JP2022042280A - 二酸化炭素電解装置および二酸化炭素電解方法 - Google Patents

二酸化炭素電解装置および二酸化炭素電解方法 Download PDF

Info

Publication number
JP2022042280A
JP2022042280A JP2020147634A JP2020147634A JP2022042280A JP 2022042280 A JP2022042280 A JP 2022042280A JP 2020147634 A JP2020147634 A JP 2020147634A JP 2020147634 A JP2020147634 A JP 2020147634A JP 2022042280 A JP2022042280 A JP 2022042280A
Authority
JP
Japan
Prior art keywords
flow path
anode
cathode
carbon dioxide
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020147634A
Other languages
English (en)
Other versions
JP7247150B2 (ja
Inventor
昭彦 小野
Akihiko Ono
由紀 工藤
Yuki Kudo
勇介 小藤
Yusuke Kofuji
朝日 元茂
Asahi MOTOSHIGE
良太 北川
Ryota Kitagawa
正和 山際
Masakazu Yamagiwa
智 御子柴
Satoshi Mikoshiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2020147634A priority Critical patent/JP7247150B2/ja
Priority to CN202110207019.3A priority patent/CN114196975B/zh
Priority to US17/189,432 priority patent/US11781231B2/en
Priority to EP21160967.2A priority patent/EP3964607B1/en
Publication of JP2022042280A publication Critical patent/JP2022042280A/ja
Application granted granted Critical
Publication of JP7247150B2 publication Critical patent/JP7247150B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Figure 2022042280000001
【課題】電解効率の低下を抑制する。
【解決手段】二酸化炭素電解装置は、水を酸化して酸素を形成するためのアノードと、アノードに面するアノード流路と、二酸化炭素を還元して炭素化合物を生成するためのカソードと、カソードに面するカソード流路と、アノードとカソードとの間のセパレータと、を備える電解セルと、アノード流路またはカソード流路に対抗して配置され、アノード流路に並列に接続された冷却用流路と、アノード流路の流入口と、冷却用流路の流入口と、冷却された水を含む液体を収容するための液体タンクの流出口と、を接続するアノード流入路と、アノード流路の流出口と、冷却用流路の流出口と、液体タンクの流入口と、を接続するアノード流出路と、アノード流出路を冷却するための冷却器と、を具備する。
【選択図】図1

