JP2007123564A - Heat exchanging device - Google Patents

Heat exchanging device Download PDF

Info

Publication number
JP2007123564A
JP2007123564A JP2005313862A JP2005313862A JP2007123564A JP 2007123564 A JP2007123564 A JP 2007123564A JP 2005313862 A JP2005313862 A JP 2005313862A JP 2005313862 A JP2005313862 A JP 2005313862A JP 2007123564 A JP2007123564 A JP 2007123564A
Authority
JP
Japan
Prior art keywords
heat exchange
fin
heat
fins
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005313862A
Other languages
Japanese (ja)
Inventor
Hiroshi Takenouchi
浩 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005313862A priority Critical patent/JP2007123564A/en
Publication of JP2007123564A publication Critical patent/JP2007123564A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermoelectric module which is high in heat dissipating properties and capable of maintaining its excellent long-term reliability in a high-temperature and high-humidity environment. <P>SOLUTION: A heat exchanging device is equipped with the thermoelectric module which is provided with a pair of supporting substrates 1a and 1b which are opposed to each other, and the adjacent thermoelements 3a and 3b which are arranged between the one primary surfaces of the supporting substrates 1a and 1b and electrically connected together with electrodes; and a fin 7 which is provided to at least the other primary surface of one of the pair of supporting substrates 1a and 1b, and equipped with heat exchanging boards 7a that are arranged nearly in parallel standing nearly vertical to the primary surfaces of the supporting substrates 1a and 1b. Moreover, a space between the adjacent heat exchanging boards 7a and 7a located near a center in the arrangement direction of the heat exchanging boards 7a is set smaller than that between the adjacent heat exchanging boards 7a and 7a arranged near both ends in the arrangement direction of the heat exchanging boards 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷却あるいは放熱用の熱交換フィンを備え、空調機、冷温庫、発熱体の冷却、熱電発電等に好適に使用され、特に自動車シートの冷却または加温の用途に好適な熱電モジュールを利用した熱交換装置に関する。   The present invention includes a heat exchange fin for cooling or heat dissipation, and is suitably used for an air conditioner, a cold / hot storage, a heating element cooling, a thermoelectric power generation, etc., and particularly a thermoelectric module suitable for an automobile seat cooling or heating application. The present invention relates to a heat exchange device using

従来より、ペルチェ効果を用いた熱電モジュールを利用した熱交換装置は、冷却用途の熱交換装置として恒温槽、冷蔵庫、半導体製造装置等に多用されている。また、電流を反転させることで冷却と加熱の両方が可能であるので、冷温庫や空調機の用途にも使用されている。さらに、この熱電モジュールをは温度差を与えることで電気を取り出すことも可能なため、熱電発電装置としても注目されている。   Conventionally, a heat exchange device using a thermoelectric module using the Peltier effect has been widely used as a heat exchange device for cooling purposes in a thermostatic bath, a refrigerator, a semiconductor manufacturing device, or the like. Moreover, since both cooling and heating are possible by reversing an electric current, it is used also for the use of a cold storage and an air conditioner. Further, since this thermoelectric module can also take out electricity by giving a temperature difference, it has been attracting attention as a thermoelectric power generator.

これらのペルチェ効果を利用した熱電モジュールを用いた熱交換装置の代表的な構造としては、図1に示すように、支持基板1a、1bの表面に、それぞれ配線導体(電極)2a、2bが形成され、熱電素子3(N型熱電素子3a及びP型熱電素子3b)が配線導体2a、2bによって挟持されるとともに、電気的に直列に連結されるように構成され、支持基板1a,1bに熱交換用のフィンが取り付けられている。このN型熱電素子3a及びP型熱電素子3bは、交互に配列され、電気的に直列になるように配線導体2a、2bで接続され、さらに外部接続端子4に接続されている。これにより、外部接続端子4から熱電素子3に直流電圧を印加することができ、その電流の向きに応じて吸熱あるいは発熱させることができる。   As a typical structure of a heat exchange device using a thermoelectric module using these Peltier effects, as shown in FIG. 1, wiring conductors (electrodes) 2a and 2b are formed on the surfaces of support substrates 1a and 1b, respectively. The thermoelectric element 3 (N-type thermoelectric element 3a and P-type thermoelectric element 3b) is sandwiched between the wiring conductors 2a and 2b and electrically connected in series, and heat is applied to the support substrates 1a and 1b. Replacement fins are attached. The N-type thermoelectric elements 3 a and the P-type thermoelectric elements 3 b are alternately arranged, connected by wiring conductors 2 a and 2 b so as to be electrically in series, and further connected to the external connection terminal 4. As a result, a DC voltage can be applied from the external connection terminal 4 to the thermoelectric element 3, and heat can be absorbed or generated according to the direction of the current.

この熱電モジュールにおいて吸熱された熱量は、放熱面から放熱され、同時に放熱面は通電されたジュール発熱も放熱させる必要がある。従って、吸熱あるいは発熱のエネルギーを冷温庫あるいは空調機に用いるためには、放熱面を放熱しやすい構造にする必要がある。放熱特性が悪いと放熱できない熱量が冷却面に移動するため、冷却特性を大幅に低下させる。従って、ペルチェ効果を利用した熱交換装置の冷却効率を高める上で放熱特性を高めることは特に重要である。   The amount of heat absorbed in the thermoelectric module is radiated from the heat radiating surface, and at the same time, the heat radiating surface needs to radiate the heated Joule heat. Therefore, in order to use the energy of heat absorption or heat generation in a cold storage or air conditioner, it is necessary to make the heat radiation surface easy to radiate heat. If the heat dissipation characteristics are poor, the amount of heat that cannot be dissipated moves to the cooling surface, which greatly reduces the cooling characteristics. Therefore, it is particularly important to improve the heat dissipation characteristics in order to increase the cooling efficiency of the heat exchange device using the Peltier effect.

放熱面の放熱特性を向上させる方法としては、放熱特性の高い水冷のヒートシンクを接合することが理想的であるが、水冷構造が複雑で大型になるため、一般的にはフィンあるいはファン、さらにはフィン付きのファンなどの熱交換器を放熱面に接着して使用されている。また、冷却面にも熱交換器を使用することで冷却、加熱の両方に使用することが可能になるばかりではなく、フィンを空冷させ、その空気を利用することで冷却あるいは放熱可能な簡易的な空調機として使用可能となる。   As a method of improving the heat dissipation characteristics of the heat dissipation surface, it is ideal to join a water-cooled heat sink with high heat dissipation characteristics, but since the water-cooling structure is complicated and large, generally fins or fans, It is used by adhering a heat exchanger such as a fan with fins to the heat dissipation surface. In addition to using a heat exchanger on the cooling surface, not only can it be used for both cooling and heating, but air can be used to cool or dissipate the fins by air. It can be used as a simple air conditioner.

ここで、特許文献1に示すように、冷却あるいは放熱の両方に使用が可能な熱電モジュールを利用した熱交換装置のフィンとしては、フィンを構成する部材を均等配置するのが簡便であり、一般的に用いられている。また、特許文献2には、放熱特性を高めるために、熱電素子に直接熱交換用のフィンを接合した熱電モジュールが開示されている。
特開2003−332642号公報 特開2002−84007号公報
Here, as shown in Patent Document 1, as the fins of the heat exchange device using the thermoelectric module that can be used for both cooling and heat dissipation, it is easy to arrange the members constituting the fins evenly. Has been used. Patent Document 2 discloses a thermoelectric module in which a heat exchange fin is directly joined to a thermoelectric element in order to improve heat dissipation characteristics.
JP 2003-332642 A JP 2002-84007 A

しかしながら、冷却、加熱の両方に用いられる熱交換フィンを兼ね備えた熱電モジュールを利用した熱交換装置は、消費電力と冷却性能の比(冷却性能/消費電力)で示される成績係数(COP)では、未だ実用領域では1以下であり、圧縮型冷凍機のCOPの3〜4と比較すると効率が格段に悪く、限定された用途でしか使用されていない。また、近年では、例えば自動車のシートの冷却など、性能を保証する温度及び湿度の幅が広がり、より過酷な環境での用途が広がっており、性能向上と同時に高い耐久特性及び信頼性が要求されている。   However, a heat exchange device using a thermoelectric module that has heat exchange fins used for both cooling and heating has a coefficient of performance (COP) indicated by the ratio of power consumption to cooling performance (cooling performance / power consumption). It is still 1 or less in the practical range, and the efficiency is remarkably worse than that of COPs 3 to 4 of the compression refrigerator, and it is used only for limited applications. Also, in recent years, the range of temperature and humidity that guarantees performance, such as cooling of automobile seats, has expanded, and applications in harsh environments have expanded, requiring high durability characteristics and reliability at the same time as improving performance. ing.

