JP2006066822A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP2006066822A
JP2006066822A JP2004250605A JP2004250605A JP2006066822A JP 2006066822 A JP2006066822 A JP 2006066822A JP 2004250605 A JP2004250605 A JP 2004250605A JP 2004250605 A JP2004250605 A JP 2004250605A JP 2006066822 A JP2006066822 A JP 2006066822A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrode
coating layer
conversion device
insulating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004250605A
Other languages
Japanese (ja)
Inventor
Akio Matsuoka
彰夫 松岡
Isao Azeyanagi
功 畔柳
Takashi Yamamoto
隆 山本
Makoto Uto
誠 宇藤
Fumiaki Nakamura
文昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004250605A priority Critical patent/JP2006066822A/en
Publication of JP2006066822A publication Critical patent/JP2006066822A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermoelectric conversion device whose thermoelectric conversion coefficient can be elevated while holding electric insulation, by composing a joint so that a thin insulating film layer is formed on a metal substrate and heat resistance between the metal substrate and a thermoelectric element is reduced. <P>SOLUTION: In the thermoelectric conversion device, both sides of a plurality of thermoelectric elements 11 composed of p-types and n-types are joined with a high temperature side heat exchanger 14 and a low temperature side heat exchanger 16 through first electrode components 12 between the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16, respectively. The plurality of the thermoelectric element 11 are connected through the first electrode component 12 in series. On the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16, insulating film layers 21 each composed of an insulating material are formed at a positions opposed to the electrode components 12, and electrodes 22 joined with the first electrode components 12 are formed on surfaces of the insulating film layers 21. The thermoelectric conversion coefficient can be improved while holding the electric insulation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、N型熱電素子、P型熱電素子からなる直列回路に直流電流を流通させることで吸熱、放熱が得られる熱電変換装置に関するものであり、特に、熱電素子の両端に電極部材を介在させて接合される一対の金属基板の構成に関する。   The present invention relates to a thermoelectric conversion device that can absorb heat and dissipate heat by flowing a direct current through a series circuit composed of an N-type thermoelectric element and a P-type thermoelectric element, and in particular, electrode members are interposed at both ends of the thermoelectric element. The present invention relates to a configuration of a pair of metal substrates that are bonded together.

従来、この種の熱電変換装置として、例えば、特許文献1に示すように、一対の金属基板の間に、P型とN型の複数の熱電素子が電極部材を介在して交互に電気的に直列に接続されて金属基板に接合するように構成している。   Conventionally, as this type of thermoelectric conversion device, for example, as shown in Patent Document 1, a plurality of P-type and N-type thermoelectric elements are alternately and electrically interposed between a pair of metal substrates with electrode members interposed therebetween. It is configured to be connected in series and bonded to the metal substrate.

そして、その金属基板には、樹脂および無機系粉末からなる複合膜から形成した絶縁被膜層が一体的に固着されるとともに、複数の熱電素子は、その金属基板に形成されたと絶縁被膜層と電極部材との間に熱伝導性グリースを介在して接合するように構成している。これにより、熱電素子に接続された電極部材と金属基板との間の電気絶縁性と熱伝導性を向上させるようにしている(例えば、特許文献1参照。)。   An insulating coating layer formed of a composite film made of a resin and an inorganic powder is integrally fixed to the metal substrate, and a plurality of thermoelectric elements are formed on the metal substrate. A heat conductive grease is interposed between the members and the members are joined. Thereby, the electrical insulation and thermal conductivity between the electrode member connected to the thermoelectric element and the metal substrate are improved (for example, refer to Patent Document 1).

また、上記の他に、金属基板に形成された絶縁被膜層を例えば、アルミナ、ジルコニアなどのセラミック材の絶縁材料を溶射させて形成している装置もある(例えば、特許文献2参照。)。
特開平11−274573号公報 特開平11−340523号公報
In addition to the above, there is also an apparatus in which an insulating coating layer formed on a metal substrate is formed by spraying a ceramic insulating material such as alumina or zirconia (see, for example, Patent Document 2).
JP-A-11-274573 JP 11-340523 A

しかしながら、上記特許文献1および特許文献2よれば、金属基板に形成された絶縁被膜層と電極部材との間に熱伝導性グリースを介在して接合するように構成していることで、熱伝導性グリース部分における熱抵抗が熱伝導性の大きい金属材料に比べて大きい。つまり、熱抵抗が大きいと熱電変換装置の熱電変換効率が低下する問題がある。   However, according to Patent Document 1 and Patent Document 2, the heat conductive grease is configured to be joined between the insulating coating layer formed on the metal substrate and the electrode member by interposing a heat conductive grease. The thermal resistance in the conductive grease portion is larger than that of a metal material having a large thermal conductivity. That is, if the thermal resistance is large, there is a problem that the thermoelectric conversion efficiency of the thermoelectric conversion device is lowered.

しかも、金属基板に形成された絶縁被膜層の厚みを増加させると電気絶縁性が向上するが、一方の熱伝導性が低下するため、熱伝導性を向上させるためには絶縁被膜層の厚みが出来るだけ薄肉に形成すると望ましい。   In addition, increasing the thickness of the insulating coating layer formed on the metal substrate improves the electrical insulation, but the thermal conductivity of one of them decreases, so in order to improve the thermal conductivity, the thickness of the insulating coating layer is reduced. It is desirable to make it as thin as possible.

そこで、本発明の目的は、上記点を鑑みたものであり、金属基板側に薄肉の絶縁被膜層を形成して金属基板と熱電素子との間で熱抵抗が小さくなるように接合部を構成させることで、電気絶縁性を確保しつつ熱電変換効率の向上が図れる熱電変換装置を提供することにある。   In view of the above, the object of the present invention is to form a thin insulating film layer on the metal substrate side, and to form a joint so that the thermal resistance is reduced between the metal substrate and the thermoelectric element. Accordingly, it is an object of the present invention to provide a thermoelectric conversion device capable of improving the thermoelectric conversion efficiency while ensuring electrical insulation.

上記、目的を達成するために、請求項1ないし請求項11に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、金属材料からなる一対の金属基板(14、16)の間に、P型とN型からなる複数個の熱電素子(11)の両端がそれぞれ第1電極部材(12)を介在させて金属基板(14、16)に接合されているとともに、金属基板(14、16)の一方に第1電極部材(12)より伝熱される熱を吸熱、放熱する熱交換部(15)が配設される熱電変換装置において、
複数個の熱電素子(11)は、第1電極部材(12)を介して直列的に接続されているとともに、金属基板(14、16)には、第1電極部材(12)と対向する位置に絶縁材料からなる絶縁被膜層(21)と、その絶縁被膜層(21)の表面に第1電極部材(12)に接合する電極部(22)とが形成されていることを特徴としている。
In order to achieve the above object, the technical means according to claims 1 to 11 are employed. That is, in the invention described in claim 1, between the pair of metal substrates (14, 16) made of a metal material, both ends of a plurality of P-type and N-type thermoelectric elements (11) are respectively the first electrodes. Heat that is bonded to the metal substrate (14, 16) with the member (12) interposed, and absorbs and dissipates heat transferred from the first electrode member (12) to one of the metal substrates (14, 16). In the thermoelectric conversion device in which the exchange part (15) is disposed,
The plurality of thermoelectric elements (11) are connected in series via the first electrode member (12), and the metal substrate (14, 16) is opposed to the first electrode member (12). An insulating coating layer (21) made of an insulating material, and an electrode portion (22) bonded to the first electrode member (12) are formed on the surface of the insulating coating layer (21).

