JP6237345B2 - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP6237345B2
JP6237345B2 JP2014040625A JP2014040625A JP6237345B2 JP 6237345 B2 JP6237345 B2 JP 6237345B2 JP 2014040625 A JP2014040625 A JP 2014040625A JP 2014040625 A JP2014040625 A JP 2014040625A JP 6237345 B2 JP6237345 B2 JP 6237345B2
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric power
thermoelectric
generation units
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014040625A
Other languages
Japanese (ja)
Other versions
JP2015166555A (en
Inventor
拓臣 神長
拓臣 神長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014040625A priority Critical patent/JP6237345B2/en
Publication of JP2015166555A publication Critical patent/JP2015166555A/en
Application granted granted Critical
Publication of JP6237345B2 publication Critical patent/JP6237345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fuel Cell (AREA)

Description

本発明は、熱電発電装置に関し、特に高温側の熱媒体と低温側の熱媒体とを通しつつ両熱媒体の温度差を利用して熱電発電する熱電発電装置に関する。   The present invention relates to a thermoelectric power generator, and more particularly to a thermoelectric power generator that performs thermoelectric power generation using a temperature difference between both heat media while passing a high temperature heat medium and a low temperature heat medium.

高温熱源と低温熱源の間に複数の熱電素子を配置して熱電発電する従来の熱電発電装置として、内燃機関の排気ガスの持つ排熱を電気エネルギに変換しつつ回収する排熱回収型の熱電発電装置が知られている。   As a conventional thermoelectric generator that arranges a plurality of thermoelectric elements between a high-temperature heat source and a low-temperature heat source, the exhaust heat recovery type thermoelectric that recovers the exhaust heat of the exhaust gas of the internal combustion engine while converting it into electrical energy A power generation device is known.

このような熱電発電装置としては、例えばモジュール化した複数の熱電素子を内蔵する筒状の熱電発電ユニットを排気ガスまた冷却水を通す一方の通路中に垂直に配置し、各熱電発電ユニットの内部に冷却水または排気ガスを通す他方の通路を形成して、並列する複数の筒状の熱電発電ユニットの内外の温度差を利用して熱電発電するものがある(例えば、特許文献1参照)。   As such a thermoelectric power generation device, for example, a cylindrical thermoelectric power generation unit containing a plurality of modular thermoelectric elements is arranged vertically in one passage through which exhaust gas or cooling water passes, and the inside of each thermoelectric power generation unit The other passage through which the cooling water or the exhaust gas passes is formed, and thermoelectric power generation is performed using the temperature difference between the inside and outside of the plurality of cylindrical thermoelectric power generation units arranged in parallel (see, for example, Patent Document 1).

また、それぞれモジュール化した複数の熱電素子を内蔵する筒状の熱電発電ユニットにフィンを装着してカートリッジ化し、複数のカートリッジ化した熱電発電ユニットを並列配置する熱電発電システムも知られている(例えば、特許文献2参照)。   A thermoelectric power generation system is also known in which fins are attached to a cylindrical thermoelectric power generation unit containing a plurality of thermoelectric elements each modularized to form a cartridge, and a plurality of thermoelectric power generation units arranged in parallel are arranged in parallel (for example, , See Patent Document 2).

さらに、並列するフィン付きの筒状体を用いる熱交換器として、高温流体を通す高温流通管と低温流体を通す低温流通管の内部にそれぞれ螺旋フィンが装着された複数のヒートパイプを、流通管の軸線と直交するように配置したものが知られている(例えば、特許文献3参照)。   Furthermore, as a heat exchanger using a cylindrical body with fins arranged in parallel, a plurality of heat pipes each having a helical fin mounted inside a high-temperature flow pipe that passes a high-temperature fluid and a low-temperature flow pipe that passes a low-temperature fluid, The one arranged so as to be orthogonal to the axis of (see, for example, Patent Document 3).

特表2012−533972号公報Special table 2012-533972 gazette 米国特許出願公開2013/0186448号明細書US Patent Application Publication No. 2013/0186448 実開昭58−052466号公報Japanese Utility Model Publication No. 58-052466

しかしながら、上述のような従来の熱電発電装置にあっては、熱電発電ユニットの外方を流れる排気ガスや冷却水等の熱媒体、例えば排気ガスの流速が比較的大きくなる場合、あるいは、排気ガス流れ方向に隣り合う複数の筒状の熱電発電ユニットの離間距離が大きくなる場合に、各熱電発電ユニットの上流側外周壁面を通過した排気ガスが外周壁面から剥離し易くなり、排気ガスが各熱電発電ユニットの下流側外周壁面に沿って流れ難くなっていた。   However, in the conventional thermoelectric generator as described above, when the flow rate of a heat medium such as exhaust gas or cooling water flowing outside the thermoelectric generator unit, for example, the exhaust gas becomes relatively large, or the exhaust gas When the separation distance between a plurality of cylindrical thermoelectric power generation units adjacent to each other in the flow direction becomes large, the exhaust gas that has passed through the upstream outer peripheral wall surface of each thermoelectric power generation unit is easily separated from the outer peripheral wall surface. It was difficult to flow along the outer peripheral wall surface on the downstream side of the power generation unit.

そのため、各熱電発電ユニットの外周壁面における熱伝達効率が低下し、排熱回収型の熱電発電装置における熱回収効率(エネルギ回収効率)、すなわち、熱電発電装置の発電効率が低下してしまう可能性があった。   For this reason, the heat transfer efficiency on the outer peripheral wall surface of each thermoelectric power generation unit is lowered, and the heat recovery efficiency (energy recovery efficiency) in the exhaust heat recovery type thermoelectric power generator, that is, the power generation efficiency of the thermoelectric power generator may be reduced. was there.

そればかりか、排気ガスの流れを方向付けるバッフルプレート等の数が多くなってコスト高になったり、フィンを含むカートリッジ化された熱電発電ユニット同士の間に一定の離間距離を設定するために、熱電発電ユニットの実装効率(搭載性)の低下や排熱回収型の熱電発電装置の大型化を招いてしまうという問題があった。   In addition, in order to increase the number of baffle plates and the like that direct the flow of exhaust gas and increase the cost, or to set a certain separation distance between the thermoelectric power generation units made into cartridges including fins, There has been a problem that the mounting efficiency (mountability) of the thermoelectric power generation unit is reduced and the exhaust heat recovery type thermoelectric power generation apparatus is increased in size.

そこで、本発明は、並列する複数の熱電発電ユニットの外周壁面における熱伝達効率および実装効率を高めた小型で高発電効率の熱電発電装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a small-sized and high power generation efficiency thermoelectric generator having improved heat transfer efficiency and mounting efficiency on the outer peripheral wall surfaces of a plurality of thermoelectric power generation units arranged in parallel.

本発明に係る熱電発電装置は、上記目的達成のため、(1)低温または高温のうち一方側の熱媒体を通す一方の熱媒体通路を有するケースと、それぞれ内周側に前記低温または高温のうち他方側の熱媒体を通す他方の熱媒体通路を形成するとともに外周側に前記一方側の熱媒体に接触するよう外方に突出するフィンを有する筒状の複数の熱電発電ユニットと、を備え、前記複数の熱電発電ユニットを前記一方の熱媒体通路中に並列配置する熱電発電装置であって、前記複数の熱電発電ユニットのうち径方向に隣り合う少なくとも一対の熱電発電ユニットの前記フィン同士が、前記外方への突出高さの上端側で前記径方向に互いに重なり合う重合領域を形成しており、前記フィンが前記熱電発電ユニットの軸方向に延在し、かつ、径方向に隣り合う前記熱電発電ユニットの前記フィン同士が前記熱電発電ユニットの周方向に近接する複数の近接部分を有しており、前記重合領域が、前記複数の近接部分によって構成されているものである。 In order to achieve the above object, the thermoelectric power generator according to the present invention includes (1) a case having one heat medium passage for passing one heat medium of low temperature or high temperature, and the low temperature or high temperature respectively on the inner peripheral side. A plurality of cylindrical thermoelectric power generation units having fins projecting outwardly so as to contact the one side heat medium and forming the other heat medium passage through which the other side heat medium passes. A thermoelectric power generation device in which the plurality of thermoelectric power generation units are arranged in parallel in the one heat medium passage, and the fins of at least one pair of thermoelectric power generation units adjacent in the radial direction among the plurality of thermoelectric power generation units are forms a mutually overlapping overlapping area in the radial direction at the upper side of the projection height to the outward, the fins extending in the axial direction of the thermoelectric power generation unit, and, next in the radial direction Cormorant the fin ends of the thermoelectric power generation unit has a plurality of adjacent portions adjacent in the circumferential direction of the thermoelectric power generation unit, the polymerization region is one that is constituted by the plurality of proximity portions.

この構成により、一方の熱媒体通路中で、少なくとも一対の熱電発電ユニットのフィン同士が近接した重合領域では高圧損になり、フィン同士が相対的に離れている他の領域では低圧損となる。これにより、一方の熱媒体通路中で前記少なくとも一対の熱電発電ユニットの間を流れる一方側の熱媒体は、重合領域を迂回しつつ重合領域の向きや長さに応じて一対の熱電発電ユニットの外周壁面に沿って流れるように案内される。したがって、少なくとも一対の熱電発電ユニットの間を通る一方側の熱媒体が下流側の外周壁面から剥離し難くなり、その熱電発電ユニットの下流側の外周壁面に沿う一方側の熱媒体の流量が増加して、複数の熱電発電ユニットの発電効率が高まる。しかも、重合領域は、径方向に隣り合う少なくとも一対のフィン同士がそれらの突出高さの上端側で径方向にオーバーラップする重なり領域を形成するように構成されるので、並列する複数の熱電発電ユニットの発電効率のみならず実装効率をも高めることができる。
また、フィンが熱電発電ユニットの軸方向に延在し、かつ、径方向に隣り合う熱電発電ユニットのフィン同士が熱電発電ユニットの周方向に近接する複数の近接部分を有しており、重合領域が、複数の近接部分によって構成されているため、一方の熱媒体通路中の流れの中心側で隣り合う一対または各一対の熱電発電ユニットの間に重合領域が形成され、一方側の熱媒体の流れが各熱電発電ユニットの外周壁面に沿った流れに分岐されつつ整流され得ることになる。
With this configuration, in one heat medium passage, at least a pair of thermoelectric power generation unit fins have a high pressure loss in a superposed region, and another region in which the fins are relatively separated from each other has a low pressure loss. As a result, the one-side heat medium flowing between the at least one pair of thermoelectric power generation units in one heat medium passage bypasses the polymerization region, and the pair of thermoelectric power generation units is in accordance with the direction and length of the polymerization region. It is guided to flow along the outer peripheral wall surface. Therefore, it becomes difficult for the heat medium on one side passing between at least a pair of thermoelectric power generation units to peel from the outer peripheral wall surface on the downstream side, and the flow rate of the heat medium on one side along the outer peripheral wall surface on the downstream side of the thermoelectric power generation unit increases. Thus, the power generation efficiency of the plurality of thermoelectric power generation units is increased. Moreover, since the overlapping region is configured to form an overlapping region in which at least a pair of fins adjacent to each other in the radial direction overlap in the radial direction on the upper end side of their protruding height, a plurality of thermoelectric power generations arranged in parallel Not only the power generation efficiency of the unit but also the mounting efficiency can be increased.
In addition, the fins extend in the axial direction of the thermoelectric power generation unit, and the fins of the thermoelectric power generation units adjacent in the radial direction have a plurality of adjacent portions that are close to each other in the circumferential direction of the thermoelectric power generation unit. However, since it is constituted by a plurality of adjacent portions, a superposition region is formed between a pair of adjacent or each pair of thermoelectric power generation units on the center side of the flow in one heat medium passage, and the heat medium on one side The flow can be rectified while being branched into a flow along the outer peripheral wall surface of each thermoelectric power generation unit.