このような見地において、等間に隔配置した熱交換のフィンを設けた熱交換装置では、熱交換媒体(主に空気)の流れを考慮しておらず、熱交換装置内にて熱交換のバラツキがあり、熱交換の効率悪い上、例えば、印加する電圧の正負の反転を繰り返すような場合において、耐久性が劣るという問題がある。更には、また、自動車車内のような高湿となるような場所では、冷却側で結露が発生するため、熱交換効率が低下する。また先述した特許文献2のような構造では熱電モジュールの素子間が短絡するおそれもある。   In such a viewpoint, in the heat exchange device provided with heat exchange fins spaced apart at equal intervals, the flow of the heat exchange medium (mainly air) is not considered, and heat exchange is performed in the heat exchange device. In addition, there is a problem that the heat exchange efficiency is low and the durability is inferior when, for example, the reversal of the positive and negative of the applied voltage is repeated. Furthermore, in places where the humidity is high, such as in an automobile, condensation occurs on the cooling side, so that the heat exchange efficiency decreases. Moreover, in the structure like patent document 2 mentioned above, there exists a possibility that the elements of a thermoelectric module may short-circuit.

従って、本発明は、熱交換特性が高く、かつ、高温多湿環境において長期信頼性に優れる熱電モジュールを利用した熱交換装置を得ることを目的とする。   Therefore, an object of the present invention is to obtain a heat exchange device using a thermoelectric module that has high heat exchange characteristics and is excellent in long-term reliability in a high-temperature and high-humidity environment.

上記課題を解決するための本発明の熱交換装置は、対向する一対の支持基板を有し、これらの支持基板の一方の主面間に複数の熱電素子が配列され、隣り合う熱電素子間を電極により電気的に連結した熱電モジュールと、前記一対の支持基板のうち、少なくとも一方の支持基板における他方の主面側に配設されたフィンとを備えた熱交換装置において、前記フィンは、前記支持基板の主面に対して略垂直な方向に起立し互いに略平行に配列された複数の熱交換板を有し、該熱交換板の配列方向の中央付近に配設された隣り合う2つの熱交換板の間隔が、前記配列方向の両端付近に配設された隣り合う2つの熱交換板の間隔よりも小さいことを特徴とする。本発明における隣り合う2つの前記熱交換板の間隔は、前記配列方向の中央付近から両端付近に向かって漸次大きくなっているのが好ましい。   The heat exchange device of the present invention for solving the above-described problem has a pair of opposing support substrates, a plurality of thermoelectric elements are arranged between one main surface of these support substrates, and the adjacent thermoelectric elements are connected to each other. In the heat exchanging device, comprising: a thermoelectric module electrically connected by an electrode; and a fin disposed on the other main surface side of at least one of the pair of support substrates, A plurality of heat exchanging plates standing in a direction substantially perpendicular to the main surface of the support substrate and arranged substantially parallel to each other, and two adjacent heat exchange plates disposed near the center of the arrangement direction of the heat exchanging plates; The interval between the heat exchange plates is smaller than the interval between two adjacent heat exchange plates arranged near both ends in the arrangement direction. It is preferable that the interval between the two adjacent heat exchange plates in the present invention gradually increases from the vicinity of the center in the arrangement direction to the vicinity of both ends.

また、本発明の熱交換装置は、対向する一対の支持基板を有し、これらの支持基板の一方の主面間に複数の熱電素子が配列され、隣り合う熱電素子間を電極により電気的に連結した熱電モジュールと、前記一対の支持基板のうち、少なくとも一方の支持基板における他方の主面側に配設されたフィンとを備えた熱交換装置において、前記フィンは熱交換媒体が通過する複数の流路を有し、これらの流路のうち、中央付近の流路の断面積が両端付近の流路よりも小さいことを特徴とするものであってもよい。本発明における前記複数の流路の断面積は、中央付近の流路から両端の流路に向かって漸次大きくなっているのが好ましい。   The heat exchange device of the present invention has a pair of opposed support substrates, a plurality of thermoelectric elements are arranged between one main surface of these support substrates, and the adjacent thermoelectric elements are electrically connected by electrodes. In the heat exchanging device comprising a connected thermoelectric module and a fin disposed on the other main surface side of at least one of the pair of support substrates, a plurality of the fins through which a heat exchange medium passes. Among these channels, the cross-sectional area of the channel near the center may be smaller than the channels near both ends. In the present invention, it is preferable that the cross-sectional areas of the plurality of channels gradually increase from the channel near the center toward the channels at both ends.

本発明における前記フィンの表面には撥水処理が施されているのが好ましく、前記フィンはコルゲートフィンであるのがより好ましい。   In the present invention, the surface of the fin is preferably subjected to water repellent treatment, and the fin is more preferably a corrugated fin.

本発明の熱交換装置によれば、フィンが、前記支持基板の主面に対して略垂直な方向に起立し互いに略平行に配列された複数の熱交換板を有し、該熱交換板の配列方向の中央付近に配設された隣り合う2つの熱交換板の間隔が、前記配列方向の両端付近に配設された隣り合う2つの熱交換板の間隔よりも小さいので、熱交換装置に送られる熱交換媒体の流速にばらつきが生じるのを抑制し、速度分布をより均等にすることができるため、熱交換効率のばらつきを抑制することができ、その結果、熱交換装置の耐久性を向上させることができる。   According to the heat exchanging device of the present invention, the fin has a plurality of heat exchanging plates standing in a direction substantially perpendicular to the main surface of the support substrate and arranged substantially parallel to each other, Since the interval between two adjacent heat exchange plates arranged near the center in the arrangement direction is smaller than the interval between two adjacent heat exchange plates arranged near both ends in the arrangement direction, the heat exchange device Variations in the flow rate of the heat exchange medium being sent can be suppressed and the velocity distribution can be made more uniform, so variations in heat exchange efficiency can be suppressed, and as a result, the durability of the heat exchange device can be reduced. Can be improved.

また、隣り合う2つの前記熱交換板の間隔は、前記配列方向の中央付近から両端付近に向かって漸次大きくなるときには、印加する電圧の正負の反転を繰り返すような場合でも、熱電モジュール内に生じる熱膨張差は緩やかになり、より耐久性が向上する。   Further, when the interval between the two adjacent heat exchange plates gradually increases from the vicinity of the center in the arrangement direction to the vicinity of both ends, the gap is generated in the thermoelectric module even when the reversal of the positive / negative of the applied voltage is repeated. The difference in thermal expansion becomes gradual and durability is further improved.

本発明の他の熱交換装置によれば、フィンが熱交換媒体が通過する複数の流路を有し、これらの流路のうち、中央付近の流路の断面積が両端付近の流路よりも小さいので、熱交換装置に送られる熱交換媒体の流速にばらつきが生じるのを抑制し、速度分布をより均等にすることができるため、熱交換効率のばらつきを抑制することができ、その結果、熱交換装置の耐久性を向上させることができる。   According to another heat exchange device of the present invention, the fin has a plurality of flow paths through which the heat exchange medium passes, and among these flow paths, the cross-sectional area of the flow path near the center is larger than the flow paths near both ends. Therefore, variation in the flow rate of the heat exchange medium sent to the heat exchange device can be suppressed, and the velocity distribution can be made more uniform, so that variation in heat exchange efficiency can be suppressed. The durability of the heat exchange device can be improved.

また、複数の流路の断面積は、中央付近の流路から両端の流路に向かって漸次大きくなるときには、印加する電圧の正負の反転を繰り返すような場合でも、熱電モジュール内に生じる熱膨張差は緩やかになり、より耐久性が向上する。   In addition, when the cross-sectional area of the plurality of flow paths gradually increases from the flow path near the center toward the flow paths at both ends, the thermal expansion that occurs in the thermoelectric module even when the applied voltage is repeatedly reversed. The difference becomes milder and durability is improved.