請求項1に記載の発明によれば、金属基板(14、16)側に絶縁被膜層(21)と電極部(22)とが形成され、かつその電極部(22)と第一電極部材(12)を介して熱電素子(11)が接合されることにより、例えば、上記電極部(22)と第一電極部材(12)とをはんだ付けなどで接合することで、熱電素子(11)と金属基板(14、16)との間の熱抵抗を小さくすることが可能となる。   According to the first aspect of the present invention, the insulating coating layer (21) and the electrode portion (22) are formed on the metal substrate (14, 16) side, and the electrode portion (22) and the first electrode member ( 12), the thermoelectric element (11) is joined to the thermoelectric element (11) by, for example, joining the electrode part (22) and the first electrode member (12) by soldering or the like. It becomes possible to reduce the thermal resistance between the metal substrates (14, 16).

また、第一電極部材(12)の板厚を厚くすることによって、熱電素子(11)間を流れる電流の必要断面積を確保することができるため、絶縁被膜層(21)の表面に形成する電極部(22)の板厚を薄肉にすることができる。これにより、熱電素子(11)と金属基板(14、16)との間における電気絶縁性が確保できるとともに、絶縁被膜層(21)およびこの絶縁被膜層(21)と各電極部(12、22)との接合部の熱抵抗を小さくできる。従って、装置全体の熱電変換効率の向上が図れる。   Moreover, since the required cross-sectional area of the electric current which flows between the thermoelectric elements (11) can be ensured by increasing the plate thickness of the first electrode member (12), it is formed on the surface of the insulating coating layer (21). The plate thickness of the electrode part (22) can be reduced. Thereby, while being able to ensure the electrical insulation between a thermoelectric element (11) and a metal substrate (14, 16), an insulating coating layer (21), this insulating coating layer (21), and each electrode part (12, 22). ) And the thermal resistance of the joint portion can be reduced. Therefore, the thermoelectric conversion efficiency of the entire apparatus can be improved.

請求項2に記載の発明では、第1電極部材(12)と電極部(22)とは、半田付けで接合されていることを特徴としている。請求項2に記載の発明によれば、絶縁被膜層(21)と第1電極部材(12)とを熱伝導性グリースを介在させて接合する従来技術よりも熱抵抗が極めて小さくできる。これにより、装置全体の熱電変換効率の向上が図れる。   The invention according to claim 2 is characterized in that the first electrode member (12) and the electrode portion (22) are joined by soldering. According to invention of Claim 2, thermal resistance can be made extremely small rather than the prior art which joins an insulating film layer (21) and a 1st electrode member (12) through heat conductive grease. Thereby, the thermoelectric conversion efficiency of the whole apparatus can be improved.

請求項3に記載の発明では、金属基板(14、16)に形成された電極部(22)は、第1電極部材(12)の板厚よりも薄肉に形成していることを特徴としている。請求項3に記載の発明によれば、具体的には、後述する請求項4もしくは請求項5に示すように、薄肉の電極部(22)が容易に絶縁被膜層(21)の表面に一体で形成できる。これにより、製造コストが安くできるとともに、絶縁被膜層(21)と電極部(22)との間の熱抵抗を小さくすることができる。   The invention according to claim 3 is characterized in that the electrode portion (22) formed on the metal substrate (14, 16) is formed thinner than the plate thickness of the first electrode member (12). . According to the invention described in claim 3, specifically, as shown in claim 4 or claim 5 described later, the thin electrode portion (22) is easily integrated with the surface of the insulating coating layer (21). Can be formed. Thereby, while being able to reduce manufacturing cost, the thermal resistance between an insulating coating layer (21) and an electrode part (22) can be made small.

請求項4に記載の発明では、電極部(22)は、絶縁被膜層(21)の表面に、ペースト状の導電材料を印刷した後に乾燥させて形成していることを特徴としている。請求項4に記載の発明によれば、薄肉の電極部(22)が容易に絶縁被膜層(21)の表面に一体で形成できる。   The invention according to claim 4 is characterized in that the electrode portion (22) is formed by printing a paste-like conductive material on the surface of the insulating coating layer (21) and then drying it. According to the fourth aspect of the present invention, the thin electrode portion (22) can be easily formed integrally on the surface of the insulating coating layer (21).

請求項5に記載の発明では、電極部(22)は、絶縁被膜層(21)の表面に、導電材料を接合後、エッチング加工で形成していることを特徴としている。請求項5に記載の発明によれば、薄肉の電極部(22)が容易に絶縁被膜層(21)の表面に一体で形成できる。   The invention according to claim 5 is characterized in that the electrode portion (22) is formed by etching after bonding a conductive material to the surface of the insulating coating layer (21). According to invention of Claim 5, a thin electrode part (22) can be integrally formed in the surface of an insulating coating layer (21) easily.

請求項6に記載の発明では、電極部(22)は、第1電極部材(12)の板厚が0.1〜0.5mm程度に形成されているのに対して、少なくとも0.1mm以下の板厚に形成していることを特徴としている。請求項6に記載の発明によれば、電極部(22)が0.1mm以下であっても、薄肉の電極部(22)に、第1電極部材(12)が半田付けで接合されるので大電流が流れても溶断の不具合はない。   In the invention according to claim 6, the electrode portion (22) is at least 0.1 mm or less, whereas the plate thickness of the first electrode member (12) is about 0.1 to 0.5 mm. It is characterized in that it is formed with a thickness of. According to invention of Claim 6, even if an electrode part (22) is 0.1 mm or less, since a 1st electrode member (12) is joined to a thin electrode part (22) by soldering, There is no fusing defect even if a large current flows.

請求項7に記載の発明では、金属基板(14、16)に形成された絶縁被膜層(21)は、ダイヤモンドライクカーボンコーティング、もしくはアルミナまたは窒化アルミニウムからなるエアロゾルデポジッション法のいずれかの成膜により形成していることを特徴としている。請求項7に記載の発明によれば、これらの製法は、特に高い電気絶縁性を維持しつつ熱抵抗の低い薄膜の絶縁被膜層(21)を形成することができる。これにより、熱抵抗が小さくできる。   In the invention according to claim 7, the insulating coating layer (21) formed on the metal substrate (14, 16) is formed by either diamond-like carbon coating or an aerosol deposition method made of alumina or aluminum nitride. It is characterized by being formed by. According to invention of Claim 7, these manufacturing methods can form the insulating coating layer (21) of a thin film with low heat resistance, maintaining especially high electrical insulation. Thereby, thermal resistance can be made small.