Description

本発明の実施形態は、二酸化炭素電解装置および二酸化炭素電解方法に関する。
近年、石油や石炭といった化石燃料の枯渇が懸念され、持続的に利用できる再生可能エネルギーへの期待が高まっている。再生可能エネルギーとしては、太陽電池や風力発電等が挙げられる。これらは発電量が天候や自然状況に依存するため、電力の安定供給が難しいという課題を有している。そのため、再生可能エネルギーで発生させた電力を蓄電池に貯蔵し、電力を安定化させることが試みられている。しかし、電力を貯蔵する場合、蓄電池にコストを要したり、また蓄電時にロスが発生するといった問題がある。
このような点に対して、再生可能エネルギーで発生させた電力を用いて水(HO)の電解を行い、水から水素(H)を製造したり、あるいは二酸化炭素(CO)を電気化学的に還元し、一酸化炭素(CO)、ギ酸(HCOOH)、メタノール(CHOH)、メタン(CH)、酢酸(CHCOOH)、エタノール(COH)、エタン(C)、エチレン(C)等の炭素化合物のような化学物質(化学エネルギー)に変換する技術が注目されている。これらの化学物質をボンベやタンクに貯蔵する場合、電力(電気エネルギー)を蓄電池に貯蔵する場合に比べて、エネルギーの貯蔵コストを低減することができ、また貯蔵ロスも少ないという利点がある。
二酸化炭素電解装置としては、例えばカソードに銀のナノ粒子触媒を用い、カソードにカソード溶液と二酸化炭素ガスを接触させると共に、アノードにアノード溶液を接触させる構造が検討されている。電解装置の具体的な構成としては、例えばカソードの一方の面に沿って配置されたカソード溶液流路と、カソードの他方の面に沿って配置された二酸化炭素ガス流路と、アノードの一方の面に沿って配置されたアノード溶液流路と、カソード溶液流路とアノード溶液流路との間に配置されたセパレータとを備える構成が挙げられる。このような構成を有する電解装置を用いて、例えばカソードとアノードに定電流を流して、二酸化炭素から例えば一酸化炭素を生成する反応を長時間実施した場合、一酸化炭素の生成量が低下したり、セル電圧が増加したりする等といった経時的なセル性能の劣化が生じるという課題がある。このため、経時的なセル性能の劣化を抑制することを可能にした二酸化炭素の電解装置が求められている。
Zengcal Liu et al., Journal of CO2 Utilization, 15, p.50-56(2015) Sinchao Ma et al., Journal of The Electrochemical Society, 161(10), F1124-F1131(2014)
本発明が解決しようとする課題は、電解効率の低下を抑制することである。
二酸化炭素電解装置は、水を酸化して酸素を形成するためのアノードと、アノードに面するアノード流路と、二酸化炭素を還元して炭素化合物を生成するためのカソードと、カソードに面するカソード流路と、アノードとカソードとの間のセパレータと、を備える電解セルと、アノード流路またはカソード流路に対抗して配置され、アノード流路に並列に接続された冷却用流路と、アノード流路の流入口と、冷却用流路の流入口と、冷却された水を含む液体を収容するための液体タンクの流出口と、を接続するアノード流入路と、アノード流路の流出口と、冷却用流路の流出口と、液体タンクの流入口と、を接続するアノード流出路と、アノード流出路を冷却するための冷却器と、を具備する。
二酸化炭素電解装置の構成例を説明するための模式図である。 電解反応部100の他の構造例を説明するための模式図である。 電解反応部100の他の構造例を説明するための模式図である。 アノード流路112を有する流路板114の平面構造例を示す模式図である。 冷却用流路141を有する流路板の平面構造例を示す模式図である。 冷却用流路141を有する流路板151の他の平面構造例を示す模式図である。 冷却用流路141を有する流路板151の他の平面構造例を示す模式図である。 二酸化炭素電解装置の他の構成例を説明するための模式図である。 二酸化炭素電解装置の他の構成例を説明するための模式図である。 二酸化炭素電解装置の他の構成例を説明するための模式図である。 二酸化炭素電解装置の他の構成例を説明するための模式図である。 二酸化炭素電解装置の他の構成例を説明するための模式図である。
以下、実施形態の二酸化炭素電解装置について、図面を参照して説明する。以下に示す各実施形態において、実質的に同一の構成部位には同一の符号を付し、その説明を一部省略する場合がある。図面は模式的なものであり、厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる場合がある。
なお、本明細書において、「接続する」とは、特に指定する場合を除き、直接的に接続することだけでなく、間接的に接続することも含む。
図1は、二酸化炭素電解装置の構成例を説明するための模式図である。二酸化炭素電解装置1は、電解反応部100と、アノード供給部200と、カソード供給部300と、収集部400と、制御部500と、を具備する。
電解反応部100は、アノード111と、アノード流路112と、アノード集電体113と、カソード121と、カソード流路122と、カソード集電体123と、セパレータ131と、冷却用流路141と、を備える。アノード111、アノード流路112、カソード121、カソード流路122、およびセパレータ131は、電解セルを構成する。
図2は、電解反応部100の他の構造例を説明するための模式図である。図3は、電解反応部100の他の構造例を説明するための模式図である。電解反応部100は、図2および図3に示すように、複数の電解セルを備えることもできる。複数の電解セルは、例えば図示されていない一対の支持板で挟み込まれ、さらにボルト等で締め付けられていてもよい。
アノード111は、セパレータ131と接する。アノード111は、水を酸化して酸素(O)や水素イオン(H)を生成するための電極、またはカソード121での二酸化炭素の還元反応により生じた水酸化物イオン(OH)を酸化して酸素や水を生成するための電極である。
アノード111は、上記酸化反応の過電圧を減少させることが可能な触媒材料(アノード触媒材料)を含むことが好ましい。このような触媒材料は、例えば白金(Pt)、パラジウム(Pd)、ニッケル(Ni)等の金属、それらの金属を含む合金や金属間化合物、酸化マンガン(Mn-O)、酸化イリジウム(Ir-O)、酸化ニッケル(Ni-O)、酸化コバルト(Co-O)、酸化鉄(Fe-O)、酸化スズ(Sn-O)、酸化インジウム(In-O)、酸化ルテニウム(Ru-O)、酸化リチウム(Li-O)、酸化ランタン(La-O)等の二元系金属酸化物、Ni-Co-O、Ni-Fe-O、La-Co-O、Ni-La-O、Sr-Fe-O等の三元系金属酸化物、Pb-Ru-Ir-O、La-Sr-Co-O等の四元系金属酸化物、Ru錯体やFe錯体等の金属錯体を含む。
アノード111は、セパレータ131とアノード流路112との間で液体やイオンを移動させることが可能な構造、例えばメッシュ材、パンチング材、多孔体、金属繊維焼結体等の多孔構造を有する基材を備えている。基材は、チタン(Ti)、ニッケル(Ni)、鉄(Fe)等の金属やこれら金属を少なくとも1つ含む合金(例えばSUS)等の金属材料で構成してもよいし、上述したアノード触媒材料で構成してもよい。アノード触媒材料として酸化物を用いる場合には、上記した金属材料からなる基材の表面にアノード触媒材料を付着もしくは積層して触媒層を形成することが好ましい。アノード触媒材料は、酸化反応を高める上でナノ粒子、ナノ構造体、ナノワイヤ等を有することが好ましい。ナノ構造体とは、触媒材料の表面にナノスケールの凹凸を形成した構造体である。
カソード121は、セパレータ131に接する。カソード121は、二酸化炭素の還元反応や還元生成物の還元反応を生起し、炭素化合物を生成するための電極(還元電極)である。炭素化合物の例は、一酸化炭素、ギ酸(HCOOH)、エタン、エチレン、メタノール、酢酸(CHCOOH)、エタノール、プロパノール(COH)エチレングリコール(C)を含む。カソード121での還元反応は、二酸化炭素の還元反応とともに、水の還元反応を生起して水素(H)を生成する副反応を含んでいてもよい。
カソード121は、ガス拡散層と、ガス拡散層の上に設けられたカソード触媒層と、を有する。ガス拡散層とカソード触媒層との間には、ガス拡散層より緻密な多孔質層を配置してもよい。ガス拡散層はカソード流路122側に配置され、カソード触媒層はセパレータ131側に配置される。カソード触媒層は、ガス拡散層中に入り込んでいてもよい。カソード触媒層は、触媒ナノ粒子や触媒ナノ構造体等を有することが好ましい。ガス拡散層は、例えばカーボンペーパやカーボンクロス等により構成され、撥水処理が施されていてもよい。多孔質層は、カーボンペーパやカーボンクロスより孔径が小さい多孔質体により構成される。
ガス拡散層に適度な撥水処理を施すことによって、カソード触媒層には主としてガス拡散により二酸化炭素ガスが到達する。二酸化炭素の還元反応やそれにより生成される炭素化合物の還元反応は、ガス拡散層とカソード触媒層との境界近傍、もしくはガス拡散層中に入り込んだカソード触媒層近傍で生起する。
カソード触媒層は、上記還元反応の過電圧を減少させることが可能な触媒材料(カソード触媒材料)で構成することが好ましい。このような材料の例は、例えば金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、ニッケル(Ni)、コバルト(Co)、鉄(Fe)、マンガン(Mn)、チタン(Ti)、カドミウム(Cd)、亜鉛(Zn)、インジウム(In)、ガリウム(Ga)、鉛(Pb)、錫(Sn)等の金属、それらの金属を少なくとも1つ含む合金や金属間化合物等の金属材料、炭素(C)、グラフェン、CNT(カーボンナノチューブ)、フラーレン、ケッチェンブラック等の炭素材料、Ru錯体やRe錯体等の金属錯体を含む。カソード触媒層には、板状、メッシュ状、ワイヤ状、粒子状、多孔質状、薄膜状、島状等の各種形状を適用することができる。
カソード触媒層を構成するカソード触媒材料は、上記した金属材料のナノ粒子、金属材料のナノ構造体、金属材料のナノワイヤ、もしくは上記した金属材料のナノ粒子がカーボン粒子、カーボンナノチューブ、グラフェン等の炭素材料に担持された複合体を有することが好ましい。カソード触媒材料として触媒ナノ粒子、触媒ナノ構造体、触媒ナノワイヤ、触媒ナノ担持構造体等を適用することによって、カソード121における二酸化炭素の還元反応の反応効率を高めることができる。