また、熱交換フィンには、撥水処理が施されていることが更に望ましい。これは、例えば、自動車用途などのように高温多湿条件下では、冷却側のフィン表面にて結露が生じ、熱交換効を妨げる現象が発生するが、撥水処理を施すことにより、ファン表面に結露がとどまることを防止することができる。また、結露による水分が熱交換装置な内に生じ無いため、熱電モジュール内での漏電を防ぐことができる。   Further, it is further desirable that the heat exchange fin is subjected to water repellent treatment. This is because, for example, under high-temperature and high-humidity conditions such as automotive applications, condensation occurs on the cooling fin surface and a phenomenon that hinders the heat exchange effect occurs. It is possible to prevent condensation from staying. Moreover, since moisture due to condensation does not occur in the heat exchange device, leakage in the thermoelectric module can be prevented.

さらには、熱交換フィンに一体型のコルゲートフィンを用いたことにより、フィンによって形成される流路の表面積を増やすことできる上、より均一に熱交換が可能となり、熱交換効率と耐久性の両方が良好な結果となった。   Furthermore, by using an integrated corrugated fin for the heat exchange fins, the surface area of the flow path formed by the fins can be increased, and more uniform heat exchange can be achieved, providing both heat exchange efficiency and durability. Gave good results.

以上のように、本発明によれば、熱交換特性及び耐久特性が優れた熱電モジュールを用いた熱交換装置が得られ、本発明の熱交換装置を冷温庫、空調機等に用いることで熱交換効率が高く、高温高湿の環境下でも長期間使用することが可能となる。   As described above, according to the present invention, a heat exchange device using a thermoelectric module having excellent heat exchange characteristics and durability characteristics can be obtained, and heat can be obtained by using the heat exchange device of the present invention for a cold storage room, an air conditioner, or the like. The exchange efficiency is high, and it can be used for a long time even in a high temperature and high humidity environment.

図2は、本発明の一実施形態にかかる熱交換装置を示す断面図である。図3は、本発明の一実施形態にかかる熱交換装置を示す斜視図である。   FIG. 2 is a cross-sectional view showing a heat exchange device according to an embodiment of the present invention. FIG. 3 is a perspective view showing a heat exchange device according to an embodiment of the present invention.

図2に示すように、本実施形態にかかる熱交換装置は、支持基板1a、1bからなる一対の支持基板1と、支持基板1aおよび支持基板1bのそれぞれの一方の主面側(対抗する主面間)に配列された複数のN型熱電素子3a及びP型熱電素子3bからなる熱電素子3と、支持基板1aおよび支持基板1bのそれぞれの他方の主面側に設けられたフィン7,7とを備えている。支持基板1a、1bのそれぞれの一方の主面には、隣接するN型熱電素子3a及びP型熱電素子3b間を電気的に連結する電極2が複数形成されている。支持基板1a、1bは金属板8と絶縁層5とからなる。金属板8にはフィン7が連結部材6aにより固着されている。電極2と熱電素子3は連結部材6bにより固着されており、各熱電素子3は、電極2により電気的に直列に連結されている。絶縁層5は、金属板8と電極2を電気的に絶縁させることを目的としている。   As shown in FIG. 2, the heat exchanging device according to the present embodiment includes a pair of support substrates 1 including support substrates 1a and 1b, and one main surface side of each of the support substrate 1a and the support substrate 1b. And the fins 7, 7 provided on the other main surface side of each of the support substrate 1 a and the support substrate 1 b, and the thermoelectric elements 3 including a plurality of N-type thermoelectric elements 3 a and P-type thermoelectric elements 3 b arranged between the surfaces. And. A plurality of electrodes 2 that electrically connect adjacent N-type thermoelectric elements 3a and P-type thermoelectric elements 3b are formed on one main surface of each of the support substrates 1a and 1b. The support substrates 1 a and 1 b are composed of a metal plate 8 and an insulating layer 5. Fins 7 are fixed to the metal plate 8 by connecting members 6a. The electrode 2 and the thermoelectric element 3 are fixed by a connecting member 6 b, and each thermoelectric element 3 is electrically connected in series by the electrode 2. The insulating layer 5 is intended to electrically insulate the metal plate 8 and the electrode 2 from each other.

このような構造の熱交換装置では、電極2に発生する吸熱または放熱をフィン7に伝熱し、フィン7によって冷却または放熱される。例えば、フィン7に空気を流し空冷させた場合、ことによって、冷却または加熱された空気が発生し、空調機として使用することが可能である。   In the heat exchange device having such a structure, the heat absorption or heat dissipation generated in the electrode 2 is transferred to the fin 7 and cooled or radiated by the fin 7. For example, when air is allowed to flow through the fins 7 and air-cooled, depending on the situation, cooled or heated air is generated and can be used as an air conditioner.

金属板8の厚みは、熱応力を緩和する見地から、0.5mm以下、好ましくは0.1〜0.3mmであるのがよい。厚みが0.5mmを超える場合、剛性が高くなり容易に変形できずに応力集中を引き起こし繰り返しの耐久特性を低下させるおそれがある。金属板8の材料は、熱伝導率の高い銅、アルミ、またはそれらを主成分とする合金などが望ましい。   The thickness of the metal plate 8 is 0.5 mm or less, preferably 0.1 to 0.3 mm, from the viewpoint of relaxing thermal stress. If the thickness exceeds 0.5 mm, the rigidity becomes high and the film cannot be easily deformed, causing stress concentration, which may reduce repeated durability characteristics. The material of the metal plate 8 is preferably copper, aluminum having high thermal conductivity, or an alloy containing them as a main component.

また、電極2の厚みは、熱電素子3へ供給する電流値の見地から、0.1mm以上であるのがよい。厚みが0.1mm以下の場合、熱電モジュールを流れる電流値の影響により発熱し、熱交換装置の性能を低下させるおそれがある。電極2の材料は、電気抵抗率の低い銅、アルミ、またはそれらを主成分とする合金などが望ましい。   The thickness of the electrode 2 is preferably 0.1 mm or more from the viewpoint of the current value supplied to the thermoelectric element 3. When the thickness is 0.1 mm or less, heat is generated due to the influence of the current value flowing through the thermoelectric module, which may reduce the performance of the heat exchange device. The material of the electrode 2 is preferably copper, aluminum having a low electrical resistivity, or an alloy containing them as a main component.

連結部材6a、6bは、金属であれば特に限定されるものではなく、例えばAg、Cu、Zn、Ti、Alなどのロウ材であってもよいが、はんだであるのが望ましい。はんだが好ましい理由は、以下の通りである。すなわち、前述したように熱電モジュールは両面において大きな温度差を発生させるために熱応力が発生しやすい。この熱応力は特に連結部に集中しやすいため、連結部に変形しやすいはんだを用いることで冷熱の繰り返しに対する耐久性を大幅に高めることが可能となる。特に、Sn、Bi、Ag、Cu、Au、ZnおよびInからなる群より選ばれる少なくとも一種を主成分とするはんだを用いることで、接合強度を高め、耐久性を高めることができる。具体的なはんだ組成としては、質量%比で、42Sn−58Bi、95Sn−5Sb、96.5Sn−3.5Ag、48Sn−52In、96.5Sn−3Ag−0.5Cu、80Au−20Sn、91Sn−9Znなどが好適に使用できる。また、Pbフリーはんだとすることで環境への影響を小さくし、Pbイオンによる耐久性の劣化を抑制することができる。   The connecting members 6a and 6b are not particularly limited as long as they are metals, and may be brazing materials such as Ag, Cu, Zn, Ti, and Al, but are preferably solder. The reason why solder is preferable is as follows. That is, as described above, since the thermoelectric module generates a large temperature difference between both surfaces, thermal stress is likely to occur. Since this thermal stress tends to concentrate especially on the connecting portion, it is possible to greatly enhance the durability against repeated cold heat by using solder that is easily deformed in the connecting portion. In particular, by using a solder whose main component is at least one selected from the group consisting of Sn, Bi, Ag, Cu, Au, Zn, and In, it is possible to increase joint strength and durability. The specific solder composition is 42Sn-58Bi, 95Sn-5Sb, 96.5Sn-3.5Ag, 48Sn-52In, 96.5Sn-3Ag-0.5Cu, 80Au-20Sn, 91Sn-9Zn in mass% ratio. Etc. can be used suitably. Moreover, the influence on the environment can be reduced by using Pb-free solder, and deterioration of durability due to Pb ions can be suppressed.