請求項8に記載の発明では、絶縁被膜層(21)は、その膜厚が少なくとも約10μm程度以下に形成されていることを特徴としている。請求項8に記載の発明によれば、例えば、車両用の電源(DC12V、DC24V)であれば、この程度の膜厚で構成できる。   The invention according to claim 8 is characterized in that the thickness of the insulating coating layer (21) is at least about 10 μm or less. According to invention of Claim 8, if it is a power supply for vehicles (DC12V, DC24V), for example, it can be comprised with this film thickness.

請求項9に記載の発明では、金属基板(14、16)に形成された絶縁被膜層(21)は、セラミック塗料、絶縁電着塗装、もしくは絶縁フィルムのいずれかの成膜により形成していることを特徴としている。請求項9に記載の発明によれば、これらの製法は、絶縁被膜層(21)を薄肉に形成することができる。これにより、熱抵抗が小さくできる。   In the invention according to claim 9, the insulating coating layer (21) formed on the metal substrate (14, 16) is formed by film formation of any one of ceramic paint, insulating electrodeposition coating, or insulating film. It is characterized by that. According to invention of Claim 9, these manufacturing methods can form an insulating film layer (21) thinly. Thereby, thermal resistance can be made small.

請求項10に記載の発明では、絶縁被膜層(21)は、その膜厚が少なくとも約100μm程度以下に形成されていることを特徴としている。請求項10に記載の発明によれば、例えば、車両用の電源(DC12V、DC24V)であれば、この程度の膜厚で構成できる。   The invention according to claim 10 is characterized in that the insulating coating layer (21) has a thickness of at least about 100 μm or less. According to the invention described in claim 10, for example, if it is a power source for vehicles (DC12V, DC24V), it can be configured with such a film thickness.

請求項11に記載の発明では、複数個の熱電素子(11)は、絶縁材料からなる絶縁基板(13)に、P型とN型を交互に略碁盤目状に複数個配列させて一体に構成していることを特徴としている。請求項11に記載の発明によれば、極小部品である熱電素子(11)とこれに接続する第1電極部材(12)が絶縁基板(13)により一体構成ができることで組み付け性が向上できる。   In the invention described in claim 11, the plurality of thermoelectric elements (11) are integrally formed by arranging a plurality of P-type and N-type alternately in a substantially grid pattern on an insulating substrate (13) made of an insulating material. It is characterized by comprising. According to the eleventh aspect of the invention, the thermoelectric element (11), which is a minimal component, and the first electrode member (12) connected to the thermoelectric element (11) can be integrated with the insulating substrate (13), thereby improving the assemblability.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means of embodiment mentioned later.

以下、本発明の一実施形態における熱電変換装置10を図1および図2に基づいて説明する。図1は本実施形態における熱電変換装置10の全体構成を示す模式図であり、図2は熱電変換装置10の主要部の構成を示す分解模式図である。本実施形態の熱電変換装置10は、図1および図2に示すように、一対の金属基板である高温側熱交換器14と低温側熱交換器16との間に、P型とN型からなる複数個の熱電素子11の両端がそれぞれ第1電極部材12を介在させて上記高温側熱交換器14と低温側熱交換器16に接合するように構成している。   Hereinafter, a thermoelectric conversion device 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram illustrating an overall configuration of a thermoelectric conversion device 10 according to the present embodiment, and FIG. 2 is an exploded schematic diagram illustrating a configuration of a main part of the thermoelectric conversion device 10. As shown in FIG. 1 and FIG. 2, the thermoelectric conversion device 10 according to the present embodiment includes a P type and an N type between a high temperature side heat exchanger 14 and a low temperature side heat exchanger 16 that are a pair of metal substrates. Both ends of the plurality of thermoelectric elements 11 are configured to be joined to the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 with the first electrode member 12 interposed therebetween.

複数個の熱電素子11は、平板状の絶縁材料(例えば、PPS樹脂やLCP樹脂など)からなる絶縁基板13にP型とN型を交互に略碁盤目状に複数個配列して一体構成している。また、熱電素子11はBi−Te系化合物からなるP型およびN型の半導体から構成している。   The plurality of thermoelectric elements 11 are integrally formed by arranging a plurality of P-type and N-type alternately in a substantially grid pattern on an insulating substrate 13 made of a flat insulating material (for example, PPS resin or LCP resin). ing. The thermoelectric element 11 is composed of P-type and N-type semiconductors made of Bi-Te compounds.

そして、複数個の熱電素子11の両端には、隣接した熱電素子11に直列的に電流が流れるように第1電極部材12が設けられている。より具体的には、熱電素子11の上方側がP型からN型に電流が流れるように接続して、熱電素子11の下方側がN型からP型に電流が流れるように接続している。   And the 1st electrode member 12 is provided in the both ends of the several thermoelectric element 11 so that an electric current may flow into the adjacent thermoelectric element 11 in series. More specifically, the upper side of the thermoelectric element 11 is connected so that current flows from P-type to N-type, and the lower side of the thermoelectric element 11 is connected so that current flows from N-type to P-type.

この第1電極部材12は、銅材などの導電性材料からなる平板状に形成された電極であって、板厚を例えば、0.1〜0.5mm程度に形成しており、熱電素子11間を流れる電流の必要断面積を確保するように形成している。なお、熱電素子11側と第1電極部材12とは、熱電素子11側の電極側にニッケル鍍金を施した後に半田付けにより予め接合して一体に構成している。   The first electrode member 12 is an electrode formed in a flat plate shape made of a conductive material such as a copper material, and has a plate thickness of, for example, about 0.1 to 0.5 mm. The thermoelectric element 11 It is formed so as to ensure the necessary cross-sectional area of the current flowing between them. Note that the thermoelectric element 11 side and the first electrode member 12 are integrally formed by applying a nickel plating to the electrode side on the thermoelectric element 11 side and then joining in advance by soldering.