アノード111およびカソード121は、電源150に接続可能である。電源150の例は、通常の系統電源や電池に限定されず、太陽電池や風力発電等の再生可能エネルギーで発生させた電力を供給する電力源を含んでいてもよい。電源150は、上記電源の出力を調整してアノード111とカソード121との間の電圧を制御するパワーコントローラをさらに有していてもよい。なお、電源150は、二酸化炭素電解装置1の外部に設けられてもよい。
アノード流路112は、アノード111に面する。アノード流路112は、アノード111にアノード液体を供給する機能を有する。
アノード液体は、少なくとも水(HO)を含むことが好ましい。二酸化炭素(CO)は、カソード流路122から供給されるため、液体は二酸化炭素(CO)を含んでいてもよいし、含んでいなくてもよい。
アノード液体は、電解質を含む電解液であってもよい。電解液としては、例えば水酸化物イオン(OH)、水素イオン(H)、カリウムイオン(K)、ナトリウムイオン(Na)、リチウムイオン(Li)、塩化物イオン(Cl)、臭化物イオン(Br)、ヨウ化物イオン(I)、硝酸イオン(NO )、硫酸イオン(SO 2-)、リン酸イオン(PO 2-)、ホウ酸イオン(BO 3-)、および炭酸水素イオン(HCO )から選ばれる少なくとも1つを含む水溶液が挙げられる。電解液の電気的な抵抗を低減するためには、液体として、水酸化カリウムや水酸化ナトリウム等の電解質を高濃度に溶解させたアルカリ溶液を用いることが好ましい。
アノード流路112は、図2および図3に示すように流路板114の表面に設けられる。流路板114の材料は、例えば化学反応性が低く、かつ導電性を有しない材料を含む。そのような材料の例は、例えばアクリル樹脂、ポリエーテルエーテルケトン(PEEK)、フッ素樹脂等の絶縁樹脂材料を含む。なお、流路板114は、図示されていない締め付けのためのネジ穴を有する。
アノード集電体113は、端部の電解セルのアノード111に電気的に接続される。アノード集電体113は、化学反応性が低く、かつ導電性が高い材料を含むことが好ましい。そのような材料としては、TiやSUS等の金属材料、カーボン等が挙げられる。
カソード流路122は、カソード121に面する。カソード流路122は、カソード121に二酸化炭素を含む気体を供給する機能を有する。
カソード流路122は、図2および図3に示すように流路板124の表面に設けられる。流路板124の材料は、化学反応性が低く、かつ導電性が高い材料を用いることが好ましい。そのような材料の例は、例えばTiやSUS等の金属材料、カーボン等を含む。なお、流路板124は、図示されていないカソード流路122の流入口および流出口、また締め付けのためのネジ穴を有する。また、各流路板の前後には、図示を省略したパッキンが必要に応じて挟み込まれる。なお、カソード流路122は、カソード集電体123に設けられていてもよい。
カソード集電体123は、端部の電解セルのカソード121に電気的に接続される。カソード集電体123は、化学反応性が低く、かつ導電性が高い材料を含むことが好ましい。そのような材料としては、TiやSUS等の金属材料、カーボン等が挙げられる。
アノード流路112およびカソード流路122は、図2に示すように、流路板132の両面に設けることもできる。両面に流路を有する流路板をバイポーラ流路板ともいう。
図4は、アノード流路112を有する流路板114の平面構造例を示す模式図である。アノード流路112は、流路板114に設けられた流入口INと流出口OUTとを有する。また、アノード流路112は、流路板114の表面においてサーペンタイン形状を有し、折り返し部同士の間の領域は、分岐する。上記形状により、効率的にアノード流路112に上記液体を供給できる。なお、アノード流路112と同様に、カソード流路122も図4に示すようなサーペンタイン形状を有していてもよい。
セパレータ131は、アノード111とカソード121との間でイオンを移動させることができ、かつアノード111とカソード121とを分離することが可能なイオン交換膜を含む。イオン交換膜の例は、例えばナフィオンやフレミオンのようなカチオン交換膜、ネオセプタやセレミオンのようなアニオン交換膜を含む。イオン交換膜以外にもアノード111とカソード121との間でイオンを移動させることが可能な材料であれば、ガラスフィルタ、多孔質高分子膜、多孔質絶縁材等をセパレータ131に適用してもよい。
冷却用流路141は、アノード流路112に並列に接続される。冷却用流路141は、例えばアノード流路112またはカソード流路122に対抗して配置される。例えば、冷却用流路141は、アノード流路112に対してアノード111の反対側に設けられてもよい。また、冷却用流路141は、カソード流路122に対してカソード121の反対側に設けられてもよい。
図5は、冷却用流路141を有する流路板の平面構造例を示す模式図である。冷却用流路141は、流路板151に設けられた流入口INと流出口OUTとを有する。冷却用流路141の流入口INは、アノード流路112の流入口INよりもアノード流路112の流出口OUTに近く、冷却用流路141の流出口OUTは、アノード流路112の流出口OUTよりもアノード流路112の流入口INに近い。これにより、例えばアノード流路112における液体の流れと冷却用流路141におけるアノード液体の流れを反対にすることができる。電解動作おいて、アノード液体はアノード流路112の流入口INから電解セルの内部に流入され、電解セルの内部で温度が上昇し、電解セルからアノード液体が流出されるアノード流路112の流出口OUTでは温度が高くなるため、電解セルの内部でも流入口付近は温度が低く、流出口付近では温度が高くなる。これに対し、アノード流路112の流出口OUT側に冷却用流路141の流入口INを設けることにより、電解セルの温度の均一性を高めることができる。
冷却用流路141は、流路板151の表面においてサーペンタイン形状を有する。上記形状により、効率的に冷却用流路141に水を含む液体を供給できる。なお、冷却用流路141の流路幅は、アノード流路112の流路幅よりも広くすることにより冷却効率を高めることができる。
図6は、冷却用流路141を有する流路板151の他の平面構造例を示す模式図である。図6に示す冷却用流路141は、図5に示す冷却用流路141と比較して冷却用流路141の中央部と端部との間で異なる流路幅を有する点が異なる。冷却用流路141の中央部の流路幅は、冷却用流路141の端部の流路幅よりも広いことが好ましい。これにより冷却効率を高めることができる。電解セルの中央部は放熱が少ないため、高温になりやすく、電解セルの周辺部は温度が低下しやすい。
図7は、冷却用流路141を有する流路板151の他の平面構造例を示す模式図である。図7に示す冷却用流路141は、図5に示す冷却用流路141と比較して冷却用流路141が流路板151の表面の中心部に設けられており、中心部を囲む周辺部に冷却用流路141が設けられていない点が異なる。さらに、冷却用流路141の中央部の流路幅は、冷却用流路141の端部の流路幅よりも広いことが好ましい。これにより電解セルの面内温度分布を低下させることができる。
電解反応部100は、複数の冷却用流路を備えていてもよい。図2に示す電解反応部100は、冷却用流路141と、冷却用流路142と、を備える。図3に示す電解反応部100は、冷却用流路141と、冷却用流路142と、冷却用流路143と、を備える。これに限定されず、電解反応部100は、冷却用流路141、冷却用流路142、および冷却用流路143の少なくとも一つを備えることもできる。なお、冷却用流路142および冷却用流路141の説明として冷却用流路141の説明を適宜援用できる。
冷却用流路141は、流路板151の表面に設けられる。冷却用流路142は、流路板152の表面に設けられる。冷却用流路141は、複数の電解セルの一つのアノード111と複数の電解セルの他の一つのカソード121との間に設けられる。冷却用流路141よりも電解反応部100の中央の電解セルから遠い。冷却用流路142は、例えばアノード集電体113に隣接し、アノード集電体113に対してアノード111の反対側に設けられ、アノード集電体113に面していてもよい。冷却用流路142は、カソード集電体123に隣接し、例えばカソード集電体123に対してカソード121の反対側に設けられ、カソード集電体123に面していてもよい。
冷却用流路143は、流路板153の表面に設けられる。冷却用流路143は、複数の電解セルの一つのアノード111と複数の電解セルの他の一つのカソード121との間に設けられる。冷却用流路143は、冷却用流路141よりも電解反応部100の中央の電解セルに近い。例えば、スタックの端部の電解セルでは、締め付け板からの放熱量が大きいため、セル温度は低くなる傾向にあるが、スタックの中央部の電解セルは高温になりやすい。そこで、中央部の電解セルに面する冷却用流路143の流路幅を冷却用流路141の流路幅よりも大きくすることにより、複数の電解セルの温度のばらつきを抑制できる。また、冷却用流路143の流路深さを冷却用流路141の流路深さよりも大きくすることにより複数の電解セルの温度のばらつきを抑制してもよい。
流路板132、流路板151ないし流路板153の材料の例は、例えば流路板114に適用可能な材料、流路板124に適用可能な材料を含む。
アノード供給部200は、液体タンク201と、流量制御器202と、濃度センサ203と、基準電極204と、流量制御器205と、流量制御器206とを有する。なお、アノード供給部200の構成は、これに限定されない。
液体タンク201は、冷却されたアノード液体を収容できる。アノード液体は、水を含む。アノード液体は、例えば電解質を含む電解液であってもよい。液体タンク201は、アノード液体を冷却する冷却器を有していてもよい。これにより、アノード液体の温度を例えば0℃以下に制御でき、冷却効率を高めることができる。
液体タンク201は、アノード液体中に含まれる酸素等のガス成分を収集する、図示しないガス成分収集部に接続されている。アノード液体は、圧力制御器207および流量制御器202において、流量や圧力が制御されてアノード流路112に導入される。
流量制御器202は、例えばポンプを有し、アノード液体の流量を制御できる。濃度センサ203は、アノード液体中の少なくとも一種のイオンの濃度を示すデータを取得できる。基準電極204は、アノード111とカソード121との間の電圧(セル電圧)との電圧差を測定するために設けられる。
アノード流路112の流入口IN、冷却用流路141等の冷却用流路の流入口IN、および液体タンク201の流出口OUTは、アノード流入路INにより接続される。アノード流路112の流出口OUT、冷却用流路141等の冷却用流路の流出口OUT、および液体タンク201の流入口INは、アノード流出路OUTにより接続される。
アノード流入路INおよびアノード流出路OUTは、例えば配管により構成される。
