installed on the third deck 15 at the middle stage of the engine room 11. Although detailed illustration is omitted, the hold 10 is divided into a plurality of sections.

図2に示すように、発電装置23は、発電用エンジン25(実施形態ではディーゼルエンジン)と、発電用エンジン25の駆動によって発電する発電機26とを組み合わせたディーゼル発電機24を複数台(実施形態では3台)備えたものである。ディーゼル発電機24は基本的に、船体2内の必要電力量に対応して効率的に稼働するように構成している。例えば大量の電力を消費する航行時等には、全てのディーゼル発電機24を稼働させ、比較的電力消費の少ない停泊時等には、任意の台数のディーゼル発電機24を稼働させる。   As shown in FIG. 2, the power generation apparatus 23 includes a plurality of diesel generators 24 (implemented with a combination of a power generation engine 25 (diesel engine in the embodiment) and a power generator 26 that generates power by driving the power generation engine 25). 3 in the form). The diesel generator 24 is basically configured to operate efficiently in accordance with the required power amount in the hull 2. For example, all the diesel generators 24 are operated at the time of sailing or the like that consumes a large amount of power, and an arbitrary number of diesel generators 24 are operated at the time of berth where the power consumption is relatively low.

各発電機26の作動によって生じた発電電力は船体2内の電気系統に供給される。詳細な図示は省略するが、電力トランスデューサが各発電機26に電気的に接続している。電力トランスデューサは各発電機26による発電電力を検出するものである。   The generated power generated by the operation of each generator 26 is supplied to the electrical system in the hull 2. Although not shown in detail, a power transducer is electrically connected to each generator 26. The power transducer detects power generated by each generator 26.

各発電用エンジン25には、空気取り込み用の吸気経路(図示省略)と排気ガス排出用の排気経路27とを接続している。吸気経路を通じて取り込まれた空気は、発電用エンジン25の各気筒内(吸気行程の気筒内)に送られる。各気筒の圧縮行程完了時に、燃料タンクから吸い上げた燃料を燃料噴射装置によって気筒毎の燃焼室内に圧送し、各燃焼室によって混合気の自己着火燃焼に伴う膨張行程が行われる。   Each power generation engine 25 is connected to an intake path (not shown) for air intake and an exhaust path 27 for exhaust gas discharge. The air taken in through the intake path is sent into each cylinder of the power generation engine 25 (inside the cylinder in the intake stroke). When the compression stroke of each cylinder is completed, the fuel sucked up from the fuel tank is pumped into the combustion chamber of each cylinder by the fuel injection device, and the expansion stroke accompanying the self-ignition combustion of the air-fuel mixture is performed by each combustion chamber.

各発電用エンジン25の排気経路27は、ファンネル4まで延びていて外部に直接連通している。前述の通り、発電用エンジン25は三基あるため、排気経路27は三本存在する。各排気経路27の下流側には、発電用エンジン25から放出される排気ガスの排気音を減衰させる消音器28を設けている。各排気経路27の中途部(具体的には消音器28よりも上流側)には、発電用エンジン25からの廃熱(熱媒体である排気ガスの熱)を電気エネルギーに変換する熱電発電装置30を設けている。各発電用エンジン25から放出される排気ガスは、排気経路27、熱電発電装置30及び消音器28を介して船舶1外に放出される。熱電発電装置30は機関室11の上部側に配置している。実施形態では、機関室11上段の第2甲板14上に熱電発電装置30を設置している。   The exhaust passage 27 of each power generation engine 25 extends to the funnel 4 and directly communicates with the outside. As described above, since there are three power generation engines 25, there are three exhaust paths 27. A silencer 28 is provided on the downstream side of each exhaust path 27 to attenuate the exhaust sound of the exhaust gas discharged from the power generation engine 25. A thermoelectric generator that converts waste heat (heat of exhaust gas, which is a heat medium) from the power generation engine 25 into electrical energy, in the middle of each exhaust path 27 (specifically, upstream of the silencer 28). 30 is provided. Exhaust gas discharged from each power generation engine 25 is discharged outside the ship 1 through the exhaust path 27, the thermoelectric power generation device 30, and the silencer 28. The thermoelectric generator 30 is disposed on the upper side of the engine room 11. In the embodiment, the thermoelectric generator 30 is installed on the second deck 14 on the upper stage of the engine room 11.

