JPH10275943A - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JPH10275943A
JPH10275943A JP9078275A JP7827597A JPH10275943A JP H10275943 A JPH10275943 A JP H10275943A JP 9078275 A JP9078275 A JP 9078275A JP 7827597 A JP7827597 A JP 7827597A JP H10275943 A JPH10275943 A JP H10275943A
Authority
JP
Japan
Prior art keywords
heat transfer
type
fluid
temperature difference
temperature fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9078275A
Other languages
Japanese (ja)
Other versions
JP3556799B2 (en
Inventor
Kenichiro Kosaka
健一郎 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP07827597A priority Critical patent/JP3556799B2/en
Publication of JPH10275943A publication Critical patent/JPH10275943A/en
Application granted granted Critical
Publication of JP3556799B2 publication Critical patent/JP3556799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hybrid Cells (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the temperature difference in elements for enhancing the generating efficiency by a method wherein the path walls made of respective p- and n-type thermoelectric materials are composed to be electrically and alternately further flowed with the fluid having temperature difference from that on the opposite surface to the path walls. SOLUTION: The heat conduction tubes 1, 2 of p-type and n-type elements composed of respective thermoelectric materials become a heat exchanger. Then, every wall surface of p-type and n-type element-made heat conduction tubes 1, 2 forms the path walls 4. These heat conduction tubes 1, 2 are alternately series-connected with one another in a high temperature fluid header 6 using electrodes 3. In such a constitution, the high temperature fluid runs leftward and the low temperature fluid runs rightward inside respective heat conduction tubes 1, 2 to heat exchange both fluids holding the tubes 1, 2 so that the temperature difference corresponding to the temperature change may be made in the flowing direction of the high temperature fluid for acquiring the electromotive force. Accordingly, this electromotive force can be efficiently recovered as an electric power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱電変換を利用した
発電装置に関する。
[0001] The present invention relates to a power generator using thermoelectric conversion.

【0002】[0002]

【従来の技術】従来の技術を図3〜図4に示す。図3は
従来の熱電発電器を示す図。図4は従来の熱電発電器の
作動流体の温度分布を示す図である。
2. Description of the Related Art The prior art is shown in FIGS. FIG. 3 is a diagram showing a conventional thermoelectric generator. FIG. 4 is a diagram showing a temperature distribution of a working fluid of a conventional thermoelectric generator.

【0003】熱電発電器は、p型とn型の熱電材料を組
み合わせた熱電対を多数直列に接続し、高温端と低温端
の温度差に比例して発生する熱起電力を電力として取り
出す装置である。
[0003] A thermoelectric generator is a device in which a large number of thermocouples combining p-type and n-type thermoelectric materials are connected in series, and a thermoelectromotive force generated in proportion to a temperature difference between a high-temperature end and a low-temperature end is taken out as electric power. It is.

【0004】従来の技術は、図3に示すように、p型素
子101とn型素子102を電極103を用いて接続し
た熱電対を、さらに電極で多数電気的に直列に接続して
熱電モジュールを構成して伝熱面とする。
As shown in FIG. 3, a conventional technique is to connect a p-type element 101 and an n-type element 102 by using an electrode 103, and further connect a large number of electrodes in series to form a thermoelectric module. To form a heat transfer surface.

【0005】高温流体105と低温流体106のシール
およびモジュールの強度的支持のため、モジュールは通
常支持パネル104を持つ。高温流体105と低温流体
106は、熱電モジュールの両面にそれぞれ供給され、
モジュールを介して熱交換を行うため、モジュール内に
は厚み方向に温度差が発生する。
The module typically has a support panel 104 for sealing the hot and cold fluids 105 and 106 and for providing strong support for the module. The high temperature fluid 105 and the low temperature fluid 106 are respectively supplied to both sides of the thermoelectric module,
Since heat is exchanged through the module, a temperature difference occurs in the module in the thickness direction.