本発明の熱電発電装置においては、(2)前記複数の熱電発電ユニットのうち径方向に隣り合う各一対の熱電発電ユニットの前記フィン同士が、前記重合領域を形成し、前記重合領域が、前記径方向に隣り合う前記各一対の熱電発電ユニットの間で前記一方側の熱媒体を前記各一対の熱電発電ユニットの周方向に方向付ける整流部を構成しているのがよい。   In the thermoelectric generator of the present invention, (2) the fins of each pair of thermoelectric power generation units adjacent in the radial direction among the plurality of thermoelectric power generation units form the superposition region, and the superposition region is the It is preferable that a rectifying unit that directs the one-side heat medium in the circumferential direction of each pair of thermoelectric power generation units between each pair of thermoelectric power generation units adjacent in the radial direction is preferable.

この構成により、一方の熱媒体通路中で径方向に隣り合う各一対の熱電発電ユニットの間を流れる一方側の熱媒体が、複数のフィンが近接した整流部によって各熱電発電ユニットの下流側外周壁面に沿う方向に案内される。したがって、各熱電発電ユニットの上流側外周壁面を通過した一方側の熱媒体が下流側外周壁面から剥離し難くなり、各熱電発電ユニットの下流側外周壁面に沿う一方側の熱媒体の流量が増加して、複数の熱電発電ユニットの発電効率が高まる。しかも、整流部は、径方向に隣り合う各一対の熱電発電ユニットのフィン同士が突出高さの上端側に重合領域を有するので、並列する複数の熱電発電ユニットの発電効率のみならず実装効率をも高めることができる。   With this configuration, the one-side heat medium flowing between each pair of radially adjacent thermoelectric power generation units in one heat medium passage is connected to the outer periphery on the downstream side of each thermoelectric power generation unit by a rectifying unit in which a plurality of fins are close to each other. Guided in the direction along the wall. Therefore, the one-side heat medium that has passed through the upstream outer peripheral wall surface of each thermoelectric power generation unit becomes difficult to peel off from the downstream outer peripheral wall surface, and the flow rate of the one heat medium along the downstream outer peripheral wall surface of each thermoelectric power generation unit increases. Thus, the power generation efficiency of the plurality of thermoelectric power generation units is increased. Moreover, since the fins of each pair of thermoelectric power generation units adjacent to each other in the radial direction have a superposition region on the upper end side of the protruding height, the rectification unit has not only the power generation efficiency of a plurality of thermoelectric power generation units arranged in parallel but also mounting efficiency. Can also be increased.

本発明の熱電発電装置においては、(3)前記複数の熱電発電ユニットが前記一方の熱媒体通路の軸線に対し軸交差するように配置され、前記少なくとも一対の熱電発電ユニットが、前記一方の熱媒体通路の軸線方向に離間する上流側の熱電発電ユニットおよび下流側の熱電発電ユニットを含んでいるものであってもよい。   In the thermoelectric generator of the present invention, (3) the plurality of thermoelectric power generation units are arranged so as to cross the axis of the one heat medium passage, and the at least one pair of thermoelectric power generation units is the one heat It may include an upstream thermoelectric generation unit and a downstream thermoelectric generation unit that are separated in the axial direction of the medium passage.

この場合、少なくとも一対の熱電発電ユニットが一方の熱媒体通路の軸線方向に、より好ましくは一方の熱媒体通路の軸線方向および該軸線方向と直交する方向(軸方向または周方向)の双方に離間し、それらのうち上流側の熱電発電ユニットの背面側に一方側の熱媒体が回り込むのを容易ならしめる重合領域を形成することが可能になる。   In this case, at least a pair of thermoelectric generator units are separated in the axial direction of one heat medium passage, and more preferably in both the axial direction of one heat medium passage and the direction (axial direction or circumferential direction) perpendicular to the axial direction. And it becomes possible to form the superposition | polymerization area | region which makes it easy for the heat medium of one side to wrap around in the back side of the thermoelectric power generation unit of an upstream among them.

本発明の熱電発電装置においては、(4)前記フィンが前記熱電発電ユニットの周方向に延在しており、前記少なくとも一対の熱電発電ユニットのうち前記上流側の熱電発電ユニットと複数の前記下流側の熱電発電ユニットとの間に、複数の前記重合領域が形成されていてもよい。   In the thermoelectric generator of the present invention, (4) the fin extends in a circumferential direction of the thermoelectric power generation unit, and the upstream thermoelectric power generation unit and the plurality of the downstream of the at least one pair of thermoelectric power generation units. A plurality of the overlapping regions may be formed between the thermoelectric generator unit on the side.

この場合、上流側の熱電発電ユニットの上流側外周壁面に沿って2方向に分かれて流れた一方側の熱媒体が、複数の重合領域によってその熱電発電ユニットの背面側に回り込むように案内され、再度合流しつつ後方に流れ得ることとなり、背面側における熱伝達効率がより向上する。また、フィンが、熱電発電ユニットの軸方向で互いに近接する多数の近接部分を有する円環状、多角形の環状もしくは螺旋状をなすものとなり、有効な整流作用をなす重合領域が容易に形成可能となる。   In this case, the one-side heat medium that has flowed in two directions along the upstream outer peripheral wall surface of the upstream thermoelectric power generation unit is guided to wrap around the back side of the thermoelectric power generation unit by a plurality of overlapping regions, It can flow backward while merging again, and the heat transfer efficiency on the back side is further improved. In addition, the fin has an annular shape, a polygonal annular shape, or a spiral shape having a large number of adjacent portions close to each other in the axial direction of the thermoelectric power generation unit, so that a superposed polymerization region can be easily formed. Become.

本発明の熱電発電装置において、(5)前記フィンは、前記熱電発電ユニットの周方向全域で前記外方への突出高さが一定になっていてもよい。   In the thermoelectric generator of the present invention, (5) the fin may have a constant protruding height outward in the entire circumferential direction of the thermoelectric generator unit.

この構成により、熱電発電ユニットを、フィンの製造が容易で、熱電発電ユニットの取り扱いやケースへの取付けが容易な略円筒状のカートリッジとして構成できる。   With this configuration, the thermoelectric power generation unit can be configured as a substantially cylindrical cartridge in which fins can be easily manufactured and the thermoelectric power generation unit can be easily handled and attached to the case.

本発明の熱電発電装置において、(6)前記フィンは、前記一方の熱媒体通路の軸線方向に大径で、前記一方の熱媒体通路の軸線と直交する方向に小径となる非円形の外周輪郭形状を有していてもよい。   In the thermoelectric generator according to the present invention, (6) the fin has a non-circular outer contour that has a large diameter in the axial direction of the one heat medium passage and a small diameter in a direction orthogonal to the axis of the one heat medium passage. You may have a shape.

この構成により、熱電発電装置の扁平化が容易になる。   This configuration facilitates flattening of the thermoelectric generator.

本発明の熱電発電装置においては、(7)前記複数の熱電発電ユニットが前記一方の熱媒体通路の軸線に対し平行に配置されるとともに、前記フィンが前記熱電発電ユニットの軸方向に延在し、かつ、径方向に隣り合う前記熱電発電ユニットの前記フィン同士が前記熱電発電ユニットの周方向に近接する複数の近接部分を有しており、前記重合領域が、前記複数の近接部分によって構成されていてもよい。   In the thermoelectric generator of the present invention, (7) the plurality of thermoelectric generator units are arranged in parallel to the axis of the one heat medium passage, and the fin extends in the axial direction of the thermoelectric generator unit. And the fins of the thermoelectric power generation units adjacent in the radial direction have a plurality of proximity portions that are close to each other in the circumferential direction of the thermoelectric generation unit, and the overlapping region is constituted by the plurality of proximity portions. It may be.

この場合、一方の熱媒体通路中の流れの中心側で隣り合う一対または各一対の熱電発電ユニットの間に重合領域が形成され、一方側の熱媒体の流れが各熱電発電ユニットの外周壁面に沿った流れに分岐されつつ整流され得ることになる。   In this case, a superposition region is formed between a pair of adjacent or each pair of thermoelectric power generation units on the center side of the flow in one heat medium passage, and the flow of the heat medium on one side is formed on the outer peripheral wall surface of each thermoelectric power generation unit. It can be rectified while being branched into a flow along.

本発明によれば、並列する複数の熱電発電ユニットの外周壁面における熱伝達効率および実装効率を高めた小型で高発電効率の熱電発電装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the small and high power generation efficiency thermoelectric generator which improved the heat transfer efficiency and mounting efficiency in the outer peripheral wall surface of the several thermoelectric power generation unit in parallel can be provided.

本発明の第1実施形態に係る熱電発電装置の概略構成図であり、そのケースおよびケース内に並列配置された複数の熱電発電ユニットをそれらの横断面で示している。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the thermoelectric power generating apparatus which concerns on 1st Embodiment of this invention, The several thermoelectric power generation unit arrange | positioned in parallel in the case is shown in those cross sections. 本発明の第1実施形態に係る熱電発電装置のカートリッジ化した筒状の熱電発電ユニットの横断面図である。It is a cross-sectional view of the cylindrical thermoelectric power generation unit formed into a cartridge of the thermoelectric power generation device according to the first embodiment of the present invention. 本発明の第1実施形態に係る熱電発電装置の筒状の熱電発電ユニットの概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the cylindrical thermoelectric power generation unit of the thermoelectric power generation apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る熱電発電装置の概略構成図であり、そのケースおよびケース内に並列配置された複数の熱電発電ユニットをそれらの横断面で示している。It is a schematic block diagram of the thermoelectric power generating apparatus which concerns on 2nd Embodiment of this invention, The several thermoelectric power generation unit arrange | positioned in parallel in the case is shown in those cross sections. 本発明の第3実施形態に係る熱電発電装置の概略構成図であり、そのケースおよびケース内に並列配置された複数の熱電発電ユニットをそれらの横断面で示している。It is a schematic block diagram of the thermoelectric power generating apparatus which concerns on 3rd Embodiment of this invention, The several thermoelectric power generation unit arrange | positioned in parallel in the case is shown in those cross sections. 本発明の第4実施形態に係る熱電発電装置の概略構成図であり、そのケースおよびケース内に並列配置された複数の熱電発電ユニットをそれらの横断面で示している。It is a schematic block diagram of the thermoelectric power generating apparatus which concerns on 4th Embodiment of this invention, The several thermoelectric power generation unit arrange | positioned in parallel in the case is shown in those cross sections. 本発明の第5実施形態に係る熱電発電装置の概略構成図であり、そのケースおよびケース内に並列配置された複数の熱電発電ユニットをそれらの横断面で示している。It is a schematic block diagram of the thermoelectric power generating apparatus which concerns on 5th Embodiment of this invention, The several thermoelectric power generation unit arrange | positioned in parallel in the case is shown in those cross sections.

以下、本発明の好ましい実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1ないし図3は、本発明の第1実施形態に係る熱電発電装置の概略構成を示している。
(First embodiment)
1 to 3 show a schematic configuration of the thermoelectric generator according to the first embodiment of the present invention.

なお、本実施形態の熱電発電装置は、高温熱源として内燃機関の排気ガスを、低温熱源として内燃機関の冷却水等の冷却媒体(水に限定されず、低温側の熱媒体として好適な冷却材)を用いるものである。この熱電発電装置は、高温熱源と低温熱源の間に複数の熱電素子を熱的には並列に電気的には専ら直列に配置して熱電発電することにより、内燃機関の排気ガスの持つ排熱を電気エネルギに変換しつつ回収する排熱回収機能を有している。   Note that the thermoelectric power generation apparatus of the present embodiment uses the exhaust gas of the internal combustion engine as a high-temperature heat source, and a cooling medium such as cooling water of the internal combustion engine as a low-temperature heat source (not limited to water, but a coolant suitable as a low-temperature heat medium) ). This thermoelectric power generation apparatus is configured to exhaust heat of exhaust gas of an internal combustion engine by thermoelectrically generating a plurality of thermoelectric elements between a high-temperature heat source and a low-temperature heat source in a thermal parallel manner and electrically exclusively in series. It has a waste heat recovery function that recovers while converting to electrical energy.

まず、本実施形態の熱電発電装置の構成について説明する。   First, the configuration of the thermoelectric power generator according to this embodiment will be described.