図3〜図5に示すように、各排気経路27の中途部に設けた熱電発電装置30は、熱媒体としての排気ガスが内部を流れる略筒状の配管31と、低温側と高温側との温度差によって発電する平板状の熱電モジュール33を有する複数の熱電ユニット32とを備えていて、各熱電モジュール33の高温側を排気ガスで加熱するように構成している。熱電発電装置30の配管31を挟んだ両側に、排気経路27を構成する上流側排気管34と下流側排気管35とが振り分けて位置している。上流側排気管34の排気下流側の開口端部に、外周方向に突出する上流フランジ36を取り付けている。下流側排気管の排気上流側の開口端部に、外周方向に突出する下流フランジ37を取り付けている。配管31の排気方向両端側の開口端部には、外周方向に突出する連結フランジ38を取り付けている。   As shown in FIGS. 3 to 5, the thermoelectric power generator 30 provided in the middle of each exhaust path 27 includes a substantially cylindrical pipe 31 through which exhaust gas as a heat medium flows, a low temperature side and a high temperature side. And a plurality of thermoelectric units 32 having a plate-like thermoelectric module 33 that generates electric power according to the temperature difference, and the high temperature side of each thermoelectric module 33 is configured to be heated with exhaust gas. The upstream side exhaust pipe 34 and the downstream side exhaust pipe 35 that constitute the exhaust path 27 are located on both sides of the pipe 31 of the thermoelectric generator 30 so as to be distributed. An upstream flange 36 protruding in the outer peripheral direction is attached to the opening end of the upstream exhaust pipe 34 on the exhaust downstream side. A downstream flange 37 protruding in the outer peripheral direction is attached to the opening end of the downstream exhaust pipe on the exhaust upstream side. A connecting flange 38 that protrudes in the outer peripheral direction is attached to the opening ends of both ends of the pipe 31 in the exhaust direction.

上流側排気管34と下流側排気管35との間に配管31を介挿している。ガスケット(図示省略)を介して上流フランジ36と排気上流側の連結フランジ38とを突き合わせ、両フランジ36,38をボルト39及びナット40の複数組で締結している。また、ガスケット(図示省略)を介して下流フランジ37と排気下流側の連結フランジ38とを突き合わせ、両フランジ37,38をボルト39及びナット40の複数組で締結している。その結果、上流側排気管34、配管31及び下流側排気管35が着脱可能に連結される。各発電用エンジン25から放出された熱媒体としての排気ガスは、排気経路27において上流側排気管34から熱電発電装置30の配管31を経て下流側排気管35に流れる。   A pipe 31 is interposed between the upstream side exhaust pipe 34 and the downstream side exhaust pipe 35. The upstream flange 36 and the connecting flange 38 on the upstream side of the exhaust are brought into contact with each other via a gasket (not shown), and both the flanges 36 and 38 are fastened with a plurality of sets of bolts 39 and nuts 40. Further, the downstream flange 37 and the connecting flange 38 on the exhaust downstream side are abutted with each other via a gasket (not shown), and both flanges 37 and 38 are fastened with a plurality of sets of bolts 39 and nuts 40. As a result, the upstream side exhaust pipe 34, the pipe 31, and the downstream side exhaust pipe 35 are detachably connected. Exhaust gas as a heat medium discharged from each power generation engine 25 flows from the upstream exhaust pipe 34 to the downstream exhaust pipe 35 through the pipe 31 of the thermoelectric generator 30 in the exhaust path 27.

図4に示すように、各熱電発電装置30の配管31は断面多角形状に形成している。実施形態の配管31は、断面四角形状の筒体のコーナ部を面取りしたような断面八角形状の形態である。換言すると、実施形態の配管31は、広幅の平面部41と面取り部42とを交互に連ねた断面八角形の筒形状になっている。配管31の各平面部41には熱電ユニット32群を取り付けている。   As shown in FIG. 4, the pipe 31 of each thermoelectric generator 30 is formed in a polygonal cross section. The pipe 31 according to the embodiment has an octagonal cross-sectional shape in which a corner portion of a cylindrical body having a quadrangular cross-section is chamfered. In other words, the pipe 31 of the embodiment has a cylindrical shape with an octagonal cross section in which the wide flat surface portions 41 and the chamfered portions 42 are alternately connected. A thermoelectric unit 32 group is attached to each flat surface portion 41 of the pipe 31.

この場合、各平面部41には、板厚方向に貫通する矩形状の開口穴43を、排気方向に長い二列並列のマトリクス状に並べて形成している。各平面部41の外面側には、各開口穴43の外周側を取り囲む取付枠44を溶接等によって設けている。実施形態の取付枠44は、周方向に隣り合う二つの開口穴43の外周側を取り囲むように8字形状に形成している。そして、平面部41の各開口穴43を塞ぐように、熱電ユニット32を各取付枠44に装着している。   In this case, rectangular opening holes 43 penetrating in the plate thickness direction are formed in each flat portion 41 in a matrix form of two rows parallel in the exhaust direction. A mounting frame 44 surrounding the outer peripheral side of each opening hole 43 is provided on the outer surface side of each flat portion 41 by welding or the like. The mounting frame 44 of the embodiment is formed in an 8-character shape so as to surround the outer peripheral side of two opening holes 43 adjacent in the circumferential direction. And the thermoelectric unit 32 is attached to each attachment frame 44 so that each opening hole 43 of the plane part 41 may be plugged up.

実施形態では、二列並列の開口穴43を各平面部41に形成し、一つの平面部41に複数の取付枠44を固定している。取付枠44に熱電ユニット32を装着している。従って、四平面に配置された熱電ユニット32によって、熱電発電装置30を構成している。   In the embodiment, two rows of parallel opening holes 43 are formed in each plane portion 41, and a plurality of attachment frames 44 are fixed to one plane portion 41. The thermoelectric unit 32 is mounted on the mounting frame 44. Therefore, the thermoelectric generator 30 is constituted by the thermoelectric units 32 arranged on the four planes.