連結部材6a、6bの厚みは、5μm以上、好ましくは10μm以上、より好ましくは10〜30μmにするのがよい。これにより、電極2と連結部材6b、熱交換器7と連結部材6aの界面に密着不良が生じるのを防止し、熱抵抗を低減させることができる。この厚みが5μm未満である場合、密着していない空間が発生しやすくなり熱抵抗を増大させると同時に密着性を低下させるおそれがある。特にそのような密着不良の領域は応力も集中しやすく繰り返し使用における耐久性も劣化させるおそれがある。さらには、連結部材6bは熱電素子3の発熱に伴う高温熱の影響を受けやすい為、連結部材6bの溶融温度は、連結部材6aの溶融温度より高温であることが望ましい。   The thickness of the connecting members 6a and 6b is 5 μm or more, preferably 10 μm or more, more preferably 10 to 30 μm. Thereby, it is possible to prevent adhesion failure from occurring at the interface between the electrode 2 and the connecting member 6b, the heat exchanger 7 and the connecting member 6a, and to reduce the thermal resistance. When this thickness is less than 5 μm, a non-adhered space is likely to be generated, which may increase thermal resistance and at the same time reduce adhesiveness. In particular, in such a poorly contacted region, stress is likely to concentrate, and there is a risk that durability during repeated use may deteriorate. Furthermore, since the connecting member 6b is easily affected by the high temperature heat accompanying the heat generation of the thermoelectric element 3, the melting temperature of the connecting member 6b is preferably higher than the melting temperature of the connecting member 6a.

支持基板1は、連結部材8で熱交換器7と連結される面と反対側の面に絶縁層5を形成するが、この絶縁層5は高い絶縁性とある程度の柔軟性が必要なことから樹脂製であることが望ましい。絶縁層5としては、ポリイミド、ポリアミド、ポリアミドイミド、エポキシ、ポリエチレンテレフタレート(PET)の少なくとも1種を用いることで前述した高温高湿環境においても化学的に安定した特性を得ることができる。絶縁層5の厚みは、0.01mm以上にすることが絶縁性を保つ上で好ましく、より好ましくは0.02mm以上、さらに好ましくは0.03mm以上、特に好ましくは0.03〜0.1mmであるのがよい。支持基板1の表面に絶縁層5を形成する方法としては、ドクターブレード法やスクリーン印刷法などの既存の方法で、金属板8上に樹脂材料を均一に成膜したのち、電極基板2を重ね、例えば200〜400℃程度の温度をかけながら応力をかけ圧着する熱圧着による方法が例示できる。   The support substrate 1 forms an insulating layer 5 on the surface opposite to the surface connected to the heat exchanger 7 by the connecting member 8, and this insulating layer 5 needs high insulation and a certain degree of flexibility. It is desirable that it is made of resin. By using at least one of polyimide, polyamide, polyamideimide, epoxy, and polyethylene terephthalate (PET) as the insulating layer 5, chemically stable characteristics can be obtained even in the above-described high temperature and high humidity environment. The thickness of the insulating layer 5 is preferably 0.01 mm or more for maintaining insulation, more preferably 0.02 mm or more, still more preferably 0.03 mm or more, and particularly preferably 0.03 to 0.1 mm. There should be. As a method for forming the insulating layer 5 on the surface of the support substrate 1, a resin material is uniformly formed on the metal plate 8 by an existing method such as a doctor blade method or a screen printing method, and then the electrode substrate 2 is overlaid. For example, a method by thermocompression bonding in which stress is applied while applying a temperature of about 200 to 400 ° C. can be exemplified.

絶縁層5には、無機酸化物または無機窒化物といった高熱伝導性のフィラーを含有することが絶縁層の熱伝導率を高め、熱抵抗を低減させるうえで好ましい。フィラーの添加率は、30体積%以上、好ましくは30〜70体積%であるのがよい。また、フィラーは、粒径が1μm以上、好ましくは10〜100μm程度で、鱗片状の粒子であるのが、熱伝導率を高める上で好ましい。フィラーとしては、例えばアルミナ、酸化亜鉛、酸化ケイ素などの酸化物、窒化ホウ素、窒化アルミニウム、窒化ケイ素などの窒化物を例示することができる。   It is preferable that the insulating layer 5 contains a highly thermally conductive filler such as an inorganic oxide or an inorganic nitride in order to increase the thermal conductivity of the insulating layer and reduce the thermal resistance. The addition rate of a filler is 30 volume% or more, Preferably it is 30-70 volume%. The filler has a particle size of 1 μm or more, preferably about 10 to 100 μm, and is preferably scaly particles in order to increase the thermal conductivity. Examples of the filler include oxides such as alumina, zinc oxide, and silicon oxide, and nitrides such as boron nitride, aluminum nitride, and silicon nitride.

フィン7は放熱するための構造を有しているものであれば特に限定されず、図2に示すような空気が流れる空間を有する構造や放熱用のピンが多数ある構造のフィンなどが例と上げられる。さらにファンを兼ね備えたものであれば空冷が同時に可能となる。また、フィン7の表面積を大きくするために、フィン表面に凹凸を設けても良いが、圧力損失が大きくなり送風装置が大型化する為、図3に示すような波形(ウェーブ)の加工を施したコルゲートフィンが望ましい。   The fin 7 is not particularly limited as long as it has a structure for radiating heat, and examples thereof include a structure having a space through which air flows as shown in FIG. 2 and a structure having many radiating pins. Raised. Furthermore, if it has a fan, air cooling can be performed simultaneously. Further, in order to increase the surface area of the fin 7, the fin surface may be provided with irregularities. However, in order to increase the pressure loss and increase the size of the air blower, the waveform (wave) as shown in FIG. 3 is applied. Corrugated fins are desirable.

フィン7を構成する材料は、銅またはアルミニウムであるのが、高い熱伝導率が得られ、熱交換特性を高める上で望ましい。特に、金属板8とフィン7は両方とも同じ材料で熱膨張率を合わせることで、連結時の熱応力を低減することができる。さらに、両方とも銅を用いることがはんだ接合を容易にさせる上で好ましい。アルミニウムを用いる場合は、表面にSnなどのメッキ層を形成することではんだ接合が可能になる。   The material constituting the fin 7 is preferably copper or aluminum in order to obtain high thermal conductivity and enhance heat exchange characteristics. In particular, the metal plate 8 and the fin 7 are both made of the same material and have the same thermal expansion coefficient, so that the thermal stress during connection can be reduced. Furthermore, it is preferable to use copper for both in order to facilitate solder joining. When aluminum is used, solder bonding is possible by forming a plating layer such as Sn on the surface.

本発明では、図4に示すように、フィン7が熱電モジュールの表面の金属板8上に、熱交換効率を高める必要のある流路の断面積を他の流路よりも大きく配置されていることが重要である。このフィンの配置により、熱熱モジュールからの熱をフィンを介して熱交換媒体と効率よく熱交換できる。これは、フィン7で形成される流路内を流れる熱交換媒体の流量を均等にすることにより、熱電素子3が放熱・吸熱する熱を均等にフィン7から熱交換媒体へ伝えることができ、例えば、印加する電圧の正負の反転を繰り返すような場合でも、熱電モジュール内に生じる熱膨張差は緩やかになり、より耐久性が向上する。   In the present invention, as shown in FIG. 4, the fins 7 are arranged on the metal plate 8 on the surface of the thermoelectric module so that the cross-sectional area of the flow path that needs to increase the heat exchange efficiency is larger than the other flow paths. This is very important. With the arrangement of the fins, heat from the thermothermal module can be efficiently exchanged with the heat exchange medium via the fins. This is because, by equalizing the flow rate of the heat exchange medium flowing in the flow path formed by the fins 7, the heat that the thermoelectric element 3 radiates and absorbs heat can be evenly transmitted from the fins 7 to the heat exchange medium, For example, even when the applied voltage is repeatedly reversed between positive and negative, the difference in thermal expansion generated in the thermoelectric module becomes gradual, and the durability is further improved.