図1に示すように、本実施形態の熱電発電装置10は、図外の車両走行駆動用のエンジン(内燃機関)から排出された排気ガスGが導入されるケース11を備えており、このケース11は、一方の熱媒体通路である排気ガス通路12を有している。   As shown in FIG. 1, a thermoelectric generator 10 according to the present embodiment includes a case 11 into which exhaust gas G discharged from a vehicle driving engine (internal combustion engine) (not shown) is introduced. 11 has an exhaust gas passage 12 which is one heat medium passage.

ケース11は、例えばエンジンの排気管1に取り付けられた排気ガス制御弁2をバイパスするバイパス管3の一部を構成しており、この排気ガス制御弁2によって排気通路1aの一部が絞られるとき、高温側の熱媒体(低温または高温のうち一方側の熱媒体)である排気ガスGが排気ガス通路12内に流入するようになっている。   The case 11 constitutes a part of a bypass pipe 3 that bypasses an exhaust gas control valve 2 attached to the exhaust pipe 1 of the engine, for example, and a part of the exhaust passage 1a is throttled by the exhaust gas control valve 2. At this time, the exhaust gas G, which is a heat medium on the high temperature side (one of the low temperature and high temperature) flows into the exhaust gas passage 12.

排気ガス制御弁2は、低温側の熱媒体(低温または高温のうち他方側の熱媒体)であるエンジンの冷却水Wを導入しその冷却水Wの温度に応じて排気制御弁体2aを回動させるサーモスタットタイプのものである。   The exhaust gas control valve 2 introduces engine cooling water W, which is a low-temperature heat medium (the other heat medium of low temperature or high temperature), and rotates the exhaust control valve body 2a according to the temperature of the cooling water W. It is a thermostat type to be moved.

なお、ケース11がバイパス管3の一部でなく排気管自体の一部であってもよいし、排気ガス制御弁2がアクチュエータや形状記憶合金等を用いた他方式のものであってもよいことはいうまでもない。   The case 11 may be a part of the exhaust pipe itself instead of a part of the bypass pipe 3, or the exhaust gas control valve 2 may be of another type using an actuator, a shape memory alloy or the like. Needless to say.

ケース11の内部には、排気ガス通路12の軸線方向に対し略直角に軸交差する略円筒状の複数の熱電発電ユニット13が互いに平行に並列配置されている。   Inside the case 11, a plurality of substantially cylindrical thermoelectric power generation units 13 that are axially crossed at right angles to the axial direction of the exhaust gas passage 12 are arranged in parallel to each other.

これら複数の熱電発電ユニット13は、排気ガス通路12中で排気ガスGの流れ方向に隣り合う各一対の熱電発電ユニット13が中心間距離Lを隔てて図1中の斜め上下方向に隣り合い、かつ、排気ガス通路12の軸線方向で同位置に位置する一対の熱電発電ユニット13(図1中の13B、13C)が中心間距離Lを隔てて図1中の上下に隣り合うように配置されている。   A plurality of these thermoelectric power generation units 13 are adjacent to each other in the exhaust gas passage 12 in the vertical direction in FIG. In addition, a pair of thermoelectric power generation units 13 (13B and 13C in FIG. 1) located at the same position in the axial direction of the exhaust gas passage 12 are arranged so as to be adjacent to each other in the vertical direction in FIG. ing.

図2および図3に示すように、各熱電発電ユニット13は、内側の筒状伝熱部材32と、外側の筒状伝熱部材33と、内側の筒状伝熱部材32および外側の筒状伝熱部材33の間に介装された複数の熱電素子34a、34bを有する熱電素子モジュール35とを含んで構成されている。   As shown in FIGS. 2 and 3, each thermoelectric power generation unit 13 includes an inner cylindrical heat transfer member 32, an outer cylindrical heat transfer member 33, an inner cylindrical heat transfer member 32, and an outer cylindrical shape. And a thermoelectric element module 35 having a plurality of thermoelectric elements 34 a and 34 b interposed between the heat transfer members 33.

具体的には、内側の筒状伝熱部材32は、その内部に冷却水W(図1参照)を通す冷却媒体通路31(他方の熱媒体通路)を形成する内周壁面32aを有しており、冷却媒体通路31が軸線方向に延びる略円筒状のパイプとなっている。   Specifically, the inner cylindrical heat transfer member 32 has an inner peripheral wall surface 32a that forms a cooling medium passage 31 (the other heat medium passage) through which the cooling water W (see FIG. 1) passes. The cooling medium passage 31 is a substantially cylindrical pipe extending in the axial direction.

外側の筒状伝熱部材33は、内側の筒状伝熱部材32の外径より大径の内周面33aと、排気ガス通路12中で排気ガスGに接触する外周壁面33bとを有している。   The outer cylindrical heat transfer member 33 has an inner peripheral surface 33 a having a diameter larger than the outer diameter of the inner cylindrical heat transfer member 32 and an outer peripheral wall surface 33 b that contacts the exhaust gas G in the exhaust gas passage 12. ing.

この外側の筒状伝熱部材33は、内側の筒状伝熱部材32を外周側から取り囲むとともに内側の筒状伝熱部材32の外周面32bに対し所定の径方向離間距離を隔てるように、内側の筒状伝熱部材32と同軸に(同一中心軸線上に)配置されている。   The outer cylindrical heat transfer member 33 surrounds the inner cylindrical heat transfer member 32 from the outer peripheral side and is spaced from the outer peripheral surface 32b of the inner cylindrical heat transfer member 32 by a predetermined radial distance. The inner cylindrical heat transfer member 32 is arranged coaxially (on the same central axis).

複数の熱電素子34a、34bは、例えばゼーベック効果により温度差に応じた起電力を発生するN型およびP型の熱電変換素子の複数対で構成されており、N型の熱電素子34aおよびP型の熱電素子34bが内側の電極36aおよび外側の電極36bを介して周方向に直列に電気接続されることで、熱電素子モジュール35が構成されている。   The plurality of thermoelectric elements 34a and 34b are configured by, for example, a plurality of pairs of N-type and P-type thermoelectric conversion elements that generate an electromotive force according to a temperature difference by the Seebeck effect, and the N-type thermoelectric elements 34a and P-type The thermoelectric element 34b is electrically connected in series in the circumferential direction via the inner electrode 36a and the outer electrode 36b, so that the thermoelectric element module 35 is configured.

また、複数の熱電素子34a、34bは、内側の筒状伝熱部材32および外側の筒状伝熱部材33の周方向に等角度間隔に平行配置された棒状のものであり、それぞれの長さが排気ガス通路12の直径に近い長さになっている。   Further, the plurality of thermoelectric elements 34a and 34b are rod-shaped elements arranged in parallel at equal angular intervals in the circumferential direction of the inner cylindrical heat transfer member 32 and the outer cylindrical heat transfer member 33, and the lengths of the respective elements. Is a length close to the diameter of the exhaust gas passage 12.

なお、本実施形態では、各熱電発電ユニット13が、棒状の複数の熱電素子34a、34bを等角度間隔に平行配置した熱電素子モジュール35を構成するものとするが、それぞれ環状または筒状に形成したN型およびP型の熱電素子を軸方向に交互に複数対配置するものであってもよい。また、複数の棒状または板状の熱電素子34a、34bを軸方向に複数に分割したりそれら分割体の配置を周方向にずらしたりできることはいうまでもない。また、ここでは、内側の電極36aまたは外側の電極36bのいずれか1つと共にいわゆるπ型構造をなす各一対の熱電素子34a、34bが熱的には並列に電気的には直列に接続されるが、本発明は、π型構造以外にも適用できる。   In the present embodiment, each thermoelectric power generation unit 13 constitutes a thermoelectric element module 35 in which a plurality of rod-shaped thermoelectric elements 34a and 34b are arranged in parallel at equal angular intervals. A plurality of pairs of N-type and P-type thermoelectric elements arranged alternately in the axial direction may be used. Further, it goes without saying that the plurality of rod-like or plate-like thermoelectric elements 34a, 34b can be divided into a plurality of parts in the axial direction and the arrangement of these divided bodies can be shifted in the circumferential direction. In addition, here, each of the pair of thermoelectric elements 34a and 34b having a so-called π-type structure together with any one of the inner electrode 36a and the outer electrode 36b is thermally connected in parallel and electrically in series. However, the present invention can be applied to other than the π-type structure.

より具体的には、各熱電発電ユニット13の高温部を構成する内側の筒状伝熱部材32は、少なくとも複数の内側の電極36aに接する外周部分において、複数の内側の電極36a同士を電気的に絶縁する電気絶縁性を有している。   More specifically, the inner cylindrical heat transfer member 32 constituting the high temperature part of each thermoelectric power generation unit 13 electrically connects the plurality of inner electrodes 36a to each other at the outer peripheral portion in contact with at least the plurality of inner electrodes 36a. It has electrical insulation to insulate.

また、各熱電発電ユニット13の低温部を構成する外側の筒状伝熱部材33は、少なくとも複数の外側の電極36bに接する内周部分において、複数の外側の電極36b同士を電気的に絶縁する電気絶縁性を有している。   Further, the outer cylindrical heat transfer member 33 constituting the low temperature portion of each thermoelectric power generation unit 13 electrically insulates the plurality of outer electrodes 36b from each other at least in the inner peripheral portion in contact with the plurality of outer electrodes 36b. It has electrical insulation.

さらに、各熱電素子モジュール35の配置空間である内側の筒状伝熱部材32と外側の筒状伝熱部材33の間の円筒状の空間Sは、図3に示すように、一対の環状閉止部材37a、37bによって閉止されており、その内部に熱電素子モジュール35の酸化劣化防止剤として例えば不活性ガスが封入されている。   Furthermore, as shown in FIG. 3, a cylindrical space S between the inner cylindrical heat transfer member 32 and the outer cylindrical heat transfer member 33, which is an arrangement space of each thermoelectric element module 35, is a pair of annular closed members. It is closed by members 37a and 37b, and an inert gas, for example, is enclosed as an oxidation deterioration preventing agent for the thermoelectric element module 35 therein.

各一対の環状閉止部材37a、37bは、外側の筒状伝熱部材33の軸方向両端側に突き出ており、ケース11の側板部11aに形成された取付穴部11bに気密的に固定支持されている。   Each of the pair of annular closing members 37a and 37b protrudes from both ends in the axial direction of the outer cylindrical heat transfer member 33, and is hermetically fixed and supported in mounting holes 11b formed in the side plate portion 11a of the case 11. ing.

また、複数の熱電発電ユニット13は、内部の熱電素子モジュール35同士を電気的に接続するように素子リード線38等の電気配線によって相互に接続されるとともに、図外のバッテリ充電回路に接続されている。これにより、複数の熱電発電ユニット13は、排気ガスの持つ排熱から回収した電気エネルギをバッテリに蓄えることができるようになっている。   Further, the plurality of thermoelectric power generation units 13 are connected to each other by electrical wiring such as an element lead wire 38 so as to electrically connect the internal thermoelectric element modules 35 to each other and to a battery charging circuit (not shown). ing. As a result, the plurality of thermoelectric power generation units 13 can store the electric energy recovered from the exhaust heat of the exhaust gas in the battery.

一方、複数の熱電発電ユニット13は、それぞれの外周側に複数のフィン41を有している。   On the other hand, the plurality of thermoelectric power generation units 13 have a plurality of fins 41 on the respective outer peripheral sides.

これら複数のフィン41は、それぞれ外側の筒状伝熱部材33から放射外方に一定高さで突出する円環板状のもので、各熱電発電ユニット13の外周側に、冷却媒体通路31の軸線方向で互いに離間するように配置されている。これらのフィン41は、排気ガス通路12中を流れる排気ガスからの熱伝達により排気ガスの持つ排熱を吸収しつつ、高温側の受熱材である外側の筒状伝熱部材33に効率よく熱伝導する吸熱フィンとなっており、各熱電発電ユニット13の周方向全域でその放射外方への突出高さが一定になっている。   Each of the plurality of fins 41 is an annular plate that protrudes radially outward from the outer cylindrical heat transfer member 33 at a certain height, and on the outer peripheral side of each thermoelectric power generation unit 13, They are arranged so as to be separated from each other in the axial direction. These fins 41 absorb the exhaust heat of the exhaust gas by heat transfer from the exhaust gas flowing in the exhaust gas passage 12, and efficiently heat the outer cylindrical heat transfer member 33, which is a heat receiving material on the high temperature side. It is a heat-absorbing fin that conducts, and the protrusion height to the outside of the radiation is constant over the entire circumferential direction of each thermoelectric generation unit 13.