【0006】モジュールは熱電素子からなる熱電対で構
成されているため、起電力が発生し発電を行うことがで
きる。電極は、熱電素子を接続して熱電対を構成すると
同時に、電力を取り出す際に電流を取り出す役割も担っ
ている。
[0006] Since the module is constituted by a thermocouple composed of thermoelectric elements, electromotive force is generated and power can be generated. The electrodes serve to connect the thermoelectric elements to form a thermocouple, and also to take out a current when taking out power.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来の技術に
は、次のような問題がある。 (1)従来の熱電発電器と作動流体の温度分布は、図4
に示すように、流体は伝熱面に沿って温度分布を持ち、
高温流体と低温流体の入口温度差に比べて、熱電発電器
の両面の温度差は小さく(斜線部)、発電器の効率は低
い。 (2)発電効率を高めるためには、モジュールの両面の
温度差を大きくする必要がある。
However, the prior art has the following problems. (1) FIG. 4 shows the temperature distribution of the conventional thermoelectric generator and working fluid.
As shown in the figure, the fluid has a temperature distribution along the heat transfer surface,
The temperature difference between the two sides of the thermoelectric generator is smaller than the inlet temperature difference between the high temperature fluid and the low temperature fluid (shaded area), and the efficiency of the generator is low. (2) In order to increase power generation efficiency, it is necessary to increase the temperature difference between both surfaces of the module.

【0008】このとき、低温流体の出口温度が下がり低
温流体のエクセルギが低下する。 (3)モジュールの厚みを増して温度差を拡大すると、
モジュールを通過する熱流束が低下し、伝熱面が広くな
り、発電器が大型化する。本発明は、これらの問題を解
決することができる装置を提供することを目的とする。
At this time, the outlet temperature of the low-temperature fluid decreases, and the exergy of the low-temperature fluid decreases. (3) If the temperature difference is increased by increasing the thickness of the module,
The heat flux passing through the module is reduced, the heat transfer surface is widened, and the generator becomes large. An object of the present invention is to provide a device that can solve these problems.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(第1の手段)本発明に係る熱電発電装置は、(A)p
型熱電材料で構成した流路壁と、(B)n型熱電材料で
構成した流路壁と、(C)電極と、(D)前記流路壁の
所望の面に、反対面(所望の面の裏面)と温度差を有す
る流体を通す手段とからなり、(E)前記p型熱電材料
で構成した流路壁とn型熱電材料で構成した流路壁を、
電極により電気的に交互に接続して構成することを特徴
とする。 (第2の手段)本発明に係る熱電発電装置は、第1の手
段において、(A)p型熱電材料で構成した流路壁と、
n型熱電材料で構成した流路壁とが、交互に積層して形
成され,(B)前記p型熱電材料で構成した流路壁とn
型熱電材料で構成した流路壁を、電極により電気的に交
互に接続して構成することを特徴とする。 (第3の手段)本発明に係る熱電発電装置は、(A)管
状に形成され、その内部に外部と温度差をもった流体を
通すp型素子製伝熱管1と、(B)管状に形成され、そ
の内部に外部と温度差をもった流体を通すn型素子製伝
熱管2と、(C)電極3とからなり、(D)前記p型素
子製伝熱管1及びn型素子製伝熱管2を、電極3により
電気的に交互に接続して構成することを特徴とする。
(First Means) A thermoelectric generator according to the present invention is characterized in that (A) p
A flow path wall made of a thermoelectric material, (B) a flow path wall made of an n-type thermoelectric material, (C) an electrode, and (D) a desired surface of the flow path wall on an opposite surface (a desired surface). And (E) a channel wall made of the p-type thermoelectric material and a channel wall made of the n-type thermoelectric material,
It is characterized by being electrically connected alternately by electrodes. (Second Means) In the thermoelectric generator according to the first means, (A) a flow channel wall made of a p-type thermoelectric material;
(B) a flow path wall made of the n-type thermoelectric material is alternately laminated, and (B) a flow path wall made of the p-type thermoelectric material and n
It is characterized in that the flow path walls made of a thermoelectric material are electrically connected alternately by electrodes. (Third Means) The thermoelectric generator according to the present invention comprises: (A) a heat transfer tube 1 made of a p-type element formed into a tubular shape, through which a fluid having a temperature difference from the outside is passed; A heat transfer tube 2 made of an n-type element formed therein and through which a fluid having a temperature difference from the outside passes, and (C) an electrode 3; (D) a heat transfer tube 1 made of the p-type element and made of an n-type element. The heat transfer tubes 2 are characterized by being electrically connected alternately by electrodes 3.

【0010】すなわち、本発明の熱電発電装置は、伝熱
面を熱電材料で構成し、流体の流れ方向に生じる伝熱面
の温度勾配による温度差を利用して熱起電力を発生させ
て発電を行う熱交換器により構成される。
That is, in the thermoelectric generator of the present invention, the heat transfer surface is made of a thermoelectric material, and a thermoelectromotive force is generated by utilizing a temperature difference due to a temperature gradient of the heat transfer surface generated in the flow direction of the fluid to generate power. And a heat exchanger that performs the following.

【0011】したがって、次のように作用する。 (1)p型、n型それぞれの素子が伝熱面を形成するた
め、伝熱面の流れ方向の温度差がそのまま素子の温度差
となり、素子の温度差は、伝熱面の厚み方向に配置する
場合に比べて大きく、発電効率が高い。 (2)伝熱面の厚み方向に温度差を維持する必要がない
ため、伝熱面の厚みを薄くすることが出来、発電器をコ
ンパクトにすることが出来る。
Therefore, the operation is as follows. (1) Since each of the p-type and n-type elements forms the heat transfer surface, the temperature difference in the flow direction of the heat transfer surface becomes the temperature difference of the device as it is, and the temperature difference of the element is in the thickness direction of the heat transfer surface. Larger than in the case of arrangement, and high power generation efficiency. (2) Since it is not necessary to maintain a temperature difference in the thickness direction of the heat transfer surface, the thickness of the heat transfer surface can be reduced, and the power generator can be made compact.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施の形態)本発明の第1の実施の形態を図1
に示す。図1はシェルチューブ型熱交換器の形状に熱電
発電器を構成した例を示す。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
Shown in FIG. 1 shows an example in which a thermoelectric generator is configured in the shape of a shell tube type heat exchanger.

【0013】図1に於いて、1はp型素子製伝熱管、2
はn型素子製伝熱管、3は電極、5は邪魔板、6は高温
流体ヘッダ、7は胴、8は高温流体入口、9は高温流体
出口、10は低温流体入口、11は低温流体出口であ
る。
In FIG. 1, reference numeral 1 denotes a heat transfer tube made of a p-type element;
Is a heat transfer tube made of an n-type element, 3 is an electrode, 5 is a baffle plate, 6 is a high temperature fluid header, 7 is a body, 8 is a high temperature fluid inlet, 9 is a high temperature fluid outlet, 10 is a low temperature fluid inlet, and 11 is a low temperature fluid outlet. It is.

【0014】p型素子製伝熱管1と、n型素子製伝熱管
2は、それぞれの熱電材料で伝熱管を構成し、熱交換器
を構成する。p型素子製伝熱管1の壁面は、流路壁4
(図示省略)を形成する。
The heat transfer tube 1 made of a p-type element and the heat transfer tube 2 made of an n-type element constitute a heat transfer tube with respective thermoelectric materials and constitute a heat exchanger. The wall surface of the p-type element heat transfer tube 1 is
(Not shown) is formed.

【0015】n型素子製伝熱管2の壁面も、流路壁4
(図示省略)を形成する。n型素子製伝熱管2およびp
型素子製伝熱管1は、高温流体ヘッダ6内で、電極3を
用いて交互に直列に接続される。
The wall of the heat transfer tube 2 made of the n-type element is also
(Not shown) is formed. n-type element heat transfer tube 2 and p
The heat transfer tubes 1 made of a die element are alternately connected in series in the high-temperature fluid header 6 using the electrodes 3.

【0016】高温流体へッダ6は、高温流体106をを
伝熱管に供給する働きおよび伝熱管から排出された高温
流体106をあつめる役割を担っており、高温流体は、
図3の右側の高温流体入口8から供給され、各伝熱管
1、2の内部を左へ流れ、高温流体出口9から排出され
る。
The high-temperature fluid header 6 has a function of supplying the high-temperature fluid 106 to the heat transfer tube and a role of collecting the high-temperature fluid 106 discharged from the heat transfer tube.
It is supplied from the high-temperature fluid inlet 8 on the right side in FIG.

【0017】低温流体は、低温流体入口10から供給さ
れ、図3の各伝熱管1、2の内部を右へ胴内を流動し、
低温流体出口11から排出される。そのようにして、伝
熱管を挟んで高温流体と低温流体が接し熱交換を行う。
A low-temperature fluid is supplied from a low-temperature fluid inlet 10 and flows inside the heat transfer tubes 1 and 2 in FIG.
It is discharged from the low temperature fluid outlet 11. In such a manner, the high-temperature fluid and the low-temperature fluid come into contact with each other with the heat transfer tube interposed therebetween to perform heat exchange.

【0018】邪魔板5は、胴内の低温流体の流速を増大
させて熱伝達率の向上を図っている。壁12は、高温流
体と低温流体が混合することを遮断するとともに、p型
素子製伝熱管1およびn型素子製伝熱管2を支持する。
The baffle plate 5 increases the flow rate of the low-temperature fluid in the body to improve the heat transfer coefficient. The wall 12 blocks mixing of the high-temperature fluid and the low-temperature fluid, and supports the p-type element heat transfer tube 1 and the n-type element heat transfer tube 2.

【0019】本実施例は、一般的な胴側複数パスの熱交
換器の形状を模したもので、邪魔板は必ずしも必要はな
い。 (第2の実施の形態)本発明の第2の実施の形態を図2
に示す。
The present embodiment simulates the shape of a general heat exchanger having a plurality of passes on the barrel side, and a baffle plate is not necessarily required. (Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
Shown in

【0020】図2は、熱電発電器をコンパクトな熱交換
器の形状に構成した例を示す。図2に示すように、p型
素子製伝熱管1とn型素子製伝熱管2は、それぞれの熱
電材料で伝熱面を構成し、コンパクト熱交換器を構成す
る。
FIG. 2 shows an example in which the thermoelectric generator is configured in the form of a compact heat exchanger. As shown in FIG. 2, the heat transfer tube 1 made of a p-type element and the heat transfer tube 2 made of an n-type element form a heat transfer surface with respective thermoelectric materials, thereby forming a compact heat exchanger.

【0021】伝熱面はヘッダ内で電極3を用いてn型素
子製伝熱管2およびp型素子製伝熱管1を交互に直列に
接続される。高温流体106は、図2の右側から供給さ
れ、左へ流れる。低温流体105は、図2の左側から供
給され、右へ流れる。そのようにして、伝熱面を挟んで
2つの流体が接し熱交換を行う。
On the heat transfer surface, n-type element heat transfer tubes 2 and p-type element heat transfer tubes 1 are alternately connected in series using electrodes 3 in the header. The hot fluid 106 is supplied from the right side of FIG. 2 and flows to the left. Cryogenic fluid 105 is supplied from the left side of FIG. 2 and flows to the right. In this manner, the two fluids come into contact with each other with the heat transfer surface interposed therebetween to perform heat exchange.

【0022】[0022]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)流体の熱交換により、p型素子製伝熱管1および
n型素子製伝熱管2には高温流体の流れ方向に流体の温
度変化に相当する温度差が生じ、起電力が発生する。
Since the present invention is configured as described above, it has the following effects. (1) Due to the heat exchange of the fluid, a temperature difference corresponding to the temperature change of the fluid occurs in the flow direction of the high-temperature fluid in the heat transfer tube 1 made of the p-type element and the heat transfer tube 2 made of the n-type element, thereby generating an electromotive force.

【0023】これを電力として取り出すことで伝熱管の
軸方向の熱伝導による損失から電力を回収することが出
来る。 (2)熱交換器は多数の伝熱管を用いて構成されるの
で、これらを直列に接続することで、熱電対を多数接続
したと同様の熱電モジュールを構成することが出来る。 (3)伝熱管は、1つの素子で構成されるため、異材接
合部を最低限に抑えることが出来る。 (4)伝熱面の裏表に温度差を与えるために、伝熱面を
厚くする必要がなく、発電器をコンパクトに構成するこ
とが出来る。 (5)素子の温度差は、流体の流れ方向の温度分布によ
り維持されるため、素子の熱電物性の内、熱伝導率の影
響が低下し、熱伝導率が高く性能指数が低い熱電材料で
も効率よく発電することが出来る。
By taking this as electric power, electric power can be recovered from the loss due to heat conduction in the heat transfer tube in the axial direction. (2) Since the heat exchanger is configured using a large number of heat transfer tubes, by connecting them in series, it is possible to configure the same thermoelectric module as connecting a large number of thermocouples. (3) Since the heat transfer tube is constituted by one element, the dissimilar material joint can be minimized. (4) It is not necessary to increase the thickness of the heat transfer surface in order to provide a temperature difference between the front and the back of the heat transfer surface, and the generator can be made compact. (5) Since the temperature difference of the element is maintained by the temperature distribution in the flow direction of the fluid, the effect of the thermal conductivity is reduced among the thermoelectric properties of the element, and even a thermoelectric material having a high thermal conductivity and a low figure of merit is used. Power can be generated efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る熱電発電器を
示す図。
FIG. 1 is a diagram showing a thermoelectric generator according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の係る熱電発電器を
示す図。
FIG. 2 is a diagram showing a thermoelectric generator according to a second embodiment of the present invention.