通常、管内を通ってフィン7へ送られる空気のような熱交換媒体は、中心部分の流量が最も早く、壁面へ緩やかに遅くなることから、複数の流路のうち、中央付近の流路の断面積が両端付近の流路よりも小さいことが望ましい。また、この熱交換媒体の流量分布を考慮し、流路の断面積は、中央の流路から両端の流路に向かって漸次大きくなることがさらに望ましい。   Usually, the heat exchange medium such as air sent to the fins 7 through the pipe has the fastest flow rate in the central part and slowly slows down to the wall surface. It is desirable that the cross-sectional area is smaller than the flow path near both ends. Further, in consideration of the flow distribution of the heat exchange medium, it is more desirable that the cross-sectional area of the flow path gradually increases from the central flow path toward the flow paths at both ends.

ここで、本発明において「流路の断面積」とは、支持基板に垂直で、かつ、流路に垂直(流路内を流れる流体の進行方向に垂直)な断面において、流路を構成する部材(熱交換板、支持基板の主面など)で囲まれた領域の面積をいう。例えば、流路の一部が開口している場合には、開口部分の両端を結ぶ直線と当該流路を構成する部材とで囲まれた領域の面積をいう。   Here, in the present invention, the “cross-sectional area of the flow path” means that the flow path is configured in a cross section perpendicular to the support substrate and perpendicular to the flow path (perpendicular to the traveling direction of the fluid flowing in the flow path). It refers to the area of a region surrounded by members (heat exchange plate, main surface of support substrate, etc.). For example, when a part of the flow path is open, it refers to the area of a region surrounded by a straight line connecting both ends of the opening and a member constituting the flow path.

また、上記と同様の理由から、フィン7は、支持基板1a,1bの主面に対して略垂直な方向に起立し互いに略平行に配列された複数の熱交換板7a、7a、・・・、7aを有し、該熱交換板7aの配列方向の中央に配設された隣り合う2つの熱交換板の間隔c1が、配列方向の両端に配設された隣り合う2つの熱交換板7aの間隔c2よりも小さくなるようにしてもよい。また、隣り合う2つの熱交換板7a,7aの間隔は、配列方向の中央付近から両端付近に向かって漸次大きくなるのがさらに好ましい。   For the same reason as described above, the fin 7 stands up in a direction substantially perpendicular to the main surfaces of the support substrates 1a and 1b and is arranged in a plurality of heat exchange plates 7a, 7a,. , 7a, and an interval c1 between two adjacent heat exchange plates disposed at the center in the arrangement direction of the heat exchange plate 7a is equal to two adjacent heat exchange plates 7a disposed at both ends in the arrangement direction. You may make it become smaller than the space | interval c2. Further, it is more preferable that the distance between the two adjacent heat exchange plates 7a, 7a gradually increases from the vicinity of the center in the arrangement direction toward the vicinity of both ends.

また、フィン7の表面には、フッ素、シリコンを主成分とする撥水コーティングを設けることが望ましい。市販のフッ素、または、シリコンを含有する有機溶剤をスプレーまたはディッピングなどの方法で薄膜塗布し、乾燥して皮膜を形成する。この撥水コーティングにより、例えば、車内のような高温高湿中で本発明のような熱交換装置を作動させた場合、冷却側のフィンに結露が発生する。結露が発生したフィンは、空気のような熱交換媒体の場合、フィン表面の水の膜により熱伝達が劣化し、熱交換装置自体の性能を低下することになる。また、この結露による水滴が熱電モジュール内に浸入した場合、電気的なショートを起こし、漏電につながる恐れがある。結露を押さえる為には、頻繁に熱電素子3に印加する電圧の正負の反転を繰り返し、フィンを常に乾燥させるような回路的な手段も効果的である。   Further, it is desirable to provide a water repellent coating mainly composed of fluorine and silicon on the surface of the fin 7. A commercially available fluorine or organic solvent containing silicon is applied as a thin film by a method such as spraying or dipping and dried to form a film. Due to this water-repellent coating, for example, when a heat exchange device such as the present invention is operated in high temperature and high humidity such as in a car, condensation occurs on the cooling fins. In the case of a heat exchange medium such as air, the fins on which condensation has occurred are deteriorated in heat transfer due to the water film on the surface of the fins, thereby reducing the performance of the heat exchange device itself. In addition, when water droplets due to this condensation enter the thermoelectric module, an electrical short circuit may occur, leading to electric leakage. In order to suppress the dew condensation, circuit means that frequently repeats the reversal of the voltage applied to the thermoelectric element 3 to always dry the fins is also effective.

さらには、フィン7はコルゲートフィンであることが望ましい。コルゲートフィンにすることにより、フィンによって形成される流路の表面積を増やすことできる上、より均一に熱交換が可能となり、熱交換効率と耐久性の両方が良好な結果となる。さらには、一体型のフィンであることにより、フィン7全体が均熱化しやすくなり、強度的に弱い電極2と連結部材6b、熱交換器7と連結部材6aの界面の熱応力を弱める結果となり、例えば、印加する電圧の正負の反転を繰り返すような場合において、耐久性のが向上する。   Further, the fin 7 is preferably a corrugated fin. By using corrugated fins, the surface area of the flow path formed by the fins can be increased, and more uniform heat exchange can be achieved, resulting in both good heat exchange efficiency and durability. Furthermore, since the fins are integrated, the temperature of the entire fin 7 is easily equalized, and the thermal stress at the interface between the electrode 2 and the connecting member 6b, which is weak in strength, and the heat exchanger 7 and the connecting member 6a is weakened. For example, in the case where the reversal of the positive and negative of the applied voltage is repeated, the durability is improved.

フィン7は、熱交換装置自体の熱容量を小さくするためにも、厚みが0.3mm以下であることが望まれる。0.3mm以上では、複雑な折り曲げ形状が困難で、フィン7の形状を一体型のコルゲートを形成することが難しい。さらには、図4に示すように、フィン7を製造加工する際に、フィン7の半田接合部分において、接合長さaに対し、折れ曲がり加工長さbの占める長さが15〜62%である事が更に望ましい。15%以下では、接合部材6aにはんだを用いるような場合、フィン7の側面まで接合部材6aが這い上がらず、金属板8から接合部材6aを伝わってくる熱伝達が劣る結果となり、熱交換装置の性能が低下する結果となる。また、62%以上では、フィン7の下部からの熱伝達が少なくなるため、熱交換装置の性能が低下する結果となる。   The fin 7 is desirably 0.3 mm or less in thickness in order to reduce the heat capacity of the heat exchange device itself. If the thickness is 0.3 mm or more, it is difficult to form a complicated bent shape, and it is difficult to form an integrated corrugated fin 7. Furthermore, as shown in FIG. 4, when the fin 7 is manufactured and processed, the length occupied by the bending processing length b is 15 to 62% with respect to the bonding length a in the solder joint portion of the fin 7. Things are even more desirable. If it is 15% or less, when solder is used for the joining member 6a, the joining member 6a does not crawl up to the side surface of the fin 7, resulting in poor heat transfer from the metal plate 8 to the joining member 6a. As a result, the performance is degraded. On the other hand, if it is 62% or more, heat transfer from the lower part of the fins 7 is reduced, resulting in a decrease in performance of the heat exchange device.

次に、本実施形態にかかる熱電モジュールの製造方法について説明する。まず、公知の技術で作製された熱電材料からなる熱電素子を準備する。この熱電材料は、ビスマス、テルル系材料が高い熱電特性を得られる点で好ましい。また、熱電材料としては、一度溶融させて固化した溶製材料、合金粉末を粉砕しホットプレス等で焼結させた焼結材料、ブリッジマン法などにより一方向に凝固させた単結晶材料などを使用することができるが、特に単結晶材料が高性能である点で好ましい。   Next, a method for manufacturing the thermoelectric module according to the present embodiment will be described. First, a thermoelectric element made of a thermoelectric material manufactured by a known technique is prepared. As this thermoelectric material, bismuth and tellurium materials are preferable in that high thermoelectric characteristics can be obtained. Thermoelectric materials include melted and solidified materials once melted, sintered materials obtained by pulverizing alloy powders and sintered by hot pressing, single crystal materials solidified in one direction by the Bridgeman method, etc. Although it can be used, single crystal materials are particularly preferable because of their high performance.