また、外側の筒状伝熱部材33からの複数のフィン41の突出高さHは、各一対の熱電発電ユニット13の中心間距離がLである場合に、各一対の熱電発電ユニット13のフィン41同士が、それらの外周近傍部の一部分(フィン41の突出高さ方向の上端側部分)で径方向にオーバーラップする、すなわち、各熱電発電ユニット13の径方向に対し直交する軸方向(図3の左右方向)に近接しつつ互いに重なり合う重合領域42を形成するように設定されている。   Further, the protruding height H of the plurality of fins 41 from the outer cylindrical heat transfer member 33 is such that when the distance between the centers of each pair of thermoelectric generation units 13 is L, the fins of each pair of thermoelectric generation units 13 41 overlap in the radial direction at a part of the outer peripheral vicinity (the upper end side portion of the fin 41 in the protruding height direction), that is, the axial direction orthogonal to the radial direction of each thermoelectric power generation unit 13 (see FIG. 3 in the left-right direction) and overlapping each other.

具体的には、熱電発電ユニット13の周方向における重合領域42の長さLaが、例えばその重合領域42を形成する一対の熱電発電ユニット13の中心間距離Lに対して、概ね1/3程度の長さ(La≒L/3)となるように、複数のフィン41の突出高さHが設定されている。ここにいう概ね1/3程度とは、1/2未満であるが1/4を超える程度である。   Specifically, the length La of the overlapping region 42 in the circumferential direction of the thermoelectric power generation unit 13 is, for example, about 1/3 of the distance L between the centers of the pair of thermoelectric power generation units 13 forming the overlapping region 42. The protrusion height H of the plurality of fins 41 is set so that the length of the fins 41 (La≈L / 3). In this case, about 1/3 means less than 1/2 but more than 1/4.

この重合領域42は、隣り合う各一対の熱電発電ユニット13のフィン41同士がそれらの外周近傍部の一部分で近接することにより、排気ガス通路12中に各一対の熱電発電ユニット13に対し平行に延びる板状の高圧損領域を形成している。一方、この重合領域42の周囲でフィン41同士が相対的に離れている他の領域は、低圧損領域となっている。これにより、一方の排気ガス通路12中で各一対の熱電発電ユニット13の間を流れる高温の排気ガスは、重合領域42を迂回しつつ重合領域42の設置姿勢や流れ方向の長さ等に応じて、一対の熱電発電ユニット13の外側の筒状伝熱部材33の外周壁面33b(以下、熱電発電ユニット13の外周壁面33bともいう)に沿って流れるよう案内される。   This overlapping region 42 is parallel to each pair of thermoelectric power generation units 13 in the exhaust gas passage 12 by the fins 41 of each pair of adjacent thermoelectric power generation units 13 being close to each other in a part of the vicinity of their outer periphery. An extending plate-like high-pressure loss region is formed. On the other hand, the other region where the fins 41 are relatively separated from each other around the overlapping region 42 is a low pressure loss region. Thus, the high-temperature exhaust gas flowing between each pair of thermoelectric power generation units 13 in one exhaust gas passage 12 bypasses the polymerization region 42 and depends on the installation posture of the polymerization region 42, the length in the flow direction, and the like. Thus, it is guided to flow along the outer peripheral wall surface 33 b (hereinafter also referred to as the outer peripheral wall surface 33 b of the thermoelectric power generation unit 13) of the cylindrical heat transfer member 33 outside the pair of thermoelectric power generation units 13.

本実施形態では、複数の熱電発電ユニット13は、一方の熱媒体通路である排気ガス通路12の中心軸線に対して軸交差するように配置されている。したがって、径方向に隣り合う各一対の熱電発電ユニット13、例えば図1中で斜め上下に隣り合う一対の熱電発電ユニット13A、13Bの間では、上流側の1つの熱電発電ユニット13Aの外周壁面33bのうち上流側部分(図1、図2中の外周壁面33bのうち左側の半円筒面)に沿って流れた排気ガスが、下流側に隣り合う他の熱電発電ユニット13B側に流れる。そのとき、下流側の熱電発電ユニット13Bに向かう排気ガスの一部が、両熱電発電ユニット13A、13Bのフィン41同士の重合領域42の近傍で、重合領域42と上流側の熱電発電ユニット13Aの外周壁面33bのうち下流側部分(図1、図2中の外周壁面33bのうち右側の半円筒面;以下、背面ともいう)との間に迂回するよう、上流側の熱電発電ユニット13Aの背面側に回り込む方向に案内される。   In the present embodiment, the plurality of thermoelectric power generation units 13 are arranged so as to intersect the central axis of the exhaust gas passage 12 that is one heat medium passage. Therefore, between each pair of thermoelectric power generation units 13 that are adjacent in the radial direction, for example, between a pair of thermoelectric power generation units 13A and 13B that are obliquely adjacent in FIG. 1, the outer peripheral wall surface 33b of one thermoelectric power generation unit 13A on the upstream side. The exhaust gas flowing along the upstream portion (the left semi-cylindrical surface of the outer peripheral wall surface 33b in FIGS. 1 and 2) flows to the other thermoelectric generation unit 13B side adjacent to the downstream side. At that time, a part of the exhaust gas toward the downstream thermoelectric power generation unit 13B is in the vicinity of the polymerization region 42 between the fins 41 of both the thermoelectric power generation units 13A and 13B, and between the polymerization region 42 and the upstream thermoelectric power generation unit 13A. The rear surface of the upstream thermoelectric generator unit 13A so as to bypass the downstream portion of the outer peripheral wall surface 33b (the right semi-cylindrical surface of the outer peripheral wall surface 33b in FIGS. 1 and 2; hereinafter also referred to as the rear surface). Guided in the direction of wrapping around.

同様に、図1中で斜め上下に隣り合う一対の熱電発電ユニット13A、13Cの間でも、上流側の熱電発電ユニット13Aの外周壁面33bのうち上流側部分に沿って流れた排気ガスが、両熱電発電ユニット13A、13Cのフィン41同士の重合領域42の近傍で、上流側の熱電発電ユニット13Aの背面側に回り込む方向に案内される。   Similarly, the exhaust gas that flows along the upstream portion of the outer peripheral wall surface 33b of the upstream thermoelectric power generation unit 13A also flows between the pair of thermoelectric power generation units 13A and 13C that are obliquely adjacent in FIG. In the vicinity of the overlapping region 42 between the fins 41 of the thermoelectric power generation units 13A and 13C, they are guided in a direction that wraps around the back side of the upstream thermoelectric power generation unit 13A.

また、例えば図1中の上下に隣り合う一対の熱電発電ユニット13B、13Cの間では、各熱電発電ユニット13B、13Cの外周壁面33bのうち上流側部分を通過した排気ガスが、下流側に隣り合う他の熱電発電ユニット13D側に流れる。そのとき、両熱電発電ユニット13B、13Cのフィン41同士の重合領域42では、両熱電発電ユニット13B、13Cの間を通る排気ガスが、外周壁面33bに沿う方向に案内される。   Further, for example, between a pair of thermoelectric power generation units 13B and 13C adjacent in the vertical direction in FIG. 1, the exhaust gas that has passed through the upstream portion of the outer peripheral wall surface 33b of each thermoelectric power generation unit 13B and 13C is adjacent to the downstream side. It flows to the other thermoelectric power generation unit 13D. At that time, in the overlapping region 42 between the fins 41 of both the thermoelectric power generation units 13B and 13C, the exhaust gas passing between the both thermoelectric power generation units 13B and 13C is guided in a direction along the outer peripheral wall surface 33b.

さらに、図1中で斜め上下に隣り合う一対の熱電発電ユニット13B、13Dの間では、上流側の1つの熱電発電ユニット13Bの外周壁面33bのうち上流側部分に沿って流れた排気ガスが、下流側に隣り合う他の熱電発電ユニット13D側に流れるとき、両熱電発電ユニット13B、13Dのフィン41同士の重合領域42で、上流側の熱電発電ユニット13Bの背面側に回り込むよう、その外周壁面33bのうち下流側部分に沿う方向に案内される。   Furthermore, between the pair of thermoelectric power generation units 13B and 13D that are adjacent to each other in FIG. 1, the exhaust gas that flows along the upstream portion of the outer peripheral wall surface 33b of one upstream thermoelectric power generation unit 13B, When flowing to the other thermoelectric power generation unit 13D side adjacent to the downstream side, the outer peripheral wall surface of the overlapping region 42 between the fins 41 of both the thermoelectric power generation units 13B and 13D goes around to the back side of the upstream thermoelectric power generation unit 13B. Guided in a direction along the downstream portion of 33b.

同様に、図1中で斜め上下に隣り合う一対の熱電発電ユニット13C、13Dの間でも、上流側の1つの熱電発電ユニット13Cの外周壁面33bのうち上流側部分に沿って流れた排気ガスが、下流側に隣り合う他の熱電発電ユニット13D側に流れるとき、両熱電発電ユニット13C、13Dのフィン41同士の重合領域42で、上流側の熱電発電ユニット13Cの背面側に回り込むよう、その外周壁面33bのうち下流側部分に沿う方向に案内される。   Similarly, the exhaust gas flowing along the upstream portion of the outer peripheral wall surface 33b of one upstream thermoelectric power generation unit 13C is also between the pair of thermoelectric power generation units 13C and 13D that are obliquely adjacent in FIG. When flowing to the other thermoelectric power generation unit 13D side adjacent to the downstream side, the outer periphery of the thermoelectric power generation unit 13C, 13D is overlapped by the overlapping region 42 between the fins 41 so as to wrap around the back side of the upstream thermoelectric power generation unit 13C. It is guided in the direction along the downstream portion of the wall surface 33b.

このように、本実施形態では、複数の熱電発電ユニット13のうち径方向に隣り合う各一対の熱電発電ユニット13のフィン41同士が重合領域42を形成しており、重合領域42は、各一対の熱電発電ユニット13のフィン41が各熱電発電ユニット13の周方向全域に延在することで、各一対の熱電発電ユニット13の軸方向に延在しつつ、各熱電発電ユニット13の周方向におけるその重合領域42の中央部で径方向に厚くなる略翼形状の板状をなしている。   Thus, in this embodiment, the fins 41 of each pair of thermoelectric power generation units 13 that are adjacent to each other in the radial direction among the plurality of thermoelectric power generation units 13 form the overlapping regions 42, and the overlapping regions 42 are each paired. The fins 41 of the thermoelectric power generation units 13 extend in the entire circumferential direction of each thermoelectric power generation unit 13, so that they extend in the axial direction of each pair of thermoelectric power generation units 13 and in the circumferential direction of each thermoelectric power generation unit 13. A substantially wing-shaped plate shape that is thick in the radial direction at the center of the overlapping region 42 is formed.

これにより、各重合領域42は、径方向に隣り合う各一対の熱電発電ユニット13の間に高圧損領域を形成し、排気ガス通路12中の排気ガスの流れを、径方向に隣り合う各一対の熱電発電ユニット13の間でそれらの外周壁面33bに沿って周方向に延びる低圧損の通路領域に方向付ける整流部を構成している。   Thereby, each superposition | polymerization area | region 42 forms a high voltage | pressure loss area | region between each pair of thermoelectric generation units 13 adjacent to radial direction, and the flow of the exhaust gas in the exhaust gas passage 12 is made to each pair adjacent to radial direction. The rectification | straightening part which directs to the channel | path area | region of the low pressure loss extended in the circumferential direction along those outer peripheral wall surfaces 33b between these thermoelectric generation units 13 is comprised.