そして、上方側の第1電極部材12の電極面と対向する側に金属基板である高温側熱交換器14が設けられ、下方側の第1電極部材12の電極面と対向する側に金属基板である低温側熱交換器16が設けられている。この高温側熱交換器14および低温側熱交換器16は、熱電素子11を複数配置できる程度の大きさの板状体であって、銅、アルミニウム、銀、真鍮などの熱伝導性に優れた材料で形成している。そして、一方に第1電極部材12により伝熱される熱を吸熱、放熱するための熱交換部であるフィン部材15が接合されている。   And the high temperature side heat exchanger 14 which is a metal substrate is provided in the side facing the electrode surface of the upper side 1st electrode member 12, and a metal substrate is provided in the side facing the electrode surface of the lower side 1st electrode member 12. The low temperature side heat exchanger 16 is provided. The high-temperature side heat exchanger 14 and the low-temperature side heat exchanger 16 are plate-like bodies that are large enough to arrange a plurality of thermoelectric elements 11, and have excellent thermal conductivity such as copper, aluminum, silver, and brass. It is made of material. And the fin member 15 which is a heat exchange part for absorbing and radiating the heat transferred by the first electrode member 12 is joined to one side.

ここで、熱電素子11に接合された第1電極部材12は、PN接合部を構成する上方側の第1電極部材12がペルチェ効果により高温の状態となることで、この高温の熱が高温側熱交換器14を介してフィン部材15に伝達して冷却流体と熱交換するように構成している。   Here, the first electrode member 12 joined to the thermoelectric element 11 has a high temperature due to the Peltier effect of the upper first electrode member 12 constituting the PN junction. It is configured to transmit heat to the fin member 15 via the heat exchanger 14 and exchange heat with the cooling fluid.

一方、NP接合部を構成する下方側の第1電極部材12がペルチェ効果により低温の状態となることで、この低温の熱が低温側熱交換器14を介してフィン部材15に伝達して被冷却流体と熱交換するように構成している。つまり、熱電素子11間を流れる電流量に応じて、一端の第1電極部材12の温度が上昇して他端の第1電極部材12の温度が低下し、さらに、電流方向を逆にするとこれらの熱現象が逆転するというものである。   On the other hand, the lower first electrode member 12 constituting the NP junction is brought to a low temperature state due to the Peltier effect, so that this low temperature heat is transferred to the fin member 15 via the low temperature side heat exchanger 14 and covered. It is configured to exchange heat with the cooling fluid. That is, according to the amount of current flowing between the thermoelectric elements 11, the temperature of the first electrode member 12 at one end increases and the temperature of the first electrode member 12 at the other end decreases. The heat phenomenon is reversed.

因みに、この種の熱電変換装置として、一方の高温側熱交換器14側に、例えば、冷却流体として空気を熱交換させることで温風が得られ、他方の低温側熱交換器16側に、例えば、被冷却流体として空気を熱交換させることで冷風が得られることで、半導体や電気部品などの発熱部品の冷却用や暖房装置などの加熱用に用いられる。   Incidentally, as this type of thermoelectric conversion device, for example, hot air is obtained by exchanging air as a cooling fluid on one high temperature side heat exchanger 14 side, and on the other low temperature side heat exchanger 16 side, For example, cold air can be obtained by heat exchange of air as a fluid to be cooled, so that it is used for cooling heat-generating components such as semiconductors and electrical components and for heating heating devices and the like.

ところで、本実施形態の高温側熱交換器14および低温側熱交換器16は、フィン部材15の反対側に、つまり、第1電極部材12と対向する部位に、絶縁材料からなる絶縁被膜層21と、その絶縁被膜層21の表面に第1電極部材12に接合する電極部22とを形成している。   By the way, the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 of this embodiment are the insulating coating layer 21 which consists of an insulating material in the other side of the fin member 15, ie, the site | part facing the 1st electrode member 12. FIG. And the electrode part 22 joined to the 1st electrode member 12 on the surface of the insulating coating layer 21 is formed.

ここで、高温側熱交換器14および低温側熱交換器16の表面に形成する絶縁被膜層21の成膜方法について説明する。本実施形態では、ダイヤモンドライクカーボンコーティング(DLC)法によって金属表面に薄膜の絶縁被膜層21を形成している。このダイヤモンドライクカーボンコーティング(DLC)法は、高真空中のアーク放電プラヅマで炭化水素を分解し、プラヅマ中のイオンや勃起分子を高温側熱交換器14および低温側熱交換器16の表面にぶつけることで形成している。   Here, a method for forming the insulating coating layer 21 formed on the surfaces of the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 will be described. In the present embodiment, a thin insulating coating layer 21 is formed on the metal surface by a diamond-like carbon coating (DLC) method. In this diamond-like carbon coating (DLC) method, hydrocarbons are decomposed by an arc discharge plasma in a high vacuum, and ions and erection molecules in the plasma are hit against the surfaces of the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16. It is formed by that.

これによれば、絶縁被膜層21の膜厚を1〜10μm程度の薄膜で形成できる。因みに、膜厚が10μm程度であると、一般的な1mm程度の板厚のアルミナ基板と比べると熱伝導率λ(W/mk)が約3倍、板厚が1/100であるため、熱抵抗はアルミナ基板の約1/300程度に相当することになる。従って、DLC膜で絶縁被膜層21を形成することで熱抵抗を大幅に低減できる。   According to this, the insulating coating layer 21 can be formed as a thin film having a thickness of about 1 to 10 μm. Incidentally, if the film thickness is about 10 μm, the thermal conductivity λ (W / mk) is about three times that of a typical alumina substrate having a thickness of about 1 mm and the thickness is 1/100. The resistance corresponds to about 1/300 of the alumina substrate. Therefore, the thermal resistance can be greatly reduced by forming the insulating coating layer 21 with the DLC film.

なお、絶縁被膜層21の成膜方法は上述したこのダイヤモンドライクカーボンコーティング(DLC)法に限らず、其の外に、アルミナ(Al203)または窒化アルミニウム(AlN)をエアロゾルデポジション法で成膜させても良い。また、これらの他に、セラミック塗料(例えば、シリカアルミナ系液体セラミックス)をディッピングで塗布後、乾燥させて成膜させても良い。   The method for forming the insulating coating layer 21 is not limited to the diamond-like carbon coating (DLC) method described above. In addition, alumina (Al203) or aluminum nitride (AlN) is formed by the aerosol deposition method. May be. In addition to these, a ceramic paint (for example, silica-alumina-based liquid ceramics) may be applied by dipping and then dried to form a film.

さらに、絶縁電着塗装で成膜を形成したり、もしくは絶縁フィルムを貼り付けたりして成膜を形成しても良い。ただし、セラミック塗料の塗布、絶縁電着塗装、および絶縁フィルムの場合には、膜厚が約100μm程度必要である。   Furthermore, the film formation may be formed by forming a film by insulating electrodeposition coating or attaching an insulating film. However, in the case of ceramic coating, insulating electrodeposition coating, and insulating film, a film thickness of about 100 μm is required.