図6に詳細に示すように、各熱電ユニット32は、低温側と高温側との温度差によって発電する熱電モジュール33と、低温側部材としての冷却ケース45と、高温側部材としての集熱フィン46とを備えている。   As shown in detail in FIG. 6, each thermoelectric unit 32 includes a thermoelectric module 33 that generates electricity by a temperature difference between a low temperature side and a high temperature side, a cooling case 45 as a low temperature side member, and a heat collecting fin as a high temperature side member. 46.

冷却ケース45は内部に冷却水等の冷媒を循環させる通路を有している。各熱電ユニットの冷却ケース45は、冷却パイプ(図示省略)を介して例えば各発電用エンジン25の熱交換器に接続している。冷却ケース45内の通路に熱交換器からの冷媒を流通させることによって、冷却ケース45が冷却される。   The cooling case 45 has a passage through which a coolant such as cooling water is circulated. The cooling case 45 of each thermoelectric unit is connected to, for example, a heat exchanger of each power generation engine 25 via a cooling pipe (not shown). The cooling case 45 is cooled by causing the refrigerant from the heat exchanger to flow through the passage in the cooling case 45.

熱電モジュール33は、例えばBiTe等からなるp型とn型との二種類の半導体を電極によって交互に電気的に直列接続し、隣り合う電極間を絶縁したものである。各熱電モジュール33は並列又は直列に接続され、そして、電気配線を介して電気的負荷に接続される。熱電モジュール33の広幅一側面を冷却ケース45内の冷媒で冷却し、熱電モジュール33の広幅他側面を排気ガスに接触する集熱フィン46からの熱で加熱することによって、熱電モジュール33に起電力が発生し発電電力が取り出される。 The thermoelectric module 33 is formed by electrically connecting two types of semiconductors of p-type and n-type made of, for example, Bi 2 Te 3 or the like alternately with electrodes, and insulating between adjacent electrodes. Each thermoelectric module 33 is connected in parallel or in series, and is connected to an electrical load via electrical wiring. An electromotive force is generated in the thermoelectric module 33 by cooling one wide side surface of the thermoelectric module 33 with the refrigerant in the cooling case 45 and heating the other wide side surface of the thermoelectric module 33 with heat from the heat collecting fins 46 in contact with the exhaust gas. Is generated and the generated power is taken out.

集熱フィン46は、取付枠44における開口穴43との対応箇所に被さる広幅な矩形平板状の基台47に多数のフィン部48を突設したものである。実施形態の集熱フィン46は、アルミ合金、銅合金又はステンレス鋼等の熱伝導性が良好な金属の他、AlNやSiCといった高熱伝導性のセラミクスで形成される。熱電モジュール33と集熱フィン46との間には、矩形平板状の温度制御部材49を介在させている。実施形態の温度制御部材49は、集熱フィン46から熱電モジュール33の高温側への熱伝達を抑制する非液冷形のものであり、且つ、金属板、セラミクス板又はこれらの組合せを複数層重ね合わせた積層体で構成している。この場合は、鋼板とアルミナ板とを交互に積層し、ボルト締結等によって温度制御部材49として一体化している。そして、温度制御部材49は、例えば平均して350〜400℃程度の排気ガスが当たる集熱フィン46から熱電モジュール33の高温側への熱伝達を抑制し、熱電モジュールの高温側の到達温度を例えば200℃以下に抑制するように構成している。   The heat collecting fins 46 are formed by projecting a large number of fin portions 48 on a base 47 having a wide rectangular flat plate covering a portion corresponding to the opening hole 43 in the mounting frame 44. The heat collection fins 46 of the embodiment are formed of a highly heat conductive ceramic such as AlN or SiC in addition to a metal having a good heat conductivity such as an aluminum alloy, a copper alloy, or stainless steel. A rectangular flat plate-shaped temperature control member 49 is interposed between the thermoelectric module 33 and the heat collecting fins 46. The temperature control member 49 of the embodiment is of a non-liquid cooling type that suppresses heat transfer from the heat collecting fins 46 to the high temperature side of the thermoelectric module 33, and has a plurality of layers of metal plates, ceramic plates, or a combination thereof. It is composed of a laminated body. In this case, steel plates and alumina plates are alternately laminated and integrated as a temperature control member 49 by bolt fastening or the like. And the temperature control member 49 suppresses the heat transfer from the heat collection fin 46 to which the exhaust gas hits, for example, about 350 to 400 ° C. on the average to the high temperature side of the thermoelectric module 33, and sets the temperature reached on the high temperature side of the thermoelectric module. For example, it is configured to suppress to 200 ° C. or lower.