また、本実施形態では、排気ガス通路12中のガス流れ方向で隣り合う複数の熱電発電ユニット13の間、例えば上流側の熱電発電ユニット13Aとその下流側の熱電発電ユニット13B、13Cとの間に複数、例えば一対の重合領域42が形成される。これにより、ガス流れ方向で上流側に位置する各熱電発電ユニット13、例えば熱電発電ユニット13Aの外周壁面33bの上流側部分に沿って2方向に分かれて流れた排気ガスが、熱電発電ユニット13Aの外周壁面33bのうち下流側部分(背面)に近接する一対の重合領域42によってその背面に沿って再度合流する方向に案内されるようになっている。   Moreover, in this embodiment, between the several thermoelectric power generation units 13 adjacent in the gas flow direction in the exhaust gas passage 12, for example, between the thermoelectric power generation unit 13A on the upstream side and the thermoelectric power generation units 13B and 13C on the downstream side. A plurality of, for example, a pair of overlapping regions 42 are formed. Thus, the exhaust gas flowing in two directions along the upstream portion of the outer peripheral wall surface 33b of each thermoelectric power generation unit 13, for example, the thermoelectric power generation unit 13A, located upstream in the gas flow direction, flows into the thermoelectric power generation unit 13A. The outer circumferential wall 33b is guided by the pair of overlapping regions 42 close to the downstream portion (back surface) in the direction of joining again along the back surface.

次に、作用について説明する。   Next, the operation will be described.

上述のように構成された本実施形態の熱電発電装置10においては、排気ガス通路12である排気ガス通路12中で、各一対の熱電発電ユニット13のフィン41同士が近接した重合領域42では排気ガスの流れに対して高圧損(高圧力損失)となり、他の領域では低圧損となる。   In the thermoelectric power generation apparatus 10 of the present embodiment configured as described above, the exhaust gas passage 12 that is the exhaust gas passage 12 is exhausted in the overlapping region 42 where the fins 41 of each pair of thermoelectric power generation units 13 are close to each other. A high pressure loss (high pressure loss) occurs in the gas flow, and a low pressure loss occurs in other regions.

したがって、重合領域42は、排気ガス通路12中に流れる排気ガスを近接する各熱電発電ユニット13の外周壁面に沿う方向に案内し得るものとなり、各一対の熱電発電ユニット13の間を流れる排気ガスがその一対のうち上流側の熱電発電ユニット13の外周壁面33bの下流側部分(背面)から剥離し難くなる。その結果、各一対のうち上流側の熱電発電ユニット13の背面に沿う排気ガスの流量が増加し、複数の熱電発電ユニット13の発電効率が高まる。   Therefore, the superposition | polymerization area | region 42 becomes what can guide the exhaust gas which flows in the exhaust gas channel | path 12 to the direction along the outer peripheral wall surface of each thermoelectric generation unit 13 which adjoins, and the exhaust gas which flows between each pair of thermoelectric generation units 13 However, it becomes difficult to peel from the downstream side part (back surface) of the outer peripheral wall surface 33b of the upstream thermoelectric generation unit 13 in the pair. As a result, the flow rate of the exhaust gas along the rear surface of the upstream thermoelectric power generation unit 13 in each pair increases, and the power generation efficiency of the plurality of thermoelectric power generation units 13 increases.

しかも、重合領域42は、径方向に隣り合う少なくとも一対の熱電発電ユニット13のフィン41同士が径方向に対し直交する各熱電発電ユニット13の軸方向に近接しつつ径方向にオーバーラップするように構成されるので、並列する複数の熱電発電ユニット13の発電効率のみならず、熱電発電装置10における複数の熱電発電ユニット13の実装効率をも高めることができる。   Moreover, the overlapping region 42 overlaps in the radial direction while the fins 41 of at least one pair of the thermoelectric power generation units 13 adjacent in the radial direction are close to each other in the axial direction of each thermoelectric generation unit 13 orthogonal to the radial direction. Since it is comprised, not only the power generation efficiency of the several thermoelectric power generation unit 13 in parallel but the mounting efficiency of the several thermoelectric power generation unit 13 in the thermoelectric power generation apparatus 10 can be improved.

また、本実施形態では、排気ガス通路12中で径方向に隣り合う各一対の熱電発電ユニット13の間を通過する排気ガスが、重合領域42により構成される整流部によって、各一対の熱電発電ユニット13の中心間距離の1/3程度の周方向長さLaの範囲内で、各熱電発電ユニット13の外周壁面33bの下流側部分に沿う方向に案内される。したがって、各熱電発電ユニット13の外周壁面33bの上流側部分を通過した排気ガスが外周壁面33bの下流側部分から剥離し難くなり、各熱電発電ユニット13の背面に沿う排気ガスの流量が増加するだけでなく、排気ガスを詰まらせずに各熱電発電ユニット13の後方に案内することができる。よって、複数の熱電発電ユニット13の発電効率が高まる。   In the present embodiment, the exhaust gas that passes between each pair of the thermoelectric power generation units 13 that are adjacent in the exhaust gas passage 12 in the radial direction is converted into each pair of thermoelectric power generation by the rectification unit configured by the overlapping region 42. Guided in a direction along the downstream portion of the outer peripheral wall surface 33b of each thermoelectric power generation unit 13 within a range of a circumferential length La of about 1/3 of the center-to-center distance of the units 13. Therefore, the exhaust gas that has passed through the upstream side portion of the outer peripheral wall surface 33b of each thermoelectric power generation unit 13 becomes difficult to separate from the downstream side portion of the outer peripheral wall surface 33b, and the flow rate of exhaust gas along the back surface of each thermoelectric power generation unit 13 increases. Moreover, it can guide to the back of each thermoelectric generation unit 13 without clogging exhaust gas. Therefore, the power generation efficiency of the plurality of thermoelectric power generation units 13 is increased.

さらに、本実施形態では、各熱電発電ユニット13のフィン41がその熱電発電ユニット13の周方向全域に延在しているので、径方向に隣り合う一対の熱電発電ユニット13のフィン41が、熱電発電ユニット13の軸方向で互いに近接する多数の近接部分を有するものとなり、有効な整流作用をなす略板状の重合領域42が容易に形成可能となる。   Furthermore, in this embodiment, since the fin 41 of each thermoelectric power generation unit 13 extends in the entire circumferential direction of the thermoelectric power generation unit 13, the fins 41 of a pair of thermoelectric power generation units 13 adjacent in the radial direction are The power generation unit 13 has a large number of adjacent portions that are close to each other in the axial direction, and the substantially plate-shaped overlapping region 42 having an effective rectifying function can be easily formed.

また、本実施形態では、フィン41が熱電発電ユニット13の周方向全域で放射外方への突出高さが一定になっているので、重合領域42が熱電発電ユニット13の径方向における両面側に円曲面形状をなす翼状に形成されることになり、良好な整流作用が得られるものとなる。また、各熱電発電ユニット13を取り扱いやケース11への取付けの容易な略円筒状のカートリッジとして構成できる。   Further, in the present embodiment, since the fins 41 have a constant protrusion height outward in the circumferential direction of the thermoelectric generation unit 13, the overlapping region 42 is formed on both sides in the radial direction of the thermoelectric generation unit 13. It will be formed in the shape of a wing having a circular curved surface, and a good rectifying action will be obtained. Further, each thermoelectric power generation unit 13 can be configured as a substantially cylindrical cartridge that is easy to handle and attach to the case 11.

加えて、本実施形態では、各一対の熱電発電ユニット13が排気ガス通路12の軸線方向およびそれと直交する方向の双方に離間し、各一対のうち上流側の熱電発電ユニット13の背面側に排気ガスが回り込むのを容易ならしめる重合領域42を形成できる。しかも、上流側の熱電発電ユニット13の外周壁面33dの上流側部分に沿って2方向に分かれて流れた排気ガスが、複数の重合領域42によってその熱電発電ユニット13の背面側に回り込むように案内され、再度合流しつつ後方に流れ得るので、背面側における熱伝達効率がより向上する。   In addition, in the present embodiment, each pair of thermoelectric power generation units 13 is separated in both the axial direction of the exhaust gas passage 12 and the direction orthogonal thereto, and exhausted to the back side of the upstream thermoelectric power generation unit 13 in each pair. A polymerized region 42 can be formed that facilitates gas wraparound. In addition, the exhaust gas that has flowed in two directions along the upstream portion of the outer peripheral wall surface 33d of the upstream thermoelectric generation unit 13 is guided by the plurality of overlapping regions 42 so as to wrap around the back side of the thermoelectric generation unit 13. In addition, the heat transfer efficiency on the back side can be further improved because it can flow backward while merging again.

このように、本実施形態によれば、並列する複数の熱電発電ユニット13の背面側の熱伝達効率を高め、複数の熱電発電ユニット13の発電効率および実装効率を高めた小型で高発電効率の熱電発電装置10を提供することができる。   As described above, according to the present embodiment, the heat transfer efficiency on the back side of the plurality of thermoelectric power generation units 13 arranged in parallel is increased, and the power generation efficiency and the mounting efficiency of the plurality of thermoelectric power generation units 13 are increased. The thermoelectric generator 10 can be provided.

(第2実施形態)
図4は、本発明の第2実施形態に係る熱電発電装置の概略構成を示している。
(Second Embodiment)
FIG. 4 shows a schematic configuration of the thermoelectric generator according to the second embodiment of the present invention.

なお、以下に説明する各実施形態の熱電発電装置は、複数の熱電発電ユニット13に装着される複数組のフィンの形状および径方向に隣り合う各一対の熱電発電ユニット13のフィン同士の重合領域の形状等が前述の第1実施形態と相違するものの、他の部分構成や全体構成は、前述の第1実施形態と類似するものである。よって、以下の各実施形態の説明においては、先行する実施形態と同一であるか類似する構成については図1ないし図3中の対応する構成要素と同一の符号を用いつつ、第1実施形態または先行する実施形態との相違点を中心に説明する。   In addition, the thermoelectric power generation device of each embodiment described below has a shape of a plurality of fins attached to the plurality of thermoelectric power generation units 13 and a superposition region between the fins of each pair of thermoelectric power generation units 13 adjacent in the radial direction. Although the shape and the like are different from those of the first embodiment described above, the other partial configuration and overall configuration are similar to those of the first embodiment described above. Therefore, in the following description of each embodiment, the same or similar components as those of the preceding embodiment are denoted by the same reference numerals as the corresponding components in FIGS. The description will focus on the differences from the preceding embodiment.

第2実施形態においては、図4に示すように、複数の熱電発電ユニット13が、排気ガス通路12の中心軸線を含む所定平面上に中心軸線位置が設定された第1グループの熱電発電ユニット13A、13Dと、中心軸線位置が排気ガス通路12の中心軸線を含む前記所定平面から外れ、かつ、前記所定平面に対し一定の離間距離を隔てて平行に配置された第2グループの熱電発電ユニット13B、13Cとによって構成されている。そして、第1実施形態におけるフィン41に代えて、第1グループの熱電発電ユニット13A、13Dには、略六角形の複数のフィン51が軸方向所定間隔を隔てて平行に装着され、第2グループの熱電発電ユニット13B、13Cには、略三角形(非円形の外周輪郭形状)の複数のフィン52が軸方向所定間隔を隔てて平行に装着されている。   In the second embodiment, as shown in FIG. 4, a plurality of thermoelectric power generation units 13 are arranged in a first group of thermoelectric power generation units 13 </ b> A whose center axis positions are set on a predetermined plane including the center axis line of the exhaust gas passage 12. , 13D, and a second group of thermoelectric power generation units 13B arranged at a central axis position deviating from the predetermined plane including the central axis line of the exhaust gas passage 12 and parallel to the predetermined plane with a predetermined separation distance. , 13C. Then, instead of the fins 41 in the first embodiment, a plurality of substantially hexagonal fins 51 are mounted in parallel in the first group of thermoelectric power generation units 13A and 13D with a predetermined interval in the axial direction. The thermoelectric power generation units 13B and 13C are provided with a plurality of substantially triangular (non-circular outer peripheral contour shape) fins 52 mounted in parallel at predetermined intervals in the axial direction.

ここで、第1、第2グループのうち少なくとも一方、例えば排気ガス通路12の中心軸線から離れた外側の第2グループの熱電発電ユニット13B、13Cのフィン52は、排気ガス通路12の中心軸線方向(図4中の左右方向)には大径で、排気ガス通路12の中心軸線と直交する方向(図4中の上限方向)には小径となっている。   Here, at least one of the first and second groups, for example, the fins 52 of the thermoelectric generator units 13B and 13C in the second group outside the center axis of the exhaust gas passage 12 is in the direction of the center axis of the exhaust gas passage 12 It has a large diameter in the left-right direction in FIG. 4 and a small diameter in a direction perpendicular to the central axis of the exhaust gas passage 12 (the upper limit direction in FIG. 4).