ここで、エアロゾルデポジション法とは、サブミクロン粒径のアルミナ(Al203)や窒化アルミニウム(AlN)等の絶縁材料微粒子を基材に吹きつけ、焼結することなく常温で高温側熱交換器14および低温側熱交換器16の表面上に固化させ、セラミックスの絶縁被膜を形成する成膜方法である。これによれば、膜厚をDLC法と同じように1〜10μm程度の薄膜で形成することができる。   Here, the aerosol deposition method is a method in which fine particles of an insulating material such as alumina (Al203) or aluminum nitride (AlN) having a submicron particle diameter are sprayed on a base material, and the high temperature side heat exchanger 14 is used at room temperature without sintering. And a film forming method of solidifying the surface of the low temperature side heat exchanger 16 to form a ceramic insulating film. According to this, it can be formed with a thin film having a film thickness of about 1 to 10 μm as in the DLC method.

この場合、窒化アルミニウム(AlN)は熱伝導率λ(W/mk)が140〜200程度、アルミナは33程度であり、DLC法と同様に極めて熱抵抗を小さくすることが可能である。因みに、絶縁電着塗装の場合では熱伝導率λ(W/mk)が10程度であり、絶縁フィルムの場合では0.6〜12程度である。   In this case, aluminum nitride (AlN) has a thermal conductivity λ (W / mk) of about 140 to 200 and alumina has a level of about 33, so that the thermal resistance can be extremely reduced as in the DLC method. Incidentally, in the case of insulating electrodeposition coating, the thermal conductivity λ (W / mk) is about 10, and in the case of an insulating film, it is about 0.6 to 12.

次に、絶縁被膜層21の表面に形成される電極部22の形成方法について説明する。本実施形態では、銅材からなる板を接着フィルムで絶縁被膜層21に接着し、エッチング加工により電極の形状に成形するか、もしくは、ペースト状の導電性材料を絶縁被膜層21に印刷をしてその後乾燥させて電極部22を形成させても良い。なお、このときの電極部22の板厚は、上述した第1電極部材12の板厚が0.1〜0.5mm程度に対して、0.1mm程度以下の薄肉に形成する方が望ましい。   Next, a method for forming the electrode portion 22 formed on the surface of the insulating coating layer 21 will be described. In the present embodiment, a plate made of a copper material is adhered to the insulating coating layer 21 with an adhesive film, and formed into an electrode shape by etching, or a paste-like conductive material is printed on the insulating coating layer 21. Then, the electrode portion 22 may be formed by drying. In addition, as for the plate | board thickness of the electrode part 22 at this time, it is desirable to form in the thin thickness of about 0.1 mm or less with respect to the plate | board thickness of the 1st electrode member 12 mentioned above about 0.1-0.5 mm.

このように、電極部22の板厚が薄肉であれば高温側熱交換器14および低温側熱交換器16への電極部22の形成において、上記の形成方法で容易に形成できるとともに、製造コストが最も安くすることができる。   Thus, when the plate thickness of the electrode portion 22 is thin, the electrode portion 22 can be easily formed by the above-described forming method in the formation of the electrode portion 22 on the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16, and the manufacturing cost can be reduced. Can be the cheapest.

また、高温側熱交換器14および低温側熱交換器16に形成する絶縁被膜層21は、高温側熱交換器14および低温側熱交換器16の表面全体に形成してもよいが、少なくとも高温側熱交換器14および低温側熱交換器16が第1電極部材12と対向する位置に形成すれば良く。さらに、電極部22は、第1電極部材12と対向する位置に、第1電極部材12の電極面と同等以下の大きさで形成すれば良い。   The insulating coating layer 21 formed on the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 may be formed on the entire surface of the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16, but at least the high temperature side The side heat exchanger 14 and the low temperature side heat exchanger 16 may be formed at a position facing the first electrode member 12. Furthermore, the electrode portion 22 may be formed at a position facing the first electrode member 12 and having a size equal to or smaller than the electrode surface of the first electrode member 12.

次に、以上の構成による熱電変換装置の組み付け方法について説明する。図2に示すように、熱電素子11は絶縁基板13に設けられた基板孔にP型とN型を交互に略碁盤目状に複数個配列し、隣接した熱電素子11の両端にそれぞれ第1電極部材12を接合させて一体に構成する。   Next, a method of assembling the thermoelectric conversion device having the above configuration will be described. As shown in FIG. 2, the thermoelectric element 11 has a plurality of P-type and N-type alternately arranged in a substantially grid pattern in a substrate hole provided in the insulating substrate 13. The electrode member 12 is joined to form an integral body.

そして、一対の高温側熱交換器14と低温側熱交換器16は、予め第1電極部材12に対向する位置に上述した方法のいずれか一つにより絶縁被膜層21および電極部22を形成した後に、絶縁被膜層21の反対面にフィン部材15を半田付けで接合させて一体に構成する。   Then, the pair of the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 previously formed the insulating coating layer 21 and the electrode portion 22 at a position facing the first electrode member 12 by any one of the methods described above. Thereafter, the fin member 15 is joined to the opposite surface of the insulating coating layer 21 by soldering to form an integral structure.

そして、一体となった高温側熱交換器14と低温側熱交換器16との間に、熱電素子11を挟むように組み付けて電極部22と第1電極部材12との接合面をはんだ付けで接合させる。これにより、隣接した熱電素子11が直列に接続されるとともに、熱電素子11と高温側熱交換器14および熱電素子11と低温側熱交換器16とが絶縁被膜層21により電気的に絶縁される。   Then, the thermoelectric element 11 is assembled between the integrated high-temperature side heat exchanger 14 and low-temperature side heat exchanger 16, and the joint surface between the electrode portion 22 and the first electrode member 12 is soldered. Join. Thereby, the adjacent thermoelectric elements 11 are connected in series, and the thermoelectric element 11 and the high temperature side heat exchanger 14 and the thermoelectric element 11 and the low temperature side heat exchanger 16 are electrically insulated by the insulating coating layer 21. .

しかも、電極部22と第1電極部材12との接合面をはんだ付けで接合させることにより、熱電素子11と高温側熱交換器14および熱電素子11と低温側熱交換器16との間に構成される各電極部12、22の接合面における熱抵抗が小さくすることが可能となる。これにより、熱抵抗が小さくすることが可能となることで装置全体の熱電変換効率の向上が図れる。   In addition, by joining the joining surfaces of the electrode portion 22 and the first electrode member 12 by soldering, the thermoelectric element 11 and the high temperature side heat exchanger 14 and the thermoelectric element 11 and the low temperature side heat exchanger 16 are configured. It becomes possible to make the thermal resistance in the joint surface of each electrode part 12 and 22 made small. As a result, the thermal resistance can be reduced, so that the thermoelectric conversion efficiency of the entire apparatus can be improved.