ここで、鋼板やアルミナ板は接触熱抵抗値が既知の部材であると共に再現性も高いから、それぞれの面粗さや積層枚数によって、熱電モジュール33の高温側の到達可能温度を調整することが簡単に行える。このため、熱電モジュール33による熱電発電を最も効率のよい温度域で実行する積層体(温度制御部材49)を簡単に設計でき、熱電発電効率を向上できる。この点から分かるように、温度制御部材49自体若しくは積層する板の素材は接触熱抵抗値が既知のものであるのが望ましい。なお、温度制御部材49は必ずしも積層構造である必要はなく、接触熱抵抗値が既知で接触熱抵抗の再現性も高いものであれば、設計時に熱電モジュール33の高温側の到達可能温度を調整することが可能であることは言うまでもない。   Here, since the steel plate and the alumina plate are members having known contact thermal resistance values and high reproducibility, it is easy to adjust the reachable temperature on the high temperature side of the thermoelectric module 33 depending on the surface roughness and the number of laminated layers. Can be done. For this reason, the laminated body (temperature control member 49) which performs the thermoelectric power generation by the thermoelectric module 33 in the most efficient temperature range can be designed easily, and the thermoelectric power generation efficiency can be improved. As can be seen from this point, it is desirable that the temperature control member 49 itself or the material of the laminated plates has a known contact thermal resistance value. The temperature control member 49 does not necessarily have a laminated structure. If the contact thermal resistance value is known and the contact thermal resistance is highly reproducible, the reachable temperature on the high temperature side of the thermoelectric module 33 is adjusted at the time of design. It goes without saying that it is possible.

各熱電ユニット32を配管31に装着する際は、取付枠44を介して各熱電ユニット32の集熱フィン46のフィン部48を開口穴43に挿入して、配管31内に集熱フィン46のフィン部48を突出させる。そして、集熱フィン46の基台47を取付枠44に重ね合わせてボルト締結する。配管31内に排気ガスが流入すると、各集熱フィン46における配管31内のフィン部48に排気ガスが接触して、廃熱(排気ガスの熱)が集熱フィン46で集熱される。各集熱フィン46からの熱移動によって、各熱電モジュール33の広幅他側面(高温側)が加熱される。各冷却ケース45内には冷媒が流入して各熱電モジュール33の広幅一側面(低温側)を冷却する。その結果、各熱電モジュール33の低温側と高温側との間に温度差が生じて、各熱電モジュール33に起電力が発生し発電する。   When attaching each thermoelectric unit 32 to the pipe 31, the fin portion 48 of the heat collection fin 46 of each thermoelectric unit 32 is inserted into the opening hole 43 through the attachment frame 44, and the heat collection fin 46 is inserted into the pipe 31. The fin part 48 is protruded. Then, the base 47 of the heat collecting fin 46 is overlapped with the mounting frame 44 and fastened with bolts. When the exhaust gas flows into the pipe 31, the exhaust gas comes into contact with the fin portions 48 in the pipe 31 of each heat collection fin 46, and waste heat (heat of the exhaust gas) is collected by the heat collection fins 46. By the heat transfer from each heat collection fin 46, the other wide side surface (high temperature side) of each thermoelectric module 33 is heated. A refrigerant flows into each cooling case 45 to cool one wide side surface (low temperature side) of each thermoelectric module 33. As a result, a temperature difference occurs between the low temperature side and the high temperature side of each thermoelectric module 33, and an electromotive force is generated in each thermoelectric module 33 to generate power.

上記のように構成すると、各熱電モジュール33の高温側の到達可能温度を制限するにあたって、温度制御部材49によって各熱電モジュール33の高温側の到達可能温度を調整することが可能になり、各熱電モジュール33による熱電発電を最も効率のよい温度域で実行できる。このため、各熱電モジュール33の熱電発電効率を向上できる。温度制御部材49によって各熱電モジュール33の高温側への熱伝達のばらつきを抑制でき、伝熱性能を向上できる。また、熱媒体である排気ガスの温度や流量変化が熱電モジュール33の高温側に与える熱変形、熱衝撃及び熱変質を緩和できるから、熱電モジュール33の破損を確実に防止できる。更に、各熱電モジュール33に使用する材料として、ビスマスとテルルとを主成分とする材料を用いているから、比較的低温で用い且つ広く市販されているビスマス−テルル系の熱電モジュール33を、温度制御部材49の存在によって、例えば発電用エンジン25や主エンジン21といった内燃機関の排気経路27でも利用できる。その上、実施形態の温度制御部材49は、金属板、セラミクス板又はこれらの組合せを複数層重ね合わせた積層体で構成しているから、簡単な構成でコストもかけることなく、各熱電モジュール33の高温側への熱伝達のばらつきを確実に抑制できる。   When configured as described above, in limiting the reachable temperature on the high temperature side of each thermoelectric module 33, it becomes possible to adjust the reachable temperature on the high temperature side of each thermoelectric module 33 by the temperature control member 49. Thermoelectric power generation by the module 33 can be performed in the most efficient temperature range. For this reason, the thermoelectric power generation efficiency of each thermoelectric module 33 can be improved. Variations in heat transfer to the high temperature side of each thermoelectric module 33 can be suppressed by the temperature control member 49, and heat transfer performance can be improved. In addition, since the thermal deformation, thermal shock, and thermal alteration given to the high temperature side of the thermoelectric module 33 by the temperature or flow rate change of the exhaust gas that is the heat medium can be mitigated, the thermoelectric module 33 can be reliably prevented from being damaged. Furthermore, since a material mainly composed of bismuth and tellurium is used as the material used for each thermoelectric module 33, the bismuth-tellurium-based thermoelectric module 33 that is used at a relatively low temperature and is widely marketed is used. Due to the presence of the control member 49, it can also be used in the exhaust path 27 of an internal combustion engine such as the power generation engine 25 or the main engine 21, for example. In addition, since the temperature control member 49 of the embodiment is configured by a laminated body in which a plurality of layers are laminated with a metal plate, a ceramic plate, or a combination thereof, each thermoelectric module 33 has a simple configuration without cost. Variation of heat transfer to the high temperature side can be reliably suppressed.