流量制御器205は、アノード流入路INの途中に設けられる。流量制御器205は、例えばポンプを有し、アノード流路112に流入されるアノード液体の流量を制御する。
流量制御器206は、アノード流入路INの途中に設けられる。流量制御器206は、例えばポンプを有し、冷却用流路141等の冷却用流路に流入されるアノード液体の流量を制御する。
圧力制御器207は、アノード流出路OUTの内部の圧力を制御する。冷却器208は、アノード流出路OUTの内部を冷却することができる。冷却器208は、熱交換器であってもよい。溶液分離器209は、アノード液体を分離する。
カソード供給部300は、気体タンク301と、流量制御器302と、圧力制御器303と、を有する。気体タンク301は、二酸化炭素を含む気体を収容できる。流量制御器302は、例えばポンプを有し、気体の流量を制御できる。圧力制御器303は、カソード流出路OUTの内部の圧力を制御できる。
カソード流路122の流入口および気体タンク301の流出口は、カソード流入路INにより接続される。カソード流路122の流出口および収集部400は、カソード流出路OUTにより接続される。カソード流入路INおよびカソード流出路OUTは、例えば配管により構成される。
収集部400は、気液分離器401と、生成物収集器402と、を有する。気液分離器401は、カソード流路122の流出口OUTから流出される流体から一酸化炭素や水素等の気体を分離して、生成物収集器402に送る。
制御部500は、セル性能検出器501と、制御器502と、を有する。セル性能検出器501は、還元生成物中の一酸化炭素や水素等の生成物の生成量や生成比率を検出して、検出データを制御器502に送る。制御器502は、各電解セルのセル電圧、セル電流、カソード電位、アノード電位等の電気的なデータやアノード流路112およびカソード流路122の内部の圧力および圧力損失等のデータを受け取って、当該データに基づいて電解動作を制御する。
制御器502は、例えば、電源150、流量制御器202、流量制御器205、流量制御器206、圧力制御器207、流量制御器302、圧力制御器303に、一部図示を省略した双方向の信号線を介して電気的に接続されており、これらは一括して制御される。なお、各配管には図示しないバルブが設けられており、バルブの開閉動作は制御器502からの信号により制御される。
次に、二酸化炭素電解装置を用いた二酸化炭素の電解方法例について説明する。二酸化炭素の電解方法例は、流量制御器202、流量制御器205、流量制御器206、および圧力制御器207を制御して液体タンク201からアノード液体をアノード流入路INを介してアノード流路112および冷却用流路141等の冷却用流路に供給し、流量制御器302および圧力制御器303を制御して気体タンク301から気体状の二酸化炭素をカソード流入路INを介してカソード流路122に供給し、電源150からアノード集電体113とカソード集電体123との間に電圧を印加して各電解セルのアノード111とカソード121との間に電圧を印加して電流を供給する。
アノード111とカソード121との間に電流を流すと、以下に示すアノード111付近での酸化反応およびカソード121付近での還元反応が生じる。ここでは、炭素化合物として一酸化炭素(CO)を生成する場合について、主として説明するが、二酸化炭素の還元生成物としての炭素化合物は一酸化炭素に限られるものではなく、前述した有機化合物等の他の炭素化合物であってもよい。また、電解セルによる反応過程としては、主に水素イオン(H)を生成する場合と、主に水酸化物イオン(OH)を生成する場合とが考えられるが、これら反応過程のいずれかに限定されない。
主に水(HO)を酸化して水素イオン(H)を生成する場合の反応過程について述べる。アノード111とカソード121との間に電流を供給すると、アノード流路112に流れるアノード液体と接するアノード111で水(HO)の酸化反応が生じる。具体的には、下記の(1)式に示すように、アノード液体中に含まれるHOが酸化されて、酸素(O)と水素イオン(H)とが生成される。
2HO → 4H+O+4e …(1)
アノード111で生成されたHは、アノード111およびセパレータ131を介してカソード流路122内のカソード溶液中を移動し、カソード121付近に到達する。電源150からカソード121に供給される電流に基づく電子(e)とカソード121付近に移動したHとによって、二酸化炭素(CO)の還元反応が生じる。具体的には、下記の(2)式に示すように、カソード流路122からカソード121に供給されたCOが還元されてCOが生成される。
2CO+4H+4e → 2CO+2HO …(2)
次に、主に二酸化炭素(CO)を還元して水酸化物イオン(OH)を生成する場合の反応過程について述べる。アノード111とカソード121との間に電流を供給すると、カソード121付近において、下記の(3)式に示すように、水(HO)と二酸化炭素(CO)が還元されて、一酸化炭素(CO)と水酸化物イオン(OH)とが生成される。水酸化物イオン(OH)はアノード111付近に拡散し、下記の(4)式に示すように、水酸化物イオン(OH)が酸化されて酸素(O)が生成される。
2CO+2HO+4e → 2CO+4OH …(3)
4OH → 2HO+O+4e …(4)
アノード流路112から流出される流体に含まれるアノード液体は、アノード流出路OUTを介して冷却器208により冷却されて液体タンク201に流入される。このようにアノード液体を循環させることにより、アノード液体を効率よく使用できる。
アノード流路112に流入されるアノード液体の一部はアノード111、セパレータ131、およびカソード121を介してカソード流路122に流入されることがある。これに対し、カソード流路122から流出される流体は、カソード流出路OUTを介して気液分離器401に送られ、当該流体から還元生成物を含む気体を分離して生成物収集器402により回収される。
制御器502は、電解中の電解セルのセル出力が要求基準を満たさない場合に冷却動作を実行してもよい。セル出力の要求基準は、例えば電解セルのセル出力と温度との関係から設定される。電解セルの温度が上昇すると、セル出力が低下しやすい。
冷却動作は、上記のとおり流量制御器206および圧力制御器207を制御して液体タンク201からアノード液体をアノード流入路INを介して冷却用流路141等の冷却用流路に供給する。このとき、供給時間および流量を調節して電解セルの温度を制御することにより、セル出力を回復できる。電解セルの温度は、例えば測定したい箇所に接続された温度センサを用いて測定できる。
上記冷却動作の要否は、電解セルのセル電圧やセル電流、セル温度の変化のみでなく、アノード111とカソード121の間での気液分離の性能、つまり、アノード111とカソード121間の液体、ガスの移動量や、生成物のガス量、セル電圧と基準電極204の電位との差、これらのパラメータに基づくファラデー効率の推測値を用いて判断することもできる。また、各パラメータから総合的に判定することができ、各値の組み合わせや計算手法は任意である。
電解セルの電流密度が低く、電解効率が高い場合は発熱量が小さく、液体タンク201からアノード液体を冷却用流路141等の冷却用流路に供給することにより、電解セルの温度の面内均一性を保つことができる、一方セルの電流密度が高く、電解効率が低い場合は発熱量が大きく、冷却用流路141等の冷却用流路に供給されるアノード液体を循環させることにより、電解セルの温度の面内均一性を保つことが必要であるため、電解セルの電流密度や電解効率に従って冷却動作の要否を判断することが簡易で好ましい。
電解セルの運転時間を考慮して冷却動作の要否を判断してもよい。運転時間は、電解セルの放熱量、アノード液体の温度上昇に伴う放熱量によって温度上昇率を見積もることや予測することにより算出可能である。そこで、今後の電解セルの運転予測に従って、アノード液体の温度を制御することが好ましい。積算した電圧値と時間、電流値と時間との積等の計算値を用いることも可能であり、その組み合わせや計算方法は任意である。また、これら組み合わせの計算値による判断は、単に継続時間による判断よりも電解セルの運転方法による違いが加味されるため、好ましい。さらには電流や電圧の変動値や、アノード液体のpH値、変化値、酸素発生量、変動量を冷却動作の要否の判断に用いてもよい。
アノード液体は、少なくとも10mS/m以上、さらに好ましくは100mS/m以上の電気伝導率を有することが好ましい。これにより、電解セルの内部の抵抗を減らす効果や、熱伝導性を上げる効果を実現できる。冷却性能を考慮すると水の熱伝導率よりも高い熱伝導率を有する電解液をアノード液体に用いることが好ましい。熱伝導率が高いことで、電解セルの熱を効率よく電解液に移動させて電解セルを冷却できる。二酸化炭素の還元反応では電解効率が低く、発熱量が大きいため、冷却は重要となる。電解効率は、ここでは、理論電圧/反応電圧として定義する。
アノード液体がイオンを含むことでアノード液体の凝固点を0℃以下にすることができる。これにより0℃以下の環境でもアノード液体が凍結することがないため、例えば寒冷地での使用も容易になる。また、電解セルの内部が凍結することで、セル部材の物理的破壊等が生じる。例えば、アノード流路112の内部や冷却用流路141等の冷却用流路の内部が凍結して体積が膨張することで、締め付け板を抑えるねじ等が破壊する場合がある。また、締め付け圧力は電解セル性能に大きく影響するため、一度膨張することで、締め付け圧力が変化する場合がある。これにより、締め付け板のゆがみや、ねじのゆがみ、流路板のゆがみ等が起こる場合がある。さらには、セパレータ131の膨潤、伸縮等に起因する破壊や、電解質のイオン交換性能の低下。ガス拡散層やカソード触媒層が凍結の影響でクラックが入るなどで性能が低下する場合がある。
以上のように、本実施形態の二酸化炭素電解装置は、アノード流路に並列に接続された冷却用流路を具備し、冷却されたアノード液体を、アノード流路および冷却用流路の両方に供給することにより、電解動作による電解セルの温度セルの上昇を抑制して電解効率の低下を抑制できる。
電解動作による未使用エネルギーは、全て熱として外部に放出される。特に複数の電解セルを含むスタックでは反応体積密度が大きく、冷却がさらに重要となる。また、二酸化炭素の電解反応は、温度によって反応特性が大きく変化するため、電解セルの温度の面内の均一性や、複数の電解セルを含むスタックでは電解セルの温度分布が大きいと電解効率が大きく低下するため、冷却性能や、冷却手法による温度分布の均一化は効率向上に効果がある。