以上の一実施形態の熱電変換装置10によれば、高温側熱交換器14および低温側熱交換器16側に絶縁被膜層21と電極部22とが形成され、かつその電極部22と第一電極部材12を介して熱電素子11が接合されることにより、例えば、上記電極部22と第一電極部材12とをはんだ付けなどで接合することで、熱電素子11と高温側熱交換器14および低温側熱交換器16との間の熱抵抗を小さくすることが可能となる。   According to the thermoelectric conversion device 10 of the above-described embodiment, the insulating coating layer 21 and the electrode part 22 are formed on the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 side, and the electrode part 22 and the first By joining the thermoelectric element 11 via the electrode member 12, for example, by joining the electrode portion 22 and the first electrode member 12 by soldering or the like, the thermoelectric element 11 and the high temperature side heat exchanger 14 and It becomes possible to reduce the thermal resistance between the low-temperature side heat exchanger 16.

また、第一電極部材12の板厚を厚くすることによって、熱電素子11間を流れる電流の必要断面積を確保することができるため、絶縁被膜層21の表面に形成する電極部22の板厚を薄肉にすることができる。これにより、熱電素子11と高温側熱交換器14および低温側熱交換器16との間における電気絶縁性が確保できるとともに、絶縁被膜層21およびこの絶縁被膜層21と各電極部12、22との接合部の熱抵抗を小さくできる。従って、装置全体の熱電変換効率の向上が図れる。   Further, by increasing the plate thickness of the first electrode member 12, it is possible to secure the necessary cross-sectional area of the current flowing between the thermoelectric elements 11, and thus the plate thickness of the electrode portion 22 formed on the surface of the insulating coating layer 21. Can be made thin. Thereby, while being able to ensure the electrical insulation between the thermoelectric element 11, the high temperature side heat exchanger 14, and the low temperature side heat exchanger 16, the insulating coating layer 21, this insulating coating layer 21, and each electrode part 12,22, The thermal resistance of the joint portion can be reduced. Therefore, the thermoelectric conversion efficiency of the entire apparatus can be improved.

また、第1電極部材12と電極部22とは、半田付けで接合されていることにより、絶縁被膜層21と第1電極部材12とを熱伝導性グリースを介在させて接合する従来技術よりも熱抵抗が極めて小さくできる。これにより、装置全体の熱電変換効率の向上が図れる。   Further, the first electrode member 12 and the electrode portion 22 are joined by soldering, so that the insulating coating layer 21 and the first electrode member 12 are joined to each other by interposing a heat conductive grease. Thermal resistance can be made extremely small. Thereby, the thermoelectric conversion efficiency of the whole apparatus can be improved.

また、高温側熱交換器14および低温側熱交換器16に形成された電極部22は、第1電極部材12の板厚よりも薄肉に形成していることにより、薄肉の電極部22が容易に絶縁被膜層21の表面に一体で形成できる。これにより、製造コストが安くできるとともに、絶縁被膜層21と電極部22との間の熱抵抗を小さくすることができる。   Further, since the electrode portions 22 formed on the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 are formed thinner than the plate thickness of the first electrode member 12, the thin electrode portions 22 can be easily formed. Further, it can be integrally formed on the surface of the insulating coating layer 21. Thereby, while being able to reduce manufacturing cost, the thermal resistance between the insulating coating layer 21 and the electrode part 22 can be made small.

また、電極部22は、絶縁被膜層21の表面に、ペースト状の導電材料を印刷した後に乾燥させて形成していることにより、薄肉の電極部22が容易に絶縁被膜層21の表面に一体で形成できる。また、このほかに、絶縁被膜層21の表面に、導電材料を接合後、エッチング加工で形成しても良い。   The electrode portion 22 is formed by printing a paste-like conductive material on the surface of the insulating coating layer 21 and then drying it, so that the thin electrode portion 22 can be easily integrated with the surface of the insulating coating layer 21. Can be formed. In addition, a conductive material may be bonded to the surface of the insulating coating layer 21 and then formed by etching.

具体的に、電極部22は、第1電極部材12の板厚が0.1〜0.5mm程度に形成されているのに対して、少なくとも0.1mm以下の板厚に形成していることにより、電極部22が0.1mm以下であっても、薄肉の電極部22に、第1電極部材12が半田付けで接合されるので大電流が流れても溶断の不具合はない。   Specifically, the electrode portion 22 has a thickness of at least 0.1 mm or less, whereas the thickness of the first electrode member 12 is about 0.1 to 0.5 mm. Therefore, even if the electrode part 22 is 0.1 mm or less, the first electrode member 12 is joined to the thin electrode part 22 by soldering, so there is no problem of fusing even if a large current flows.

また、高温側熱交換器14および低温側熱交換器16に形成された絶縁被膜層21は、ダイヤモンドライクカーボンコーティング、もしくはアルミナまたは窒化アルミニウムからなるエアロゾルデポジッション法のいずれかの成膜により形成していることにより、これらの製法は、特に高い電気絶縁性を維持しつつ熱抵抗の低い薄膜の絶縁被膜層21を形成することができる。これにより、熱抵抗が小さくできる。   The insulating coating layer 21 formed on the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 is formed by film formation of either diamond-like carbon coating or an aerosol deposition method made of alumina or aluminum nitride. Therefore, these manufacturing methods can form a thin insulating coating layer 21 having a low thermal resistance while maintaining particularly high electrical insulation. Thereby, thermal resistance can be made small.

しかも、その絶縁被膜層21の膜厚が少なくとも約10μm程度以下に形成されていることにより、例えば、車両用の電源(DC12V、DC24V)であれば、この程度の膜厚で構成できる。   In addition, since the insulating coating layer 21 is formed to have a film thickness of at least about 10 μm or less, for example, a vehicle power supply (DC12V, DC24V) can be configured with such a film thickness.

なお、ダイヤモンドライクカーボンコーティング、エアロゾルデポジッション法の他に、セラミック塗料、絶縁電着塗装、もしくは絶縁フィルムのいずれかの成膜により形成しても良い。ただし、これらの製法は膜厚が少なくとも約100μm程度以下に形成されて少し厚くなる。   In addition to the diamond-like carbon coating and the aerosol deposition method, it may be formed by any film formation of ceramic paint, insulating electrodeposition coating, or insulating film. However, in these manufacturing methods, the film thickness is formed to be at least about 100 μm or less and slightly thickened.

また、複数個の熱電素子11を絶縁材料からなる絶縁基板13に、P型とN型を交互に略碁盤目状に複数個配列させて一体に構成していることにより、極小部品である熱電素子11とこれに接続する第1電極部材12が絶縁基板(13)により一体構成ができることで組み付け性が向上できる。   In addition, a plurality of thermoelectric elements 11 are integrally arranged on an insulating substrate 13 made of an insulating material by alternately arranging a plurality of P-types and N-types in a substantially grid pattern. The assemblability can be improved because the element 11 and the first electrode member 12 connected to the element 11 can be integrated with the insulating substrate (13).