図4及び図5に示すように、配管31内には、熱媒体である排気ガスを各集熱フィン46側に送り込む熱媒体案内部材としての遮蔽体50を配管31の内周面から適宜離して配置している。実施形態の遮蔽体50は、配管31内部の断面積を狭める役割を担っていて、遮蔽体50の基部を断面四角状に形成している。遮蔽体50基部における四つの平坦部51の外周面は、配管31の四つの平面部41の内周面にそれぞれ対峙している。配管31と遮蔽体50とは、両者31,50間の狭隘通路52内に適宜隔てて配置した複数のブリッジ体53を介して一体的に連設している。すなわち、配管31と遮蔽体50とは二重筒構造になっている。配管31の各平面部41の内周面とこれに対峙する遮蔽体50基部の平坦部51の外周面とは排気方向に沿って平行状に並んでいる。配管31の各平面部41の内周面とこれに対峙する遮蔽体50基部の平坦部51の外周面との間に、各集熱フィン46のフィン部48を位置させている。   As shown in FIGS. 4 and 5, in the pipe 31, a shield 50 as a heat medium guide member that sends exhaust gas, which is a heat medium, to each heat collection fin 46 side is appropriately separated from the inner peripheral surface of the pipe 31. Arranged. The shield 50 according to the embodiment plays a role of narrowing the cross-sectional area inside the pipe 31 and forms the base of the shield 50 in a square cross section. The outer peripheral surfaces of the four flat portions 51 at the base of the shield 50 are opposed to the inner peripheral surfaces of the four flat portions 41 of the pipe 31. The piping 31 and the shielding body 50 are integrally connected via a plurality of bridge bodies 53 that are appropriately separated from each other in a narrow passage 52 between the pipes 31 and 50. That is, the pipe 31 and the shield 50 have a double cylinder structure. The inner peripheral surface of each flat surface portion 41 of the pipe 31 and the outer peripheral surface of the flat portion 51 of the shield 50 base that faces this are aligned in parallel along the exhaust direction. The fin portions 48 of the respective heat collecting fins 46 are positioned between the inner peripheral surface of each flat surface portion 41 of the pipe 31 and the outer peripheral surface of the flat portion 51 of the shield 50 base that faces the flat surface portion 41.

この場合、配管31の各平面部41の内周面とこれに対峙する遮蔽体50基部の平坦部51の外周面とを排気方向に沿って平行状に並べているため、各熱電ユニット32の集熱フィン46の突出長さを一定にする場合に、配管31の各平面部41の内周面とこれに対峙する遮蔽体50基部の平坦部51の外周面との間で各集熱フィン46のフィン部48をできるだけ延ばして密に配置し易い。換言すると、各集熱フィン46ひいては各熱電ユニット32の構造を簡単に共通化できる。なお、遮蔽体50の断面形状は配管31の断面形状に対応させるのが好ましい。配管31の各平面部41の内周面とこれに対峙する遮蔽体50基部の平坦部51の外周面とを排気方向に沿って平行状に設定し易いからである。   In this case, since the inner peripheral surface of each flat surface portion 41 of the pipe 31 and the outer peripheral surface of the flat portion 51 of the shield 50 base opposite thereto are arranged in parallel along the exhaust direction, the collection of each thermoelectric unit 32 is arranged. When making the projection length of the heat fin 46 constant, each heat collecting fin 46 is arranged between the inner peripheral surface of each flat surface portion 41 of the pipe 31 and the outer peripheral surface of the flat portion 51 of the shield 50 base portion opposed thereto. It is easy to arrange the fin portions 48 as long as possible. In other words, the structure of each heat collection fin 46 and thus each thermoelectric unit 32 can be easily shared. Note that the cross-sectional shape of the shield 50 preferably corresponds to the cross-sectional shape of the pipe 31. This is because it is easy to set the inner peripheral surface of each flat surface portion 41 of the pipe 31 and the outer peripheral surface of the flat portion 51 of the shield 50 base opposite thereto in parallel along the exhaust direction.