しかしながら、運転の負荷(反応電流密度が大きい)が大きい場合は電解効率が低く、発熱量も大きいが、運転負荷が小さく(反応電流密度が小さい)場合は、電解効率が高く、発熱量が小さい。このような運転条件が異なる場合においてもセルの温度を均一に保つには、冷却用流路を複数設けることが考えられるが、そのためのバルブや、流路の複雑さ、冷却用流路板の体積増加、システムの複雑さ、コストの増加などの理由から好ましくない。そこで、運転負荷が小さく(反応電流密度が小さい)場合は、アノード液体を冷却して循環すると、各電解セルでほぼ共通の構造、もしくは圧力損失等がほぼ同等の構造(好ましくは±50%の圧力損失差)で、冷却動作を行い、運転の負荷(反応電流密度が大きい)が大きい(単セルにかかる電圧が大きい)場合は専用の冷却用流路で、各セル、もしくは冷却用流路ごとに異なる流路構造や圧力損失が異なる冷却用流路で、冷却液流量を変えて各セルの温度差を最小限に保つ。
冷却用流路ごとに異なる流路構造は、例えば端部の冷却用流路は単位体積当たりの発熱量がほぼ同等の量であるとすると、締め付け板等による放熱作用によって、温度は比較的低い、一方中央部の電解セルでは温度の上昇が大きいため、より冷却の必要がある。そこで、中央部の冷却用流路は圧力損失が少ない流路構造を有する。具体的には流路の幅を広げたり、深さを深くしたり、パラレル流路構造の場合は、パラレル数を増やすなどの対策を行う。
アノード液体の流量を変えることでセル温度を均一に保つ方法もあるが、アノード液体の流量が変化すると、セル出力が変化したり、アノード液体中に反応で発生した酸素ガス等のガス成分が流路に存在すると、気液二層流を形成して圧力損失が生じる、流路構造や圧力損失が異なる流路での制御は難しく、また、流量の違いによって生じる反応の特性変化が大きいため、好ましくない。
運転の負荷が小さい場合(単位面積当たりの電流が小さい/単セルにかかる電圧が小さい)は、電解セルでの発熱量が小さく、電解液による冷却だけで、行う。電界セルのスタック自体の外部表面からの放熱量や、電解液の液量や周辺機器の熱容量によって、冷却が、賄える場合は、アノード液体自体を冷却しない方式が好ましい。また、その中間の運転負荷では冷却用流路にアノード液体を流通させ、冷却用流路とアノード流路の両方に冷却した電解液を流すことで、各セルの温度差を最小限に保つ。このとき、冷却用流路とアノード流路の流量の比率を変えることで、各セルの温度差を最小限に保つと運転負荷が変化しても各セルの温度差を最小限に保つことができて好ましい。このため、流量制御器205および流量制御器206により、各電解セルの温度と、運転負荷に応じて冷却用流路とアノード流路との流量比を変えながら調整する。また、各電解セルの温度を取得するセンサにより電解セルの温度を測定し、測定された温度のデータに応じて冷却用流路と電解液流路の流量の比率を変えることにより、アノード流路および冷却用流路のそれぞれに冷却器を設ける必要がなく、一つの冷却器をアノード流路および冷却用流路のそれぞれに接続することにより、システムの簡略化や低コスト化が可能となる。
本実施形態は、他の実施形態と適宜組み合わせることができる。
(第2の実施形態)
図8は、二酸化炭素電解装置の他の構成例を説明するための模式図である。図8に示す二酸化炭素電解装置は、図1に示す二酸化炭素電解装置1と、バルブ210、バルブ211、バルブ212、およびバルブ213を有する点が異なる。それ以外の部分について第1の実施形態の説明を適宜援用する。
バルブ210は、アノード流入路INの途中に設けられる。バルブ210は、アノード流入路INを介してアノード流路112の流入口INと液体タンク201の流出口OUTとを接続することができる。
バルブ211は、アノード流入路INの途中に設けられる。バルブ211は、アノード流入路INを介して冷却用流路141等の冷却用流路の流入口INと液体タンク201の流出口OUTとを接続することができる。
バルブ212は、アノード流出路OUTの途中に設けられる。バルブ212は、アノード流出路OUTを介してアノード流路112の流出口OUTと液体タンク201の流入口INとを接続することができる。
バルブ213は、第2のアノード流出路OUTの途中に設けられる。第2のアノード流出路OUTは、アノード流出路OUTと液体タンク201の第2の流入口IN2とを接続する。バルブ213は、第2のアノード流出路OUTを介して冷却用流路141等の冷却用流路の流出口OUTと液体タンク201の第2の流入口IN2とを接続することができる。
バルブ210ないしバルブ213の開閉は、例えばアノード111とカソード121との間の電圧または電流に応じて制御器502により制御されることが好ましい。アノード液体の温度や流量によって、反応の特性は変化しやすいため、アノード液体の条件は変化させたくない。このため、特性を優先する場合には、バルブ210によりアノード流路112の流入口INと液体タンク201の流出口OUTとを接続し、バルブ211により冷却用流路141等の冷却用流路の流入口INと液体タンク201の流出口OUTとを接続し、バルブ212によりアノード流路112の流出口OUTと液体タンク201の流入口INとの接続を断ち、バルブ213により冷却用流路141等の冷却用流路の流出口OUTと液体タンク201の第2の流入口IN2とを接続することにより、運転することが好ましい。
一方、システム効率を優先させたい場合は、バルブ210によりアノード流路112の流入口INと液体タンク201の流出口OUTとを接続し、バルブ211により冷却用流路141等の冷却用流路の流入口INと液体タンク201の流出口OUTとを接続し、バルブ212によりアノード流路112の流出口OUTと液体タンク201の流入口INとを接続し、バルブ213により冷却用流路141等の冷却用流路の流出口OUTと液体タンク201の第2の流入口IN2との接続を断つことにより、冷却動作を行ってもよい。また、外気温等の影響で、冷却を重要視して運転したいときは、バルブ210によりアノード流路112の流入口INと液体タンク201の流出口OUTとを接続し、バルブ211により冷却用流路141等の冷却用流路の流入口INと液体タンク201の流出口OUTとを接続し、バルブ212によりアノード流路112の流出口OUTと液体タンク201の流入口INとの接続を断ち、バルブ213により冷却用流路141等の冷却用流路の流出口OUTと液体タンク201の第2の流入口IN2とを接続することにより、冷却動作を行うことが好ましい。
以上のように、本実施形態の二酸化炭素電解装置では、複数のバルブを用いてアノード流路112および冷却用流路141等の冷却用流路へのアノード液体の供給を制御することにより、冷却動作の自由度を高めることができる。よって、電解効率の低下を抑制できる。
本実施形態は、他の実施形態と適宜組み合わせることができる。
(第3の実施形態)
図9は、二酸化炭素電解装置の他の構成例を説明するための模式図である。図9に示す二酸化炭素電解装置は、図1に示す二酸化炭素電解装置1と、液体タンク214および流量制御器215を有する点が異なる。それ以外の部分について第1の実施形態の説明を適宜援用する。
液体タンク214の流出口OUTは、アノード流出路OUTに接続される。なお、液体タンク214の流出口OUTは、アノード流入路INに接続されていてもよい。液体タンク214は、電解質を含む電解液を収容できる。電解液の電解質の濃度は、アノード液体の電解質の濃度よりも高いことが好ましい。電解液としては、アノード液体に適用可能なイオンを含む電解液を用いることができる。
流量制御器215は、アノード流出路OUTの途中に設けられる。流量制御器215は、例えば制御器502により制御される。流量制御器215は、例えばポンプを有し、液体タンク214からアノード流出路OUTに供給するアノード液体の流量を制御する。なお、液体タンク214の流出口がアノード流入路INに接続される場合、流量制御器215はアノード流出路OUTの途中に設けられる。
アノード流路112に電解液を含むアノード液体を流入して電解動作を行う場合、アノード流路112からカソード流路122にカチオンが移動し、カソード流路122の流出口を介して流出される。これにより、アノード流路112を流れるアノード液体は、電解質の濃度が低下する。
これに対し、本実施形態の電解装置では、液体タンク214から電解液をアノード液体に補充することにより、アノード液体の電解質濃度の低下を抑制できる。例えば、アノード流路112に流すアノード液体の電解質濃度の低下をpHセンサ、イオンセンサ等で検知する、または電解反応のクーロン量から推測し、その結果に応じて電解液を補充する。これにより、二酸化炭素電解装置を持続的に運転することができる。また、比較的容量が大きい冷却用流路141等の冷却用流路を流れるアノード液体をバッファ液として用い、例えば余剰電力が豊富であるときや電力料金が安いときに、液体タンク214から電解液を補充することにより、システム効率を向上できる。
本実施形態は、他の実施形態と適宜組み合わせることができる。
(第4の実施形態)
図10は、二酸化炭素電解装置の他の構成例を説明するための模式図である。図10に示す二酸化炭素電解装置は、図1に示す二酸化炭素電解装置1と、流量制御器216と液体タンク403とを有する点が異なる。それ以外の部分について第1の実施形態の説明を適宜援用する。
流量制御器216は、液体タンク403の流出口OUTに接続される。流量制御器216は、例えば制御器502により制御される。流量制御器216は、例えばポンプを有し、液体タンク403からアノード流出路OUTに供給する液体の流量を制御できる。
液体タンク403の流入口INは、カソード流出路OUTに接続される。液体タンク403は、カソード流路122から流出される流体に含まれる液体を収容する。
アノード流路112に電解液を含むアノード液体を流入して電解動作を行う場合、アノード流路112からカソード流路122にカチオンが移動し、カソード流路122の流出口OUTを介して流出される。これにより、アノード流路112を流れるアノード液体は、電解質の濃度が低下する。
これに対し、本実施形態の電解装置では、カソード流路122から流出される流体に含まれる液体をアノード流出路OUTに戻すことによりアノード液体の電解質濃度の低下を抑制できる。例えば、アノード流路112に流すアノード液体の電解質濃度の低下をpHセンサ、イオンセンサ等で検知する、または電解反応のクーロン量から推測し、その結果に応じてカソード流路122から流出される流体に含まれる液体をアノード流出路OUTに戻す。これにより、二酸化炭素電解装置1を持続的に運転することができる。
本実施形態は、他の実施形態と適宜組み合わせることができる。
(第5の実施形態)
図11は、二酸化炭素電解装置の他の構成例を説明するための模式図である。図11に示す二酸化炭素電解装置は、図1に示す二酸化炭素電解装置と、液体タンク403を有する点と、圧力制御器207および冷却器208の接続箇所が異なる。それ以外の部分について第1の実施形態の説明を適宜援用する。