これら2組のフィン51、52は、排気ガス通路12中を流れる排気ガスからの熱伝達により排気ガスの持つ排熱を吸収しつつ外側の筒状伝熱部材33に効率よく熱伝導する吸熱フィンとなっており、各熱電発電ユニット13の周方向全域に及んでいる。ただし、各フィン51、52の放射外方への突出高さは、周方向の全域で一定ではなく、前記所定平面に対し所定角度をなす複数の特定角度位置で大きく、それらの中間の角度位置で小さくなっている。   These two sets of fins 51 and 52 are heat absorbing fins that efficiently conduct heat to the outer cylindrical heat transfer member 33 while absorbing the exhaust heat of the exhaust gas by heat transfer from the exhaust gas flowing in the exhaust gas passage 12. It extends over the entire circumferential direction of each thermoelectric power generation unit 13. However, the projecting height of the fins 51 and 52 outward in the radial direction is not constant throughout the circumferential direction, but is large at a plurality of specific angular positions that form a predetermined angle with respect to the predetermined plane, and an intermediate angular position between them. It is getting smaller.

また、排気ガス通路12中で径方向に隣り合う各一対の熱電発電ユニット13の間には、これらの熱電発電ユニット13のフィン51、52同士が、前記放射外方に突出するフィン51、52の突出高さ方向の上端側で、各熱電発電ユニット13の径方向に対し直交する軸方向(図4の紙面と直交する方向)に近接しつつ径方向にオーバーラップする重合領域55を形成している。   Further, between the pair of thermoelectric power generation units 13 that are adjacent to each other in the exhaust gas passage 12 in the radial direction, the fins 51 and 52 of these thermoelectric power generation units 13 protrude outwardly from the radiation. On the upper end side in the projecting height direction, a superposed region 55 that overlaps in the radial direction while being close to the axial direction perpendicular to the radial direction of each thermoelectric power generation unit 13 (direction perpendicular to the paper surface of FIG. 4) is formed. ing.

本実施形態では、径方向に隣り合う各一対の熱電発電ユニット13のフィン51、52同士により形成される重合領域55が、各一対の熱電発電ユニット13の軸方向に延在しつつ、各熱電発電ユニット13の周方向におけるその重合領域55の一部で径方向に厚くなる略翼形状の板状をなしている。   In this embodiment, the superposition | polymerization area | region 55 formed by the fins 51 and 52 of each pair of thermoelectric generation units 13 adjacent to each other in the radial direction extends in the axial direction of each pair of thermoelectric generation units 13, and each thermoelectric generation unit 13. A part of the overlapping region 55 in the circumferential direction of the power generation unit 13 has a substantially blade-like plate shape that is thick in the radial direction.

これにより、重合領域55は、径方向に隣り合う各一対の熱電発電ユニット13の間に高圧損領域を形成し、径方向に隣り合う各一対の熱電発電ユニット13の間で、排気ガスを各一対の熱電発電ユニット13の周方向に延びる低圧損の通路領域に方向付ける整流部を構成している。   Thereby, the superposition | polymerization area | region 55 forms a high voltage | pressure loss area | region between each pair of thermoelectric generation units 13 adjacent to radial direction, and each exhaust gas is passed between each pair of thermoelectric generation units 13 adjacent to radial direction. A rectifying unit is configured to be directed to a low pressure loss passage region extending in the circumferential direction of the pair of thermoelectric generation units 13.

また、排気ガス通路12中のガス流れ方向で隣り合う複数の熱電発電ユニット13の間に複数の重合領域55が形成されることにより、ガス流れ方向で上流側に位置する各熱電発電ユニット13の上流側部分に沿って2方向に分かれて流れた排気ガスが、その熱電発電ユニット13の外周壁面33bに近接する一対の重合領域55によって下流側の外周壁面33bに沿って再度合流する方向に案内されるようになっている。   Further, by forming a plurality of overlapping regions 55 between the plurality of thermoelectric power generation units 13 adjacent in the gas flow direction in the exhaust gas passage 12, each of the thermoelectric power generation units 13 located upstream in the gas flow direction is formed. The exhaust gas that has flowed in two directions along the upstream side portion is guided in a direction where it joins again along the outer peripheral wall surface 33b on the downstream side by the pair of overlapping regions 55 close to the outer peripheral wall surface 33b of the thermoelectric power generation unit 13. It has come to be.

本実施形態においても、並列する複数の熱電発電ユニット13の背面側における熱伝達効率を高め、複数の熱電発電ユニット13の発電効率および実装効率を高めた小型で高発電効率の熱電発電装置10を提供することができる。   Also in the present embodiment, the small-sized and high power generation efficiency thermoelectric power generation apparatus 10 in which the heat transfer efficiency on the back side of the plurality of thermoelectric power generation units 13 arranged in parallel is increased and the power generation efficiency and mounting efficiency of the plurality of thermoelectric power generation units 13 is increased. Can be provided.

しかも、本実施形態では、外側のフィン52が排気ガス通路12の中心軸線方向に大径で、その中心軸線と直交する方向に小径となっているので、熱電発電装置10を容易に扁平化できる。   In addition, in the present embodiment, the outer fin 52 has a large diameter in the central axis direction of the exhaust gas passage 12 and a small diameter in a direction orthogonal to the central axis, so that the thermoelectric generator 10 can be easily flattened. .

(第3実施形態)
図5は、本発明の第3実施形態に係る熱電発電装置の概略構成を示している。
(Third embodiment)
FIG. 5 shows a schematic configuration of a thermoelectric generator according to the third embodiment of the present invention.

第3実施形態においては、図5に示すように、第1実施形態におけるフィン41に代えて、第1グループの熱電発電ユニット13A、13Dには、複数のフィン61が軸方向所定間隔を隔てて平行に装着され、第2グループの熱電発電ユニット13B、13Cには、複数のフィン62が軸方向所定間隔を隔てて平行に装着されている。   In the third embodiment, as shown in FIG. 5, instead of the fins 41 in the first embodiment, a plurality of fins 61 are spaced apart from each other in the axial direction by a first group of thermoelectric power generation units 13 </ b> A and 13 </ b> D. A plurality of fins 62 are mounted in parallel in the second group of thermoelectric power generation units 13B and 13C at predetermined intervals in the axial direction.

これら2組のフィン61、62は、排気ガス通路12中を流れる排気ガスからの熱伝達により排気ガスの持つ排熱を吸収しつつ外側の筒状伝熱部材33に効率よく熱伝導する吸熱フィンとなっており、各熱電発電ユニット13の周方向全域に及んでいる。   These two sets of fins 61 and 62 absorb heat exhausted from the exhaust gas flowing through the exhaust gas passage 12 and absorb heat exhausted from the exhaust gas while efficiently conducting heat to the outer cylindrical heat transfer member 33. It extends over the entire circumferential direction of each thermoelectric power generation unit 13.

ここで、第1、第2グループのうち少なくとも一方、例えば排気ガス通路12の中心軸線に近い第1グループの熱電発電ユニット13A、13Dのフィン61は、それぞれ排気ガス通路12の中心軸線方向には大径で、排気ガス通路12の中心軸線と直交する方向には小径となる非円形の外周輪郭形状、例えば略長方形をなしている。排気ガス通路12の中心軸線から離れた第2グループの熱電発電ユニット13B、13Cのフィン62は、図5中では略正方形で示しているが、排気ガス通路12の中心軸線方向には大径または小径となる略長方形や多角形でもよい。   Here, at least one of the first and second groups, for example, the fins 61 of the thermoelectric power generation units 13A and 13D of the first group close to the central axis of the exhaust gas passage 12 are arranged in the direction of the central axis of the exhaust gas passage 12, respectively. A large-diameter non-circular outer contour shape having a small diameter in a direction perpendicular to the central axis of the exhaust gas passage 12, for example, a substantially rectangular shape. The fins 62 of the second group of thermoelectric power generation units 13B and 13C that are separated from the central axis of the exhaust gas passage 12 are shown as substantially squares in FIG. It may be a substantially rectangular or polygonal shape having a small diameter.

排気ガス通路12中で径方向に隣り合う各一対の熱電発電ユニット13の間には、これらの熱電発電ユニット13のフィン61、62同士が、前記放射外方に突出するフィン61、62の突出高さ方向の上端側で、各熱電発電ユニット13の径方向に対し直交する軸方向(図5の紙面と直交する方向)に近接しつつ径方向にオーバーラップする重合領域65を形成している。   Between the pair of thermoelectric power generation units 13 that are adjacent to each other in the exhaust gas passage 12 in the radial direction, the fins 61 and 62 of these thermoelectric power generation units 13 protrude outwardly from the radiation 61 and 62. On the upper end side in the height direction, a superposition region 65 that overlaps in the radial direction while being close to the axial direction orthogonal to the radial direction of each thermoelectric generation unit 13 (direction orthogonal to the paper surface of FIG. 5) is formed. .

この重合領域65は、径方向に隣り合う各一対の熱電発電ユニット13の間に高圧損領域を形成し、径方向に隣り合う各一対の熱電発電ユニット13の間で、排気ガスを各一対の熱電発電ユニット13の周方向に延びる低圧損の通路領域に方向付ける整流部を構成している。そして、複数の熱電発電ユニット13の間に複数の重合領域65が形成されることにより、ガス流れ方向で上流側に位置する各熱電発電ユニット13の上流側部分に沿って2方向に分かれて流れた排気ガスが、その熱電発電ユニット13の背面側で再度合流しつつ後方に案内され得るようになっている。   The overlapping region 65 forms a high-pressure loss region between each pair of thermoelectric power generation units 13 that are adjacent in the radial direction, and exhaust gas is passed between each pair of thermoelectric generation units 13 that are adjacent in the radial direction. A rectifying unit is formed which is directed to a low pressure loss passage region extending in the circumferential direction of the thermoelectric generator unit 13. Then, by forming a plurality of overlapping regions 65 between the plurality of thermoelectric power generation units 13, the flow is divided into two directions along the upstream portion of each thermoelectric power generation unit 13 located on the upstream side in the gas flow direction. The exhaust gas can be guided rearward while rejoining on the back side of the thermoelectric generator unit 13.

本実施形態においても、並列する複数の熱電発電ユニット13の外周壁面33bにおける熱伝達効率を高め、複数の熱電発電ユニット13の発電効率および実装効率を高めた小型で高発電効率の熱電発電装置10を提供することができ、しかも、熱電発電装置10を容易に扁平化できる。   Also in the present embodiment, the heat transfer efficiency on the outer peripheral wall surface 33b of the plurality of thermoelectric power generation units 13 arranged in parallel is increased, and the power generation efficiency and mounting efficiency of the plurality of thermoelectric power generation units 13 are increased. In addition, the thermoelectric generator 10 can be easily flattened.

(第4実施形態)
図6は、本発明の第4実施形態に係る熱電発電装置の概略構成を示している。
(Fourth embodiment)
FIG. 6 shows a schematic configuration of a thermoelectric generator according to the fourth embodiment of the present invention.

図6に示す第4実施形態の熱電発電装置70は、第1実施形態のケース11に代えて排気ガス通路72を軸線方向に形成する筒状のケース71を有しており、複数の熱電発電ユニット73を排気ガス通路72中にガス流れ方向に対し平行に方向付けた並列状態で収納したものである。   A thermoelectric generator 70 of the fourth embodiment shown in FIG. 6 has a cylindrical case 71 that forms an exhaust gas passage 72 in the axial direction instead of the case 11 of the first embodiment, and includes a plurality of thermoelectric generators. The unit 73 is accommodated in the exhaust gas passage 72 in a parallel state oriented parallel to the gas flow direction.