(他の実施形態)
以上の一実施形態では、複数個の熱電素子11を絶縁基板13に一体構成した後に、一体となった高温側熱交換器14と低温側熱交換器16との間に、熱電素子11を挟むように組み付けて電極部22と第1電極部材12との接合面をはんだ付けで接合するように構成したが、これに限らず、具体的には、図3に示すように、一方の一体となった低温側熱交換器16の上面に第1電極部材12と熱電素子11を配設し、その上面に他方の高温側熱交換器14を上側に重ねて配設して、熱電素子11と第1電極部材12、および第1電極部材12と電極部22との接合面をはんだ付けで接合するように構成しても良い。
(Other embodiments)
In the above embodiment, the thermoelectric elements 11 are sandwiched between the high temperature side heat exchanger 14 and the low temperature side heat exchanger 16 after the plurality of thermoelectric elements 11 are integrally formed on the insulating substrate 13. As shown in FIG. 3, specifically, as shown in FIG. 3, it is configured so that the joining surfaces of the electrode portion 22 and the first electrode member 12 are joined by soldering. The first electrode member 12 and the thermoelectric element 11 are disposed on the upper surface of the low temperature side heat exchanger 16 and the other high temperature side heat exchanger 14 is disposed on the upper surface so as to overlap the thermoelectric element 11. You may comprise so that the joint surface of the 1st electrode member 12 and the 1st electrode member 12 and the electrode part 22 may be joined by soldering.

本発明の一実施形態における熱電変換装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in one Embodiment of this invention. 本発明の一実施形態における熱電変換装置の主要部の構成を示す分解模式図である。It is a disassembled schematic diagram which shows the structure of the principal part of the thermoelectric conversion apparatus in one Embodiment of this invention. 他の実施形態における熱電変換装置の主要部の構成を示す分解模式図である。It is an exploded schematic diagram which shows the structure of the principal part of the thermoelectric conversion apparatus in other embodiment.

符号の説明Explanation of symbols

11…熱電素子
12…第1電極部材
14…高温側熱交換器(金属基板)
15…フィン部材(熱交換部)
16…低温側熱交換器(金属基板)
21…絶縁被膜層
22…電極部
DESCRIPTION OF SYMBOLS 11 ... Thermoelectric element 12 ... 1st electrode member 14 ... High temperature side heat exchanger (metal substrate)
15 ... Fin member (heat exchange part)
16 ... Low temperature side heat exchanger (metal substrate)
21 ... Insulating coating layer 22 ... Electrode part

Claims (11)

金属材料からなる一対の金属基板(14、16)の間に、P型とN型からなる複数個の熱電素子(11)の両端がそれぞれ第1電極部材(12)を介在させて前記金属基板(14、16)に接合されているとともに、前記金属基板(14、16)の一方に前記第1電極部材(12)より伝熱される熱を吸熱、放熱する熱交換部(15)が配設される熱電変換装置において、
前記複数個の熱電素子(11)は、前記第1電極部材(12)を介して直列的に接続されているとともに、
前記金属基板(14、16)には、前記第1電極部材(12)と対向する位置に絶縁材料からなる絶縁被膜層(21)と、その絶縁被膜層(21)の表面に前記第1電極部材(12)に接合する電極部(22)とが形成されていることを特徴とする熱電変換装置。
Between the pair of metal substrates (14, 16) made of a metal material, both ends of a plurality of P-type and N-type thermoelectric elements (11) are respectively interposed with the first electrode member (12), and the metal substrate. (14, 16) and a heat exchange part (15) for absorbing and radiating heat transferred from the first electrode member (12) is disposed on one of the metal substrates (14, 16). In the thermoelectric conversion device,
The plurality of thermoelectric elements (11) are connected in series via the first electrode member (12), and
The metal substrate (14, 16) has an insulating coating layer (21) made of an insulating material at a position facing the first electrode member (12), and the first electrode on the surface of the insulating coating layer (21). The thermoelectric conversion apparatus characterized by forming the electrode part (22) joined to a member (12).
前記第1電極部材(12)と前記電極部(22)とは、半田付けで接合されていることを特徴とする請求項1に記載の熱電変換装置。   The thermoelectric conversion device according to claim 1, wherein the first electrode member (12) and the electrode portion (22) are joined by soldering. 前記金属基板(14、16)に形成された前記電極部(22)は、前記第1電極部材(12)の板厚よりも薄肉に形成していることを特徴とする請求項1または請求項2に記載の熱電変換装置。   The said electrode part (22) formed in the said metal substrate (14, 16) is formed thinner than the plate | board thickness of a said 1st electrode member (12), The Claim 1 or Claim characterized by the above-mentioned. 2. The thermoelectric conversion device according to 2. 前記電極部(22)は、前記絶縁被膜層(21)の表面に、ペースト状の導電材料を印刷した後に乾燥させて形成していることを特徴とする請求項3に記載の熱電変換装置。   The thermoelectric conversion device according to claim 3, wherein the electrode part (22) is formed by printing a paste-like conductive material on the surface of the insulating coating layer (21) and then drying it. 前記電極部(22)は、前記絶縁被膜層(21)の表面に、導電材料を接合後、エッチング加工で形成していることを特徴とする請求項3に記載の熱電変換装置。   The thermoelectric conversion device according to claim 3, wherein the electrode portion (22) is formed by etching after bonding a conductive material to the surface of the insulating coating layer (21). 前記電極部(22)は、前記第1電極部材(12)の板厚が0.1〜0.5mm程度に形成されているのに対して、少なくとも0.1mm以下の板厚に形成していることを特徴とする請求項3に記載の熱電変換装置。   The electrode portion (22) is formed with a plate thickness of at least 0.1 mm or less, whereas the plate thickness of the first electrode member (12) is about 0.1 to 0.5 mm. The thermoelectric conversion device according to claim 3, wherein 前記金属基板(14、16)に形成された前記絶縁被膜層(21)は、ダイヤモンドライクカーボンコーティング、もしくはアルミナまたは窒化アルミニウムからなるエアロゾルデポジッション法のいずれかの成膜により形成していることを特徴とする請求項1に記載の熱電変換装置。   The insulating coating layer (21) formed on the metal substrate (14, 16) is formed by either a diamond-like carbon coating or an aerosol deposition method made of alumina or aluminum nitride. The thermoelectric conversion device according to claim 1, wherein 前記絶縁被膜層(21)は、その膜厚が少なくとも約10μm程度以下に形成されていることを特徴とする請求項7に記載の熱電変換装置。   The thermoelectric conversion device according to claim 7, wherein the insulating coating layer (21) has a thickness of at least about 10 m or less. 前記金属基板(14、16)に形成された前記絶縁被膜層(21)は、セラミック塗料、絶縁電着塗装、もしくは絶縁フィルムのいずれかの成膜により形成していることを特徴とする請求項1に記載の熱電変換装置。   The insulating coating layer (21) formed on the metal substrate (14, 16) is formed by film formation of any one of ceramic paint, insulating electrodeposition coating, and insulating film. 1. The thermoelectric conversion device according to 1. 前記絶縁被膜層(21)は、その膜厚が少なくとも約100μm程度以下に形成されていることを特徴とする請求項9に記載の熱電変換装置。   The thermoelectric conversion device according to claim 9, wherein the insulating coating layer (21) has a thickness of at least about 100 µm or less. 前記複数個の熱電素子(11)は、絶縁材料からなる絶縁基板(13)に、P型とN型を交互に略碁盤目状に複数個配列させて一体に構成していることを特徴とする請求項1ないし請求項10のいずれか一項に記載の熱電変換装置。   The plurality of thermoelectric elements (11) are integrally formed by arranging a plurality of P-type and N-type alternately in a substantially grid pattern on an insulating substrate (13) made of an insulating material. The thermoelectric conversion device according to any one of claims 1 to 10.
JP2004250605A 2004-08-30 2004-08-30 Thermoelectric conversion device Pending JP2006066822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250605A JP2006066822A (en) 2004-08-30 2004-08-30 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250605A JP2006066822A (en) 2004-08-30 2004-08-30 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2006066822A true JP2006066822A (en) 2006-03-09