液体タンク403の第1の流入口IN1は、カソード流出路OUTに接続される。液体タンク403の第2の流入口IN2は、アノード流出路OUT、圧力制御器207、および冷却器208を介してアノード流路112の流出口OUTに接続される。液体タンク403の流出口OUTは、アノード流出路OUTおよび溶液分離器209を介して液体タンク201の流入口に接続される。液体タンク403は、カソード流路122から流出される流体に含まれる液体を収容する。
カソード流路122から流出される流体は、例えば温められた水蒸気ガスを含むことがあり、還元生成物を利用することを妨げる場合がある。例えば、二酸化炭素を還元して一酸化炭素を生成し、一酸化炭素と水素とを反応させて、炭化水素を生成する反応を妨げる場合がある。また、水蒸気を大量に含むことにより、反応系から水が失われ、必要となる水の量が反応で必要な水の理論量を大きく上回ることがある。水も資源の一つであり、反応に用いる水の量は、必要最低限であることが好ましい。
二酸化炭素電解装置1の後段に別の反応装置を接続する場合、水蒸気が反応ガスを希釈し、後段の反応装置の反応効率を低下させることがある。後段の反応器での化学反応が高温反応である場合は、水蒸気も加熱しなければならず、ロスが大きい。そのため、水蒸気を一度冷却して水として回収することが好ましい。この冷却にも、アノード液体と同じ液体を用いることにより、システム上ポンプやバルブの数を減らすことができ、効率的かつ低コストとなる。
液体と気体状の二酸化炭素との間で熱交換してもよい。この場合、電解質濃度の低下を防ぐためのカソード流路122から流出される液体をアノード流路112に戻す機構は別途必要である。カソード流路122から流出される流体に含まれる液体をアノード流路112に戻すために、液体によりカソード流路122のガスを直接冷却し、カソード流路122から流出される液体をアノード流路112に戻すと、カソード流路122のガスの冷却とカソード流路122から流出される液体をアノード流出路OUTに戻すことを共通化できるため、非常に効率的である。なお、熱交換は必ずしも行わなくてもよく、冷却器208は、図1に示す二酸化炭素電解装置と同様に溶液分離器209に接続されていてもよい。
本実施形態は、他の実施形態と適宜組み合わせることができる。
(第6の実施形態)
図12は、二酸化炭素電解装置の他の構成例を説明するための模式図である。図12に示す二酸化炭素電解装置は、図1に示す二酸化炭素電解装置1と、流量制御器217を有する点が異なる。それ以外の部分について第1の実施形態の説明を適宜援用する。
流量制御器217は、アノード流入路INとカソード流入路INとを接続する。流量制御器217は、例えば制御器502により制御される。流量制御器217は、例えばポンプを有し、カソード流入路INを介してカソード流路122に流入される液体の流量を制御する。
アノード111側からカソード流路122に流入された電解液は、二酸化炭素ガスと反応して塩を析出することがある。塩は、例えばカソード流路122を閉塞して反応効率を低下させる場合がある。このため、必要に応じて流量制御器217を介してカソード流路122の流入口INを介して電解液を含むアノード流体を流入することにより、塩を溶解して排出させる。このとき、冷却用流路141等の冷却用流路に流入されるアノード液体を用いることにより、システムを簡略化することができ、補器を削減することができるため、製造コストを削減できる。アノード塩の溶出能力は純水よりは劣るが、電解液を用いることにより十分な効果を得ることができる。カソード流路122にアノード液体を流入するタイミングは、一定時間毎、または冷却動作の要否に用いられるパラメータを用いて流路の閉塞やその前兆を圧力等で確認し、流路の閉塞が起きた時点、もしくは閉塞が起きる前であってもよい。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施例1)
図1に示した二酸化炭素電解装置を組み立てて、二酸化炭素の電解性能を調べた。まず、多孔質層が設けられたカーボンペーパ上に、金ナノ粒子が担持されたカーボン粒子を塗布したカソードを、以下の手順により作製した。金ナノ粒子が担持されたカーボン粒子と純水、ナフィオン溶液、エチレングリコールとを混合した塗布溶液を作製した。金ナノ粒子の平均粒径は8.7nmであり、担持量は18.9質量%であった。この塗布溶液をエアーブラシに充填し、窒素ガスを用いて多孔質層が設けられたカーボンペーパ上にスプレー塗布した。塗布後に純水で30分間流水洗浄し、その後に過酸化水素水に浸漬してエチレングリコール等の有機物を酸化除去した。これを2×2cmの大きさに切り出してカソードとした。なお、金の塗布量は塗布溶液の金ナノ粒子とカーボン粒子の混合量から約0.4mg/cmと見積もられた。アノードには、Tiメッシュに触媒となるIrOナノ粒子を塗布した電極を用いた。アノードとしてIrO/Tiメッシュを2×2cmに切り出したものを使用した。
電解反応部は、セルの触媒面積を100cm、電流密度を50、200、400mA/cmとした、10個の電解セルのスタックに冷却用流路を形成して反応を行った。1個の電解セルの厚さは2mmである。冷却用流路を有する流路板の厚さは、6mmである。アノード流路の深さは1.0mmである。冷却用流路の深さは5mmである。
締め付け板には冷却用流路を設けず、締め付け板、絶縁板、1mmの集電板、冷却用流路を有する流路板と電解セルの積層体、1mmの集電板、絶縁板、締め付け板を順に積層した。
上記した電解反応部を用いて二酸化炭素電解装置を組み立て、以下の条件で運転した。カソード流路に二酸化炭素ガスを一つの電解セルあたり500sccmで供給し、アノード流路に電解液の炭酸水素カリウム水溶液(濃度1M KHCO)を一つの電解セルあたり10ccmの流量で流入させた。
電流密度は50mA/cm、100mA/cm、400mA/cmとし、50mA/cmでは25℃に冷却した電解液を流し、冷却用流路には25℃に冷却した電解液を2.5ccm/セルの流量で流して反応させた。100mA/cmでは25℃に冷却した電解液を流し、冷却用流路には25℃に冷却した電解液を10ccm/セルの流量で流して反応させた。400mA/cmでは、25℃に冷却した電解液を流し、冷却用流路には25℃に冷却した電解液を50ccm/セルの流量で流して反応させた。
反応中のすべてのセル電圧を制御部で収集した。また、カソード流路から流出されるガスの一部を収集し、二酸化炭素の還元反応または水の還元反応により生成される一酸化炭素または水素ガスの生成量を、セル性能検出器に組み込んだガスクロマトグラフにより分析した。制御部でガス生成量から一酸化炭素と水素との部分電流密度および全電流密度と部分電流密度の比であるファラデー効率を収集した。結果を表1に示す。表1は、セル電圧、セル抵抗、一酸化炭素のファラデー効率、水素のファラデー効率を示す。
(比較例1)
電流密度50mA/cm、100mA/cm、400mA/cmのいずれの場合であっても、25℃に冷却した電解液を流し、冷却用流路には何も流さず反応させた。それ以外は実施例1と同様に行った。結果を表1に示す。
(実施例2)
冷却用流路の流路深さを、端部の電解セルでは2.5mm、端部から2番目の電解セルでは4mmとしたこと以外は実施例1と同様に行った。結果を表1に示す。
(実施例3)
電流密度50mA/cm、100mA/cm、400mA/cmのいずれの場合であっても、25℃に冷却した電解液を流し、冷却用流路には25℃に冷却した電解液を25ccm/セルの流量で流して反応させた。それ以外は実施例1と同様に行った。結果を表1に示す。
(実施例4)
電解液をカソード流路の流入口を介して4時間ごとに0.5cc流入した。それ以外は実施例1と同様に行った。結果を表1に示す。
各実施例と比較例1と比較すると、各実施例の各セル電圧のばらつきは小さくて電圧も低く電解効率が高いことがわかる。また、二酸化炭素の還元選択性の指標である、一酸化炭素のファラデー効率が高いことがわかる。さらに、504時間まで運転して停止した直後の値から、長時間運転すると電解効率低下の抑制効果が大きいことがわかる。
実施例のいずれも複数の電解セルのスタックでの各セル電圧の平均値が低下し、セル電圧のばらつきが低下した。また、電圧が低下したため、副反応の水素生成量が低下し、二酸化炭素の還元反応がより進行したため、一酸化炭素のファラデー効率が向上した。セル電圧の低下はセル寿命の向上につながり、加えてセル電圧の低下により電解効率が向上し、発熱量が抑制されるため、電解セルの温度のばらつきはより小さくなる。
また、電解動作時に電解セルの高温部の面積が減少するため、高温ではセパレータの水分量が増加してセパレータのイオン交換性が向上しセル抵抗が低下する。このセル抵抗の低下によっても、さらに発熱量は減少する。
Figure 2022042280000002
なお、上述した各実施形態の構成は、それぞれ組合せて適用することができ、また一部置き換えることも可能である。ここでは、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図するものではない。これら実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲において、種々の省略、置き換え、変更等を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同時に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…二酸化炭素電解装置、100…電解反応部、111…アノード、112…アノード流路、113…アノード集電体、114…流路板、121…カソード、122…カソード流路、123…カソード集電体、124…流路板、131…セパレータ、140…冷却用流路、141…冷却用流路、142…冷却用流路、143…冷却用流路、150…電源、151…流路板、152…流路板、200…アノード供給部、201…液体タンク、202…流量制御器、202…液体タンク、203…濃度センサ、204…基準電極、205…流量制御器、206…流量制御器、207…圧力制御器、208…冷却器、209…溶液分離器、210…バルブ、211…バルブ、212…バルブ、213…バルブ、214…液体タンク、215…流量制御器、216…流量制御器、217…流量制御器、300…カソード供給部、301…気体タンク、302…流量制御器、303…圧力制御器、400…収集部、401…気液分離器、402…生成物収集器、403…液体タンク、500…制御部、501…セル性能検出器、502…制御器。