遮蔽体50の排気上流側は、上流先端部に近付くに連れて先窄まり状の錐体部54になっている。実施形態の遮蔽体50の錐体部54は、基部が断面四角形状であるため、四角錐状である。配管31内に単に遮蔽体50を配置しただけでは、排気ガスの流れ抵抗が増加するが、遮蔽体50の排気上流側に錐体部54を形成しているため、錐体部54によって配管31と遮蔽体50との間の狭隘通路52に排気ガスをスムーズに案内でき、遮蔽体50による排気ガスの流れ抵抗の増加が抑制される。錐体部54の形状は遮蔽体50の断面形状に対応させれば足りる。つまり、錐体部54は四角錐状に限らず、その他多角錐状でも構わない。なお、遮蔽体50の排気上流側は錐体部54に構成するに限らず、狭隘通路52に排気ガスをスムーズに案内できるものであれば、静翼や可動翼を設けてもよいし、螺旋形状のスクリュー体を設けてもよい。   The exhaust upstream side of the shield 50 is a tapered cone portion 54 as it approaches the upstream tip. The cone part 54 of the shield 50 according to the embodiment has a quadrangular pyramid shape because the base part has a quadrangular cross section. If the shield 50 is simply disposed in the pipe 31, the flow resistance of the exhaust gas increases. However, since the cone part 54 is formed on the exhaust upstream side of the shield 50, the pipe 31 is formed by the cone part 54. The exhaust gas can be smoothly guided to the narrow passage 52 between the shield 50 and the increase in flow resistance of the exhaust gas by the shield 50 is suppressed. It is sufficient that the shape of the cone portion 54 corresponds to the cross-sectional shape of the shield 50. That is, the cone portion 54 is not limited to a quadrangular pyramid shape, and may be a polygonal pyramid shape. Note that the exhaust upstream side of the shield 50 is not limited to the cone portion 54, and may be provided with a stationary blade or a movable blade as long as the exhaust gas can be smoothly guided to the narrow passage 52, or a spiral A shaped screw body may be provided.

以上の説明から明らかなように、実施形態では、排気ガスが流れる配管31と、低温側と高温側との温度差によって発電する平板状の熱電モジュール33を有する複数の熱電ユニット32とを備え、前記各熱電モジュール33の高温側を前記排気ガスで加熱する熱電発電装置30において、前記配管31を断面多角形状に形成し、前記配管31の各平面部41に前記熱電ユニット32群を取り付けているから、断面多角形状の前記配管31の外周面に前記複数の熱電ユニット32を密に配置できる。このため、前記排気ガスからの集熱効率を向上でき、ひいては、前記熱電発電装置30全体での発電効率を向上できる。   As is clear from the above description, the embodiment includes a pipe 31 through which exhaust gas flows, and a plurality of thermoelectric units 32 having a plate-like thermoelectric module 33 that generates power by a temperature difference between the low temperature side and the high temperature side, In the thermoelectric generator 30 that heats the high temperature side of each thermoelectric module 33 with the exhaust gas, the pipe 31 is formed in a polygonal cross section, and the thermoelectric unit 32 group is attached to each flat surface portion 41 of the pipe 31. Therefore, the plurality of thermoelectric units 32 can be densely arranged on the outer peripheral surface of the pipe 31 having a polygonal cross section. For this reason, the heat collection efficiency from the said exhaust gas can be improved, and the power generation efficiency in the said thermoelectric power generation apparatus 30 whole can be improved by extension.

また、前記配管31内には、前記各熱電モジュール33の高温側に設けた集熱フィン46を突出させると共に、前記排気ガスを前記各集熱フィン46側に送り込む熱媒体案内部材としての遮蔽体50を配置しているから、前記遮蔽体50の存在によって、前記各集熱フィン46側に前記排気ガスを積極的に供給でき、前記排気ガスの熱(廃熱)を効率よく前記各集熱フィン46に伝達できる。前記排気ガスから前記各集熱フィン46への集熱効率が高く、発電効率を向上できる。   Further, the heat collecting fins 46 provided on the high temperature side of the thermoelectric modules 33 are protruded into the pipes 31 and shields as heat medium guide members for sending the exhaust gas to the heat collecting fins 46 side. 50, the exhaust gas can be actively supplied to the heat collecting fins 46 due to the presence of the shield 50, and the heat (waste heat) of the exhaust gas can be efficiently supplied. It can be transmitted to the fin 46. The heat collection efficiency from the exhaust gas to the heat collection fins 46 is high, and the power generation efficiency can be improved.