Family

ID=36112994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250605A Pending JP2006066822A (en) 2004-08-30 2004-08-30 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2006066822A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035907A (en) * 2005-07-27 2007-02-08 Kyocera Corp Thermoelectric module
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer
WO2009000865A2 (en) * 2007-06-25 2008-12-31 Karl-Ernst Schnorr Peltier element arrangement
JP2012523111A (en) * 2009-04-02 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Thermoelectric module having an insulating substrate
JP2014195011A (en) * 2013-03-29 2014-10-09 Yanmar Co Ltd Thermoelectric generator and marine vessel with the same
JP2017092295A (en) * 2015-11-12 2017-05-25 日東電工株式会社 Method of manufacturing semiconductor device
CN107093585A (en) * 2017-06-12 2017-08-25 厦门帕尔帖电子科技有限公司 Semiconductor refrigeration sheet and semiconductor refrigeration sheet manufacture craft
JP2017175110A (en) * 2016-03-18 2017-09-28 現代自動車株式会社Hyundai Motor Company Flexible thermoelectric element and method for manufacturing the same
US9859484B2 (en) 2012-10-24 2018-01-02 Sharp Kabushiki Kaisha Light emitting apparatus
TWI620354B (en) * 2017-03-01 2018-04-01 銀河製版印刷有限公司 Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
US9966522B2 (en) 2014-04-23 2018-05-08 Sharp Kabushiki Kaisha Light-emitting device substrate, light-emitting device, and method for manufacturing light-emitting device substrate
CN110494997A (en) * 2017-03-30 2019-11-22 琳得科株式会社 Thermo-electric conversion module and its manufacturing method
CN112164746A (en) * 2020-09-01 2021-01-01 西安交通大学 Thermoelectric power generation device
CN115164445A (en) * 2022-07-15 2022-10-11 中国电子科技集团公司第十研究所 Semiconductor thermoelectric refrigerator structure and enhanced heat exchange method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035907A (en) * 2005-07-27 2007-02-08 Kyocera Corp Thermoelectric module
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer
WO2009000865A2 (en) * 2007-06-25 2008-12-31 Karl-Ernst Schnorr Peltier element arrangement
WO2009000865A3 (en) * 2007-06-25 2009-09-24 Karl-Ernst Schnorr Peltier element arrangement
JP2012523111A (en) * 2009-04-02 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Thermoelectric module having an insulating substrate
US9859484B2 (en) 2012-10-24 2018-01-02 Sharp Kabushiki Kaisha Light emitting apparatus
JP2014195011A (en) * 2013-03-29 2014-10-09 Yanmar Co Ltd Thermoelectric generator and marine vessel with the same
US9966522B2 (en) 2014-04-23 2018-05-08 Sharp Kabushiki Kaisha Light-emitting device substrate, light-emitting device, and method for manufacturing light-emitting device substrate
JP2017092295A (en) * 2015-11-12 2017-05-25 日東電工株式会社 Method of manufacturing semiconductor device
JP2017175110A (en) * 2016-03-18 2017-09-28 現代自動車株式会社Hyundai Motor Company Flexible thermoelectric element and method for manufacturing the same
JP7030410B2 (en) 2016-03-18 2022-03-07 現代自動車株式会社 Flexible thermoelectric element and manufacturing method
TWI620354B (en) * 2017-03-01 2018-04-01 銀河製版印刷有限公司 Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
CN110494997A (en) * 2017-03-30 2019-11-22 琳得科株式会社 Thermo-electric conversion module and its manufacturing method
CN107093585A (en) * 2017-06-12 2017-08-25 厦门帕尔帖电子科技有限公司 Semiconductor refrigeration sheet and semiconductor refrigeration sheet manufacture craft
CN112164746A (en) * 2020-09-01 2021-01-01 西安交通大学 Thermoelectric power generation device
CN112164746B (en) * 2020-09-01 2022-12-06 西安交通大学 Thermoelectric power generation device
CN115164445A (en) * 2022-07-15 2022-10-11 中国电子科技集团公司第十研究所 Semiconductor thermoelectric refrigerator structure and enhanced heat exchange method
CN115164445B (en) * 2022-07-15 2023-10-24 中国电子科技集团公司第十研究所 Semiconductor thermoelectric refrigerator structure and enhanced heat exchange method

Similar Documents

Publication Publication Date Title
JP3510831B2 (en) Heat exchanger
CN1969397B (en) Thermoelectric module
JP4663469B2 (en) Heat exchanger
JP2006066822A (en) Thermoelectric conversion device
JP5956608B2 (en) Thermoelectric module
JP5298532B2 (en) Thermoelectric element
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2008034792A (en) Thermoelectric converter and its manufacturing process
JP5395577B2 (en) Thermoelectric conversion module
JP2008034791A (en) Thermoelectric converter and its manufacturing process
JP5249662B2 (en) Thermoelectric conversion module and manufacturing method thereof
US20180261751A1 (en) Method for producing a thermoelectric module
JP2000058930A (en) Thermoelement, and its manufacture
JP2007035907A (en) Thermoelectric module
JP2007123564A (en) Heat exchanging device
JP5638329B2 (en) Thermoelectric element and thermoelectric module including the same
JP2008078222A (en) Thermoelectric transducer
KR101508793B1 (en) Manufacturing method of heat exchanger using thermoelectric module
WO2012127710A1 (en) Electrostatic atomizer device and method for producing same
JP2000164941A (en) Thermoelectric conversion module
KR20240018621A (en) thermoelectric module
JP2007073904A (en) Circuit board
JP2003222426A (en) Heat exchanger
JPH077187A (en) Thermoelectric converter
JP5638342B2 (en) Thermoelectric element and thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100106