Claims (20)

  1. 水を酸化して酸素を形成するためのアノードと、前記アノードに面するアノード流路と、二酸化炭素を還元して炭素化合物を生成するためのカソードと、前記カソードに面するカソード流路と、前記アノードと前記カソードとの間のセパレータと、を備える電解セルと、
    前記アノード流路または前記カソード流路に対抗して配置され、前記アノード流路に並列に接続された冷却用流路と、
    前記アノード流路の流入口と、前記冷却用流路の流入口と、冷却された水を含む液体を収容するための液体タンクの流出口と、を接続するアノード流入路と、
    前記アノード流路の流出口と、前記冷却用流路の流出口と、前記液体タンクの流入口と、を接続するアノード流出路と、
    前記アノード流出路を冷却するための冷却器と、
    を具備する、二酸化炭素電解装置。
  2. 複数の前記電解セルを具備し、
    前記冷却用流路は、前記複数の電解セルの一つの前記アノード流路と前記複数の電解セルの他の一つの前記カソード流路との間に設けられる、請求項1に記載の二酸化炭素電解装置。
  3. 複数の前記電解セルと、
    複数の前記冷却用流路と、
    前記複数の電解セルの一つの前記アノードに接続されたアノード集電体と、
    前記複数の電解セルの一つの前記カソードに接続されたカソード集電体と、を具備し、
    前記複数の冷却用流路の一つは、前記複数の電解セルの一つの前記アノード流路と前記電解セルの他の一つの前記カソード流路との間に設けられ、
    前記複数の冷却用流路の他の一つは、前記アノード集電体または前記カソード集電体に隣接して設けられる、請求項1に記載の二酸化炭素電解装置。
  4. 前記液体の熱伝導率は、水の熱伝導率よりも高い、請求項1ないし請求項3のいずれか一項に記載の二酸化炭素電解装置。
  5. 前記液体の凝固点は、0℃以下である、請求項1ないし請求項4のいずれか一項に記載の二酸化炭素電解装置。
  6. 前記アノード流入路の途中に設けられ、前記アノード流入路を介して、前記アノード流路の入口と、前記液体タンクの流出口と、を接続する第1の流量制御器と、
    前記アノード流入路の途中に設けられ、前記アノード流入路を介して、前記冷却用流路の流入口と、前記液体タンクの流出口と、を接続する第2の流量制御器と、
    をさらに具備する、請求項1ないし請求項5のいずれか一項に記載の二酸化炭素電解装置。
  7. 前記冷却用流路の流入口は、前記アノード流路の流入口よりも前記アノード流路の流出口に近く、
    前記冷却用流路の流出口は、前記アノード流路の流出口よりも前記アノード流路の流入口に近い、請求項1ないし請求項6のいずれか一項に記載の二酸化炭素電解装置。
  8. 前記冷却用流路の中央部の流路幅は、前記冷却用流路の端部の流路幅よりも大きい、請求項1ないし請求項7のいずれか一項に記載の二酸化炭素電解装置。
  9. 前記冷却用流路は、流路板の表面の中心部に設けられ、前記中心部を囲む周辺部に設けられていない、請求項1ないし請求項8のいずれか一項に記載の二酸化炭素電解装置。
  10. 前記アノード流入路の途中に設けられ、前記アノード流入路を介して前記アノード流路の流入口と前記液体タンクの流出口とを接続するための第1のバルブと、
    前記アノード流入路の途中に設けられ、前記アノード流入路を介して前記冷却用流路の流入口と前記液体タンクの流出口とを接続するための第2のバルブと、
    前記アノード流出路の途中に設けられ、前記アノード流出路を介して前記アノード流路の流出口と前記液体タンクの第1の流入口とを接続するための第3のバルブと、
    前記アノード流出路と前記液体タンクの第2の流入口とを接続する第2のアノード流出路の途中に設けられ、前記第2のアノード流出路を介して前記冷却用流路の流出口と前記液体タンクの第2の流入口とを接続するための第4のバルブと、
    前記アノードと前記カソードとの間の電圧または電流に応じて、前記第1ないし第4のバルブの開閉を制御する制御器と、
    をさらに具備する、請求項1ないし請求項9のいずれか一項に記載の二酸化炭素電解装置。
  11. 前記液体は、電解質を含み、
    前記アノード流出路は、前記電解質を含む電解液を収容するための第2の液体タンクの流出口に接続される、請求項1ないし請求項10のいずれか一項に記載の二酸化炭素電解装置。
  12. 前記カソード流路の流入口と、二酸化炭素を含む気体を収容するための気体タンクの流出口と、を接続するためのカソード流入路と、
    前記カソード流路の流出口に接続されたカソード流出路と、をさらに具備する、請求項1ないし請求項10のいずれか一項に記載の二酸化炭素電解装置。
  13. 前記液体は、電解質を含み、
    前記カソード流出路は、前記カソード流出路から流出される流体に含まれる液体を収容するための第3の液体タンクの流入口に接続され、
    前記アノード流出路は、前記第3の液体タンクの流出口に接続される、請求項12に記載の二酸化炭素電解装置。
  14. 前記液体は、電解質を含み、
    前記カソード流出路は、前記カソード流路の流出口から流出される流体に含まれる液体を収容するための第3の液体タンクの第1の流入口に接続され、
    前記アノード流出路は、前記第3の液体タンクの第2の流入口に接続され、
    前記第3の液体タンクの流出口は、前記液体タンクの流入口に接続される、請求項12に記載の二酸化炭素電解装置。
  15. 前記液体は、電解質を含み、
    前記アノード流入路の途中に設けられ、前記アノード流入路を介して、前記液体タンクの流出口と、前記カソード流入路と、を接続する第3の流量制御器をさらに具備する、請求項12に記載の二酸化炭素電解装置。
  16. 冷却された水を含む液体を、電解セルに設けられたアノードに面するアノード流路と、前記アノード流路または前記電解セルに設けられたカソードに面するカソード流路に対抗して配置されるとともに前記アノード流路に並列に接続された冷却用流路に供給し、二酸化炭素を含む気体を、前記カソード流路に供給するステップと、
    前記アノードと前記カソードとの間に電圧を印加することにより、前記カソードで二酸化炭素を還元して炭素化合物を生成するとともに、前記アノードで水を酸化して酸素を生成するステップと、
    を具備する、二酸化炭素電解方法。
  17. 前記液体の熱伝導率は、水の熱伝導率よりも高い、請求項16に記載の二酸化炭素電解方法。
  18. 前記液体の凝固点は、0℃以下である、請求項16または請求項17に記載の二酸化炭素電解方法。
  19. 前記液体は、前記アノード流路および前記冷却用流路から流出された後に冷却されて前記アノード流路および前記冷却用流路に供給される、請求項16ないし請求項18のいずれか一項に記載の二酸化炭素電解方法。
  20. 前記液体は、電解質を含み、
    前記アノード流路、前記カソード流路、および前記冷却用流路からなる群より選ばれる少なくとも一つの流路から流出された前記液体に、前記電解質を含む電解液を補充するステップをさらに具備する、請求項16ないし請求項19のいずれか一項に記載の二酸化炭素電解方法。
JP2020147634A 2020-09-02 2020-09-02 二酸化炭素電解装置および二酸化炭素電解方法 Active JP7247150B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020147634A JP7247150B2 (ja) 2020-09-02 2020-09-02 二酸化炭素電解装置および二酸化炭素電解方法
CN202110207019.3A CN114196975B (zh) 2020-09-02 2021-02-24 二氧化碳电解装置和二氧化碳电解方法
US17/189,432 US11781231B2 (en) 2020-09-02 2021-03-02 Carbon dioxide electrolytic device and method of electrolyzing carbon dioxide
EP21160967.2A EP3964607B1 (en) 2020-09-02 2021-03-05 Carbon dioxide electrolytic device and method of electrolyzing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020147634A JP7247150B2 (ja) 2020-09-02 2020-09-02 二酸化炭素電解装置および二酸化炭素電解方法