また、前記配管31内には、前記各熱電モジュール33の高温側に設けた集熱フィン46を突出させると共に、前記配管31内部の断面積を狭める遮蔽体50を前記配管31の内周面から適宜離して配置し、前記配管31の内周面と前記遮蔽体50の外周面との間に前記各集熱フィン46を位置させるから、前記配管31の内周面と前記遮蔽体50の外周面との間に前記排気ガスを積極的に送ることになり、簡単な構成でコスト抑制を可能でありながら、前記排気ガスから前記各集熱フィン46への集熱効率をより一層向上でき、発電効率向上に貢献する。   A heat shield fin 46 provided on the high temperature side of each thermoelectric module 33 protrudes into the pipe 31 and a shield 50 that narrows the cross-sectional area inside the pipe 31 is provided from the inner peripheral surface of the pipe 31. Since the heat collection fins 46 are positioned between the inner peripheral surface of the pipe 31 and the outer peripheral surface of the shield 50, the heat collecting fins 46 are positioned between the inner peripheral surface of the pipe 31 and the outer periphery of the shield 50. The exhaust gas is actively sent to and from the surface, and the cost can be reduced with a simple configuration, but the heat collection efficiency from the exhaust gas to each of the heat collection fins 46 can be further improved. Contributes to improved efficiency.

その上、前記配管31の前記各平面部41の内周面とこれに対峙する前記遮蔽体50の外周面とを平行状に設定しているから、前記各熱電ユニット32の前記集熱フィン46の突出長さを一定にする場合に、前記配管31の前記各平面部41の内周面とこれに対峙する前記遮蔽体50の外周面との間で、前記各集熱フィン46をできるだけ延ばして密に配置し易い。すなわち、前記各集熱フィン46ひいては前記各熱電ユニット32の構造を共通化でき、前記各熱電ユニット32の汎用性向上に貢献する。   In addition, since the inner peripheral surface of each of the flat portions 41 of the pipe 31 and the outer peripheral surface of the shield 50 facing the same are set in parallel, the heat collecting fins 46 of the thermoelectric units 32 are set in parallel. When the projecting length of each of the pipes 31 is made constant, the heat collecting fins 46 are extended as much as possible between the inner peripheral surface of each flat surface portion 41 of the pipe 31 and the outer peripheral surface of the shield 50 facing it. And densely arranged. That is, the structure of each heat collecting fin 46 and thus each thermoelectric unit 32 can be made common, which contributes to improving the versatility of each thermoelectric unit 32.

しかも、前記遮蔽体50の上流側を上流先端部に近付くに連れて先窄まり状の錐体部54に形成しているから、前記錐体部54によって前記配管31と前記遮蔽体50との間の狭隘通路52に前記排気ガスをスムーズに案内でき、前記遮蔽体50による前記排気ガスの流れ抵抗の増加を抑制できる。   In addition, since the upstream side of the shield 50 is formed into a tapered cone portion 54 as it approaches the upstream tip portion, the pipe 31 and the shield 50 are separated by the cone portion 54. The exhaust gas can be smoothly guided to the narrow passage 52 therebetween, and an increase in the flow resistance of the exhaust gas by the shield 50 can be suppressed.

その他、各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。例えば本願の熱電発電装置30を主エンジン21の排気経路に配置してもよい。   In addition, the structure of each part is not limited to embodiment of illustration, A various change is possible in the range which does not deviate from the meaning of this invention. For example, the thermoelectric generator 30 of the present application may be disposed in the exhaust path of the main engine 21.

1 船舶
2 船体
4 ファンネル
11 機関室
21 主エンジン
23 発電装置
24 ディーゼル発電機
25 発電用エンジン
27 排気経路
30 熱電発電装置
31 配管
32 熱電ユニット
33 熱電モジュール
41 平面部
43 開口穴
45 冷却ケース
46 集熱フィン
48 フィン部
49 温度制御部材
50 遮蔽体
51 平坦部
54 錐体部
DESCRIPTION OF SYMBOLS 1 Ship 2 Hull 4 Funnel 11 Engine room 21 Main engine 23 Electric power generation device 24 Diesel generator 25 Electric power generation engine 27 Exhaust path 30 Thermoelectric power generation device 31 Pipe 32 Thermoelectric unit 33 Thermoelectric module 41 Flat part 43 Opening hole 45 Cooling case 46 Heat collection Fin 48 Fin portion 49 Temperature control member 50 Shield 51 Flat portion 54 Cone portion

Claims (4)