【図3】従来の熱電発電器を示す図。FIG. 3 is a diagram showing a conventional thermoelectric generator.

【図4】従来の熱電発電器の作動流体の温度分布を示す
図。
FIG. 4 is a diagram showing a temperature distribution of a working fluid of a conventional thermoelectric generator.

【符号の説明】[Explanation of symbols]

1 …p型素子製伝熱管 2 …n型素子製伝熱管 3 …電極 4 …流路壁 5 …邪魔板 6 …高温流体ヘッダ 7 …胴 8 …高温流体入口 9 …高温流体出口 10…低温流体入口 11…低温流体出口 12…壁 101…p型素子 102…n型素子 103…電極 104…支持パネル 105…低温流体 106…高温流体 DESCRIPTION OF SYMBOLS 1 ... Heat transfer tube made of a p-type element 2 ... Heat transfer tube made of an n-type element 3 ... Electrode 4 ... Flow path wall 5 ... Baffle plate 6 ... High temperature fluid header 7 ... Body 8 ... High temperature fluid inlet 9 ... High temperature fluid outlet 10 ... Low temperature fluid Inlet 11 ... Low temperature fluid outlet 12 ... Wall 101 ... P-type element 102 ... N-type element 103 ... Electrode 104 ... Support panel 105 ... Low temperature fluid 106 ... High temperature fluid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(A)p型熱電材料で構成した流路壁と、
(B)n型熱電材料で構成した流路壁と、(C)電極
と、(D)前記流路壁の所望の面に、反対面(所望の面
の裏面)と温度差を有する流体を通す手段とからなり、
(E)前記p型熱電材料で構成した流路壁とn型熱電材
料で構成した流路壁を、電極により電気的に交互に接続
して構成することを特徴とする熱電発電装置。
(A) a channel wall made of a p-type thermoelectric material;
(B) A fluid having a temperature difference from an opposite surface (a desired back surface) on a desired surface of the flow channel wall, (C) an electrode, and (D) a desired surface of the flow channel wall. Means to pass through,
(E) A thermoelectric generator, wherein the channel wall made of the p-type thermoelectric material and the channel wall made of the n-type thermoelectric material are electrically connected alternately by electrodes.
【請求項2】(A)p型熱電材料で構成した流路壁と、
n型熱電材料で構成した流路壁とが、交互に積層して形
成され,(B)前記p型熱電材料で構成した流路壁とn
型熱電材料で構成した流路壁を、電極により電気的に交
互に接続して構成することを特徴とする請求項1記載の
熱電発電装置。
(A) a flow channel wall made of a p-type thermoelectric material;
(B) a flow path wall made of the n-type thermoelectric material is alternately laminated, and (B) a flow path wall made of the p-type thermoelectric material and n
2. The thermoelectric generator according to claim 1, wherein the flow path walls made of a thermoelectric material are electrically connected alternately by electrodes.
【請求項3】(A)管状に形成され、その内部に外部と
温度差をもった流体を通すp型素子製伝熱管(1)と、
(B)管状に形成され、その内部に外部と温度差をもっ
た流体を通すn型素子製伝熱管(2)と、(C)電極
(3)とからなり、(D)前記p型素子製伝熱管(1)
及びn型素子製伝熱管(2)を、電極(3)により電気
的に交互に接続して構成することを特徴とする熱電発電
装置。
3. A heat transfer tube (1) made of a p-type element, which is formed in a tubular shape and through which a fluid having a temperature difference from the outside is passed.
(B) a heat transfer tube (2) made of an n-type element formed into a tubular shape and through which a fluid having a temperature difference from the outside is passed, and (C) an electrode (3); (D) the p-type element Heat transfer tube (1)
And a heat transfer tube (2) made of an n-type element and electrically connected alternately by electrodes (3).
JP07827597A 1997-03-28 1997-03-28 Thermoelectric generator Expired - Fee Related JP3556799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07827597A JP3556799B2 (en) 1997-03-28 1997-03-28 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07827597A JP3556799B2 (en) 1997-03-28 1997-03-28 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JPH10275943A true JPH10275943A (en) 1998-10-13
JP3556799B2 JP3556799B2 (en) 2004-08-25