Publications (2)

Publication Number Publication Date
JP2022042280A true JP2022042280A (ja) 2022-03-14
JP7247150B2 JP7247150B2 (ja) 2023-03-28

Family

ID=74859308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020147634A Active JP7247150B2 (ja) 2020-09-02 2020-09-02 二酸化炭素電解装置および二酸化炭素電解方法

Country Status (4)

Country Link
US (1) US11781231B2 (ja)
EP (1) EP3964607B1 (ja)
JP (1) JP7247150B2 (ja)
CN (1) CN114196975B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446353B2 (ja) 2022-03-16 2024-03-08 本田技研工業株式会社 電解セル
JP7446354B2 (ja) 2022-03-16 2024-03-08 本田技研工業株式会社 電解セル
KR20240049164A (ko) 2022-10-07 2024-04-16 주식회사 엘지화학 전기분해 장치 및 이의 작동 방법
JP7490009B2 (ja) 2022-03-16 2024-05-24 本田技研工業株式会社 電解セル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2032221B1 (en) * 2022-06-20 2024-01-08 Univ Delft Tech Device for performing a biologically catalysed electrochemical reaction
EP4345194A1 (en) * 2023-06-05 2024-04-03 Yokogawa Electric Corporation Method, apparatus, computer program and system for monitoring a state of a multi-cell electrolyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058006A (ja) * 2002-07-31 2004-02-26 First Ocean Kk 電解水製造方法
JP2008536258A (ja) * 2005-03-15 2008-09-04 ハイドロジェニクス コーポレイション 流れ場極板の配列
JP2015533944A (ja) * 2012-09-14 2015-11-26 リキッド・ライト・インコーポレーテッドLiquid Light Incorporated 二酸化炭素を電気化学的に還元するための方法及び高表面積電極

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917520A (en) * 1974-11-20 1975-11-04 United Technologies Corp Electrolysis cell system and process for generating hydrogen and oxygen
JPS5924192B2 (ja) * 1981-05-22 1984-06-07 日本カ−リツト株式会社 塩水電解槽
JP3337258B2 (ja) 1993-03-08 2002-10-21 三菱重工業株式会社 固体高分子電解質燃料電池システム
US8282811B2 (en) * 2001-08-29 2012-10-09 Giner Electrochemical Systems, Llc Method and system for producing high-pressure hydrogen
JP5567375B2 (ja) * 2010-04-14 2014-08-06 東洋炭素株式会社 気体発生装置および気体発生方法
JP5422699B2 (ja) 2011-07-28 2014-02-19 パナソニック株式会社 高分子電解質型燃料電池およびその製造方法
US9644277B2 (en) * 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
FR3030896B1 (fr) * 2014-12-18 2017-01-13 Commissariat Energie Atomique Module elementaire pour reacteur d'electrolyse de l'eau ou de co-electrolyse (eht) avec h2o/co2 ou pour pile a combustible sofc et pour reacteur catalytique de methanation, ou de reformage
CN104630812B (zh) * 2015-02-04 2017-02-01 中国华能集团清洁能源技术研究院有限公司 一种基于熔融碳酸盐电解池的电解co2和h2o制取合成气的方法
DK3325692T3 (da) 2015-07-22 2020-10-19 Coval Energy Ventures B V Fremgangsmåde og reaktor til elektrokemisk reduktion af carbondioxid
DE202015104972U1 (de) * 2015-09-18 2016-12-20 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System
JP6672193B2 (ja) * 2017-02-02 2020-03-25 株式会社東芝 二酸化炭素の電解セルと電解装置
JP6622237B2 (ja) 2017-03-14 2019-12-18 株式会社東芝 二酸化炭素電解装置
JP6696696B2 (ja) * 2017-03-21 2020-05-20 株式会社東芝 電気化学反応装置
JP6672211B2 (ja) 2017-03-21 2020-03-25 株式会社東芝 二酸化炭素電解装置および二酸化炭素電解方法
DE102017208610A1 (de) 2017-05-22 2018-11-22 Siemens Aktiengesellschaft Zwei-Membran-Aufbau zur elektrochemischen Reduktion von CO2
JP6822998B2 (ja) 2018-03-20 2021-01-27 株式会社東芝 電気化学反応装置
EP3543376A1 (en) * 2018-03-22 2019-09-25 Hymeth ApS Cooling plate assembly and an electrolyser stack comprising the same
JP6818711B2 (ja) * 2018-03-22 2021-01-20 株式会社東芝 二酸化炭素電解装置および二酸化炭素電解方法
JP7209221B2 (ja) * 2018-07-23 2023-01-20 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ
CA3125442A1 (en) 2019-01-07 2020-07-16 Opus 12 Incorporated System and method for methane production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058006A (ja) * 2002-07-31 2004-02-26 First Ocean Kk 電解水製造方法
JP2008536258A (ja) * 2005-03-15 2008-09-04 ハイドロジェニクス コーポレイション 流れ場極板の配列
JP2015533944A (ja) * 2012-09-14 2015-11-26 リキッド・ライト・インコーポレーテッドLiquid Light Incorporated 二酸化炭素を電気化学的に還元するための方法及び高表面積電極

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446353B2 (ja) 2022-03-16 2024-03-08 本田技研工業株式会社 電解セル
JP7446354B2 (ja) 2022-03-16 2024-03-08 本田技研工業株式会社 電解セル
JP7490009B2 (ja) 2022-03-16 2024-05-24 本田技研工業株式会社 電解セル
KR20240049164A (ko) 2022-10-07 2024-04-16 주식회사 엘지화학 전기분해 장치 및 이의 작동 방법

Also Published As

Publication number Publication date
US11781231B2 (en) 2023-10-10
CN114196975B (zh) 2024-01-16
US20220064808A1 (en) 2022-03-03
CN114196975A (zh) 2022-03-18
EP3964607B1 (en) 2022-11-09
EP3964607A1 (en) 2022-03-09
JP7247150B2 (ja) 2023-03-28

Similar Documents

Publication Publication Date Title
JP6622237B2 (ja) 二酸化炭素電解装置
JP7247150B2 (ja) 二酸化炭素電解装置および二酸化炭素電解方法
JP6672193B2 (ja) 二酸化炭素の電解セルと電解装置
JP6672211B2 (ja) 二酸化炭素電解装置および二酸化炭素電解方法
JP6845114B2 (ja) 二酸化炭素電解装置および二酸化炭素電解方法
US11286573B2 (en) Carbon dioxide electrolytic device and method of electrolyzing carbon dioxide
JP6933622B2 (ja) 二酸化炭素電解装置
JP6783814B2 (ja) 二酸化炭素電解装置および二酸化炭素電解方法
WO2019176141A1 (ja) 二酸化炭素の電解セルと電解装置
US11098409B2 (en) Electrolytic cell and electrolytic device for carbon dioxide
EP4339338A2 (en) Electrolytic device
US20230079481A1 (en) Carbon dioxide electrolytic device
US20220290311A1 (en) Carbon dioxide electrolytic device and method of electrolyzing carbon dioxide
EP4339325A2 (en) Electrolytic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R151 Written notification of patent or utility model registration

Ref document number: 7247150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151