これらの熱電材料を用いて公知の技術により熱電素子3を作製する。熱電素子の作製方法は、インゴットをスライスして、ニッケルなどでメッキ、蒸着、溶射などにより反応防止層を形成した後、ダイシング加工を行い、素子を得る方法がある。また、単結晶状の棒に耐環境性を有するエポキシ樹脂などの耐メッキ性の樹脂をコーティングした後、切断し、電解メッキ、無電界メッキなどで切断面のみにニッケルを成膜させる方法がコストと水分による腐食をさらに防止する上で好ましい。また、ニッケル層の上にSnまたはAuの層を配設することが連結部材との連結性を高める上で好ましい。   Using these thermoelectric materials, a thermoelectric element 3 is produced by a known technique. As a method for manufacturing a thermoelectric element, there is a method in which an ingot is sliced, a reaction preventing layer is formed by plating, vapor deposition, thermal spraying, or the like with nickel, and then dicing is performed to obtain an element. In addition, it is costly to coat a single crystal rod with an environment-resistant epoxy resin or other plating-resistant resin, and then cut and deposit nickel on the cut surface only by electrolytic plating or electroless plating. It is preferable for further preventing corrosion due to moisture. Further, it is preferable to dispose a Sn or Au layer on the nickel layer in order to improve the connectivity with the connecting member.

次に、前述した支持基板1を準備する。本発明では、支持基板1内の絶縁層5は樹脂製であるのが好ましい。金属板8を樹脂層5の一方の面に、電極2を樹脂層5の他方の面に形成する方法としては、公知の方法であれば良いが、熱圧着による接着が容易であるため望ましい。接着強度を高めるために接着剤をコーティングする方法など施しても良い。これらの面に金属板8および電極2を接着した後に片面あるいは両面をフォトレジスト法によりパターンエッチングを行い、電極2が金属配線された支持基板1が得られる。パターンエッチングする金属としてはアルミニウムまたは銅がよく、特に銅が熱伝導率及び電気伝導性も高いため好ましい。   Next, the support substrate 1 described above is prepared. In the present invention, the insulating layer 5 in the support substrate 1 is preferably made of resin. As a method for forming the metal plate 8 on one surface of the resin layer 5 and the electrode 2 on the other surface of the resin layer 5, any known method may be used, but it is desirable because adhesion by thermocompression bonding is easy. In order to increase the adhesive strength, a method of coating an adhesive may be applied. After the metal plate 8 and the electrode 2 are bonded to these surfaces, one or both surfaces are subjected to pattern etching by a photoresist method, so that the support substrate 1 in which the electrodes 2 are wired with metal is obtained. The metal for pattern etching is preferably aluminum or copper, and copper is particularly preferable because of its high thermal conductivity and electrical conductivity.

次に、熱電素子3と支持基板1上の電極2を接合部材6bにて接合する。電極2の表面にはんだを配列する。はんだを配列する方法はいくつかあるが、スクリーン印刷法により配列する方法が容易である。ついで、はんだが配列された電極2の表面に熱電素子3を配列する。熱電素子3はN型とP型の2種類の素子を千鳥状に配列する。接合する方法としては公知の技術であればいずれでも良いが、N型およびP型それぞれを別々に振動させながら配列穴加工された冶具に振り込む振込み式で配列させた後、転写し絶縁基板上に配列する方法が簡便で好ましい。熱電素子3を配列した後、はんだを配列させた反対の絶縁基板を上面に設置する。配置された熱電素子を挟んだ絶縁基板を公知の技術によりはんだ接合する。はんだ接合の方法としては、リフロー炉あるいはヒーターによる加熱などいずれでも良いが、支持基板1内の絶縁層5に樹脂を用いる場合、上下面に応力をかけながら加熱することがはんだと素子の密着性を高める上で好ましい。   Next, the thermoelectric element 3 and the electrode 2 on the support substrate 1 are joined by the joining member 6b. Solder is arranged on the surface of the electrode 2. There are several methods for arranging the solder, but it is easy to arrange them by screen printing. Next, the thermoelectric element 3 is arranged on the surface of the electrode 2 on which the solder is arranged. The thermoelectric element 3 has two types of elements, N-type and P-type, arranged in a staggered pattern. Any known technique may be used as the joining method, but the N-type and the P-type are separately oscillated and arranged by a transfer method in which they are transferred to a jig that has been processed into an array hole, and then transferred onto an insulating substrate. The arrangement method is simple and preferable. After the thermoelectric elements 3 are arranged, the opposite insulating substrate on which the solder is arranged is placed on the upper surface. The insulating substrate sandwiching the arranged thermoelectric elements is soldered by a known technique. As a soldering method, any method such as heating by a reflow furnace or a heater may be used. However, when a resin is used for the insulating layer 5 in the support substrate 1, heating is performed while applying stress to the upper and lower surfaces. It is preferable for increasing the ratio.

次に、得られた熱電素子3の両面に取り付けられた金属板8とフィン7を連結部材6aにて連結する。使用するフィン7はその用途によって形、材質が異なるが、冷却を主とする空調機器として使用する場合は、銅製のフィンが好ましく、特に空冷で使用する場合、空気と接触する面積が増えるように波状の形で作製されたコルゲートフィンが望ましい。また、放熱側のフィン7をより熱交換量が大きいものにすることによって放熱をよくし、冷却特性を向上させることも一般的である。   Next, the metal plate 8 and the fins 7 attached to both surfaces of the obtained thermoelectric element 3 are connected by a connecting member 6a. The shape and material of the fin 7 to be used varies depending on its application. However, when used as an air conditioner mainly for cooling, a copper fin is preferable. Especially when used in air cooling, the area in contact with air is increased. Corrugated fins made in a wavy shape are desirable. It is also common to improve heat dissipation and improve cooling characteristics by making the heat dissipation side fins 7 have a larger heat exchange amount.

連結部材6aにはんだ用いて連結させる場合は、はんだを両面の金属板8上に印刷したのちフィン7を両側に配置し、熱電素子3を接合させた場合と同様に両側に応力をかけながら加熱することで連結できる。このとき、印刷に使用するはんだの種類、量によって連結状態の厚み、耐熱性、密着性を調整することが可能である。連結される金属の面の凹凸が大きく荒れた面にすることでアンカー効果が発生し、密着性を高めることができる。最後に、得られたフィン7が連結された熱電モジュールに電流を通電するためのリード線4をはんだこて等で接合し、フィン7の表面にスプレーなどの方法で撥水コート処理し、本発明の熱交換装置が得られる。   When connecting to the connecting member 6a using solder, after printing the solder on the metal plates 8 on both sides, the fins 7 are arranged on both sides, and heating is performed while applying stress to both sides as in the case where the thermoelectric element 3 is joined. Can be connected. At this time, it is possible to adjust the thickness, heat resistance, and adhesion of the connected state depending on the type and amount of solder used for printing. By making the surface of the metal to be connected to have a rough surface, the anchor effect is generated and the adhesion can be improved. Finally, the lead wire 4 for supplying current to the thermoelectric module to which the fin 7 is connected is joined with a soldering iron or the like, and the surface of the fin 7 is treated with a water repellent coating by a method such as spraying. The heat exchange device of the invention is obtained.

上記のようにして得られた熱交換装置は、熱電モジュールからの熱をフィン7から均一に空気のような熱交換媒体へ伝えることができるため、熱電モジュール内の熱応力の発生が小さく、さらには、冷却側の結露は、撥水コートにより熱交換装置から排出されるため、長期間、冷却と加熱を交互に用いるような用途においても高い耐久特性を有する。   The heat exchange device obtained as described above can transmit the heat from the thermoelectric module uniformly from the fins 7 to the heat exchange medium such as air, so that the generation of thermal stress in the thermoelectric module is small. Since the condensation on the cooling side is discharged from the heat exchange device by the water repellent coating, it has high durability characteristics even in applications where cooling and heating are used alternately for a long period of time.

以下に本発明の実施例を示す。   Examples of the present invention are shown below.