この熱電発電装置70の熱電発電ユニット73は、第1実施形態における熱電発電ユニット13のフィン41に代えて複数の縦長のフィン76を装着したものであり、複数のフィン76は、各熱電発電ユニット73の軸方向に延在するとともに、その熱電発電ユニット73の周方向に離間するように、熱電発電ユニット73の外側の筒状伝熱部材33から等角度間隔に放射外方に突出している。   The thermoelectric power generation unit 73 of the thermoelectric power generation apparatus 70 is provided with a plurality of vertically long fins 76 instead of the fins 41 of the thermoelectric power generation unit 13 in the first embodiment, and the plurality of fins 76 are each thermoelectric power generation unit. It extends in the axial direction of 73 and protrudes radially outward from the tubular heat transfer member 33 outside the thermoelectric power generation unit 73 at equal angular intervals so as to be separated in the circumferential direction of the thermoelectric power generation unit 73.

そして、径方向に隣り合う各一対の熱電発電ユニット73のフィン76同士がそれらの突出高さ方向の上端側で、径方向に対し直交する熱電発電ユニット73の周方向に近接しつつ径方向にオーバーラップする重合領域77を形成している。   The fins 76 of each pair of thermoelectric power generation units 73 adjacent in the radial direction are in the radial direction while approaching the circumferential direction of the thermoelectric power generation unit 73 orthogonal to the radial direction on the upper end side in the protruding height direction. Overlapping polymerization regions 77 are formed.

ここで、複数のフィン76は、排気ガス通路72中を流れる排気ガスからの熱伝達により排気ガスの持つ排熱を吸収しつつ外側の筒状伝熱部材33に効率よく熱伝導する吸熱フィンとなっており、各熱電発電ユニット73の周方向全域に等間隔に配置されている。したがって、径方向に隣り合う一対の熱電発電ユニット73のフィン76同士が、熱電発電ユニット73の周方向で互いに近接する複数の近接部分76aを有するものとなり、排気ガス通路12内の排気ガスを熱電発電ユニット73の軸方向に案内する重合領域77が容易に形成可能となる。   Here, the plurality of fins 76 are heat absorption fins that efficiently conduct heat to the outer cylindrical heat transfer member 33 while absorbing exhaust heat of the exhaust gas by heat transfer from the exhaust gas flowing through the exhaust gas passage 72. The thermoelectric generator units 73 are arranged at equal intervals throughout the circumferential direction. Accordingly, the fins 76 of the pair of thermoelectric power generation units 73 adjacent in the radial direction have a plurality of adjacent portions 76a that are close to each other in the circumferential direction of the thermoelectric power generation unit 73, and the exhaust gas in the exhaust gas passage 12 is transferred to the thermoelectric power. The overlapping region 77 guided in the axial direction of the power generation unit 73 can be easily formed.

複数のフィン76は、熱電発電ユニット73の軸線と平行なものに限らず、熱電発電ユニット73の一端側と他端側とで周方向位置が異なるように傾斜したり湾曲したりしていてもよい。   The plurality of fins 76 are not limited to those parallel to the axis of the thermoelectric power generation unit 73, and may be inclined or curved so that circumferential positions thereof are different on one end side and the other end side of the thermoelectric power generation unit 73. Good.

重合領域77は、径方向に隣り合う各一対の熱電発電ユニット73の間に高圧損領域を形成し、径方向に隣り合う各一対の熱電発電ユニット73の間で、排気ガスを各一対の熱電発電ユニット73の軸方向に延びる低圧損の通路領域に方向付ける整流部を構成している。   The superposition region 77 forms a high-pressure loss region between each pair of thermoelectric generation units 73 adjacent in the radial direction, and exhaust gas is transferred between each pair of thermoelectric generation units 73 adjacent in the radial direction. A rectifying unit is configured to be directed to a low pressure loss passage region extending in the axial direction of the power generation unit 73.

そして、複数の熱電発電ユニット73の間に複数の重合領域77が形成されることにより、排気ガス通路72の中心軸線付近の排気ガスの流れが、複数の重合領域77により各熱電発電ユニット73の外周壁面33bに沿った流れに分岐されつつ整流される。   Then, by forming a plurality of overlapping regions 77 between the plurality of thermoelectric power generation units 73, the flow of the exhaust gas near the central axis of the exhaust gas passage 72 is caused to flow in each thermoelectric generation unit 73 by the plurality of overlapping regions 77. The flow is rectified while being branched into a flow along the outer peripheral wall surface 33b.

本実施形態においても、並列する複数の熱電発電ユニット73の発電効率と実装効率を高めた小型で高発電効率の熱電発電装置10を提供することができる。   Also in this embodiment, it is possible to provide a small-sized and high power generation efficiency thermoelectric generator 10 in which power generation efficiency and mounting efficiency of a plurality of thermoelectric power generation units 73 arranged in parallel are improved.

(第5実施形態)
図7は、本発明の第5実施形態に係る熱電発電装置の概略構成を示している。
(Fifth embodiment)
FIG. 7 shows a schematic configuration of a thermoelectric generator according to the fifth embodiment of the present invention.

上述の各実施形態は、4つのカートリッジ化した熱電発電ユニット13または73を内蔵するものであったが、図7に示す本実施形態の熱電発電装置80は、排気ガス通路82を形成するケース81中に、4つより多数、例えば8つの熱電発電ユニット13を排気ガス通路82の軸線に対し軸直交する方向に向けつつ並列配置したものである。   Each of the above embodiments incorporates the four thermoelectric power generation units 13 or 73 in the form of cartridges. However, the thermoelectric power generation device 80 of this embodiment shown in FIG. 7 has a case 81 that forms an exhaust gas passage 82. Inside, more than four, for example, eight thermoelectric power generation units 13 are arranged in parallel while being oriented in a direction perpendicular to the axis of the exhaust gas passage 82.

本実施形態においては、図7に示すように、複数の熱電発電ユニット13が、排気ガス通路82の入口82aの中心軸線を含む所定平面上に並列配置された第1グループの熱電発電ユニット13A、13C、13E、13Gと、前記所定平面上から一定の距離を隔てる排気ガス通路82の出口82bの中心軸線を含む他の平面上に並列配置された第2グループの熱電発電ユニット13B、13D、13F、13Hと、によって構成されている。   In the present embodiment, as shown in FIG. 7, a plurality of thermoelectric power generation units 13 are arranged in parallel on a predetermined plane including the central axis of the inlet 82a of the exhaust gas passage 82, a first group of thermoelectric power generation units 13A, 13C, 13E, and 13G, and a second group of thermoelectric generator units 13B, 13D, and 13F arranged in parallel on another plane including the central axis of the outlet 82b of the exhaust gas passage 82 that is separated from the predetermined plane by a certain distance. , 13H.

また、図7に示すように、第1グループの熱電発電ユニット13A、13C、13E、13Gと、第2グループの熱電発電ユニット13B、13D、13F、13Hとは、排気ガス通路82の入口82aの中心軸線方向におけるこれら配設ピッチ(中心間距離L)よりも狭い距離、例えば排気ガス流れ方向における各グループの熱電発電ユニット13の配設ピッチの約半分だけ異なる位置に配置され、図示の千鳥配置構造をなしている。   Further, as shown in FIG. 7, the first group of thermoelectric power generation units 13A, 13C, 13E, and 13G and the second group of thermoelectric power generation units 13B, 13D, 13F, and 13H are connected to the inlet 82a of the exhaust gas passage 82. The staggered arrangement shown in the figure is arranged at a position that is smaller than the arrangement pitch (inter-center distance L) in the central axis direction, for example, about half the arrangement pitch of the thermoelectric power generation units 13 of each group in the exhaust gas flow direction. It has a structure.

本実施形態においても、排気ガス通路82中で径方向に隣り合う各一対の熱電発電ユニット13の間を流れる排気ガスが、重合領域42により構成される整流部によって、各一対のうち上流側の熱電発電ユニット13の背面側に回り込む方向に案内される。したがって、各熱電発電ユニット13の外周壁面33bの上流側部分を通過した排気ガスが外周壁面33bの下流側部分から剥離し難くなり、各熱電発電ユニット13の背面に沿う排気ガスの流量が増加する。よって、複数の熱電発電ユニット13の発電効率が高まる。   Also in the present embodiment, the exhaust gas flowing between each pair of the thermoelectric power generation units 13 that are adjacent in the exhaust gas passage 82 in the radial direction is caused to flow upstream of each pair by the rectification unit configured by the polymerization region 42. It is guided in a direction that wraps around the back side of the thermoelectric generator unit 13. Therefore, the exhaust gas that has passed through the upstream side portion of the outer peripheral wall surface 33b of each thermoelectric power generation unit 13 becomes difficult to separate from the downstream side portion of the outer peripheral wall surface 33b, and the flow rate of exhaust gas along the back surface of each thermoelectric power generation unit 13 increases. . Therefore, the power generation efficiency of the plurality of thermoelectric power generation units 13 is increased.

しかも、重合領域42は、径方向に隣り合う少なくとも一対の熱電発電ユニット13のフィン41同士が、径方向に対し直交する方向に近接し合うことで、径方向にオーバーラップするように構成されるので、並列する複数の熱電発電ユニット13の発電効率のみならず熱電発電装置10における複数の熱電発電ユニット13の実装効率をも高めることができる。   Moreover, the overlapping region 42 is configured to overlap in the radial direction when the fins 41 of at least a pair of the thermoelectric power generation units 13 adjacent in the radial direction are close to each other in a direction orthogonal to the radial direction. Therefore, not only the power generation efficiency of the plurality of thermoelectric power generation units 13 arranged in parallel, but also the mounting efficiency of the plurality of thermoelectric power generation units 13 in the thermoelectric power generation apparatus 10 can be increased.

本実施形態では、ケース81に、重合領域42が形成されない外側の所定範囲内で複数の熱電発電ユニット13の外周壁面33bに対向する2組のバッフルプレート88a、88bが設けられているが、ケース81の内壁形状を第1実施形態のように複数の熱電発電ユニット13の外側の輪郭形状に沿うように湾曲させてもよい。   In the present embodiment, the case 81 is provided with two sets of baffle plates 88a and 88b facing the outer peripheral wall surface 33b of the plurality of thermoelectric power generation units 13 within a predetermined range outside where the overlapping region 42 is not formed. The inner wall shape of 81 may be curved so as to follow the outer contour shape of the plurality of thermoelectric power generation units 13 as in the first embodiment.

なお、上述の各実施形態においては、複数のフィン41、51、52、61、62、76等を、独立した複数の部品として説明したが、複数のフィン41、51、52、61、62を熱電発電ユニット13の軸線に対する傾斜角(交差角)の大きい螺旋状に形成してもよいし、複数のフィン76を熱電発電ユニット73の軸線に対する傾斜角の小さい複数の螺旋状に形成してもよい。   In each of the above-described embodiments, the plurality of fins 41, 51, 52, 61, 62, 76, etc. have been described as a plurality of independent parts. However, the plurality of fins 41, 51, 52, 61, 62 are not included. It may be formed in a spiral shape having a large inclination angle (crossing angle) with respect to the axis of the thermoelectric generation unit 13, or the plurality of fins 76 may be formed in a plurality of spiral shapes having a small inclination angle with respect to the axis of the thermoelectric generation unit 73. Good.

また、熱電発電ユニット13、73は、それぞれ円筒状の内側の筒状伝熱部材32および外側の筒状伝熱部材33を有するものとしたが、多角形状その他の非円形断面形状を有するもの、あるいは、扁平管であってもよいし、熱電発電ユニット13、73は、真っ直ぐな軸線を有するものに限定されるものではない。   Further, the thermoelectric power generation units 13 and 73 each have a cylindrical inner cylindrical heat transfer member 32 and an outer cylindrical heat transfer member 33, but have a polygonal shape or other noncircular cross-sectional shape, Or a flat tube may be sufficient and the thermoelectric generation units 13 and 73 are not limited to what has a straight axis.

さらに、上述の各実施形態では、熱電発電装置10を内燃機関の排気ガスの持つ排熱を電気エネルギに変換しつつ回収する排熱回収機能を有するものとして、熱電発電ユニットを並列配置する一方の熱媒体通路をエンジンの排気ガスを通す排気ガス通路とし、熱電発電ユニットの内方に形成される他方の熱媒体通路をエンジン冷却水を通す冷却媒体通路とした。しかし、熱電発電装置10を内燃機関の排熱回収以外に適用する場合に、熱媒体がエンジンの排気ガスおよび冷却水に限定されないことはいうまでもない。   Further, in each of the above-described embodiments, the thermoelectric power generation unit 10 is provided with a waste heat recovery function for recovering the exhaust heat of the exhaust gas of the internal combustion engine while converting it into electrical energy. The heat medium passage was used as an exhaust gas passage through which engine exhaust gas was passed, and the other heat medium passage formed inside the thermoelectric power generation unit was used as a cooling medium passage through which engine cooling water was passed. However, when the thermoelectric generator 10 is applied to other than the exhaust heat recovery of the internal combustion engine, it goes without saying that the heat medium is not limited to the exhaust gas and cooling water of the engine.

以上説明したように、本発明は、並列する複数の熱電発電ユニットの外周壁面における熱伝達効率および実装効率を高めた小型で高発電効率の熱電発電装置を提供することができるものであり、高温側の熱媒体と低温側の熱媒体とを通しつつ両熱媒体の温度差を利用して熱電発電する熱電発電装置全般に有用である。   As described above, the present invention can provide a small-sized and high power generation efficiency thermoelectric power generation device with improved heat transfer efficiency and mounting efficiency on the outer peripheral wall surfaces of a plurality of parallel thermoelectric power generation units. The present invention is useful for all thermoelectric power generation apparatuses that perform thermoelectric power generation by utilizing the temperature difference between both heat media while passing the heat medium on the side and the heat medium on the low temperature side.

1…排気管、1a…排気通路、2…排気ガス制御弁、2a…排気制御弁体、3…バイパス管、10…熱電発電装置、11…ケース、11a…側板部、11b…取付穴部、12…排気ガス通路、13…熱電発電ユニット、13A…熱電発電ユニット(上流側の熱電発電ユニット)、13B,13C…熱電発電ユニット(下流側の熱電発電ユニット)、31…冷却媒体通路、32…内側の筒状伝熱部材、32a…内周壁面、32b…外周面、33…外側の筒状伝熱部材、33a…内周面、33b…外周壁面、34a,34b…熱電素子、35…熱電素子モジュール、36a,6b…電極、37a,7b…環状閉止部材、38…素子リード線、41…フィン、42…重合領域、51,52…フィン、55…重合領域、61,62…フィン、65…重合領域、70…熱電発電装置、71…ケース、72…排気ガス通路、73…熱電発電ユニット、76…フィン、76a…近接部分、77…重合領域、81…ケース、82…排気ガス通路、82a…入口、82b…出口、88a,88b…バッフルプレート   DESCRIPTION OF SYMBOLS 1 ... Exhaust pipe, 1a ... Exhaust passage, 2 ... Exhaust gas control valve, 2a ... Exhaust control valve body, 3 ... Bypass pipe, 10 ... Thermoelectric generator, 11 ... Case, 11a ... Side plate part, 11b ... Mounting hole part, DESCRIPTION OF SYMBOLS 12 ... Exhaust gas passage, 13 ... Thermoelectric power generation unit, 13A ... Thermoelectric power generation unit (upstream thermoelectric power generation unit), 13B, 13C ... Thermoelectric power generation unit (downstream thermoelectric power generation unit), 31 ... Cooling medium passage, 32 ... Inner cylindrical heat transfer member, 32a ... inner peripheral wall surface, 32b ... outer peripheral surface, 33 ... outer cylindrical heat transfer member, 33a ... inner peripheral surface, 33b ... outer peripheral wall surface, 34a, 34b ... thermoelectric element, 35 ... thermoelectric Element module, 36a, 6b ... electrode, 37a, 7b ... annular closing member, 38 ... element lead wire, 41 ... fin, 42 ... superposition region, 51, 52 ... fin, 55 ... superposition region, 61, 62 ... fin, 65 … Heavy Area 70... Thermoelectric generator 71. Case 72. Exhaust gas passage 73. Thermoelectric power generation unit 76. Fin 76 a Proximity portion 77. Polymerization region 81 Case 82 82 Exhaust gas passage 82 a Inlet, 82b ... Outlet, 88a, 88b ... Baffle plate

Claims (6)

低温または高温のうち一方側の熱媒体を通す一方の熱媒体通路を有するケースと、それぞれ内周側に前記低温または高温のうち他方側の熱媒体を通す他方の熱媒体通路を形成するとともに外周側に前記一方側の熱媒体に接触するよう外方に突出するフィンを有する筒状の複数の熱電発電ユニットと、を備え、前記複数の熱電発電ユニットを前記一方の熱媒体通路中に並列配置する熱電発電装置であって、
前記複数の熱電発電ユニットのうち径方向に隣り合う少なくとも一対の熱電発電ユニットの前記フィン同士が、前記放射外方への突出高さの上端側で前記径方向に互いに重なり合う重合領域を形成しており、
前記フィンが前記熱電発電ユニットの軸方向に延在し、かつ、径方向に隣り合う前記熱電発電ユニットの前記フィン同士が前記熱電発電ユニットの周方向に近接する複数の近接部分を有しており、
前記重合領域が、前記複数の近接部分によって構成されていることを特徴とする熱電発電装置。
A case having one heat medium passage for passing one side of the heat medium at a low temperature or a high temperature, and an outer periphery formed with the other heat medium passage for passing the heat medium on the other side of the low temperature or high temperature on the inner peripheral side, respectively A plurality of cylindrical thermoelectric power generation units having fins protruding outward so as to contact the one side heat medium, and the plurality of thermoelectric power generation units are arranged in parallel in the one heat medium passage A thermoelectric generator that
Among the plurality of thermoelectric power generation units, the fins of at least a pair of thermoelectric power generation units adjacent in the radial direction form overlapping regions that overlap each other in the radial direction at the upper end side of the projecting height to the outside of the radiation. And
The fins extend in the axial direction of the thermoelectric power generation unit, and the fins of the thermoelectric power generation units adjacent in the radial direction have a plurality of adjacent portions that are close to each other in the circumferential direction of the thermoelectric power generation unit. ,
The thermoelectric generator , wherein the overlapping region is constituted by the plurality of adjacent portions .
前記複数の熱電発電ユニットのうち径方向に隣り合う各一対の熱電発電ユニットの前記フィン同士が、前記重合領域を形成し、
前記重合領域が、前記径方向に隣り合う前記各一対の熱電発電ユニットの間で前記一方側の熱媒体を前記各一対の熱電発電ユニットの周方向に方向付ける整流部を構成していることを特徴とする請求項1に記載の熱電発電装置。
The fins of each pair of thermoelectric power generation units adjacent in the radial direction among the plurality of thermoelectric power generation units form the overlapping region,
The superposition region constitutes a rectification unit that directs the one-side heat medium in the circumferential direction of each pair of thermoelectric power generation units between each pair of thermoelectric generation units adjacent in the radial direction. The thermoelectric generator according to claim 1, wherein
前記複数の熱電発電ユニットが前記一方の熱媒体通路の軸線に対し軸交差するように配置され、
前記少なくとも一対の熱電発電ユニットが、前記一方の熱媒体通路の軸線方向に離間する上流側の熱電発電ユニットおよび下流側の熱電発電ユニットを含んでいることを特徴とする請求項1または請求項2に記載の熱電発電装置。
The plurality of thermoelectric power generation units are arranged so as to cross the axis of the one heat medium passage,
The at least one pair of thermoelectric generation units includes an upstream thermoelectric generation unit and a downstream thermoelectric generation unit that are separated in the axial direction of the one heat medium passage. The thermoelectric power generator described in 1.
前記フィンが前記熱電発電ユニットの周方向に延在しており、
前記少なくとも一対の熱電発電ユニットのうち前記上流側の熱電発電ユニットと複数の前記下流側の熱電発電ユニットとの間に、複数の前記重合領域が形成されていることを特徴とする請求項3に記載の熱電発電装置。
The fins extend in the circumferential direction of the thermoelectric generator unit;
The plurality of overlapping regions are formed between the upstream thermoelectric power generation unit and the plurality of downstream thermoelectric power generation units among the at least one pair of thermoelectric power generation units. The thermoelectric generator as described.
前記フィンは、前記熱電発電ユニットの周方向全域で前記外方への突出高さが一定になっていることを特徴とする請求項4に記載の熱電発電装置。   The thermoelectric generator according to claim 4, wherein the fin has a constant protruding height outward in the entire circumferential direction of the thermoelectric generator unit. 前記フィンは、前記一方の熱媒体通路の軸線方向に大径で、前記一方の熱媒体通路の軸線と直交する方向に小径となる非円形の外周輪郭形状を有していることを特徴とする請求項4に記載の熱電発電装置。   The fin has a non-circular outer peripheral contour shape having a large diameter in the axial direction of the one heat medium passage and a small diameter in a direction orthogonal to the axis of the one heat medium passage. The thermoelectric generator according to claim 4.
JP2014040625A 2014-03-03 2014-03-03 Thermoelectric generator Expired - Fee Related JP6237345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040625A JP6237345B2 (en) 2014-03-03 2014-03-03 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040625A JP6237345B2 (en) 2014-03-03 2014-03-03 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2015166555A JP2015166555A (en) 2015-09-24
JP6237345B2 true JP6237345B2 (en) 2017-11-29

Family

ID=54257538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040625A Expired - Fee Related JP6237345B2 (en) 2014-03-03 2014-03-03 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP6237345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4318929A4 (en) * 2021-04-01 2024-09-18 E Thermogentek Co Ltd Thermoelectric power generation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378999B (en) * 2018-12-12 2023-11-28 深圳大学 Thermal power generation device based on waste heat power generation
FR3112842A1 (en) * 2020-07-24 2022-01-28 Reel Alesa DEVICE FOR COOLING GAS EFFLUENTS FROM AN INSTALLATION FOR THE PRODUCTION OF ALUMINUM BY IGNITE ELECTROLYSIS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095998A (en) * 1976-09-30 1978-06-20 The United States Of America As Represented By The Secretary Of The Army Thermoelectric voltage generator
JPS54137766A (en) * 1978-04-18 1979-10-25 Mitsubishi Electric Corp Heat exchanger with pin-shaped fins
JP4544575B2 (en) * 2003-06-11 2010-09-15 臼井国際産業株式会社 EGR gas cooling device
JP5065778B2 (en) * 2006-09-13 2012-11-07 株式会社松永製作所 Wheelchair footrest mechanism
US20120325443A1 (en) * 2010-03-11 2012-12-27 Sumitomo Heavy Industries Process Equipment Co., Ltd. Tube Type Heat Exchanger and Manufacturing Method of the Same
KR101654587B1 (en) * 2011-06-06 2016-09-06 젠썸 인코포레이티드 Cartridge-based thermoelectric systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4318929A4 (en) * 2021-04-01 2024-09-18 E Thermogentek Co Ltd Thermoelectric power generation system

Also Published As

Publication number Publication date
JP2015166555A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP6011485B2 (en) Thermoelectric generator
KR101327732B1 (en) Thermoelectric generator of vehicle
JP5864094B2 (en) Exhaust system with thermoelectric generator
KR101340846B1 (en) Thermoelectric generator of vehicle
CN100354506C (en) Exhaust system
JP6237345B2 (en) Thermoelectric generator
RU2521533C2 (en) Electric energy generating device using waste-gas heat
KR101340848B1 (en) Thermoelectric generator of vehicle
KR101817913B1 (en) Thermoelectric generator unit
JP5267336B2 (en) Thermoelectric unit
US9115619B2 (en) Thermoelectric generator of vehicle
WO2015111459A1 (en) Thermoelectric power-generation device
CN103780156B (en) For the thermoelectric generator of vehicle
JP6350297B2 (en) Thermoelectric generator
CN103166527B (en) The thermoelectric generator of vehicle
JPH10275943A (en) Thermoelectric generator
KR20170036885A (en) Thermoelectric generation apparatus
JP2010219255A (en) Thermoelectric power generation device
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
JP6149754B2 (en) Thermoelectric generator
JP2015019008A (en) Thermoelectric power generator
JPH09117169A (en) Thermoelectric power generation facility
KR20160126592A (en) Structure of Exhaust Gas Pipe for High efficiency thermoelectric generation system
KR101327731B1 (en) Thermoelectric generator of vehicle
KR101746443B1 (en) Thermoelectric generator of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R151 Written notification of patent or utility model registration

Ref document number: 6237345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees