JP5049533B2 - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP5049533B2
JP5049533B2 JP2006219143A JP2006219143A JP5049533B2 JP 5049533 B2 JP5049533 B2 JP 5049533B2 JP 2006219143 A JP2006219143 A JP 2006219143A JP 2006219143 A JP2006219143 A JP 2006219143A JP 5049533 B2 JP5049533 B2 JP 5049533B2
Authority
JP
Japan
Prior art keywords
temperature side
side electrode
thermoelectric conversion
low
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006219143A
Other languages
Japanese (ja)
Other versions
JP2008048477A (en
Inventor
直和 岩撫
成仁 近藤
治 常岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006219143A priority Critical patent/JP5049533B2/en
Publication of JP2008048477A publication Critical patent/JP2008048477A/en
Application granted granted Critical
Publication of JP5049533B2 publication Critical patent/JP5049533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱エネルギーを電気エネルギーに変換するとともに電気エネルギーを熱エネルギーに変換することが可能な熱電変換装置に関する。   The present invention relates to a thermoelectric conversion device capable of converting thermal energy into electrical energy and capable of converting electrical energy into thermal energy.

熱電変換装置は、第1の低温側電極、n型半導体層、高温側電極、p型半導体層および第2の低温側電極がこの順番に電気的に直列接続されるとともに、n型半導体層およびp型半導体層が高温側電極の表面の同じ側に並べて配置される。n型半導体層に接続される第1の低温側電極およびp型半導体層に接続される第2の低温側電極が高温側電極よりも低温側に配置されてなる熱電変換モジュール構成要素が、1個または複数個電気的に接続された熱電変換モジュールを用い、熱エネルギーと電気エネルギーとを相互に変換する装置である。   The thermoelectric conversion device includes a first low-temperature side electrode, an n-type semiconductor layer, a high-temperature side electrode, a p-type semiconductor layer, and a second low-temperature side electrode that are electrically connected in series in this order, The p-type semiconductor layers are arranged side by side on the same side of the surface of the high temperature side electrode. A thermoelectric conversion module component in which the first low-temperature side electrode connected to the n-type semiconductor layer and the second low-temperature side electrode connected to the p-type semiconductor layer are arranged on the lower temperature side than the high-temperature side electrode is 1 It is an apparatus for converting heat energy and electrical energy to each other using one or a plurality of electrically connected thermoelectric conversion modules.

熱電変換モジュールは、たとえば、図5に示すように、熱を加える等により熱電変換モジュール構成要素21の高温側電極22を第1の低温側電極23aおよび第2の低温側電極23bよりも高温にし、矢印Gの方向に熱流が流れるようにすると、n型半導体層26中の電子51が高温側電極22側から第1の低温側電極23a側に矢印Hの向きに移動し、p型半導体層27中の正孔52が高温側電極22側から第2の低温側電極23b側に矢印Iの向きに移動する。   For example, as shown in FIG. 5, the thermoelectric conversion module makes the high temperature side electrode 22 of the thermoelectric conversion module component 21 higher than the first low temperature side electrode 23a and the second low temperature side electrode 23b by applying heat or the like. When the heat flow flows in the direction of arrow G, the electrons 51 in the n-type semiconductor layer 26 move from the high temperature side electrode 22 side to the first low temperature side electrode 23a side in the direction of arrow H, and the p type semiconductor layer 27 moves in the direction of arrow I from the high temperature side electrode 22 side to the second low temperature side electrode 23b side.

このため、第1の低温側電極23aおよび第2の低温側電極23bに、電気的付加57を含む外部回路55を接続すると、外部回路55中を矢印Jの向きに電流が流れ、熱エネルギーが電気エネルギーに変換される。   For this reason, when the external circuit 55 including the electrical addition 57 is connected to the first low temperature side electrode 23a and the second low temperature side electrode 23b, a current flows in the direction of the arrow J through the external circuit 55, and the heat energy is increased. Converted into electrical energy.

また、熱電変換モジュールは、外部回路55を接続することにより、熱電変換モジュール構成要素21中で第1の低温側電極23aから高温側電極22を介して第2の低温側電極23bに向かって電流を流すと、高温側電極22が吸熱して周囲が冷却され、第1の低温側電極23aおよび第2の低温側電極23bが放熱して周囲が加熱される。これにより、電気エネルギーが熱エネルギーに変換される。   In addition, the thermoelectric conversion module connects the external circuit 55 so that a current flows from the first low temperature side electrode 23a to the second low temperature side electrode 23b through the high temperature side electrode 22 in the thermoelectric conversion module component 21. The high temperature side electrode 22 absorbs heat and the surroundings are cooled, and the first low temperature side electrode 23a and the second low temperature side electrode 23b dissipate heat and the surroundings are heated. Thereby, electrical energy is converted into thermal energy.

熱電変換モジュールを用いた熱電変換装置は、火力発電のようにCO等の温室効果ガスを排出せず、かつ安全に電気エネルギーを取り出すことができるため好ましい。 A thermoelectric conversion device using a thermoelectric conversion module is preferable because it does not discharge greenhouse gas such as CO 2 and can extract electric energy safely like thermal power generation.

なお、温室効果ガスを排出せず、かつ安全に電気エネルギーを取り出すことができる発電方法としては、熱電変換モジュールを用いた熱電変換装置以外にも蒸気タービン等の発電装置が知られている。   In addition to the thermoelectric conversion device using the thermoelectric conversion module, a power generation device such as a steam turbine is known as a power generation method that can safely extract electrical energy without discharging greenhouse gases.

しかし、蒸気タービン等の発電装置を設置するためには、既存設備の改造、保守・補修コストの観点から廃熱量が大規模である必要がある。このため、中小規模の工場のような、廃熱量が中小規模の設備には、蒸気タービン等の大規模な発電装置を設置することができないという問題がある。   However, in order to install a power generator such as a steam turbine, the amount of waste heat needs to be large from the viewpoint of modification of existing facilities and maintenance / repair costs. For this reason, there is a problem that a large-scale power generation device such as a steam turbine cannot be installed in a facility with a small amount of waste heat, such as a small-scale factory.

これに対し、熱電変換モジュールを用いた熱電変換装置は、簡易な構造で小型化が可能である。このため、中小規模の工場等の発電装置に用いることが期待されている。   On the other hand, a thermoelectric conversion device using a thermoelectric conversion module can be miniaturized with a simple structure. For this reason, it is expected to be used for power generators in small and medium-sized factories.

従来、熱電変換モジュール構成要素を用いた熱電変換装置としては、たとえば、特許文献1(特開2006−32723号公報)に開示されたものが知られている。   Conventionally, as a thermoelectric conversion device using a thermoelectric conversion module component, for example, one disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2006-32723) is known.

特許文献1に開示された熱電変換装置は、熱エネルギーを電気エネルギーに、または電気エネルギーを熱エネルギーに直接変換する熱電変換半導体と、この熱電変換半導体を外気から遮断する気密筐体とを備える。また、この熱電変換装置は、気密筐体が、熱電変換半導体の高温側端部に接合される高温側基板を覆う金属蓋と、熱電変換半導体の周囲を取り囲む金属枠と、電流を気密筐体外部に取出す手段を具備し熱電変換半導体の低温側端部に接合される低温側基板とから構成されており、気密筐体内部は真空もしくは不活性なガス雰囲気に調整される。   The thermoelectric conversion device disclosed in Patent Document 1 includes a thermoelectric conversion semiconductor that directly converts thermal energy into electrical energy or electrical energy into thermal energy, and an airtight housing that blocks the thermoelectric conversion semiconductor from outside air. In addition, the thermoelectric conversion device includes a metal lid that covers a high temperature side substrate that is joined to a high temperature side end of the thermoelectric conversion semiconductor, a metal frame that surrounds the periphery of the thermoelectric conversion semiconductor, and a current that is airtight. It comprises a low-temperature side substrate that is provided with means for taking out to the outside and is joined to the low-temperature side end of the thermoelectric conversion semiconductor, and the inside of the hermetic casing is adjusted to a vacuum or an inert gas atmosphere.

特許文献1に開示された熱電変換装置によれば、構成部材の酸化等による劣化の進行を阻止でき、長期にわたって熱電変換効率を良好に維持することができる。
特開2006−32723号公報 「熱電変換工学―基礎と応用―」リアライズ社、p.349−363(2001)
According to the thermoelectric conversion device disclosed in Patent Document 1, it is possible to prevent the progress of deterioration due to oxidation or the like of the constituent members, and to maintain good thermoelectric conversion efficiency over a long period of time.
JP 2006-32723 A "Thermoelectric conversion engineering-basics and applications-" Realize, p. 349-363 (2001)

特許文献1に開示された熱電変換装置を、中小規模の工場等の発電装置として用いる場合、熱電変換装置の高温側基板を覆う金属蓋を高温の流体が流通する配管の壁体に密着させて用いる。   When the thermoelectric conversion device disclosed in Patent Document 1 is used as a power generation device for a small-scale factory or the like, a metal lid that covers the high-temperature side substrate of the thermoelectric conversion device is brought into close contact with a wall of a pipe through which high-temperature fluid flows. Use.

しかし、配管中の高温の流体の熱エネルギーが高温側基板に伝播するには、配管の壁体および熱電変換装置の金属蓋を介する必要があるため、熱エネルギーの伝達ロスが大きかった。特に、金属蓋は、熱伝導率の高い金属枠に結合されているため、熱エネルギーが高温側基板よりも金属枠に伝達されやすいという問題があった。   However, in order for the thermal energy of the high-temperature fluid in the pipe to propagate to the high-temperature side substrate, it is necessary to pass through the wall of the pipe and the metal lid of the thermoelectric converter, so that the heat energy transfer loss is large. In particular, since the metal lid is coupled to a metal frame having high thermal conductivity, there is a problem that heat energy is more easily transmitted to the metal frame than the high temperature side substrate.

本発明は、熱エネルギーの伝達ロスを小さくし、熱電変換効率が高い熱電変換装置を提供することを目的とする。   It is an object of the present invention to provide a thermoelectric conversion device that reduces thermal energy transfer loss and has high thermoelectric conversion efficiency.

本発明に係る熱電変換装置は、上記課題を解決するものであり、流路を内部に形成する配管部と、この配管部の配管壁の外側周囲に、かつ、前記配管壁に対向して設けられる低温側筐体壁、および前記配管壁と前記低温側筐体壁との間の空間を仕切り、内部に密閉された収容空間を形成する筐体側壁を有する気密筐体部と、この気密筐体部の収容空間内に配置され、前記配管部の配管壁側に設けられた高温側電極、前記低温側筐体壁側に設けられた低温側電極、前記高温側電極と低温側電極との間に介装されるp型半導体層およびn型半導体層を有する熱電変換モジュールとを備え、前記低温側筐体壁は、少なくとも低温側絶縁層を含み、前記気密筐体部の収容空間内は、真空または不活性なガスが封入され、前記熱電変換モジュールは、第1の低温側電極、n型半導体層、高温側電極、p型半導体層および第2の低温側電極がこの順番に電気的に直列接続され、前記n型半導体層および前記p型半導体層が前記高温側電極の表面の同じ側に並べて配置され、前記第1の低温側電極および第2の低温側電極が前記高温側電極よりも低温側に配置されてなる熱電変換モジュール構成要素が、1個または複数個電気的に接続されたものであるとともに、前記気密筐体部の収容空間内で、前記高温側電極が前記配管部の配管壁の表面に高温側絶縁層を介して取り付けられ、かつ前記第1の低温側電極および第2の低温側電極が前記低温側筐体壁を構成する低温側絶縁層の表面に取り付けられ、前記熱電変換モジュールは、前記高温側電極と前記n型半導体層との間、前記高温側電極と前記p型半導体層との間、前記第1の低温側電極と前記n型半導体層との間、および前記第2の低温側電極と前記p型半導体層との間、の少なくともいずれかに、導電性伸縮部材と導電性均熱部材とが組み合わせて圧接され、挿入される導電性伸縮部材および導電性均熱部材は、前記導電性均熱部材が、前記n型半導体層およびp型半導体層の少なくともいずれかに接するように配置され、前記導電性伸縮部材が、前記高温側電極、第1の低温側電極および第2の低温側電極の少なくともいずれかに接するように配置されることを特徴とする。また、本発明に係る熱電変換装置は、上記課題を解決するものであり、流路を内部に形成する配管部と、この配管部の配管壁の外側周囲に、かつ、前記配管壁に対向して設けられる低温側筐体壁、および前記配管壁と前記低温側筐体壁との間の空間を仕切り、内部に密閉された収容空間を形成する筐体側壁を有する気密筐体部と、この気密筐体部の収容空間内に配置され、前記配管部の配管壁側に設けられた高温側電極、前記低温側筐体壁側に設けられた低温側電極、前記高温側電極と低温側電極との間に介装されるp型半導体層およびn型半導体層を有する熱電変換モジュールとを備え、前記低温側筐体壁は、少なくとも低温側絶縁層を含み、前記気密筐体部の収容空間内は、真空または不活性なガスが封入され、前記熱電変換モジュールは、第1の低温側電極、n型半導体層、高温側電極、p型半導体層および第2の低温側電極がこの順番に電気的に直列接続され、前記n型半導体層および前記p型半導体層が前記高温側電極の表面の同じ側に並べて配置され、前記第1の低温側電極および第2の低温側電極が前記高温側電極よりも低温側に配置されてなる熱電変換モジュール構成要素が、1個または複数個電気的に接続されたものであるとともに、前記気密筐体部の収容空間内で、前記高温側電極が前記配管部の配管壁の表面に高温側絶縁層を介して取り付けられ、かつ前記第1の低温側電極および第2の低温側電極が前記低温側筐体壁を構成する低温側絶縁層の表面に取り付けられ、前記熱電変換モジュールの高温側電極は熱に対して伸縮自在な電極であり、この熱に対して伸縮自在な高温側電極と、前記n型半導体層およびp型半導体層との間に、前記導電性均熱部材が配置されることを特徴とする。 The thermoelectric conversion device according to the present invention solves the above-described problem, and is provided around a pipe part that forms a flow path inside, the outer periphery of the pipe wall of the pipe part, and facing the pipe wall. A hermetic housing part having a housing side wall that partitions a space between the low-temperature side housing wall and the piping wall and the low-temperature side housing wall and forms a sealed housing space inside, A high temperature side electrode disposed in the housing space of the body portion and provided on the piping wall side of the piping portion, a low temperature side electrode provided on the low temperature side housing wall side, and the high temperature side electrode and the low temperature side electrode. A thermoelectric conversion module having a p-type semiconductor layer and an n-type semiconductor layer interposed therebetween, wherein the low-temperature-side casing wall includes at least a low-temperature-side insulating layer, and the inside of the housing space of the hermetic casing portion is , vacuum or inert gas is enclosed, the thermoelectric conversion module, the The low-temperature side electrode, the n-type semiconductor layer, the high-temperature side electrode, the p-type semiconductor layer, and the second low-temperature side electrode are electrically connected in series in this order, and the n-type semiconductor layer and the p-type semiconductor layer are One thermoelectric conversion module component is arranged side by side on the same side of the surface of the side electrode, and the first low temperature side electrode and the second low temperature side electrode are arranged on the low temperature side of the high temperature side electrode, or A plurality of electrically connected, and in the housing space of the hermetic casing portion, the high temperature side electrode is attached to the surface of the piping wall of the piping portion via a high temperature side insulating layer, and The first low temperature side electrode and the second low temperature side electrode are attached to the surface of the low temperature side insulating layer constituting the low temperature side housing wall, and the thermoelectric conversion module includes the high temperature side electrode, the n-type semiconductor layer, Between the high temperature side electrode and the Between at least one of the first semiconductor layer, the first low-temperature side electrode and the n-type semiconductor layer, and the second low-temperature side electrode and the p-type semiconductor layer. The stretchable member and the conductive soaking member are pressure-welded in combination, and the inserted conductive stretchable member and the conductive soaking member include at least one of the n-type semiconductor layer and the p-type semiconductor layer. The conductive elastic member is disposed so as to be in contact with any one, and is disposed so as to be in contact with at least one of the high temperature side electrode, the first low temperature side electrode, and the second low temperature side electrode. . Moreover, the thermoelectric conversion device according to the present invention solves the above-described problem, and is provided around a pipe part that forms a flow path inside, the outer periphery of the pipe wall of the pipe part, and opposed to the pipe wall. A low-temperature-side housing wall provided, and an air-tight housing portion having a housing side wall that partitions a space between the piping wall and the low-temperature-side housing wall and forms a sealed housing space inside, A high temperature side electrode disposed in the housing space of the airtight casing and provided on the piping wall side of the piping part, a low temperature side electrode provided on the low temperature side casing wall, the high temperature side electrode and the low temperature side electrode A thermoelectric conversion module having a p-type semiconductor layer and an n-type semiconductor layer interposed therebetween, wherein the low-temperature side housing wall includes at least a low-temperature side insulating layer, and the accommodating space of the hermetic housing portion Inside is filled with vacuum or inert gas, the thermoelectric conversion module The first low-temperature side electrode, the n-type semiconductor layer, the high-temperature side electrode, the p-type semiconductor layer, and the second low-temperature side electrode are electrically connected in series in this order, and the n-type semiconductor layer and the p-type semiconductor layer Are arranged side by side on the same side of the surface of the high temperature side electrode, and the thermoelectric conversion module component in which the first low temperature side electrode and the second low temperature side electrode are arranged on the low temperature side than the high temperature side electrode, One or a plurality of the electrodes are electrically connected, and the high temperature side electrode is attached to the surface of the piping wall of the piping portion via a high temperature side insulating layer in the accommodating space of the hermetic casing. And the first low temperature side electrode and the second low temperature side electrode are attached to the surface of the low temperature side insulating layer constituting the low temperature side casing wall, and the high temperature side electrode of the thermoelectric conversion module expands and contracts with respect to heat. It is a flexible electrode. High temperature-side electrode of elastic, between the n-type semiconductor layer and a p-type semiconductor layer, the conductive soaking member is being arranged.

本発明に係わる熱電変換装置によれば、熱エネルギーの伝達ロスが小さく、熱電変換効率が高くなる。   According to the thermoelectric conversion apparatus according to the present invention, thermal energy transfer loss is small and thermoelectric conversion efficiency is high.

本発明に係る熱電変換装置の実施の形態について添付図面を参照して説明する。   Embodiments of a thermoelectric conversion device according to the present invention will be described with reference to the accompanying drawings.

[第1の実施形態]
図1は、本発明に係る第1の実施形態に示された熱電変換装置1を示す斜視図である。図2は、熱電変換装置1を示す図1のA−A線に沿う断面図である。図3は、熱電変換装置1を示す図1のB−B線に沿う断面図である。図4は、熱電変換装置1を示す図1のC−C線に沿う断面図である。
[First Embodiment]
FIG. 1 is a perspective view showing a thermoelectric conversion device 1 shown in the first embodiment according to the present invention. FIG. 2 is a cross-sectional view taken along line AA of FIG. FIG. 3 is a cross-sectional view of the thermoelectric conversion device 1 taken along line BB in FIG. 4 is a cross-sectional view taken along the line CC of FIG.

熱電変換装置1は、図2および図3に示すように、内部に流路7を有する配管部5と、配管部5の配管壁6の外側周囲に設けられる気密筐体部10と、気密筐体部10の収容空間11内に配置される熱電変換モジュール20とを備える。   As shown in FIGS. 2 and 3, the thermoelectric conversion device 1 includes a pipe part 5 having a flow path 7 therein, an airtight housing part 10 provided around the outside of the pipe wall 6 of the pipe part 5, and an airtight housing. The thermoelectric conversion module 20 arrange | positioned in the accommodation space 11 of the body part 10 is provided.

配管部5は、四方に設けられた配管壁6(6a、6b、6cおよび6d)で囲まれて形成された断面が四角形の流路7を有する。配管壁6(6a、6b、6cおよび6d)は、流路7内を、数百℃程度の熱風が符号Fの方向に通過することが可能になっている。   The pipe part 5 has a channel 7 having a quadrangular cross section formed by being surrounded by pipe walls 6 (6a, 6b, 6c and 6d) provided in four directions. The piping wall 6 (6a, 6b, 6c and 6d) allows hot air of about several hundred degrees C. to pass through the flow path 7 in the direction of symbol F.

配管壁6は、通常、ニッケル、ニッケル基合金、鉄基合金、クロム含有鉄基合金、シリコン含有鉄基合金、コバルト含有鉄基合金および銅合金のいずれかからなる。配管壁6が、これらの金属製であると、気密筐体部10の収容空間11内に充填するガスに腐食されにくいため好ましい。   The pipe wall 6 is usually made of any one of nickel, nickel-base alloy, iron-base alloy, chromium-containing iron-base alloy, silicon-containing iron-base alloy, cobalt-containing iron-base alloy, and copper alloy. It is preferable that the pipe wall 6 is made of these metals because it is difficult to be corroded by the gas filled in the accommodation space 11 of the airtight casing 10.

配管部5の流路7の形状は、断面が四角形のものに限られず、たとえば、三角形等の多角形や円形、楕円形、長円形であってもよい。   The shape of the flow path 7 of the piping unit 5 is not limited to a rectangular cross section, and may be, for example, a polygon such as a triangle, a circle, an ellipse, or an oval.

気密筐体部10は、配管部5の配管壁6の外側周囲に設けられる。具体的には、配管壁6a、6b、6cおよび6d等の配管壁6の外周壁に、それぞれ気密筐体部10が設けられる。   The airtight casing 10 is provided around the outside of the pipe wall 6 of the pipe 5. Specifically, the airtight housing 10 is provided on the outer peripheral wall of the pipe wall 6 such as the pipe walls 6a, 6b, 6c and 6d.

気密筐体部10は、配管壁6と、配管壁6に対向して設けられる低温側筐体壁15と、配管壁6と低温側筐体壁15との間の空間を仕切り、内部に密閉された収容空間11を形成する筐体側壁12とから構成される。   The airtight housing 10 partitions the space between the piping wall 6, the low-temperature side housing wall 15 provided opposite to the piping wall 6, and the piping wall 6 and the low-temperature side housing wall 15, and is sealed inside. It is comprised from the housing | casing side wall 12 which forms the accommodation space 11 made.

低温側筐体壁15は、配管壁6に対向して設けられ、配管壁6および筐体側壁12と協働して内部を密閉された収容空間11を形成する。   The low-temperature side housing wall 15 is provided to face the piping wall 6 and forms a housing space 11 whose inside is sealed in cooperation with the piping wall 6 and the housing side wall 12.

低温側筐体壁15は、図4に示すように、低温側絶縁層14と、低温側絶縁層14の表面に形成される接合部37と、低温側絶縁層−熱放出部材間の接合部37の表面に形成される熱放出部材36とから構成される。   As shown in FIG. 4, the low temperature side housing wall 15 includes a low temperature side insulating layer 14, a joint portion 37 formed on the surface of the low temperature side insulating layer 14, and a joint portion between the low temperature side insulating layer and the heat release member. 37 and a heat release member 36 formed on the surface of 37.

低温側絶縁層14としては、たとえば、セラミックス板が用いられる。熱放出部材36としては、たとえば、銅板が用いられる。   As the low temperature side insulating layer 14, for example, a ceramic plate is used. As the heat release member 36, for example, a copper plate is used.

低温側筐体壁15は、第1の低温側電極23aおよび第2の低温側電極23bを絶縁した状態で取り付けるため、少なくとも低温側絶縁層14を含む。   The low temperature side housing wall 15 includes at least the low temperature side insulating layer 14 in order to attach the first low temperature side electrode 23a and the second low temperature side electrode 23b in an insulated state.

筐体側壁12は、配管壁6と低温側筐体壁15との間の空間を仕切り、内部に密閉された収容空間11を形成する。具体的には、筐体側壁12は、四角形の低温側筐体壁15と配管壁6との間を隔離するように設けられる矩形の壁体として構成される。   The housing side wall 12 partitions the space between the piping wall 6 and the low temperature side housing wall 15 to form a housing space 11 sealed inside. Specifically, the housing side wall 12 is configured as a rectangular wall body provided so as to isolate the space between the rectangular low-temperature side housing wall 15 and the piping wall 6.

筐体側壁12は、通常、ニッケル、ニッケル基合金、鉄基合金、クロム含有鉄基合金、シリコン含有鉄基合金、コバルト含有鉄基合金および銅合金のいずれかからなる。筐体側壁12が、これらの金属製であると、収容空間11内に充填するガスに腐食されにくいため好ましい。   The housing side wall 12 is usually made of any one of nickel, nickel-base alloy, iron-base alloy, chromium-containing iron-base alloy, silicon-containing iron-base alloy, cobalt-containing iron-base alloy, and copper alloy. It is preferable that the housing side wall 12 is made of these metals because it is difficult to be corroded by the gas filled in the housing space 11.

筐体側壁12の図4中の上側端部は、配管壁6b(6)に接合される。筐体側壁12と配管壁6との接合は、特に限定されず公知の接合方法を用いることができるが、接合強度の点から、溶接、はんだ付け、ロウ付け、拡散接合または接着剤による接合が好ましい。   The upper end portion of the housing side wall 12 in FIG. 4 is joined to the piping wall 6b (6). The joining between the housing side wall 12 and the pipe wall 6 is not particularly limited, and a known joining method can be used. However, from the viewpoint of joining strength, welding, soldering, brazing, diffusion joining, or joining by an adhesive is possible. preferable.

気密筐体部10の収容空間11内は、真空状態または不活性なガス雰囲気にされる。収容空間11内を、真空状態または不活性なガス雰囲気にすることにより、収容空間11内に配置される熱電変換モジュール20を構成するn型半導体層26およびp型半導体層27や、高温側電極22、第1の低温側電極23a、第2の低温側電極23b等の電極の高温下での酸化等が抑制される。   The inside of the accommodation space 11 of the airtight casing 10 is in a vacuum state or an inert gas atmosphere. An n-type semiconductor layer 26 and a p-type semiconductor layer 27 that constitute the thermoelectric conversion module 20 disposed in the accommodation space 11 by setting the inside of the accommodation space 11 to a vacuum state or an inert gas atmosphere, and a high-temperature side electrode 22, oxidation of electrodes such as the first low-temperature side electrode 23a and the second low-temperature side electrode 23b under high temperature is suppressed.

収容空間11内の真空状態は、完全な真空状態でなくてもよく、公知の真空ポンプ等で実現される程度の真空状態であればよい。   The vacuum state in the storage space 11 may not be a complete vacuum state, and may be a vacuum state to the extent that is realized by a known vacuum pump or the like.

収容空間11内に封入される不活性なガスは、通常、窒素、ヘリウム、ネオン、アルゴン、クリプトンおよびキセノンからなる群より選択される少なくとも1種である。   The inert gas sealed in the accommodation space 11 is usually at least one selected from the group consisting of nitrogen, helium, neon, argon, krypton, and xenon.

不活性なガスは、収容空間11内に、25℃で外気圧よりも低圧になるように封入される。封入される不活性なガスの圧力が25℃で外気圧よりも低圧であると、熱電変換装置1の動作時に、収容空間11内が数百℃程度の高温になり、不活性なガスの圧力が高くなって気密筐体部10や熱電変換モジュール20が破損したり、不活性なガスが漏れて収容空間11内の気密性が低下したりすることを抑制することができる。   The inert gas is enclosed in the accommodation space 11 so that the pressure is lower than the external air pressure at 25 ° C. If the pressure of the enclosed inert gas is 25 ° C. and lower than the external pressure, the inside of the housing space 11 becomes a high temperature of about several hundred degrees C. during the operation of the thermoelectric converter 1, and the pressure of the inert gas is increased. It is possible to prevent the airtight casing 10 and the thermoelectric conversion module 20 from being damaged and the inert gas from leaking and the airtightness in the accommodation space 11 from being lowered.

熱電変換モジュール20は、気密筐体部10の収容空間11内に配置される。熱電変換モジュール20について、図4および図6を参照して説明する。図6は、熱電変換装置1を構成する熱電変換モジュール構成要素21における電極と半導体層との第1の接続形態を説明する模式図である。   The thermoelectric conversion module 20 is disposed in the accommodation space 11 of the hermetic casing 10. The thermoelectric conversion module 20 will be described with reference to FIGS. 4 and 6. FIG. 6 is a schematic diagram for explaining a first connection form between the electrode and the semiconductor layer in the thermoelectric conversion module component 21 constituting the thermoelectric conversion device 1.

熱電変換モジュール20は、熱電変換モジュール構成要素21が、複数個電気的に直列に接続されたものである。なお、熱電変換モジュール20は、熱電変換モジュール構成要素21が複数個電気的に並列に接続されたものであってもよいし、1つの熱電変換モジュール構成要素21からなるものであってもよい。   The thermoelectric conversion module 20 has a plurality of thermoelectric conversion module components 21 electrically connected in series. The thermoelectric conversion module 20 may be one in which a plurality of thermoelectric conversion module components 21 are electrically connected in parallel, or may be composed of one thermoelectric conversion module component 21.

熱電変換モジュール構成要素21は、第1の低温側電極23a、n型半導体層26、高温側電極22、p型半導体層27および第2の低温側電極23bがこの順番に電気的に直列接続されて形成される。   In the thermoelectric conversion module component 21, the first low temperature side electrode 23a, the n-type semiconductor layer 26, the high temperature side electrode 22, the p type semiconductor layer 27, and the second low temperature side electrode 23b are electrically connected in series in this order. Formed.

また、熱電変換モジュール構成要素21は、n型半導体層26およびp型半導体層27が高温側電極22の表面の同じ側に並べて配置され、n型半導体層26に接続される第1の低温側電極23aおよびp型半導体層27に接続される第2の低温側電極23bが、高温側電極22よりも低温側かつ平行に配置される。   Further, the thermoelectric conversion module component 21 includes a first low-temperature side in which the n-type semiconductor layer 26 and the p-type semiconductor layer 27 are arranged side by side on the same side of the surface of the high-temperature side electrode 22 and connected to the n-type semiconductor layer 26. The second low temperature side electrode 23 b connected to the electrode 23 a and the p-type semiconductor layer 27 is arranged on the low temperature side and in parallel with the high temperature side electrode 22.

高温側電極22とは、熱電変換モジュール構成要素21の電極のうち、気密筐体部10の収容空間11内で配管部5の配管壁6側、すなわち高温側に配置される電極を意味する。高温側電極22としては、銅板等の公知の電極材料が用いられる。   The high temperature side electrode 22 means an electrode arranged on the pipe wall 6 side of the pipe part 5, that is, on the high temperature side in the accommodation space 11 of the hermetic casing part 10 among the electrodes of the thermoelectric conversion module component 21. As the high temperature side electrode 22, a known electrode material such as a copper plate is used.

第1の低温側電極23aとは、熱電変換モジュール構成要素21の電極の気密筐体部10の収容空間11内で低温側筐体壁15側、すなわち低温側に配置される低温側電極23のうち、n型半導体層26に接続される部分を意味する。第1の低温側電極23aとしては、銅板等の公知の電極材料が用いられる。   The first low temperature side electrode 23a is the low temperature side electrode 23 disposed on the low temperature side housing wall 15 side, that is, on the low temperature side, in the housing space 11 of the hermetic housing 10 of the electrode of the thermoelectric conversion module component 21. Of these, the portion connected to the n-type semiconductor layer 26 is meant. As the first low temperature side electrode 23a, a known electrode material such as a copper plate is used.

第2の低温側電極23bとは、熱電変換モジュール構成要素21の電極の気密筐体部10の収容空間11内で低温側筐体壁15側、すなわち低温側に配置される低温側電極23のうち、p型半導体層27に接続される部分を意味する。第2の低温側電極23bとしては、銅板等の公知の電極材料が用いられる。   The second low temperature side electrode 23b is the temperature of the low temperature side electrode 23 arranged on the low temperature side housing wall 15 side, that is, on the low temperature side, in the housing space 11 of the hermetic housing portion 10 of the electrode of the thermoelectric conversion module component 21. Of these, the portion connected to the p-type semiconductor layer 27 is meant. As the second low temperature side electrode 23b, a known electrode material such as a copper plate is used.

第1の低温側電極23aおよび第2の低温側電極23bは、たとえば、低温側絶縁層14の表面の全体に、第1の低温側電極23aおよび第2の低温側電極23bの形成材料を電極−絶縁層間の接合部34で接合し、エッチングして形成することができる。   The first low temperature side electrode 23a and the second low temperature side electrode 23b are formed by, for example, forming the first low temperature side electrode 23a and the second low temperature side electrode 23b on the entire surface of the low temperature side insulating layer 14. -It can be formed by bonding at the bonding part 34 between the insulating layers and etching.

p型半導体層のp型半導体および前記n型半導体層のn型半導体は、性能指数の大きい公知の熱電材料が用いられる。この熱電材料としては、たとえば、ビスマス・テルル含有化合物を主相とする物質、ビスマス・アンチモン含有化合物を主相とする物質、スクッテルダイト型構造のCoSb基化合物結晶中の空隙に原子を充填したフィルドスクッテルダイト型構造化合物を主相とする物質、MgAgAs型構造のハーフホイスラー化合物を主相とする物質、バリウム・ガリウムをゲスト原子とするクラスレート化合物、前記物質間または物質と化合物との混合物、および、前記物質間または物質と化合物との接合体のいずれかが用いられる。 A known thermoelectric material having a large figure of merit is used for the p-type semiconductor of the p-type semiconductor layer and the n-type semiconductor of the n-type semiconductor layer. As the thermoelectric material, for example, a substance having a bismuth / tellurium-containing compound as a main phase, a substance having a bismuth / antimony-containing compound as a main phase, and a void in a skutterudite-type CoSb 3- group compound crystal are filled with atoms. A material having a filled skutterudite structure compound as a main phase, a material having a half-Heusler compound of MgAgAs structure as a main phase, a clathrate compound having barium / gallium as a guest atom, and between the substances or between the substance and the compound Either a mixture and a conjugate between the substance or between the substance and the compound is used.

高温側電極22とn型半導体層26との間、および高温側電極22とp型半導体層27との間には、導電性伸縮部材31および導電性均熱部材32が、導電性伸縮部材31を高温側電極22側に配置して圧接される。   Between the high temperature side electrode 22 and the n-type semiconductor layer 26 and between the high temperature side electrode 22 and the p-type semiconductor layer 27, the conductive elastic member 31 and the conductive soaking member 32 are connected to the conductive elastic member 31. Is placed on the high temperature side electrode 22 side and pressed.

導電性伸縮部材31は、導電性を有するとともに、熱による膨張、収縮に対して追従可能な伸縮性を有する部材である。導電性伸縮部材31としては、たとえば、銅や銀等の導電性の良好な金属からなる平編み線やスポンジ状物が用いられる。   The conductive stretchable member 31 is a member having conductivity and stretchability capable of following expansion and contraction due to heat. As the conductive elastic member 31, for example, a flat knitted wire or a sponge-like material made of a metal having good conductivity such as copper or silver is used.

導電性伸縮部材31を介在させることにより、熱による高温側電極22の膨張、収縮で、高温側電極22と、n型半導体層26およびp型半導体層27との間に破断が生じたりクラックが入ったりすることを抑制することができる。   By interposing the conductive elastic member 31, the expansion and contraction of the high temperature side electrode 22 due to heat causes breakage or cracks between the high temperature side electrode 22 and the n-type semiconductor layer 26 and the p-type semiconductor layer 27. Can be prevented from entering.

導電性伸縮部材31と、n型半導体層26およびp型半導体層27との間には、導電性均熱部材32が介在される。導電性均熱部材32としては、たとえば、銅板、グラファイトシートが用いられる。   A conductive soaking member 32 is interposed between the conductive elastic member 31 and the n-type semiconductor layer 26 and the p-type semiconductor layer 27. As the conductive soaking member 32, for example, a copper plate or a graphite sheet is used.

導電性均熱部材32を介在させることにより、平編み線やスポンジ状物等であるため熱の分布が均一になりにくい導電性伸縮部材31を用いる場合でも、導電性伸縮部材31の熱を、n型半導体層26およびp型半導体層27に均一に供給することができる。   Even when the conductive elastic member 31 is used because it is a flat knitted wire, sponge-like material, or the like, and the distribution of heat is difficult to be uniform, the heat of the conductive elastic member 31 is The n-type semiconductor layer 26 and the p-type semiconductor layer 27 can be supplied uniformly.

導電性伸縮部材31および導電性均熱部材32は、高温側電極22とn型半導体層26との間、および高温側電極22とp型半導体層27との間に圧接される。   The conductive elastic member 31 and the conductive soaking member 32 are in pressure contact between the high temperature side electrode 22 and the n-type semiconductor layer 26 and between the high temperature side electrode 22 and the p type semiconductor layer 27.

導電性伸縮部材31および導電性均熱部材32は、圧接されるだけであり、はんだ付け等のように強固に固着されないため、熱膨張、熱収縮に対して追従性が高い。導電性伸縮部材31は、それ自体が熱膨張、熱収縮に対して追従性が高いが、圧接で固定する方法を採用することにより、さらに追従性が高くなっている。このため、高温側電極22と、n型半導体層26およびp型半導体層27との間に破断が生じたり、クラックが入ったりすることがほとんどなく、電気的接続が確実に行われる。   The conductive elastic member 31 and the conductive soaking member 32 are merely pressed together and are not firmly fixed as in soldering or the like, and therefore have high followability to thermal expansion and contraction. The conductive elastic member 31 itself has high followability to thermal expansion and contraction, but the followability is further improved by adopting a method of fixing by pressure contact. For this reason, there is almost no breakage or cracking between the high temperature side electrode 22 and the n-type semiconductor layer 26 and the p-type semiconductor layer 27, and the electrical connection is ensured.

第1の低温側電極23aとn型半導体層26との間、および第2の低温側電極23bとp型半導体層27との間は、接合部30で接合される。半導体層−電極間の接合部30は、たとえば、はんだにより形成される。   The first low-temperature side electrode 23a and the n-type semiconductor layer 26 and the second low-temperature side electrode 23b and the p-type semiconductor layer 27 are joined at the junction 30. The junction 30 between the semiconductor layer and the electrode is formed by, for example, solder.

第1の低温側電極23aとn型半導体層26との接続部分、および第2の低温側電極23bとp型半導体層27との接続部分は、高温側電極22と、n型半導体層26およびp型半導体層27との接続部分よりも熱膨張、熱収縮の度合いが小さい。このため、安価かつ簡単な構造の接合部30で接合しても破断、クラック等の問題は起きにくい。   The connecting portion between the first low temperature side electrode 23a and the n-type semiconductor layer 26 and the connecting portion between the second low temperature side electrode 23b and the p-type semiconductor layer 27 are the high temperature side electrode 22, the n-type semiconductor layer 26, and The degree of thermal expansion and contraction is smaller than that of the connection portion with the p-type semiconductor layer 27. For this reason, even if it joins with the cheap and simple structure of the junction part 30, problems, such as a fracture | rupture and a crack, do not occur easily.

熱電変換モジュール20は、複数個の熱電変換モジュール構成要素21が電気的に接続されてなる。このとき、一方の熱電変換モジュール構成要素21の第1の低温側電極23aと、これに隣接する他方の熱電変換モジュール構成要素21の第2の低温側電極23bとが電気的に接続され、第1の低温側電極23aと第2の低温側電極23bとが一体化して1個の低温側電極23を形成する。   The thermoelectric conversion module 20 is formed by electrically connecting a plurality of thermoelectric conversion module components 21. At this time, the first low temperature side electrode 23a of one thermoelectric conversion module component 21 and the second low temperature side electrode 23b of the other thermoelectric conversion module component 21 adjacent thereto are electrically connected, and the first The one low temperature side electrode 23a and the second low temperature side electrode 23b are integrated to form one low temperature side electrode 23.

熱電変換モジュール20は、熱電変換モジュール構成要素21を電気的に直列に接続するため、隣接する熱電変換モジュール構成要素21の高温側電極22同士、および同一の熱電変換モジュール構成要素21内の第1の低温側電極23aと第2の低温側電極23bとが、それぞれ絶縁される。   Since the thermoelectric conversion module 20 electrically connects the thermoelectric conversion module components 21 in series, the high temperature side electrodes 22 of the adjacent thermoelectric conversion module components 21 and the first in the same thermoelectric conversion module component 21 are connected. The low temperature side electrode 23a and the second low temperature side electrode 23b are insulated from each other.

熱電変換モジュール20は、気密筐体部10の収容空間11内で、高温側電極22が配管部5の配管壁6の表面に高温側絶縁層35を介して取り付けられる。高温側絶縁層35としては、たとえば、セラミックス板が用いられる。   In the thermoelectric conversion module 20, the high temperature side electrode 22 is attached to the surface of the pipe wall 6 of the pipe part 5 via the high temperature side insulating layer 35 in the housing space 11 of the hermetic casing 10. As the high temperature side insulating layer 35, for example, a ceramic plate is used.

高温側電極22と高温側絶縁層35とは、接合部34で接合される。電極−絶縁層間の接合部34は、たとえば、はんだにより形成される。   The high temperature side electrode 22 and the high temperature side insulating layer 35 are joined at the joint portion 34. The junction 34 between the electrode and the insulating layer is formed by solder, for example.

高温側絶縁層35と配管部5の配管壁6b(6)との間には、伝熱部材33が配置される。伝熱部材33は、銅板等の熱伝導の大きい材料からなり、配管壁6の熱を高温側絶縁層35に効率よく伝える。   A heat transfer member 33 is disposed between the high temperature side insulating layer 35 and the pipe wall 6 b (6) of the pipe portion 5. The heat transfer member 33 is made of a material having high heat conductivity such as a copper plate, and efficiently transfers the heat of the pipe wall 6 to the high temperature side insulating layer 35.

高温側絶縁層35と伝熱部材33とは、接合部35で接合される。高温側絶縁層−伝熱部材間の接合部35は、たとえば、はんだにより形成される。   The high temperature side insulating layer 35 and the heat transfer member 33 are joined at the joint 35. The joint portion 35 between the high temperature side insulating layer and the heat transfer member is formed by, for example, solder.

また、熱電変換モジュール20は、気密筐体部10の収容空間11内で、第1の低温側電極23aおよび第2の低温側電極23bが低温側筐体壁15を構成する低温側絶縁層14の表面に取り付けられる。   Further, the thermoelectric conversion module 20 includes the low temperature side insulating layer 14 in which the first low temperature side electrode 23 a and the second low temperature side electrode 23 b constitute the low temperature side housing wall 15 in the housing space 11 of the hermetic housing unit 10. Attached to the surface.

第1の低温側電極23aと低温側絶縁層14、および第2の低温側電極23bと低温側絶縁層14は、接合部34で接合される。電極−絶縁層間の接合部34は、たとえば、はんだにより形成される。   The first low-temperature side electrode 23 a and the low-temperature side insulating layer 14, and the second low-temperature side electrode 23 b and the low-temperature side insulating layer 14 are joined at the joint 34. The junction 34 between the electrode and the insulating layer is formed by solder, for example.

低温側絶縁層14のうち、第1の低温側電極23aの接合される電極−絶縁層間の接合部34が設けられた部分の一部には電流取出部38が設けられる。電流取出部38は、貫通穴の内部に銀粉、銅粉等の導電性物質が充填されたフィルドビアであり、熱電変換モジュール20の電流を気密筐体部10の外部に取り出すことができるようになっている。なお、図4に図示しないが、第2の低温側電極23bの接合される電極−絶縁層間の接合部34の一部にも電流取出部38が設けられる。   A current extraction portion 38 is provided in a part of the portion of the low temperature side insulating layer 14 where the junction 34 between the electrode and the insulating layer to which the first low temperature side electrode 23a is bonded is provided. The current extraction unit 38 is a filled via in which a conductive material such as silver powder or copper powder is filled in the through hole, and the current of the thermoelectric conversion module 20 can be extracted to the outside of the hermetic casing unit 10. ing. Although not shown in FIG. 4, a current extraction portion 38 is also provided at a part of the junction 34 between the electrode and the insulating layer to which the second low temperature side electrode 23b is joined.

低温側絶縁層14のうち、電流取出部38が設けられた部分の外側表面には、低温側絶縁層−取合部間の接合部41を介して取合部39が設けられる。   In the low temperature side insulating layer 14, a coupling portion 39 is provided on the outer surface of the portion where the current extraction portion 38 is provided via a junction 41 between the low temperature side insulating layer and the coupling portion.

取合部39は、熱電変換モジュール20から電流を取り出したり、熱電変換モジュール20に電流を供給したりする。取合部39としては、銅板等が用いられる。低温側絶縁層−取合部間の接合部41は、はんだ等により形成される。   The coupling unit 39 extracts current from the thermoelectric conversion module 20 or supplies current to the thermoelectric conversion module 20. As the coupling part 39, a copper plate or the like is used. The joint portion 41 between the low temperature side insulating layer and the coupling portion is formed of solder or the like.

取合部39の表面には取合部絶縁層40が設けられる。取合部絶縁層40としては、たとえば、シリコンゴムシートが用いられる。   A coupling portion insulating layer 40 is provided on the surface of the coupling portion 39. As the coupling part insulating layer 40, for example, a silicon rubber sheet is used.

筐体側壁12の図中の下方端部は、低温側絶縁層14の表面に、接合部44、筐体側壁支持部42、および接合部43を介して接合される。   A lower end portion of the housing side wall 12 in the figure is joined to the surface of the low temperature side insulating layer 14 through a joint portion 44, a housing side wall support portion 42, and a joint portion 43.

筐体側壁支持部42は、低温側絶縁層14と筐体側壁12との接合を強固にし、気密筐体部10内の気密性を向上させる。筐体側壁支持部42の材質は、特に限定されないが、通常、銅板等の第1の低温側電極23aおよび第2の低温側電極23bと同じ材質が用いられる。   The case side wall support portion 42 strengthens the bonding between the low temperature side insulating layer 14 and the case side wall 12 and improves the airtightness in the airtight case portion 10. Although the material of the housing side wall support part 42 is not particularly limited, the same material as that of the first low temperature side electrode 23a and the second low temperature side electrode 23b such as a copper plate is usually used.

筐体側壁支持部42が第1の低温側電極23aおよび第2の低温側電極23bと同じ材質であると、筐体側壁支持部42の製造が容易であるため好ましい。   It is preferable that the case side wall support part 42 is made of the same material as the first low temperature side electrode 23a and the second low temperature side electrode 23b because the case side wall support part 42 can be easily manufactured.

筐体側壁支持部42が第1の低温側電極23aおよび第2の低温側電極23bと同じ材質である場合は、たとえば、筐体側壁支持部42は、低温側絶縁層14の表面の全体に第1の低温側電極23aおよび第2の低温側電極23bの形成材料を電極−絶縁層間の接合部34で接合した後、エッチングすることにより、容易に形成することができる。   When the case side wall support part 42 is made of the same material as the first low temperature side electrode 23a and the second low temperature side electrode 23b, for example, the case side wall support part 42 is formed on the entire surface of the low temperature side insulating layer 14. The first low-temperature side electrode 23a and the second low-temperature side electrode 23b can be easily formed by bonding the material for forming the second low-temperature side electrode 23b at the electrode-insulating layer junction 34 and then etching.

筐体側壁支持部−低温側絶縁層間の接合部43は、たとえば、はんだ等の電極−絶縁層間の接合部34と同じ材料で形成される。筐体側壁支持部−低温側絶縁層間の接合部43が、電極−絶縁層間の接合部34と同じ材料で形成されると、筐体側壁支持部−低温側絶縁層間の接合部43の製造が容易であるため好ましい。   The joint part 43 between the housing side wall support part and the low temperature side insulating layer is formed of the same material as the joint part 34 between the electrode and the insulating layer, such as solder. When the joint portion 43 between the housing side wall support portion and the low temperature side insulating layer is formed of the same material as the joint portion 34 between the electrode and insulating layer, the joint portion 43 between the housing side wall support portion and the low temperature side insulating layer is manufactured. It is preferable because it is easy.

たとえば、筐体側壁支持部−低温側絶縁層間の接合部43および筐体側壁支持部42は、低温側絶縁層14の表面の全体に第1の低温側電極23aおよび第2の低温側電極23bの形成材料を電極−絶縁層間の接合部34を構成する材料で接合した後、エッチングすることにより、容易に形成することができる。   For example, the joint 43 between the housing side wall support portion and the low temperature side insulating layer and the housing side wall support portion 42 are formed on the entire surface of the low temperature side insulating layer 14 by the first low temperature side electrode 23a and the second low temperature side electrode 23b. This material can be easily formed by bonding with a material constituting the bonding portion 34 between the electrode and the insulating layer and then etching.

筐体側壁−筐体側壁支持部間の接合部44は、筐体側壁支持部42と筐体側壁12との接合を強固にし、気密筐体部10内の気密性を向上させる。筐体側壁−筐体側壁支持部間の接合部44の材質は、特に限定されず公知の接合材料を用いることができるが、接合強度の点から、溶接、はんだ付け、ロウ付け、拡散接合または接着剤による接合が好ましい。ロウ付けには、たとえば、銀ロウ、銅ロウ、活性ロウが用いられる。   The joint portion 44 between the housing side wall and the housing side wall support portion strengthens the bonding between the housing side wall support portion 42 and the housing side wall 12 and improves the airtightness in the airtight housing portion 10. The material of the joint 44 between the housing side wall and the housing side wall support is not particularly limited, and a known joining material can be used. However, from the viewpoint of joining strength, welding, soldering, brazing, diffusion joining or Bonding with an adhesive is preferred. For brazing, for example, silver brazing, copper brazing, or active brazing is used.

次に、熱電変換装置1の作用について図面を参照して説明する。図5は、熱電変換装置1の熱電変換モジュール構成要素21の作用を説明する模式図である。   Next, the effect | action of the thermoelectric conversion apparatus 1 is demonstrated with reference to drawings. FIG. 5 is a schematic diagram for explaining the operation of the thermoelectric conversion module component 21 of the thermoelectric conversion device 1.

図1に示すように、配管部5の流路7に高温流体を矢印Fの向きに流すと、配管部5の配管壁6(6a、6b、6c、6d)が高温になる。   As shown in FIG. 1, when a high-temperature fluid is caused to flow in the flow path 7 of the pipe part 5 in the direction of the arrow F, the pipe walls 6 (6a, 6b, 6c, 6d) of the pipe part 5 become high temperature.

配管部5の配管壁6(6a、6b、6c、6d)が高温になると、図4および図5に示すように、熱電変換モジュール20を構成する熱電変換モジュール構成要素21の高温側電極22が、第1の低温側電極23aおよび第2の低温側電極23bよりも高温になり、矢印Gの向きの熱流が発生する。   When the piping wall 6 (6a, 6b, 6c, 6d) of the piping part 5 becomes high temperature, as shown in FIGS. 4 and 5, the high-temperature side electrode 22 of the thermoelectric conversion module component 21 constituting the thermoelectric conversion module 20 is The temperature becomes higher than that of the first low temperature side electrode 23a and the second low temperature side electrode 23b, and a heat flow in the direction of the arrow G is generated.

矢印Gの向きの熱流が発生すると、図5に示すように、n型半導体層26中の電子51が高温側電極22側から第1の低温側電極23a側に(矢印H)に移動する。また、p型半導体層27中の正孔52が高温側電極22側から第2の低温側電極23b側に(矢印I)に移動する。   When the heat flow in the direction of the arrow G is generated, as shown in FIG. 5, the electrons 51 in the n-type semiconductor layer 26 move from the high temperature side electrode 22 side to the first low temperature side electrode 23a side (arrow H). Further, the holes 52 in the p-type semiconductor layer 27 move from the high temperature side electrode 22 side to the second low temperature side electrode 23b side (arrow I).

これにより、熱電変換モジュール20を構成する熱電変換モジュール構成要素21には、図5の矢印Iおよび矢印Jの向きに電流が流れる。   As a result, a current flows through the thermoelectric conversion module component 21 constituting the thermoelectric conversion module 20 in the directions of arrows I and J in FIG.

なお、従来の金属筐体内に熱電変換モジュールが収納された熱電変換装置を配管壁に取り付けた場合には、配管壁からの熱が金属筐体中を伝熱して金属筐体の側面にも供給されるため、金属筐体内に収容された熱電変換モジュールの高温側電極に効率的に熱を供給することが困難で、熱エネルギーの伝達ロスが大きかった。   In addition, when a thermoelectric conversion device in which a thermoelectric conversion module is housed in a conventional metal casing is attached to a pipe wall, heat from the pipe wall is transferred through the metal casing and supplied to the side of the metal casing. Therefore, it is difficult to efficiently supply heat to the high temperature side electrode of the thermoelectric conversion module housed in the metal casing, and the heat energy transfer loss is large.

これに対し、熱電変換装置1は、熱電変換モジュール構成要素21の高温側電極22が、高温側絶縁層35および伝熱部材33を介して配管壁6に直接に接続され、配管壁6の熱が高温側電極22に効率よく供給され、熱エネルギーの伝達ロスが小さいため、発電効率が高い。   In contrast, in the thermoelectric conversion device 1, the high temperature side electrode 22 of the thermoelectric conversion module component 21 is directly connected to the pipe wall 6 via the high temperature side insulating layer 35 and the heat transfer member 33, and the heat of the pipe wall 6 is Is efficiently supplied to the high temperature side electrode 22 and the transmission loss of heat energy is small, so the power generation efficiency is high.

また、熱電変換装置1は、配管壁6の熱が効率よく高温側電極22に供給されるため、気密筐体部10内の温度が従来よりも高くなりやすい。n型半導体層26およびp型半導体層27を構成する半導体材料や、高温側電極22等を構成する電極材料は、高温下で酸化等が生じて劣化するおそれがあるが、熱電変換装置1は、気密筐体部10内が真空状態または不活性なガス雰囲気にされるため、劣化を抑制することができる。   Moreover, since the heat of the piping wall 6 is efficiently supplied to the high temperature side electrode 22, the temperature in the airtight housing | casing part 10 tends to become higher than the past. Although the semiconductor material constituting the n-type semiconductor layer 26 and the p-type semiconductor layer 27 and the electrode material constituting the high-temperature side electrode 22 and the like may be deteriorated due to oxidation or the like at high temperatures, the thermoelectric conversion device 1 Since the inside of the hermetic casing 10 is in a vacuum state or an inert gas atmosphere, deterioration can be suppressed.

さらに、熱電変換装置1は、熱電変換モジュール構成要素21の、高温側電極22とn型半導体層26との間、および高温側電極22とp型半導体層27との間に、導電性伸縮部材31が圧接されるから、高温側電極22とn型半導体層26との間、および高温側電極22とp型半導体層27との間に破断が生じたり、クラックが入ったりすることがほとんどなく、電気的接続が確実に行われる。   Further, the thermoelectric conversion device 1 includes a conductive elastic member between the high temperature side electrode 22 and the n-type semiconductor layer 26 and between the high temperature side electrode 22 and the p-type semiconductor layer 27 of the thermoelectric conversion module component 21. Since 31 is pressed, there is almost no breakage or cracking between the high-temperature side electrode 22 and the n-type semiconductor layer 26 and between the high-temperature side electrode 22 and the p-type semiconductor layer 27. The electrical connection is ensured.

また、熱電変換モジュール20は、外部回路55を接続することにより、熱電変換モジュール構成要素21中で第1の低温側電極23aから高温側電極22を介して第2の低温側電極23bに向かって電流を流すと、高温側電極22が吸熱して周囲が冷却され、第1の低温側電極23aおよび第2の低温側電極23bが放熱して周囲が加熱される。これにより、電気エネルギーが熱エネルギーに変換される。   Moreover, the thermoelectric conversion module 20 is connected to the 2nd low temperature side electrode 23b via the high temperature side electrode 22 from the 1st low temperature side electrode 23a in the thermoelectric conversion module component 21 by connecting the external circuit 55. When a current is passed, the high temperature side electrode 22 absorbs heat and the surroundings are cooled, and the first low temperature side electrode 23a and the second low temperature side electrode 23b dissipate heat and the surroundings are heated. Thereby, electrical energy is converted into thermal energy.

熱電変換装置1によれば、熱エネルギーの伝達ロスが小さく、熱電変換効率が高くなる。   According to the thermoelectric conversion device 1, the transmission loss of thermal energy is small, and the thermoelectric conversion efficiency is high.

なお、熱電変換装置1の熱電変換モジュール20を構成する熱電変換モジュール構成要素21は、図6に示す熱電変換モジュール構成要素21に代えて、図7に示す熱電変換モジュール構成要素21A、図8に示す熱電変換モジュール構成要素21B、または図9に示す熱電変換モジュール構成要素21Cを用いてもよい。   In addition, the thermoelectric conversion module component 21 which comprises the thermoelectric conversion module 20 of the thermoelectric conversion apparatus 1 is replaced with the thermoelectric conversion module component 21 shown in FIG. 6, and the thermoelectric conversion module component 21A shown in FIG. You may use the thermoelectric conversion module component 21B shown, or the thermoelectric conversion module component 21C shown in FIG.

熱電変換モジュール構成要素21A、21Bおよび21Cは、それぞれ、熱電変換モジュール構成要素21に対し、高温側電極22と、n型半導体層26およびp型半導体層27との間(以下、「部位A」という)を接続する構成部材、第1の低温側電極23aとn型半導体層26との間(以下、「部位B」という)を接続する構成部材、ならびに第2の低温側電極23bとp型半導体層27との間(以下、「部位C」という)を接続する構成部材を変更したものである。   The thermoelectric conversion module components 21A, 21B, and 21C are located between the high-temperature side electrode 22, the n-type semiconductor layer 26, and the p-type semiconductor layer 27 with respect to the thermoelectric conversion module component 21 (hereinafter referred to as “part A”). And the second low-temperature electrode 23b and the p-type, and the first low-temperature electrode 23a and the n-type semiconductor layer 26 (hereinafter referred to as "part B"). The structural member that connects the semiconductor layer 27 (hereinafter referred to as “part C”) is changed.

図7に示す熱電変換モジュール構成要素21Aは、部位Aを接続する構成部材を、図6に示す熱電変換モジュール構成要素21の導電性伸縮部材31および導電性均熱部材32から半導体層−電極間の接合部30に変更したものである。   The thermoelectric conversion module component 21A shown in FIG. 7 is a component connecting the part A, and is formed from the conductive elastic member 31 and the conductive soaking member 32 of the thermoelectric conversion module component 21 shown in FIG. The joint portion 30 is changed.

また、図7に示す熱電変換モジュール構成要素21Aは、部位Bおよび部位Cを接続する構成部材を、図6に示す熱電変換モジュール構成要素21の半導体層−電極間の接合部30から導電性伸縮部材31および導電性均熱部材32に変更したものである。   In addition, the thermoelectric conversion module component 21A shown in FIG. 7 has a conductive member extending from the junction 30 between the semiconductor layer and the electrode of the thermoelectric conversion module component 21 shown in FIG. The member 31 and the conductive soaking member 32 are changed.

熱電変換モジュール構成要素21Aの部位Bおよび部位Cに配置される導電性伸縮部材31および導電性均熱部材32は、導電性伸縮部材31を第1の低温側電極23aまたは第2の低温側電極23b側に配置して圧接される。   The conductive elastic member 31 and the conductive soaking member 32 disposed in the part B and the part C of the thermoelectric conversion module component 21A include the conductive elastic member 31 as the first low temperature side electrode 23a or the second low temperature side electrode. It is arranged on the 23b side and pressed.

熱電変換モジュール構成要素21Aは、部位Aに配置される半導体層−電極間の接合部30が安価であるため、この部分の製造コストが低くなる。   In the thermoelectric conversion module component 21A, since the junction 30 between the semiconductor layer and the electrode disposed in the part A is inexpensive, the manufacturing cost of this part is reduced.

また、熱電変換モジュール構成要素21Aは、部位Bおよび部位Cに配置される部材の熱膨張、熱収縮に対する追従性が高いため、n型半導体層26と第1の低温側電極23aとの間、およびp型半導体層27と第2の低温側電極23bとの間に、熱膨張、熱収縮により破断したり、クラックが入ったりすることが抑制される。   In addition, since the thermoelectric conversion module component 21A has high followability to the thermal expansion and thermal contraction of the members disposed in the part B and the part C, between the n-type semiconductor layer 26 and the first low temperature side electrode 23a, In addition, the p-type semiconductor layer 27 and the second low-temperature side electrode 23b are prevented from being broken or cracked due to thermal expansion and contraction.

図8に示す熱電変換モジュール構成要素21Bは、部位Bおよび部位Cを接続する構成部材を、図6に示す熱電変換モジュール構成要素21の半導体層−電極間の接合部30から導電性伸縮部材31および導電性均熱部材32に変更したものである。   The thermoelectric conversion module component 21B shown in FIG. 8 is a conductive elastic member 31 from the junction 30 between the semiconductor layer and the electrode of the thermoelectric conversion module component 21 shown in FIG. Further, the conductive soaking member 32 is changed.

熱電変換モジュール構成要素21Bの部位Bおよび部位Cに配置される導電性伸縮部材31および導電性均熱部材32は、導電性伸縮部材31を第1の低温側電極23aまたは第2の低温側電極23b側に配置して圧接される。   The conductive elastic member 31 and the conductive soaking member 32 disposed in the part B and the part C of the thermoelectric conversion module component 21B include the conductive elastic member 31 as the first low temperature side electrode 23a or the second low temperature side electrode. It is arranged on the 23b side and pressed.

熱電変換モジュール構成要素21Bは、部位Bおよび部位Cに配置される部材の熱膨張、熱収縮に対する追従性が高いため、n型半導体層26と第1の低温側電極23aとの間、およびp型半導体層27と第2の低温側電極23bとの間に、熱膨張、熱収縮により破断したり、クラックが入ったりすることが抑制される。   Since the thermoelectric conversion module component 21B has high followability to the thermal expansion and thermal contraction of the members disposed in the part B and the part C, between the n-type semiconductor layer 26 and the first low temperature side electrode 23a, and p Between the type semiconductor layer 27 and the second low temperature side electrode 23b, breakage or cracking due to thermal expansion or contraction is suppressed.

図9に示す熱電変換モジュール構成要素21Cは、部位Aを接続する構成部材を、図6に示す熱電変換モジュール構成要素21の導電性伸縮部材31および導電性均熱部材32から半導体層−電極間の接合部30に変更したものである。   The thermoelectric conversion module component 21C shown in FIG. 9 is configured such that components connecting the part A are changed from the conductive elastic member 31 and the conductive soaking member 32 of the thermoelectric conversion module component 21 shown in FIG. The joint portion 30 is changed.

熱電変換モジュール構成要素21Cは、部位Aに配置される半導体層−電極間の接合部30が安価であるため、この部分の製造コストが低くなる。   In the thermoelectric conversion module component 21C, since the junction 30 between the semiconductor layer and the electrode disposed in the part A is inexpensive, the manufacturing cost of this part is reduced.

熱電変換装置1は、低温側筐体壁15が、低温側絶縁層−熱放出部材間の接合部37および熱放出部材36を設けず、低温側絶縁層14のみからなる構成としてもよい。低温側絶縁層−熱放出部材間の接合部37および熱放出部材36を設けない構成とすると、装置の簡素化、低コスト化が可能になる。   The thermoelectric conversion device 1 may be configured such that the low-temperature side housing wall 15 includes only the low-temperature-side insulating layer 14 without providing the low-temperature-side insulating layer-heat releasing member junction 37 and the heat-emitting member 36. If the low temperature side insulating layer-heat release member junction 37 and the heat release member 36 are not provided, the apparatus can be simplified and the cost can be reduced.

熱電変換装置1は、高温側絶縁層35と配管部5の配管壁6との間に、伝熱部材33を設けない構成としてもよい。伝熱部材33を設けない構成とすると、装置の簡素化、低コスト化が可能になる。   The thermoelectric conversion device 1 may have a configuration in which the heat transfer member 33 is not provided between the high temperature side insulating layer 35 and the pipe wall 6 of the pipe portion 5. If the heat transfer member 33 is not provided, the apparatus can be simplified and the cost can be reduced.

[第2の実施形態]
次に本発明に係る第2の実施形態に示された熱電変換装置について添付図面を参照して説明する。
[Second Embodiment]
Next, a thermoelectric conversion device shown in a second embodiment according to the present invention will be described with reference to the accompanying drawings.

本発明に係る第2の実施形態に示された熱電変換装置1Aは、図1に第1の実施形態として示された熱電変換装置1と外観構成が同じであるため、外観についての説明を省略する。   The thermoelectric conversion device 1A shown in the second embodiment according to the present invention has the same external configuration as the thermoelectric conversion device 1 shown as the first embodiment in FIG. To do.

図10は、本発明に係る第2の実施形態に示された熱電変換装置1Aを示す図1のC−C線に沿う断面図である。   FIG. 10 is a cross-sectional view taken along the line CC of FIG. 1 showing the thermoelectric conversion device 1A shown in the second embodiment according to the present invention.

第2の実施形態に示された熱電変換装置1Aは、第1の実施形態に示された熱電変換装置1に対し、熱電変換モジュール20に代えて熱電変換モジュール20Dを用いる点、高温側絶縁層35に代えて高温側絶縁層35Dを用いる点、および伝熱部材33を設けない点で異なり、他の構成、作用は熱電変換装置1と同じであるため、同じ構成には同一符号を付し、構成および作用の説明を簡略化または省略する。   The thermoelectric conversion device 1A shown in the second embodiment is different from the thermoelectric conversion device 1 shown in the first embodiment in that a thermoelectric conversion module 20D is used instead of the thermoelectric conversion module 20, a high temperature side insulating layer The difference is that the high temperature side insulating layer 35D is used instead of 35 and the heat transfer member 33 is not provided, and the other configurations and functions are the same as those of the thermoelectric conversion device 1, and thus the same components are denoted by the same reference numerals. The description of the configuration and operation is simplified or omitted.

熱電変換モジュール20Dは、熱電変換装置1に用いられる熱電変換モジュール20に対し、高温側電極22および導電性伸縮部材31に代えて、熱に対して伸縮自在な高温側電極22Dを用いる点、複数の熱電変換モジュール構成要素21を取り付け可能な大きな高温側絶縁層35に代えて1個の熱電変換モジュール構成要素21のみを取り付け可能な小さな高温側絶縁層35Dを用いる点、および伝熱部材33を設けずに、高温側絶縁層35Dを配管部5の配管壁6の表面に直接形成する点で異なる。   The thermoelectric conversion module 20 </ b> D uses a high temperature side electrode 22 </ b> D that can expand and contract with respect to heat, instead of the high temperature side electrode 22 and the conductive elastic member 31, with respect to the thermoelectric conversion module 20 used in the thermoelectric conversion device 1. A small high temperature side insulating layer 35D to which only one thermoelectric conversion module component 21 can be attached is used in place of the large high temperature side insulating layer 35 to which the thermoelectric conversion module component 21 can be attached, and a heat transfer member 33 is used. The difference is that the high temperature side insulating layer 35 </ b> D is directly formed on the surface of the pipe wall 6 of the pipe portion 5 without being provided.

熱電変換モジュール20Dは、これらの点以外は、熱電変換モジュール20と同じであるため、同じ構成には同一符号を付し、構成および作用の説明を簡略化または省略する。   Since the thermoelectric conversion module 20D is the same as the thermoelectric conversion module 20 except for these points, the same components are denoted by the same reference numerals, and description of the configuration and operation is simplified or omitted.

熱電変換モジュール20Dは、熱電変換モジュール構成要素21Dが、複数個電気的に直列に接続されたものである。なお、熱電変換モジュール20Dは、1つの熱電変換モジュール構成要素21Dからなるものであってもよい。   The thermoelectric conversion module 20D is obtained by electrically connecting a plurality of thermoelectric conversion module components 21D in series. The thermoelectric conversion module 20D may be composed of one thermoelectric conversion module component 21D.

熱電変換モジュール構成要素21Dは、第1の低温側電極23a、n型半導体層26、熱に対して伸縮自在な高温側電極22D、p型半導体層27および第2の低温側電極23bがこの順番に電気的に直列接続されて形成される。   The thermoelectric conversion module component 21D includes a first low-temperature side electrode 23a, an n-type semiconductor layer 26, a high-temperature side electrode 22D that can expand and contract with respect to heat, a p-type semiconductor layer 27, and a second low-temperature side electrode 23b in this order. Are electrically connected in series.

また、熱電変換モジュール構成要素21Dは、n型半導体層26およびp型半導体層27が高温側電極22Dの表面の同じ側に並べて配置され、n型半導体層26に接続される第1の低温側電極23aおよびp型半導体層27に接続される第2の低温側電極23bが、高温側電極22Dよりも低温側かつ平行に配置される。   The thermoelectric conversion module component 21D includes a first low-temperature side in which the n-type semiconductor layer 26 and the p-type semiconductor layer 27 are arranged side by side on the same side of the surface of the high-temperature side electrode 22D and connected to the n-type semiconductor layer 26. The second low temperature side electrode 23b connected to the electrode 23a and the p-type semiconductor layer 27 is arranged on the low temperature side and in parallel with the high temperature side electrode 22D.

熱に対して伸縮自在な高温側電極22Dは、熱電変換装置1の導電性伸縮部材31をこのまま高温側電極22として用いるものであり、導電性を有するとともに、熱による膨張、収縮に対して追従可能な伸縮性を有する部材である。高温側電極22Dとしては、たとえば、導電性伸縮部材31と同じ、銅や銀等の導電性の良好な金属からなる平編み線やスポンジ状物が用いられる。   The high temperature side electrode 22 </ b> D that can expand and contract with respect to heat uses the conductive elastic member 31 of the thermoelectric conversion device 1 as it is as the high temperature side electrode 22, has conductivity, and follows expansion and contraction due to heat. It is a member having possible elasticity. As the high temperature side electrode 22D, for example, a flat knitted wire or a sponge-like material made of a metal having good conductivity such as copper or silver, which is the same as the conductive elastic member 31, is used.

熱に対して伸縮自在な高温側電極22Dと配管部5の配管壁6との間には、高温側絶縁層35Dが設けられる。高温側絶縁層35Dとしては、たとえば、絶縁材料からなるコーティング膜、繊維の集合体、布、粉体の固着物またはこれらの複合物が用いられる。絶縁材料としては、たとえば、耐熱性絶縁塗料、セラミックス、ガラスが用いられる。セラミックスとしては、たとえば、アルミナ、窒化アルミニウム、窒化珪素、シリカが用いられる。   A high temperature side insulating layer 35 </ b> D is provided between the high temperature side electrode 22 </ b> D that can expand and contract with respect to heat and the pipe wall 6 of the pipe portion 5. As the high temperature side insulating layer 35D, for example, a coating film made of an insulating material, a fiber assembly, a cloth, a fixed substance of powder, or a composite thereof is used. As the insulating material, for example, heat-resistant insulating paint, ceramics, and glass are used. As ceramics, for example, alumina, aluminum nitride, silicon nitride, and silica are used.

高温側絶縁層35Dは、通常、コーティング膜、繊維の集合体、布、粉体の固着物等からなるため、通常、セラミックス板からなる高温側絶縁層35に比べて薄く形成される。このため、熱電変換装置1Aは、配管部5の配管壁6から高温側絶縁層35Dへの熱伝導が十分に良好であり、熱電変換装置1のように伝熱部材33を設ける必要がなくなる。   The high temperature side insulating layer 35D is usually made of a coating film, an aggregate of fibers, a cloth, a fixed substance of powder, and the like, and is usually formed thinner than the high temperature side insulating layer 35 made of a ceramic plate. For this reason, the thermoelectric conversion device 1 </ b> A has sufficiently good heat conduction from the pipe wall 6 of the pipe portion 5 to the high temperature side insulating layer 35 </ b> D, and there is no need to provide the heat transfer member 33 unlike the thermoelectric conversion device 1.

次に、熱電変換装置1Aの作用について図面を参照して説明する。   Next, the operation of the thermoelectric conversion device 1A will be described with reference to the drawings.

熱電変換装置1Aは、図10に示すように、配管部5の流路7に高温流体を矢印Fの向きに流すと、配管部5の配管壁6(6a、6b、6c、6d)が高温になり、熱電変換モジュール20Dに矢印Gの向きの熱流が発生する。   As shown in FIG. 10, in the thermoelectric conversion device 1 </ b> A, when a high-temperature fluid is caused to flow in the direction of the arrow F through the flow path 7 of the pipe part 5, the pipe wall 6 (6 a, 6 b, 6 c, 6 d) of the pipe part 5 is hot. Thus, a heat flow in the direction of arrow G is generated in the thermoelectric conversion module 20D.

熱電変換モジュール20Dに矢印Gの向きの熱流が発生すると、熱電変換モジュール構成要素21D中を、第1の低温側電極23a、n型半導体層26、高温側電極22D、p型半導体層27および第2の低温側電極23bの順番で電流が流れる。   When the heat flow in the direction indicated by the arrow G is generated in the thermoelectric conversion module 20D, the first low-temperature side electrode 23a, the n-type semiconductor layer 26, the high-temperature side electrode 22D, the p-type semiconductor layer 27, and the first in the thermoelectric conversion module component 21D. The current flows in the order of the two low temperature side electrodes 23b.

なお、熱電変換装置1Aは、熱電変換モジュール20Dの高温側絶縁層35Dが配管部5の配管壁6に直接に接続されているため、熱電変換装置1よりも、配管壁6から高温側電極22Dへの熱の伝達ロスが小さく、熱効率がよい。   In the thermoelectric conversion device 1A, since the high temperature side insulating layer 35D of the thermoelectric conversion module 20D is directly connected to the pipe wall 6 of the pipe portion 5, the thermoelectric conversion device 1 is connected to the high temperature side electrode 22D from the pipe wall 6. Heat transfer loss to is small and heat efficiency is good.

他の作用は、熱電変換装置1と同じであるため重複説明を省略する。   Since other operations are the same as those of the thermoelectric conversion device 1, redundant description is omitted.

熱電変換装置1Aによれば、熱電変換装置1と同じ効果を有する上、熱電変換装置1よりも、配管壁6から高温側電極22Dへの熱の伝達ロスが小さいため、さらに熱効率がよくなる。   The thermoelectric conversion device 1A has the same effect as the thermoelectric conversion device 1, and further has a lower heat transfer loss from the pipe wall 6 to the high temperature side electrode 22D than the thermoelectric conversion device 1, and therefore further improves thermal efficiency.

[第3の実施形態]
次に本発明に係る第3の実施形態に示された熱電変換装置について添付図面を参照して説明する。
[Third Embodiment]
Next, a thermoelectric conversion device shown in a third embodiment according to the present invention will be described with reference to the accompanying drawings.

図11は、本発明に係る第3の実施形態に示された熱電変換装置1Bを示す斜視図である。図12は、熱電変換装置1Bを示す図1のD−D線に沿う断面図である。   FIG. 11 is a perspective view showing a thermoelectric conversion device 1B shown in the third embodiment according to the present invention. 12 is a cross-sectional view taken along the line DD of FIG. 1 showing the thermoelectric conversion device 1B.

第3の実施形態に示された熱電変換装置1Bは、第1の実施形態に示された熱電変換装置1に対し、気密筐体部10を気密筐体部10Bとした点で異なり、他の構成および作用は同じであるため、同じ構成に同じ符号を付し、説明を簡略化または省略する。   The thermoelectric conversion device 1B shown in the third embodiment differs from the thermoelectric conversion device 1 shown in the first embodiment in that the airtight housing portion 10 is an airtight housing portion 10B. Since the configuration and operation are the same, the same reference numerals are given to the same configuration, and the description is simplified or omitted.

熱電変換装置1Bの気密筐体部10Bは、図11および図12に示すように、配管部5の周方向全体を取り囲むように形成される。すなわち、気密筐体部10Bは、4枚の配管壁6a、6b、6c、6dを、4枚の低温側筐体壁15B、15B、15B、15Bで取り囲むとともに、配管壁6と低温側筐体壁15Bとの空間を筐体側壁12Bで仕切ることにより形成される。   As shown in FIGS. 11 and 12, the hermetic housing 10 </ b> B of the thermoelectric conversion device 1 </ b> B is formed so as to surround the entire circumferential direction of the pipe 5. That is, the airtight casing 10B surrounds the four pipe walls 6a, 6b, 6c, and 6d with the four low temperature side casing walls 15B, 15B, 15B, and 15B, and the pipe wall 6 and the low temperature side casing. It is formed by partitioning the space with the wall 15B by the housing side wall 12B.

次に、熱電変換装置1Bの作用について説明する。   Next, the operation of the thermoelectric conversion device 1B will be described.

熱電変換装置1Bの作用は、熱電変換装置1と同様に、配管部5の流路7に高温流体を矢印Fの向きに流すと、配管部5の配管壁6(6a、6b、6c、6d)が高温になり、熱電変換モジュール20に矢印Gの向きの熱流が発生し、電流が流れる。   Similar to the thermoelectric conversion device 1, the thermoelectric conversion device 1 </ b> B operates when a high-temperature fluid is caused to flow in the direction of the arrow F in the flow path 7 of the pipe portion 5, and the pipe wall 6 (6 a, 6 b, 6 c, 6 d of the pipe portion 5. ) Becomes high temperature, a heat flow in the direction of arrow G is generated in the thermoelectric conversion module 20, and a current flows.

なお、熱電変換装置1Bは、気密筐体部10Bが配管部5の周方向全体を取り囲むように形成されるため、配管壁6の熱が気密筐体部10B内に効率よく供給される。   Note that the thermoelectric conversion device 1B is formed so that the airtight casing 10B surrounds the entire circumferential direction of the pipe section 5, and thus heat of the pipe wall 6 is efficiently supplied into the airtight casing 10B.

熱電変換装置1Bによれば、熱電変換装置1と同じ効果を有する上に、配管壁6の熱が気密筐体部10B内に効率よく供給されるため、熱電変換装置1よりも、さらに熱効率がよくなる。   According to the thermoelectric conversion device 1B, in addition to having the same effect as the thermoelectric conversion device 1, the heat of the pipe wall 6 is efficiently supplied into the airtight casing 10B. Get better.

本発明に係る第1の実施形態に示された熱電変換装置の外観構成を示す斜視図。The perspective view which shows the external appearance structure of the thermoelectric conversion apparatus shown by 1st Embodiment based on this invention. 本発明に係る第1の実施形態に示された熱電変換装置を示す図1のA−A線に沿う断面図。Sectional drawing which follows the AA line of FIG. 1 which shows the thermoelectric conversion apparatus shown by 1st Embodiment based on this invention. 本発明に係る第1の実施形態に示された熱電変換装置を示す図1のB−B線に沿う断面図。Sectional drawing which follows the BB line of FIG. 1 which shows the thermoelectric conversion apparatus shown by 1st Embodiment based on this invention. 本発明に係る第1の実施形態に示された熱電変換装置を示す図1のC−C線に沿う断面図。Sectional drawing which follows the CC line of FIG. 1 which shows the thermoelectric conversion apparatus shown by 1st Embodiment based on this invention. 本発明に係る第1の実施形態に示された熱電変換装置の熱電変換モジュール構成要素の作用を説明する模式図。The schematic diagram explaining the effect | action of the thermoelectric conversion module component of the thermoelectric conversion apparatus shown by 1st Embodiment based on this invention. 熱電変換モジュール構成要素における電極と半導体層との第1の接続形態を説明する模式図。The schematic diagram explaining the 1st connection form of the electrode and semiconductor layer in a thermoelectric conversion module component. 熱電変換モジュール構成要素における電極と半導体層との第2の接続形態を説明する模式図。The schematic diagram explaining the 2nd connection form of the electrode and semiconductor layer in a thermoelectric conversion module component. 熱電変換モジュール構成要素における電極と半導体層との第3の接続形態を説明する模式図。The schematic diagram explaining the 3rd connection form of the electrode and semiconductor layer in a thermoelectric conversion module component. 熱電変換モジュール構成要素における電極と半導体層との第4の接続形態を説明する模式図。The schematic diagram explaining the 4th connection form of the electrode and semiconductor layer in a thermoelectric conversion module component. 本発明に係る第2の実施形態に示された熱電変換装置を示す図1のC−C線に沿う断面図。Sectional drawing which follows the CC line of FIG. 1 which shows the thermoelectric conversion apparatus shown by 2nd Embodiment based on this invention. 本発明に係る第3の実施形態に示された熱電変換装置の外観構成を示す斜視図。The perspective view which shows the external appearance structure of the thermoelectric conversion apparatus shown by 3rd Embodiment based on this invention. 本発明に係る第3の実施形態に示された熱電変換装置を示す図11のD−D線に沿う断面図。Sectional drawing which follows the DD line | wire of FIG. 11 which shows the thermoelectric conversion apparatus shown by 3rd Embodiment based on this invention.

符号の説明Explanation of symbols

1、1A、1B 熱電変換装置
5 配管部
6、6a、6b、6c、6d 配管壁
7 流路
10、10B 気密筐体部
11 収容空間
12、12B 筐体側壁
13 高温側絶縁層
14 低温側絶縁層
15、15B 低温側筐体壁
20、20D 熱電変換モジュール
21、21A、21B、21C 熱電変換モジュール構成要素
22 高温側電極
23 低温側電極
23a 第1の低温側電極(低温側電極)
23b 第2の低温側電極(低温側電極)
24 熱に対して伸縮自在な高温側電極
26 n型半導体層
27 p型半導体層
30 半導体層−電極間の接合部
31 導電性伸縮部材
32 導電性均熱部材
33 伝熱部材
34 電極−絶縁層間の接合部
35 高温側絶縁層−伝熱部材間の接合部
36 熱放出部材
37 低温側絶縁層−熱放出部材間の接合部
38 電流取出部
39 取合部
40 取合部絶縁層
41 低温側絶縁層−取合部材間の接合部
42 筐体側壁支持部
43 筐体側壁支持部−低温側絶縁層間の接合部
44 筐体側壁−筐体側壁支持部間の接合部
51 電子
52 正孔
55 外部回路
57 電気的負荷
DESCRIPTION OF SYMBOLS 1, 1A, 1B Thermoelectric converter 5 Piping part 6, 6a, 6b, 6c, 6d Piping wall 7 Flow path 10, 10B Airtight housing | casing part 11 Housing space 12, 12B Housing side wall 13 High temperature side insulating layer 14 Low temperature side insulation Layers 15 and 15B Low-temperature side casing walls 20 and 20D Thermoelectric conversion modules 21, 21A, 21B and 21C Thermoelectric conversion module components 22 High-temperature side electrode 23 Low-temperature side electrode 23a First low-temperature side electrode (low-temperature side electrode)
23b Second low temperature side electrode (low temperature side electrode)
24 High-Temperature Side Electrode 26 Stretchable to Heat 26 n-type Semiconductor Layer 27 p-type Semiconductor Layer 30 Junction 31 between Semiconductor Layer and Electrode Conductive Stretching Member 32 Conductive Heat Soaking Member 33 Heat Transfer Member 34 Electrode-Insulating Layer Joint part 35 between the high temperature side insulating layer and the heat transfer member 36 Heat release member 37 Joint part 38 between the low temperature side insulation layer and the heat release member Current extraction part 39 Joint part 40 Joint part insulation layer 41 Low temperature side Junction 42 between insulating layer and coupling member Housing side wall support 43 Junction between side wall support of housing and low temperature side insulating layer 44 Junction 51 between housing side wall and casing side wall support 51 Electron 52 Hole 55 External circuit 57 Electrical load

Claims (7)