まず、サイズが1.5mm角の熱電素子と、表1に示す材質でサイズが40mm×20mmの支持基板を準備した。支持基板は0.1mmの銅板の間にエポキシ樹脂に粒径0.001mmのアルミナ粒子を50vol%混ぜた絶縁層をドクターブレード法により形成し、300℃、0.5MPakg/mm2の条件で加熱加圧し作成した。その後、片面をパターンエッチングし、電極パターンを形成した。その後、熱電素子を95Sn−5Sbのはんだで電極に接合し、熱電モジュールを作製した。   First, a thermoelectric element having a size of 1.5 mm square and a support substrate having the size shown in Table 1 and a size of 40 mm × 20 mm were prepared. The support substrate was formed by forming an insulating layer in which 50 vol% of alumina particles having a particle diameter of 0.001 mm were mixed with epoxy resin between 0.1 mm copper plates by the doctor blade method and heated under conditions of 300 ° C. and 0.5 MPakg / mm 2. Created by pressing. Then, one side was pattern-etched to form an electrode pattern. Then, the thermoelectric element was joined to the electrode with 95Sn-5Sb solder to produce a thermoelectric module.

次に、表2に示すような19枚の羽根(熱交換板)で構成された流路分布(熱交換板の間隔)の異なるフィン(a)〜(c)を用意し(表2参照)、42Sn−58Biのはんだで接合した。なお、コルゲート形状は、高さ0.2mm、幅5mmのウェーブ形状の加工を施した。フィンの撥水処理は、フッ素樹脂系のコーティングをスプレー処理で施した。   Next, fins (a) to (c) having 19 flow paths (heat exchange plate intervals) composed of 19 blades (heat exchange plates) as shown in Table 2 are prepared (see Table 2). , 42Sn-58Bi solder. The corrugated shape was processed into a wave shape having a height of 0.2 mm and a width of 5 mm. For the water repellent treatment of the fins, a fluororesin coating was applied by spray treatment.

なお、表2中の「フィン間隔No.」は、図2に示すような配置状態で熱交換装置を見たときに、最も左に位置する隣り合う2つの熱交換板の間を「フィン間隔No.1」とし、右の向かって順にNo.18まで番号を付したものである。   The “fin interval No.” in Table 2 is the “fin interval No.” between two adjacent heat exchange plates located on the leftmost when the heat exchange device is viewed in the arrangement state shown in FIG. 1 ”, and in order of No. Numbers up to 18 are assigned.

(耐久試験)
得られた熱交換器装置に50Wの電力を投入して温度差を発生させながら、温度25%、湿度40%の条件下で、両方のフィンにそれぞれ4m/secの風を放熱、冷却面にあてて、冷却側の風の入り口温度と出口温度の差を温度差ΔT1とし、冷却能力を計算した。同時に通電を1分おきに反転させる耐久試験を10000サイクル実施し、耐久試験後の熱電モジュールの抵抗値の変化を計算した。さらに、温度25℃湿度80%の環境で、両方のフィンにそれぞれ4m/secの風を放熱、冷却面にあてて、100時間通電し、連続通電後の冷却能力の変化も冷却側の風の入り口温度と出口温度の差を温度差ΔT1を測定を試験前後の差ΔT2を算出した。結果を表1に示す。

Figure 2007123564
(An endurance test)
While supplying 50W electric power to the obtained heat exchanger device and generating a temperature difference, 4 m / sec of wind was radiated to both fins on the cooling surface under the conditions of 25% temperature and 40% humidity. The cooling capacity was calculated by setting the difference between the inlet temperature and the outlet temperature of the cooling side wind as the temperature difference ΔT1. At the same time, the endurance test in which energization was reversed every other minute was performed for 10,000 cycles, and the change in the resistance value of the thermoelectric module after the endurance test was calculated. Furthermore, in an environment where the temperature is 25 ° C. and humidity is 80%, both fins are radiated with 4 m / sec of wind, applied to the cooling surface, and energized for 100 hours. The difference between the inlet temperature and the outlet temperature was measured as a temperature difference ΔT1, and a difference ΔT2 before and after the test was calculated. The results are shown in Table 1.
Figure 2007123564

Figure 2007123564
Figure 2007123564

表1において、フィン7の流路の間隔を中心部を狭く、端部を広くした試料NO.2は、流路が等間隔のフィンを用いた試料No.1より、冷却効果(ΔT1)が大きく、反転通電サイクル試験後の熱電モジュールの抵抗変化が小さい。また、流路の間隔を中心部から漸次大きくしたフィンを用いた試料No.3は、反転通電サイクル試験後の熱電モジュールの抵抗変化が更に小さく、良好な結果となった。   In Table 1, the sample NO. No. 2 is a sample No. 2 using fins with equally spaced channels. 1, the cooling effect (ΔT1) is large, and the resistance change of the thermoelectric module after the reverse energization cycle test is small. Sample No. using fins in which the interval of the flow path is gradually increased from the center. In No. 3, the resistance change of the thermoelectric module after the inversion energization cycle test was further small, and a good result was obtained.

また、撥水処理を施した試料No.4〜9は、撥水処理を施していな試料No.1〜3に比べ、高湿下での連続通電前後でのΔT1の差(ΔT2)が小さく、高湿下でも更に良好な耐久性が確認された。   In addition, the sample No. 1 subjected to the water repellent treatment. Sample Nos. 4 to 9 were not subjected to water repellent treatment. Compared to 1-3, the difference (ΔT2) in ΔT1 before and after continuous energization under high humidity was small, and even better durability was confirmed even under high humidity.

さらには、フィンをコルゲートフィンとした場合、コルゲート形状でないフィンを用いた試料No.2〜9に比べ、ΔT1が大きく、冷却効果が大きくなる。また、コルゲートフィンにおいても、フィン7の流路の間隔を中心部を狭く、端部を広くした試料No.8は、流路が等間隔のフィンを用いた試料No.7より、冷却効果(ΔT1)が大きく、反転通電サイクル試験後の熱電モジュールの抵抗変化が小さい。また、流路の間隔を中心部から漸次小さくしたフィンを用いた試料No.8は、反転通電サイクル試験後の熱電モジュールの抵抗変化が更に小さく、良好な結果となった。   Furthermore, in the case where the fin is a corrugated fin, the sample No. using a fin not having a corrugated shape is used. Compared with 2 to 9, ΔT1 is large, and the cooling effect is large. Also in the corrugated fins, the sample Nos. 1 and 2 in which the central portion of the flow path of the fin 7 is narrowed and the end portion is widened. No. 8 is a sample No. 8 using fins with equally spaced channels. 7, the cooling effect (ΔT1) is large, and the resistance change of the thermoelectric module after the inversion energization cycle test is small. Sample No. using fins in which the interval between the channels is gradually reduced from the central portion. In No. 8, the resistance change of the thermoelectric module after the inversion energization cycle test was further small, and a good result was obtained.

以上のように、本発明の範囲内であるNo.2〜9は、本発明の範囲外の試料No.1に比べ、冷却温度も低く、反転通電サイクル試験後の抵抗変化率も小さく、耐湿試験後の温度差の変化も小さい結果となり、本発明品の反転運転及び高湿下における耐久特性が優れていることが確認された。   As described above, No. which is within the scope of the present invention. Sample Nos. 2 to 9 are outside the scope of the present invention. Compared to 1, the cooling temperature is low, the resistance change rate after the reverse energization cycle test is small, and the change in temperature difference after the moisture resistance test is also small. It was confirmed that

従来のペルチェ効果を用いた熱交換装置を示す斜視図である。It is a perspective view which shows the heat exchange apparatus using the conventional Peltier effect. 本発明の一実施形態にかかる熱交換装置を示す断面図である。It is sectional drawing which shows the heat exchange apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる熱交換装置を示す斜視図である。It is a perspective view which shows the heat exchange apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる熱交換装置のフィン接合部分の拡大断面図である。It is an expanded sectional view of the fin joint part of the heat exchange device concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1 支持基板
2 配線導体
3 熱電素子
3a N型熱電素子
3b P型熱電素子
4 外部接続端子
5 絶縁層
6 連結部材
6a 連結部材
6b 連結部材
7 フィン
7a 熱交換板
8 金属板
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Wiring conductor 3 Thermoelectric element 3a N type thermoelectric element 3b P type thermoelectric element 4 External connection terminal 5 Insulating layer
6 connecting member 6a connecting member 6b connecting member 7 fin 7a heat exchange plate 8 metal plate

Claims (6)

対向する一対の支持基板を有し、これらの支持基板の一方の主面間に複数の熱電素子が配列され、隣り合う熱電素子間を電極により電気的に連結した熱電モジュールと、前記一対の支持基板のうち、少なくとも一方の支持基板における他方の主面側に配設されたフィンとを備えた熱交換装置において、前記フィンは、前記支持基板の主面に対して略垂直な方向に起立し互いに略平行に配列された複数の熱交換板を有し、該熱交換板の配列方向の中央付近に配設された隣り合う2つの熱交換板の間隔が、前記配列方向の両端付近に配設された隣り合う2つの熱交換板の間隔よりも小さいことを特徴とする熱交換装置。 A thermoelectric module having a pair of opposing support substrates, a plurality of thermoelectric elements arranged between one main surface of these support substrates, and electrically connecting adjacent thermoelectric elements with electrodes, and the pair of support Among the substrates, in the heat exchange device including fins disposed on the other main surface side of at least one support substrate, the fins stand up in a direction substantially perpendicular to the main surface of the support substrate. It has a plurality of heat exchange plates arranged substantially parallel to each other, and an interval between two adjacent heat exchange plates arranged near the center in the arrangement direction of the heat exchange plates is arranged near both ends in the arrangement direction. A heat exchanging device characterized in that it is smaller than the interval between two adjacent heat exchanging plates. 隣り合う2つの前記熱交換板の間隔は、前記配列方向の中央付近から両端付近に向かって漸次大きくなることを特徴とする請求項2記載の熱交換装置。 The heat exchanger according to claim 2, wherein an interval between the two adjacent heat exchange plates gradually increases from near the center in the arrangement direction toward both ends. 対向する一対の支持基板を有し、これらの支持基板の一方の主面間に複数の熱電素子が配列され、隣り合う熱電素子間を電極により電気的に連結した熱電モジュールと、前記一対の支持基板のうち、少なくとも一方の支持基板における他方の主面側に配設されたフィンとを備えた熱交換装置において、前記フィンは熱交換媒体が通過する複数の流路を有し、これらの流路のうち、中央付近の流路の断面積が両端付近の流路よりも小さいことを特徴とする熱交換装置。 A thermoelectric module having a pair of opposing support substrates, a plurality of thermoelectric elements arranged between one main surface of these support substrates, and electrically connecting adjacent thermoelectric elements with electrodes, and the pair of support Among the substrates, in the heat exchange device provided with fins disposed on the other main surface side of at least one of the support substrates, the fin has a plurality of flow paths through which the heat exchange medium passes, and these flow A heat exchange device characterized in that a cross-sectional area of a channel near the center is smaller than a channel near both ends. 前記複数の流路の断面積は、中央付近の流路から両端の流路に向かって漸次大きくなることを特徴とする請求項3記載の熱交換装置。 4. The heat exchange device according to claim 3, wherein a cross-sectional area of the plurality of flow paths gradually increases from a flow path near the center toward a flow path at both ends. 前記フィンの表面には撥水処理が施されていることを特徴とする請求項1〜4のいずれかに記載の熱交換装置。 The heat exchange apparatus according to any one of claims 1 to 4, wherein a surface of the fin is subjected to a water repellent treatment. 前記フィンはコルゲートフィンであることを特徴とする請求項1〜5のいずれかに記載の熱交換装置。 The heat exchange apparatus according to claim 1, wherein the fin is a corrugated fin.
JP2005313862A 2005-10-28 2005-10-28 Heat exchanging device Pending JP2007123564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313862A JP2007123564A (en) 2005-10-28 2005-10-28 Heat exchanging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313862A JP2007123564A (en) 2005-10-28 2005-10-28 Heat exchanging device

Publications (1)

Publication Number Publication Date
JP2007123564A true JP2007123564A (en) 2007-05-17

Family

ID=38147077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313862A Pending JP2007123564A (en) 2005-10-28 2005-10-28 Heat exchanging device

Country Status (1)

Country Link
JP (1) JP2007123564A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199571A (en) * 2009-01-29 2010-09-09 Yamaha Corp Heat exchanging unit
JP2013211470A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Thermoelectric power generating device
JP5800992B2 (en) * 2012-06-27 2015-10-28 京セラ株式会社 Battery temperature control device and battery device
WO2015163729A1 (en) * 2014-04-24 2015-10-29 엘지이노텍 주식회사 Heat conversion device
WO2016136856A1 (en) * 2015-02-25 2016-09-01 京セラ株式会社 Thermoelectric module
CN110419114A (en) * 2017-04-21 2019-11-05 株式会社Kelk Thermoelectric generating device
WO2021194111A1 (en) * 2020-03-23 2021-09-30 엘지이노텍 주식회사 Thermoelectric device
WO2022019673A1 (en) * 2020-07-24 2022-01-27 엘지이노텍 주식회사 Thermoelectric module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151979A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH11340524A (en) * 1998-05-22 1999-12-10 Matsushita Electric Works Ltd Thermoelectric unit
JP2002310529A (en) * 2001-04-10 2002-10-23 Inax Corp Peltier element device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151979A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH11340524A (en) * 1998-05-22 1999-12-10 Matsushita Electric Works Ltd Thermoelectric unit
JP2002310529A (en) * 2001-04-10 2002-10-23 Inax Corp Peltier element device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199571A (en) * 2009-01-29 2010-09-09 Yamaha Corp Heat exchanging unit
JP2013211470A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Thermoelectric power generating device
JP5800992B2 (en) * 2012-06-27 2015-10-28 京セラ株式会社 Battery temperature control device and battery device
WO2015163729A1 (en) * 2014-04-24 2015-10-29 엘지이노텍 주식회사 Heat conversion device
WO2016136856A1 (en) * 2015-02-25 2016-09-01 京セラ株式会社 Thermoelectric module
JPWO2016136856A1 (en) * 2015-02-25 2018-01-11 京セラ株式会社 Thermoelectric module
CN110419114A (en) * 2017-04-21 2019-11-05 株式会社Kelk Thermoelectric generating device
US11605771B2 (en) 2017-04-21 2023-03-14 Kelk Ltd. Thermoelectric power-generating device
CN110419114B (en) * 2017-04-21 2023-06-06 株式会社Kelk Thermoelectric power generation device
WO2021194111A1 (en) * 2020-03-23 2021-09-30 엘지이노텍 주식회사 Thermoelectric device
US12058935B2 (en) 2020-03-23 2024-08-06 Lg Innotek Co., Ltd. Thermoelectric device
WO2022019673A1 (en) * 2020-07-24 2022-01-27 엘지이노텍 주식회사 Thermoelectric module

Similar Documents

Publication Publication Date Title
JP4663469B2 (en) Heat exchanger
JP3510831B2 (en) Heat exchanger
JP4255691B2 (en) Electronic component cooling device using thermoelectric conversion material
JP2007123564A (en) Heat exchanging device
JP4953841B2 (en) Thermoelectric module
US20090195990A1 (en) Heat sink
US20080000511A1 (en) Thermoelectric conversion device and manufacture method of the same
JP2002537658A (en) Solid thermoelectric device
JP2009295878A (en) Heat exchange device
JP2009206501A (en) Thermoelectric module
JP2007035907A (en) Thermoelectric module
JP5638329B2 (en) Thermoelectric element and thermoelectric module including the same
JP4967018B2 (en) Thermoelectric module and manufacturing method thereof
JP2006066822A (en) Thermoelectric conversion device
JP2008078222A (en) Thermoelectric transducer
AU2018220031A1 (en) Thermoelectric device
JP2010109054A (en) Thermoelectric conversion module and cooler, generator and temperature controller
JP5865721B2 (en) Thermoelectric module
JP2001082828A (en) Heat exchanger and heat carrier supply system
WO2016136856A1 (en) Thermoelectric module
CN114899300A (en) Semiconductor thermoelectric device
JP5638342B2 (en) Thermoelectric element and thermoelectric module
JP2016524438A (en) Thermoelectric device
JP2003222426A (en) Heat exchanger
JP2007329349A (en) Thermoelectric conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830