Family

ID=13657433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07827597A Expired - Fee Related JP3556799B2 (en) 1997-03-28 1997-03-28 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP3556799B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081970A (en) * 2007-09-27 2009-04-16 Ihi Marine United Inc Thermoelectric generation set, and power generation system using thermoelectric generation set
KR100972545B1 (en) * 2002-08-23 2010-07-28 비에스에스티, 엘엘씨 Compact, high-efficiency thermoelectric system
CN103166531A (en) * 2013-03-11 2013-06-19 朱剑文 Fluid pressure conversion new energy controllable temperature difference power generation device
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9368708B2 (en) 2013-03-12 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generation unit and thermoelectric generation system
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972545B1 (en) * 2002-08-23 2010-07-28 비에스에스티, 엘엘씨 Compact, high-efficiency thermoelectric system
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
US9366461B2 (en) 2007-05-25 2016-06-14 Gentherm Incorporated System and method for climate control within a passenger compartment of a vehicle
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
JP2009081970A (en) * 2007-09-27 2009-04-16 Ihi Marine United Inc Thermoelectric generation set, and power generation system using thermoelectric generation set
US10473365B2 (en) 2008-06-03 2019-11-12 Gentherm Incorporated Thermoelectric heat pump
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
CN103166531A (en) * 2013-03-11 2013-06-19 朱剑文 Fluid pressure conversion new energy controllable temperature difference power generation device
US9368708B2 (en) 2013-03-12 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generation unit and thermoelectric generation system
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Also Published As

Publication number Publication date
JP3556799B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US8378205B2 (en) Thermoelectric heat exchanger
EP2070129B1 (en) Thermoelectric power generating systems utilizing segmented thermoelectric elements
US6385976B1 (en) Thermoelectric module with integrated heat exchanger and method of use
US7942010B2 (en) Thermoelectric power generating systems utilizing segmented thermoelectric elements
JP5787755B2 (en) Heat exchange tube bundle provided with device for generating electric energy, and heat exchanger provided with this tube bundle
JPH10275943A (en) Thermoelectric generator
US6127766A (en) Paired-tube thermoelectric couple
US8575467B2 (en) Generator of electric energy based on the thermoelectric effect
US20130340801A1 (en) Thermoelectric Power Generation System Using Gradient Heat Exchanger
JP2008528912A (en) Counterflow thermoelectric configuration using heat transfer fluid in a closed cycle
US20070199587A1 (en) Thermoelectric Conversion Module
RU2142178C1 (en) Liquid heating and cooling apparatus
CN104919610A (en) Thermoelectric conversion module
JP6139865B2 (en) Thermoelectric generator for vehicles
JPH05219765A (en) Thermo electric generator
JP2019165137A (en) Thermoelectric conversion module
JP6456160B2 (en) Thermoelectric generator unit and thermoelectric generator system
JP2012518150A (en) Magnetic heat quantity heat generator
WO2016098679A1 (en) Thermoelectric generation unit, thermoelectric generation device using same and mounting structure therefor, exhaust duct having same mounting structure, and engine
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
JPH09199764A (en) Thermoelectric generator module
JP3350705B2 (en) Heat transfer control thermoelectric generator
JP3562733B2 (en) Thermoelectric generator and power generator using this thermoelectric generator
JP2003273412A (en) Thermoelectric conversion device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040513

LAPS Cancellation because of no payment of annual fees