熱媒体が流れる配管と、低温側と高温側との温度差によって発電する平板状の熱電モジュールを有する複数の熱電ユニットとを備え、前記配管内には前記各熱電モジュールの高温側に設けた集熱フィンを突出させ、前記各集熱フィンを前記熱媒体で加熱する熱電発電装置において、
前記各熱電モジュールの高温側と前記集熱フィンとの間に、前記各熱電モジュールの高温側への熱伝達を抑制する非液冷形の温度制御部材を介在させ、
前記温度制御部材は、接触熱抵抗値が既知で再現性の高い金属板、セラミクス板又はこれらの組合せを積層して高温側の到達可能温度を調整するように構成している、
熱電発電装置。
A pipe through which a heat medium flows, and a plurality of thermoelectric units having a plate-like thermoelectric module that generates electric power according to a temperature difference between the low temperature side and the high temperature side, and a collection provided on the high temperature side of each thermoelectric module in the pipe In the thermoelectric generator that projects the heat fins and heats the heat collection fins with the heat medium,
Between the high temperature side of each thermoelectric module and the heat collecting fin, a non-liquid cooling type temperature control member that suppresses heat transfer to the high temperature side of each thermoelectric module is interposed,
The temperature control member is configured to adjust the reachable temperature on the high temperature side by laminating a metal plate, a ceramic plate, or a combination thereof having a known contact thermal resistance value and high reproducibility .
Thermoelectric generator.
前記温度制御部材は、鋼板とアルミナ板とを交互に積層して構成している、
請求項1に記載の熱電発電装置。
The temperature control member is configured by alternately laminating steel plates and alumina plates,
The thermoelectric generator according to claim 1.
前記各熱電モジュールに使用する材料として、ビスマスとテルルとを主成分とする材料を用いている、
請求項1又は2に記載の熱電発電装置。
As a material used for each thermoelectric module, a material mainly composed of bismuth and tellurium is used.
The thermoelectric generator according to claim 1 or 2.
請求項1〜3のうちいずれかに記載の熱電発電装置を、船体内に搭載した内燃機関の排気経路に配置している、
船舶。
The thermoelectric generator according to any one of claims 1 to 3 is disposed in an exhaust path of an internal combustion engine mounted in a ship body.
Ship.
JP2013071081A 2013-03-29 2013-03-29 Thermoelectric generator and ship equipped with the same Active JP6096562B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013071081A JP6096562B2 (en) 2013-03-29 2013-03-29 Thermoelectric generator and ship equipped with the same
PCT/JP2014/058432 WO2014157287A1 (en) 2013-03-29 2014-03-26 Exhaust gas purification system for ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071081A JP6096562B2 (en) 2013-03-29 2013-03-29 Thermoelectric generator and ship equipped with the same

Publications (2)

Publication Number Publication Date
JP2014195011A JP2014195011A (en) 2014-10-09
JP6096562B2 true JP6096562B2 (en) 2017-03-15

Family

ID=51840061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071081A Active JP6096562B2 (en) 2013-03-29 2013-03-29 Thermoelectric generator and ship equipped with the same

Country Status (1)

Country Link
JP (1) JP6096562B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664563B1 (en) 2014-10-14 2016-10-10 현대자동차주식회사 generator for internal combustion engine
KR101806676B1 (en) * 2016-03-29 2017-12-07 현대자동차주식회사 Thermoelectric generating system and vehicle exhaust manifold having the same
JP6601317B2 (en) * 2016-06-03 2019-11-06 株式会社デンソー Thermoelectric generator
JP7004760B2 (en) * 2020-03-24 2022-01-21 サムスン ヘビー インダストリーズ カンパニー リミテッド Thermoelectric generator and fuel storage tank heat generator and waste heat recovery system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208476A (en) * 2002-12-26 2004-07-22 Toyota Motor Corp Waste heat power generator
JP2006066822A (en) * 2004-08-30 2006-03-09 Denso Corp Thermoelectric conversion device
JP2006109539A (en) * 2004-09-30 2006-04-20 Toyota Motor Corp Thermal power generator
JP2007016747A (en) * 2005-07-11 2007-01-25 Mazda Motor Corp Automobile exhaust heat power generation device
JP2009081178A (en) * 2007-09-25 2009-04-16 Toshiba Corp Method of manufacturing thermoelectric conversion module
JP2010242700A (en) * 2009-04-09 2010-10-28 Honda Motor Co Ltd Power generator of water-cooled engine
JP5444260B2 (en) * 2010-01-19 2014-03-19 株式会社東芝 Thermoelectric module and power generator

Also Published As

Publication number Publication date
JP2014195011A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
US5625245A (en) Thermoelectric generator for motor vehicle
JP5737151B2 (en) Thermoelectric generator
JP6096562B2 (en) Thermoelectric generator and ship equipped with the same
JP6081583B2 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
JP5819221B2 (en) Ship fuel supply system
US9574517B2 (en) Thermoelectric generator insert for engine waste heat recovery
WO2014157287A1 (en) Exhaust gas purification system for ships
JP2008072775A (en) Exhaust heat energy recovery system
JP2010242700A (en) Power generator of water-cooled engine
US9416712B2 (en) Thermoelectric module with heat exchanger
JP2014195378A (en) Thermoelectric generator and marine vessel with the same
US20110308771A1 (en) Exhaust gas cooler for an internal combustion engine
KR101401065B1 (en) Thermoelectric generator of vehicle
JP5954103B2 (en) Thermoelectric generator
JP2014195377A (en) Thermoelectric generator and marine vessel with the same
KR101516396B1 (en) Apparatus for recovering exhaust heat
JP2014225509A (en) Waste heat power generator
JP6350297B2 (en) Thermoelectric generator
JP2014195379A (en) Thermoelectric generator and marine vessel with the same
JP2014194192A (en) Exhaust emission control system in ship
JP6754321B2 (en) Heat receiving unit and thermoelectric power generation device including the heat receiving unit
JP4082090B2 (en) Waste heat power generator
JP4276610B2 (en) Waste heat recovery device
CN107109994B (en) Device for exhaust waste heat recovery
KR101637674B1 (en) Thermoelectric Generation Device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6096562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350