流路を内部に形成する配管部と、
この配管部の配管壁の外側周囲に、かつ、前記配管壁に対向して設けられる低温側筐体壁、および前記配管壁と前記低温側筐体壁との間の空間を仕切り、内部に密閉された収容空間を形成する筐体側壁を有する気密筐体部と、
この気密筐体部の収容空間内に配置され、前記配管部の配管壁側に設けられた高温側電極、前記低温側筐体壁側に設けられた低温側電極、前記高温側電極と低温側電極との間に介装されるp型半導体層およびn型半導体層を有する熱電変換モジュールとを備え、
前記低温側筐体壁は、少なくとも低温側絶縁層を含み、
前記気密筐体部の収容空間内は、真空または不活性なガスが封入され
前記熱電変換モジュールは、第1の低温側電極、n型半導体層、高温側電極、p型半導体層および第2の低温側電極がこの順番に電気的に直列接続され、前記n型半導体層および前記p型半導体層が前記高温側電極の表面の同じ側に並べて配置され、前記第1の低温側電極および第2の低温側電極が前記高温側電極よりも低温側に配置されてなる熱電変換モジュール構成要素が、1個または複数個電気的に接続されたものであるとともに、前記気密筐体部の収容空間内で、前記高温側電極が前記配管部の配管壁の表面に高温側絶縁層を介して取り付けられ、かつ前記第1の低温側電極および第2の低温側電極が前記低温側筐体壁を構成する低温側絶縁層の表面に取り付けられ、
前記熱電変換モジュールは、前記高温側電極と前記n型半導体層との間、前記高温側電極と前記p型半導体層との間、前記第1の低温側電極と前記n型半導体層との間、および前記第2の低温側電極と前記p型半導体層との間、の少なくともいずれかに、導電性伸縮部材と導電性均熱部材とが組み合わせて圧接され、
挿入される導電性伸縮部材および導電性均熱部材は、前記導電性均熱部材が、前記n型半導体層およびp型半導体層の少なくともいずれかに接するように配置され、前記導電性伸縮部材が、前記高温側電極、第1の低温側電極および第2の低温側電極の少なくともいずれかに接するように配置されることを特徴とする熱電変換装置。
A piping part that forms a flow path inside;
The low-temperature side housing wall provided around the outside of the piping wall of the piping portion and facing the piping wall, and the space between the piping wall and the low-temperature side housing wall are partitioned and sealed inside An airtight housing portion having a housing side wall that forms the accommodated storage space;
The high temperature side electrode disposed in the housing space of the hermetic casing portion and provided on the piping wall side of the piping portion, the low temperature side electrode provided on the low temperature side casing wall side, the high temperature side electrode and the low temperature side A thermoelectric conversion module having a p-type semiconductor layer and an n-type semiconductor layer interposed between the electrodes,
The low temperature side housing wall includes at least a low temperature side insulating layer,
In the housing space of the hermetic casing, vacuum or inert gas is sealed ,
In the thermoelectric conversion module, a first low-temperature side electrode, an n-type semiconductor layer, a high-temperature side electrode, a p-type semiconductor layer, and a second low-temperature side electrode are electrically connected in series in this order, Thermoelectric conversion in which the p-type semiconductor layer is arranged side by side on the same side of the surface of the high temperature side electrode, and the first low temperature side electrode and the second low temperature side electrode are arranged on the low temperature side of the high temperature side electrode One or a plurality of module components are electrically connected, and the high temperature side electrode is disposed on the surface of the piping wall of the piping portion in the accommodating space of the hermetic casing. And the first low-temperature side electrode and the second low-temperature side electrode are attached to the surface of the low-temperature side insulating layer constituting the low-temperature side casing wall,
The thermoelectric conversion module is between the high temperature side electrode and the n-type semiconductor layer, between the high temperature side electrode and the p type semiconductor layer, and between the first low temperature side electrode and the n type semiconductor layer. , And at least one of the second low-temperature side electrode and the p-type semiconductor layer, and a conductive stretchable member and a conductive soaking member are pressed in combination,
The conductive stretchable member and the conductive soaking member to be inserted are arranged so that the conductive soaking member is in contact with at least one of the n-type semiconductor layer and the p-type semiconductor layer, and the conductive stretchable member is The thermoelectric conversion device is disposed so as to be in contact with at least one of the high temperature side electrode, the first low temperature side electrode, and the second low temperature side electrode .
流路を内部に形成する配管部と、A piping part that forms a flow path inside;
この配管部の配管壁の外側周囲に、かつ、前記配管壁に対向して設けられる低温側筐体壁、および前記配管壁と前記低温側筐体壁との間の空間を仕切り、内部に密閉された収容空間を形成する筐体側壁を有する気密筐体部と、  The low-temperature side housing wall provided around the outside of the piping wall of the piping portion and facing the piping wall, and the space between the piping wall and the low-temperature side housing wall are partitioned and sealed inside An airtight housing portion having a housing side wall that forms the accommodated storage space;
この気密筐体部の収容空間内に配置され、前記配管部の配管壁側に設けられた高温側電極、前記低温側筐体壁側に設けられた低温側電極、前記高温側電極と低温側電極との間に介装されるp型半導体層およびn型半導体層を有する熱電変換モジュールとを備え、  The high temperature side electrode disposed in the housing space of the hermetic casing portion and provided on the piping wall side of the piping portion, the low temperature side electrode provided on the low temperature side casing wall side, the high temperature side electrode and the low temperature side A thermoelectric conversion module having a p-type semiconductor layer and an n-type semiconductor layer interposed between the electrodes,
前記低温側筐体壁は、少なくとも低温側絶縁層を含み、  The low temperature side housing wall includes at least a low temperature side insulating layer,
前記気密筐体部の収容空間内は、真空または不活性なガスが封入され、  In the housing space of the hermetic casing, vacuum or inert gas is sealed,
前記熱電変換モジュールは、第1の低温側電極、n型半導体層、高温側電極、p型半導体層および第2の低温側電極がこの順番に電気的に直列接続され、前記n型半導体層および前記p型半導体層が前記高温側電極の表面の同じ側に並べて配置され、前記第1の低温側電極および第2の低温側電極が前記高温側電極よりも低温側に配置されてなる熱電変換モジュール構成要素が、1個または複数個電気的に接続されたものであるとともに、前記気密筐体部の収容空間内で、前記高温側電極が前記配管部の配管壁の表面に高温側絶縁層を介して取り付けられ、かつ前記第1の低温側電極および第2の低温側電極が前記低温側筐体壁を構成する低温側絶縁層の表面に取り付けられ、  In the thermoelectric conversion module, a first low-temperature side electrode, an n-type semiconductor layer, a high-temperature side electrode, a p-type semiconductor layer, and a second low-temperature side electrode are electrically connected in series in this order, Thermoelectric conversion in which the p-type semiconductor layer is arranged side by side on the same side of the surface of the high temperature side electrode, and the first low temperature side electrode and the second low temperature side electrode are arranged on the low temperature side of the high temperature side electrode One or a plurality of module components are electrically connected, and the high temperature side electrode is disposed on the surface of the piping wall of the piping portion in the accommodating space of the hermetic casing. And the first low-temperature side electrode and the second low-temperature side electrode are attached to the surface of the low-temperature side insulating layer constituting the low-temperature side casing wall,
前記熱電変換モジュールの高温側電極は熱に対して伸縮自在な電極であり、この熱に対して伸縮自在な高温側電極と、前記n型半導体層およびp型半導体層との間に、前記導電性均熱部材が配置されることを特徴とする熱電変換装置。  The high temperature side electrode of the thermoelectric conversion module is an electrode that can expand and contract with respect to heat, and the conductive layer is interposed between the high temperature side electrode that can expand and contract with respect to heat and the n-type semiconductor layer and the p-type semiconductor layer. A thermoelectric conversion device, wherein a heat equalizing member is disposed.
前記不活性なガスは、窒素、ヘリウム、ネオン、アルゴン、クリプトンおよびキセノンからなる群より選択される少なくとも1種であり、かつ、前記不活性なガスは、前記収容空間内に、25℃で外気圧よりも低圧になるように封入されることを特徴とする請求項1または2に記載の熱電変換装置。 The inert gas is at least one selected from the group consisting of nitrogen, helium, neon, argon, krypton, and xenon, and the inert gas is outside at 25 ° C. in the accommodation space. the thermoelectric conversion device according to claim 1 or 2, characterized in that it is sealed so that a lower pressure than atmospheric pressure. 前記配管部の配管壁は、ニッケル、ニッケル基合金、鉄基合金、クロム含有鉄基合金、シリコン含有鉄基合金、コバルト含有鉄基合金および銅合金のいずれかからなることを特徴とする請求項1または2に記載の熱電変換装置。 The piping wall of the piping part is made of any one of nickel, nickel-base alloy, iron-base alloy, chromium-containing iron-base alloy, silicon-containing iron-base alloy, cobalt-containing iron-base alloy, and copper alloy. The thermoelectric conversion apparatus according to 1 or 2 . 前記筐体側壁は、ニッケル、ニッケル基合金、鉄基合金、クロム含有鉄基合金、シリコン含有鉄基合金、コバルト含有鉄基合金および銅合金のいずれかからなることを特徴とする請求項1または2に記載の熱電変換装置。 The housing sidewall, nickel, nickel-based alloys, iron-based alloy, chromium-containing iron-base alloy, a silicon-containing iron-base alloy according to claim 1, characterized in that it consists either of a cobalt-containing iron-base alloy and a copper alloy or 2. The thermoelectric conversion device according to 2. 前記p型半導体層のp型半導体および前記n型半導体層のn型半導体は、ビスマス・テルル含有化合物を主相とする物質、ビスマス・アンチモン含有化合物を主相とする物質、スクッテルダイト型構造のCoSb基化合物結晶中の空隙に原子を充填したフィルドスクッテルダイト型構造化合物を主相とする物質、MgAgAs型構造のハーフホイスラー化合物を主相とする物質、バリウム・ガリウムをゲスト原子とするクラスレート化合物、前記物質間または物質と化合物との混合物、および、前記物質間または物質と化合物との接合体のいずれかであることを特徴とする請求項1または2に記載の熱電変換装置。 The p-type semiconductor of the p-type semiconductor layer and the n-type semiconductor of the n-type semiconductor layer include a substance having a bismuth / tellurium-containing compound as a main phase, a substance having a bismuth / antimony-containing compound as a main phase, and a skutterudite structure substances to the filled skutterudite-type structure compound filled with atoms in the gap 3 group compound crystal CoSb main phase, the material to main phase half-Heusler compound of MgAgAs structure, barium-gallium guest atoms 3. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion device is any one of a clathrate compound, a mixture of the substances or a mixture of the substance and the compound, and a conjugate of the substance or the substance and the compound. 前記配管部の配管壁と前記高温側絶縁層との間に、さらに伝熱部材を配置することを特徴とする請求項1または2に記載の熱電変換装置。 The thermoelectric conversion device according to claim 1 or 2, characterized in that between the pipe wall and the hot side insulation layer of the pipe section, further disposing the heat transfer member.
JP2006219143A 2006-08-11 2006-08-11 Thermoelectric converter Expired - Fee Related JP5049533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219143A JP5049533B2 (en) 2006-08-11 2006-08-11 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219143A JP5049533B2 (en) 2006-08-11 2006-08-11 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2008048477A JP2008048477A (en) 2008-02-28
JP5049533B2 true JP5049533B2 (en) 2012-10-17

Family

ID=39181677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219143A Expired - Fee Related JP5049533B2 (en) 2006-08-11 2006-08-11 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP5049533B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012214759B3 (en) * 2012-08-20 2014-02-06 Eberspächer Exhaust Technology GmbH & Co. KG Heat exchanger
CN104900795A (en) * 2015-06-10 2015-09-09 南京师范大学 External plate type semiconductor thermoelectric component
KR102444852B1 (en) * 2018-02-02 2022-09-16 주식회사 엘지화학 Thermalelectric module and method of manufacturing the same

Also Published As

Publication number Publication date
JP2008048477A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP4686171B2 (en) Thermal-electrical direct conversion device
JP2008108900A (en) Thermoelectric conversion module and thermoelectric conversion device
JP5642419B2 (en) Thermoelectric conversion module with airtight case
US20060042675A1 (en) Thermoelectric device and method of manufacturing the same
JP2005064457A (en) Thermoelectric converter
JP2004350479A (en) Thermoelectric conversion power generating unit and tunnel type furnace equipped with same
JP5444260B2 (en) Thermoelectric module and power generator
JP5926261B2 (en) Thermoelectric module for automotive thermoelectric generator with sealing element
CN104838511A (en) Thermoelectric module
JP2012156227A (en) Casing for thermoelectric power generation module and manufacturing method therefor
JP2010245265A (en) Thermoelectric module
JP2005277206A (en) Thermoelectric converter
JP5105718B2 (en) Thermal-electrical direct conversion device
JP5049533B2 (en) Thermoelectric converter
JP4969793B2 (en) Thermal-electrical direct conversion device
JP4490765B2 (en) Direct heat-electric converter
JP2009123964A (en) Thermo-electronic device and thermoelectric module
KR20160107295A (en) Thermoelectric conversion module
JP2006049736A (en) Thermoelectric module
JP4528571B2 (en) Direct heat-electric converter
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
KR102150308B1 (en) Thermoelectric power generating module
JP6010941B2 (en) Thermoelectric conversion module with airtight case
JP2018093152A (en) Thermoelectric power generation device
JP2017063091A (en) Thermoelectric conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5049533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees