JP2022041737A - Compressed-gas cooling method of compressor and compressed-gas cooling device - Google Patents

Compressed-gas cooling method of compressor and compressed-gas cooling device Download PDF

Info

Publication number
JP2022041737A
JP2022041737A JP2020147115A JP2020147115A JP2022041737A JP 2022041737 A JP2022041737 A JP 2022041737A JP 2020147115 A JP2020147115 A JP 2020147115A JP 2020147115 A JP2020147115 A JP 2020147115A JP 2022041737 A JP2022041737 A JP 2022041737A
Authority
JP
Japan
Prior art keywords
supply flow
flow path
pressure
limit value
compressed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020147115A
Other languages
Japanese (ja)
Other versions
JP7461255B2 (en
Inventor
真郷 新澤
Masato Shinzawa
紫織 平田
Shiori Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2020147115A priority Critical patent/JP7461255B2/en
Publication of JP2022041737A publication Critical patent/JP2022041737A/en
Application granted granted Critical
Publication of JP7461255B2 publication Critical patent/JP7461255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

To properly cool a compressed gas by low-consumption power while preventing overcooling.SOLUTION: A heat exchanger 51 and a cooling fan 52 for introducing a cooling wind to the heat exchanger are arranged at a supply flow passage 40 of a capacity-control type compressor 1. An upper limit value TH and a lower limit value TL in corresponding temperature areas TL to TH which are decided on the basis of pressure Pd in the supply flow passage 40 of a check valve 41 at a secondary side, and a temperature Td in the supply flow passage 40 of the heat exchanger 51 at a primary side are compared. When the temperature Td is lower than the lower limit value TL, the cooling fan 52 is operated at a prescribed lowest rotational speed FL, also, when the temperature Td exceeds the upper limit value TH, the cooling fan 52 is operated at a prescribed highest rotational speed FH, and when the temperature Td is within the corresponding temperature regions TL to TH, the rotational speed of the cooling fan 52 is ascended and descended following a preset correspondence relationship, and following a rise and a fall of the temperature Td in the supply flow passage 40 between the lowest rotational speed FL and the highest rotational speed FH.SELECTED DRAWING: Figure 1

Description

本発明は,圧縮機の圧縮機本体によって生成された圧縮気体の冷却方法及び前記冷却方法を実行する圧縮気体冷却装置に関し,より詳細には,前記圧縮気体を冷却する熱交換器に冷却風を導入する冷却ファンの回転速度制御に特徴を有する,圧縮機における圧縮気体の冷却方法及び圧縮気体冷却装置に関する。 The present invention relates to a method for cooling a compressed gas generated by a compressor body of a compressor and a compressed gas cooling device for executing the cooling method. More specifically, the present invention applies cooling air to a heat exchanger for cooling the compressed gas. The present invention relates to a method for cooling compressed gas in a compressor and a compressed gas cooling device, which are characterized by controlling the rotation speed of the cooling fan to be introduced.

圧縮機本体で被圧縮気体を圧縮して圧縮気体を生成する圧縮機では,生成した圧縮気体は圧縮熱によって高温となっており,このような高温の圧縮気体をそのまま消費側に供給すると,消費側の配管システム内で圧縮気体が冷やされることで凝集水が発生する。 In a compressor that compresses the compressed gas with the compressor body to generate the compressed gas, the generated compressed gas has a high temperature due to the heat of compression, and if such a high temperature compressed gas is supplied to the consumption side as it is, it will be consumed. Coagulated water is generated by cooling the compressed gas in the piping system on the side.

そのため,圧縮機本体より吐出された圧縮気体は,消費側に供給する前に圧縮機本体の吐出口と消費側を結ぶ供給流路内に設けた熱交換器(アフタクーラ)に導入して冷却し,このアフタクーラによる冷却の際に生じた凝集水を除去して得た,乾燥した圧縮気体を消費側に導入することが行われている。 Therefore, the compressed gas discharged from the compressor body is introduced into a heat exchanger (aftercooler) provided in the supply flow path connecting the discharge port of the compressor body and the consumption side to be cooled before being supplied to the consumption side. , The dry compressed gas obtained by removing the agglomerated water generated during cooling by this aftercooler is introduced to the consumption side.

このようなアフタクーラを備えた圧縮機では,効率的に熱交換を行うために,モータ駆動型の冷却ファンを設け,この冷却ファンによって発生した冷却風をアフタクーラに常時導入する構成が採用されている。 In a compressor equipped with such an aftercooler, a motor-driven cooling fan is provided in order to efficiently exchange heat, and a configuration is adopted in which the cooling air generated by the cooling fan is constantly introduced into the aftercooler. ..

そして,アフタクーラに対する冷却風の導入は,一般に冷却ファンを一定の回転速度で運転することにより行われ,冷却ファンの回転速度を変化させる制御は行われない。 The introduction of the cooling air to the aftercooler is generally performed by operating the cooling fan at a constant rotation speed, and the control for changing the rotation speed of the cooling fan is not performed.

これに対し,冷却ファンの消費電力を含めた圧縮機全体の消費電力の減少を目的として,図12に示すように,消費側に供給される圧縮気体の圧力を検知する圧力検知手段155が検出した圧力に基づいて,消費側に供給される圧縮気体の圧力が所定の無負荷運転開始圧力になると制御装置154が吸気制御弁131を操作して圧縮機本体110の吸入口(図示の例では低圧段圧縮機111の吸入口)を閉じて無負荷運転に移行すると共に,アフタクーラ151に冷却風を導入する冷却ファン152を所定の低回転速度で運転すると共に,消費側に供給される圧縮気体の圧力が所定の全負荷運転復帰圧力になると,吸気制御弁131により閉じていた圧縮機本体110の吸入口を開いて全負荷運転を開始すると共に,冷却ファン152を所定の高回転速度で運転するようにした圧縮機100も提案されている(特許文献1の請求項1,図3)。 On the other hand, as shown in FIG. 12, the pressure detecting means 155 that detects the pressure of the compressed gas supplied to the consuming side detects it for the purpose of reducing the power consumption of the entire compressor including the power consumption of the cooling fan. When the pressure of the compressed gas supplied to the consumption side reaches the predetermined no-load operation start pressure based on the pressure, the control device 154 operates the intake control valve 131 to operate the suction port of the compressor main body 110 (in the example shown in the figure). The suction port of the low-pressure stage compressor 111) is closed to shift to no-load operation, and the cooling fan 152 that introduces cooling air into the aftercooler 151 is operated at a predetermined low rotation speed, and the compressed gas supplied to the consumption side is operated. When the pressure of the gas reaches a predetermined full load operation return pressure, the suction port of the compressor main body 110 closed by the intake control valve 131 is opened to start the full load operation, and the cooling fan 152 is operated at a predetermined high rotation speed. A compressor 100 is also proposed (claim 1, FIG. 3 of Patent Document 1).

なお,圧縮気体の冷却に関する先行技術を開示したものではないが,圧縮機には,圧縮機本体を駆動するモータの回転速度をインバータによって制御することで,消費側に供給する圧縮気体の圧力(目標圧力)の設定を変更可能としたものも存在する(特許文献2)。 Although the prior technology for cooling the compressed gas is not disclosed, the pressure of the compressed gas supplied to the consumer side by controlling the rotation speed of the motor that drives the compressor body with an inverter. There is also one in which the setting of (target pressure) can be changed (Patent Document 2).

特開2008-128052号公報Japanese Unexamined Patent Publication No. 2008-128052 特開2008-151076号公報Japanese Unexamined Patent Publication No. 2008-151076

前掲の特許文献1に記載の圧縮機100では,圧縮機本体110の無負荷運転時に冷却ファン152を所定の低回転速度で運転することで,無負荷運転時における冷却ファンの消費電力を低減することができる。 In the compressor 100 described in Patent Document 1 described above, the power consumption of the cooling fan during the no-load operation is reduced by operating the cooling fan 152 at a predetermined low rotation speed during the no-load operation of the compressor main body 110. be able to.

しかし,前掲の特許文献1に記載の構成では,負荷運転時と無負荷運転時とで冷却ファン152の回転速度を切り替えるのみで,冷却ファン152の回転速度を冷却対象である圧縮気体の温度や流量,圧力に応じて変化させることができるものとはなっていない。 However, in the configuration described in Patent Document 1 described above, only by switching the rotation speed of the cooling fan 152 between load operation and no-load operation, the rotation speed of the cooling fan 152 can be changed to the temperature of the compressed gas to be cooled. It cannot be changed according to the flow rate and pressure.

そのため,外気温が低く,圧縮気体温度が比較的低い状態にある場合や,消費側での圧縮気体の消費量が少なく,従って,アフタクーラ151を通過する圧縮気体の流量が少ない場合等,アフタクーラ151に対する冷却風の導入量を減少しても消費側に供給する圧縮気体を適切に冷却することができる場合であっても冷却ファン152は所定の高回転速度で運転されるために,冷却ファン152の運転には依然として余剰な電力が消費されており,未だ省電力化の余地がある。 Therefore, when the outside temperature is low and the compressed gas temperature is relatively low, or when the consumption of the compressed gas on the consumption side is small and therefore the flow rate of the compressed gas passing through the aftercooler 151 is small, the aftercooler 151 Since the cooling fan 152 is operated at a predetermined high rotation speed even if the compressed gas supplied to the consumption side can be appropriately cooled even if the amount of cooling air introduced to the cooling fan 152 is reduced, the cooling fan 152 is operated. Surplus power is still consumed in the operation of the gas, and there is still room for power saving.

また,前述したように外気温が低く,従って圧縮気体温度も比較的低温となっている場合や,消費側における圧縮気体の消費量が少なくアフタクーラ151を通過する圧縮気体の流量が少ない状態であっても,圧縮機本体110が負荷運転を行っている場合には冷却ファン152を高回転速度で回転させて大量の冷却風をアフタクーラ151に導入することから,アフタクーラ151内で圧縮気体が過剰に冷却される「過冷却」となり,寒冷地での使用など,圧縮機100の使用環境によってはアフタクーラ151内で凝集水の凍結が生じ,また,アフタクーラ151の入口側と出口側の温度差が過大となることで熱歪みによってアフタクーラ151が破損する,所謂「ヒートショック」と呼ばれる現象が生じる等の問題が生じ得る。 Further, as described above, when the outside temperature is low and therefore the compressed gas temperature is relatively low, or when the consumption of the compressed gas on the consumption side is small and the flow rate of the compressed gas passing through the aftercooler 151 is small. However, when the compressor body 110 is in load operation, the cooling fan 152 is rotated at a high rotation speed to introduce a large amount of cooling air into the aftercooler 151, so that the compressed gas is excessive in the aftercooler 151. It becomes "supercooling" to be cooled, and depending on the usage environment of the compressor 100 such as use in cold regions, the aggregated water freezes in the aftercooler 151, and the temperature difference between the inlet side and the outlet side of the aftercooler 151 is excessive. This can cause problems such as damage to the aftercooler 151 due to thermal strain, a so-called "heat shock" phenomenon, and the like.

そのため,冷却対象とする圧縮気体の温度や圧力,流量等を考慮して,このような「過冷却」の発生を防止しつつ,適切に圧縮気体の冷却を行う冷却方法や冷却装置が必要となる。 Therefore, it is necessary to have a cooling method and cooling device that appropriately cools the compressed gas while preventing the occurrence of such "supercooling" in consideration of the temperature, pressure, flow rate, etc. of the compressed gas to be cooled. Become.

さらに前掲の特許文献2のように,圧縮機には圧縮機本体を駆動するモータの回転速度をインバータによって制御することにより,消費側に供給する圧縮気体の圧力(目標圧力)の設定を可変としたものもあり,このような圧縮機にあっては,圧縮気体を適切に冷却するためには圧縮気体の圧力を考慮した送風量の制御がより重要となる。 Further, as in Patent Document 2 mentioned above, the compressor can change the pressure (target pressure) of the compressed gas supplied to the consumer side by controlling the rotation speed of the motor that drives the compressor body with an inverter. In such a compressor, it is more important to control the amount of air blown in consideration of the pressure of the compressed gas in order to properly cool the compressed gas.

そこで本発明は,上記従来技術における欠点を解消するためになされたものであり,圧縮機本体によって生成された圧縮気体を消費側に導入する前に冷却するアフタクーラ等の熱交換器に対し冷却風を導入する冷却ファンの回転速度(熱交換器に導入する冷却風量)を適切に制御することにより,より一層の消費電力の削減や,冷却ファンで発生する風切り音などの騒音の発生の低減を図ることができるだけでなく,過冷却の発生を防止して,凝集水の凍結やヒートショックによる熱交換器の破損を防止でき,しかも,圧縮気体の圧力変化に応じて適切に圧縮気体を冷却することができる圧縮機における圧縮気体冷却方法及び圧縮気体冷却装置を提供することを目的とする。 Therefore, the present invention has been made to eliminate the above-mentioned drawbacks in the prior art, and is used for a heat exchanger such as an aftercooler that cools the compressed gas generated by the compressor body before introducing it to the consumption side. By appropriately controlling the rotation speed of the cooling fan (the amount of cooling air introduced into the heat exchanger), the power consumption can be further reduced and the noise such as wind noise generated by the cooling fan can be reduced. Not only can it be achieved, but it is also possible to prevent the occurrence of overcooling, prevent damage to the heat exchanger due to freezing of aggregated water and heat shock, and cool the compressed gas appropriately according to the pressure change of the compressed gas. It is an object of the present invention to provide a compressed gas cooling method and a compressed gas cooling device in a compressor capable of capable of cooling.

以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と,発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。 The means for solving the problem are described below together with the reference numerals used in the embodiment for carrying out the invention. This reference numeral is for clarifying the correspondence between the description of the scope of claims and the description of the form for carrying out the invention, and needless to say, it is used in a limited manner in the interpretation of the technical scope of the present invention. It is not something that can be done.

上記目的を達成するために,本発明の圧縮機1における圧縮気体の冷却方法は,
圧縮気体を生成する圧縮機本体10と,前記圧縮機本体10の吸気口を開閉制御する吸気制御弁31と,前記圧縮機本体10の吐出口から消費側に至る供給流路40と,前記供給流路40に設けた逆止弁41とを備え,前記吸気制御弁31による吸気量の制御によって,前記消費側に供給される圧縮気体の圧力Pdが所定の目標圧力に近づくよう制御する容量制御型の圧縮機1において,
前記供給流路40を通過する圧縮気体を冷却する熱交換器(アフタクーラ)51と,前記熱交換器51に対し冷却風を導入する冷却ファン52とを設け,
前記逆止弁41の二次側における前記供給流路40内の圧力Pdに基づいて決定される所定の対応温度域TL-THの下限値TL及び上限値THと,前記熱交換器51の一次側かつ前記逆止弁41の一次側における前記供給流路40内の温度Tdとを比較し,
前記供給流路40内の温度Tdが,前記対応温度域TL-THの前記下限値TL未満であるとき前記冷却ファン52を所定の最低回転速度FLで運転し,
前記供給流路40内の温度Tdが,前記対応温度域TL-THの前記上限値THを超えるとき前記冷却ファン52を所定の最高回転速度FHで運転し,
前記供給流路40内の温度Tdが,前記対応温度域TL-THの範囲内であるとき,予め設定した前記供給流路40内の温度Tdと前記冷却ファン52の回転速度Fの対応関係に従い,前記最低回転速度FLと前記最高回転速度FH間において前記供給流路40内の温度Tdの上昇に従い前記冷却ファン52の回転速度を上昇させると共に,前記供給流路40内の温度Tdの下降に従い前記冷却ファン52の回転速度を下降させることを特徴とする(請求項1)。
In order to achieve the above object, the method for cooling the compressed gas in the compressor 1 of the present invention is as follows.
The compressor main body 10 that generates compressed gas, an intake control valve 31 that controls opening and closing of the intake port of the compressor main body 10, a supply flow path 40 from the discharge port of the compressor main body 10 to the consumption side, and the supply. Capacity control is provided with a check valve 41 provided in the flow path 40, and the pressure Pd of the compressed gas supplied to the consumption side is controlled to approach a predetermined target pressure by controlling the intake amount by the intake control valve 31. In the type compressor 1,
A heat exchanger (aftercooler) 51 for cooling the compressed gas passing through the supply flow path 40 and a cooling fan 52 for introducing cooling air into the heat exchanger 51 are provided.
The lower limit TL and upper limit TH of the predetermined corresponding temperature range TL-TH determined based on the pressure Pd in the supply flow path 40 on the secondary side of the check valve 41, and the primary of the heat exchanger 51. Compare with the temperature Td in the supply flow path 40 on the side and on the primary side of the check valve 41.
When the temperature Td in the supply flow path 40 is less than the lower limit value TL of the corresponding temperature range TL-TH, the cooling fan 52 is operated at a predetermined minimum rotation speed FL.
When the temperature Td in the supply flow path 40 exceeds the upper limit value TH of the corresponding temperature range TL-TH, the cooling fan 52 is operated at a predetermined maximum rotation speed FH.
When the temperature Td in the supply flow path 40 is within the range of the corresponding temperature range TL-TH, according to the correspondence relationship between the temperature Td in the supply flow path 40 and the rotation speed F of the cooling fan 52 set in advance. The rotation speed of the cooling fan 52 is increased according to the increase in the temperature Td in the supply flow path 40 between the minimum rotation speed FL and the maximum rotation speed FH, and the temperature Td in the supply flow path 40 is decreased. It is characterized in that the rotation speed of the cooling fan 52 is lowered (claim 1).

前記供給流路40内の圧力Pdの増加に対し,前記下限値TL及び前記上限値THが増加するよう前記対応温度域TL-THを決定することが好ましい(請求項2)。 It is preferable to determine the corresponding temperature range TL-TH so that the lower limit value TL and the upper limit value TH increase with respect to the increase in the pressure Pd in the supply flow path 40 (claim 2).

前記供給流路40内の圧力Pdが取り得る圧力の範囲を,所定の数値範囲毎(実施例2ではPd≦0.4MPaと,0.4MPa<Pd)に分割し,分割した前記数値範囲毎に前記下限値TL及び前記上限値THの増加率IRL,IRHを異なる値(実施例2ではPd≦0.4MPaのときIRL=IRH=50で,0.4MPa<PdのときIRL=IRH=100)に設定するものとしても良い(請求項3,図6参照)。 The range of pressure that can be taken by the pressure Pd in the supply flow path 40 is divided into predetermined numerical ranges (Pd ≦ 0.4 MPa and 0.4 MPa <Pd in Example 2), and each divided numerical range is divided. The increase rates IRL and IRH of the lower limit value TL and the upper limit value TH are different values (IRL = IRH = 50 when Pd ≦ 0.4 MPa and IRL = IRH = 100 when 0.4 MPa <Pd in Example 2). ) May be set (see claim 3 and FIG. 6).

前記供給流路40内の圧力Pdが取り得る圧力の範囲の少なくとも一部の範囲(実施例3ではPd≦0.4MPaの範囲)において,前記下限値TLの増加率IRLと前記上限値THの増加率IRHを異なる値(実施例3ではIRL=50,IRH=75)に設定するものとしても良い(請求項4,図8参照)。 In at least a part of the pressure range that the pressure Pd in the supply flow path 40 can take (the range of Pd ≦ 0.4 MPa in Example 3), the increase rate IRL of the lower limit value TL and the upper limit value TH. The rate of increase IRH may be set to a different value (IRL = 50, IRH = 75 in Example 3) (see claims 4 and 8).

前記供給流路40内の圧力Pdがゲージ圧0.0MPaのときに適用される前記対応温度域TL-THの下限値TLと上限値THを,それぞれ基準下限値TL0(実施例1~3において80℃)及び基準上限値TH0(実施例1~3において90℃)とし,
下記の式1に従い,前記供給流路内の圧力Pdに,所定の前記増加率IRLを乗算して得た加算値を,前記基準下限値TL0に加算して前記供給流路内の圧力Pdに対応した前記下限値TLを求めると共に,
下記の式2に従い,前記供給流路内の圧力Pdに,所定の前記増加率IRHを乗算して得た加算値を,前記基準上限値TH0に加算して前記供給流路内の圧力Pdに対応した前記上限値THを求めることができる(請求項5)。
[式1]TL=IRL×Pd+TL0
[式2]TH=IRH×Pd+TH0
The lower limit value TL and the upper limit value TH of the corresponding temperature range TL-TH applied when the pressure Pd in the supply flow path 40 is the gauge pressure 0.0 MPa are set to the reference lower limit value TL0 (in Examples 1 to 3). 80 ° C.) and the standard upper limit TH0 (90 ° C. in Examples 1 to 3).
According to the following equation 1, the added value obtained by multiplying the pressure Pd in the supply flow path by the predetermined increase rate IRL is added to the reference lower limit value TL0 to obtain the pressure Pd in the supply flow path. The corresponding lower limit value TL is obtained, and at the same time,
According to the following equation 2, the added value obtained by multiplying the pressure Pd in the supply flow path by the predetermined increase rate IRH is added to the reference upper limit value TH0 to obtain the pressure Pd in the supply flow path. The corresponding upper limit value TH can be obtained (claim 5).
[Equation 1] TL = IRL x Pd + TL0
[Equation 2] TH = IRH × Pd + TH0

前記供給流路40内の圧力Pdが取り得る圧力の範囲を,所定の数値範囲毎(実施例4においてPd≦0.4MPa,0.4MPa<Pd<0.6MPa,0.6MPa≦Pd)に分割し,分割した前記数値範囲毎に適用される前記対応温度域TL-THを予め設定(実施例4においてPd≦0.4MPaでは100-120℃/0.4MPa<Pd<0.6MPaでは130-140℃/0.6MPa≦Pdでは150-160℃に設定)するものとしても良い(請求項6)。 The range of pressure that can be taken by the pressure Pd in the supply flow path 40 is set for each predetermined numerical range (Pd ≤ 0.4 MPa, 0.4 MPa <Pd <0.6 MPa, 0.6 MPa ≤ Pd in Example 4). The corresponding temperature range TL-TH applied to each of the divided numerical ranges is set in advance (100-120 ° C./0.4MPa <Pd <0.6MPa in Example 4 when Pd ≦ 0.4MPa is 130). It may be set to 150-160 ° C. at −140 ° C./0.6MPa ≦ Pd) (claim 6).

前記冷却ファン52の回転速度Fは,前記最低回転速度FL,前記最高回転速度FH,前記対応温度域TL-THの前記下限値TL及び前記上限値TH,並びに前記供給流路40内の温度Tdに基づいて,下記の式3によって求めるものとしても良い(請求項7)。
[式3]F=(FH-FL)/(TH-TL)×(Td-TL)+FL
The rotation speed F of the cooling fan 52 includes the minimum rotation speed FL, the maximum rotation speed FH, the lower limit value TL and the upper limit value TH of the corresponding temperature range TL-TH, and the temperature Td in the supply flow path 40. Based on the above, it may be obtained by the following formula 3 (claim 7).
[Equation 3] F = (FH-FL) / (TH-TL) × (Td-TL) + FL

前記圧縮機本体10を,低圧段圧縮機11と,前記低圧段圧縮機11で生成された圧縮気体を更に圧縮する高圧段圧縮機12と,前記低圧段圧縮機11と前記高圧段圧縮機12間に設けられた中間熱交換器(インタークーラ)13を備えた多段式の圧縮機本体10とし,
前記供給流路40に設けた前記熱交換器(アフタクーラ)51と共に,前記中間熱交換器(インタークーラ)13に対しても前記冷却ファン52からの冷却風を導入するものとしても良い(請求項8)。
The compressor body 10 is divided into a low-pressure stage compressor 11, a high-pressure stage compressor 12 that further compresses the compressed gas generated by the low-pressure stage compressor 11, the low-pressure stage compressor 11 and the high-pressure stage compressor 12. A multi-stage compressor body 10 equipped with an intermediate heat exchanger (intercooler) 13 provided between them is used.
Along with the heat exchanger (aftercooler) 51 provided in the supply flow path 40, the cooling air from the cooling fan 52 may be introduced into the intermediate heat exchanger (intercooler) 13 (claim). 8).

また,本発明の圧縮機における圧縮気体冷却装置50は,
圧縮気体を生成する圧縮機本体10と,前記圧縮機本体10の吸気口を開閉制御する吸気制御弁31と,前記圧縮機本体10の吐出口から消費側に至る供給流路40と,前記供給流路40に設けた逆止弁41とを備え,前記吸気制御弁31による吸気量の制御によって,前記消費側に供給される圧縮気体の圧力が所定の目標圧力に近づくよう制御する容量制御型の圧縮機において,
前記供給流路40を通過する圧縮気体を冷却する熱交換器51と,前記熱交換器51に対し冷却風を導入する冷却ファン52,前記冷却ファン52を駆動するファンモータ53,前記熱交換器51の一次側かつ前記逆止弁41の一次側における前記供給流路40内の温度Tdを検知する温度検知手段56,前記逆止弁41の二次側における前記供給流路40内の圧力Pdを検知する圧力検知手段55,及び,前記温度検知手段56が検知した前記供給流路40内の温度Tdと,前記圧力検知手段55が検知した前記供給流路40内の圧力Pdに基づいて前記ファンモータ53の回転速度を制御する制御装置54を設け,
前記制御装置54が,
前記圧力検知手段55が検知した前記供給流路40内の圧力Pdに基づいて決定した所定の対応温度域TL-THの上限値TH及び下限値TLと,前記温度検知手段56が検知した前記供給流路40内の温度Tdとを比較し,
前記供給流路40内の温度Tdが,前記対応温度域TL-THの前記下限値TL未満であるとき前記冷却ファン52を所定の最低回転速度FLで運転し,
前記供給流路40内の温度Tdが,前記対応温度域TL-THの前記上限値THを超えるとき前記冷却ファン52を所定の最高回転速度FHで運転し,
前記供給流路40内の温度Tdが,前記対応温度域TL-THの範囲内であるとき,予め設定した前記供給流路40内の温度Tdと前記冷却ファン52の回転速度Fの対応関係に従い,前記最低回転速度FLと前記最高回転速度FH間において前記供給流路40内の温度Tdの上昇に従い前記冷却ファン52の回転速度を上昇させると共に,前記供給流路40内の温度Tdの下降に従い前記冷却ファン52の回転速度を下降させる制御を行うことを特徴とする(請求項9)。
Further, the compressed gas cooling device 50 in the compressor of the present invention is
The compressor main body 10 that generates compressed gas, an intake control valve 31 that controls opening and closing of the intake port of the compressor main body 10, a supply flow path 40 from the discharge port of the compressor main body 10 to the consumption side, and the supply. A capacity control type that is provided with a check valve 41 provided in the flow path 40 and controls the pressure of the compressed gas supplied to the consumption side to approach a predetermined target pressure by controlling the intake amount by the intake control valve 31. In the compressor of
A heat exchanger 51 that cools the compressed gas passing through the supply flow path 40, a cooling fan 52 that introduces cooling air into the heat exchanger 51, a fan motor 53 that drives the cooling fan 52, and the heat exchanger. The temperature detecting means 56 for detecting the temperature Td in the supply flow path 40 on the primary side of the check valve 41 and the pressure Pd in the supply flow path 40 on the secondary side of the check valve 41. Based on the temperature Td in the supply flow path 40 detected by the pressure detecting means 55 and the temperature detecting means 56, and the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55. A control device 54 for controlling the rotation speed of the fan motor 53 is provided.
The control device 54
The upper limit value TH and the lower limit value TL of the predetermined corresponding temperature range TL-TH determined based on the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55, and the supply detected by the temperature detecting means 56. Compare with the temperature Td in the flow path 40,
When the temperature Td in the supply flow path 40 is less than the lower limit value TL of the corresponding temperature range TL-TH, the cooling fan 52 is operated at a predetermined minimum rotation speed FL.
When the temperature Td in the supply flow path 40 exceeds the upper limit value TH of the corresponding temperature range TL-TH, the cooling fan 52 is operated at a predetermined maximum rotation speed FH.
When the temperature Td in the supply flow path 40 is within the range of the corresponding temperature range TL-TH, according to the correspondence relationship between the temperature Td in the supply flow path 40 and the rotation speed F of the cooling fan 52 set in advance. The rotation speed of the cooling fan 52 is increased according to the increase in the temperature Td in the supply flow path 40 between the minimum rotation speed FL and the maximum rotation speed FH, and the temperature Td in the supply flow path 40 is decreased. It is characterized in that the control for lowering the rotation speed of the cooling fan 52 is performed (claim 9).

前記制御装置54は,
前記供給流路40内の圧力Pdの増加に対し,前記下限値TL及び前記上限値THを増加するよう前記対応温度域TL-THを決定するように構成することが好ましい(請求項10)。
The control device 54
It is preferable to configure the corresponding temperature range TL-TH so as to increase the lower limit value TL and the upper limit value TH with respect to the increase in the pressure Pd in the supply flow path 40 (claim 10).

前記制御装置54は,
前記供給流路40内の圧力Pdが取り得る圧力の範囲を所定の数値範囲毎に分割して得た前記数値範囲毎に,異なる値として設定された前記下限値TL及び前記上限値THの増加率IRL,IRHを記憶すると共に,該増加率IRL,IRHに基づいて前記対応温度域TL-THを決定するようにしても良い(請求項11)。
The control device 54
An increase in the lower limit value TL and the upper limit value TH set as different values for each numerical value range obtained by dividing the pressure range that can be taken by the pressure Pd in the supply flow path 40 into predetermined numerical values. The rate IRL and IRH may be stored, and the corresponding temperature range TL-TH may be determined based on the rate of increase IRL and IRH (claim 11).

前記制御装置54が,
前記供給流路40内の圧力Pdが取り得る圧力の範囲の少なくとも一部の範囲において,異なる値に設定された前記下限値TLの増加率IRLと前記上限値THの増加率IRHを記憶すると共に,各増加率IRL,IRHに基づいて前記対応温度域TL-THを決定するようにしても良い(請求項12)。
The control device 54
In at least a part of the pressure range that the pressure Pd in the supply flow path 40 can take, the increase rate IRL of the lower limit value TL and the increase rate IRH of the upper limit value TH set to different values are stored. , The corresponding temperature range TL-TH may be determined based on the respective increase rates IRL and IRH (Claim 12).

前記供給流路40内の圧力Pdがゲージ圧0.0MPaのときに適用される前記対応温度域TL-THの下限値を基準下限値TL0,上限値を基準上限値TH0とし,
前記制御装置54が,
下記の式1に従い,前記供給流路40内の圧力Pdに,所定の前記増加率IRLを乗算して得た加算値を,前記基準下限値TL0に加算して前記供給流路40内の圧力Pdに対応した前記下限値TLを求めると共に,
下記の式2に従い,前記供給流路40内の圧力Pdに,所定の前記増加率IRHを乗算して得た加算値を,前記基準上限値TH0に加算して前記供給流路40内の圧力Pdに対応した前記上限値THを求めるようしても良い(請求項13)。
[式1]TL=IRL×Pd+TL0
[式2]TH=IRH×Pd+TH0
The lower limit value of the corresponding temperature range TL-TH applied when the pressure Pd in the supply flow path 40 is 0.0 MPa is set as the reference lower limit value TL0, and the upper limit value is set as the reference upper limit value TH0.
The control device 54
According to the following equation 1, the added value obtained by multiplying the pressure Pd in the supply flow path 40 by the predetermined increase rate IRL is added to the reference lower limit value TL0, and the pressure in the supply flow path 40 is added. The lower limit value TL corresponding to Pd is obtained, and at the same time,
According to the following equation 2, the added value obtained by multiplying the pressure Pd in the supply flow path 40 by the predetermined increase rate IRH is added to the reference upper limit value TH0, and the pressure in the supply flow path 40 is added. The upper limit value TH corresponding to Pd may be obtained (claim 13).
[Equation 1] TL = IRL x Pd + TL0
[Equation 2] TH = IRH × Pd + TH0

前記制御装置54が,
予め設定された,前記供給流路40内の圧力Pdが取り得る圧力の範囲を所定の数値範囲毎に分割した前記数値範囲毎に適用される前記対応温度域TL-THを記憶するものとしても良い(請求項14)。
The control device 54
Even if the preset corresponding temperature range TL-TH applied to each numerical range obtained by dividing the range of pressure that can be taken by the pressure Pd in the supply flow path 40 into predetermined numerical ranges is stored. Good (Claim 14).

前記制御装置54が,
前記冷却ファン52の回転速度Fを,前記最低回転速度FL,前記最高回転速度FH,前記対応温度域TL-THの前記下限値TL及び前記上限値TH,並びに前記供給流路40内の温度Tdに基づいて,下記の式3によって求めるものとしても良い(請求項15)。
[式3]F=(FH-FL)/(TH-TL)×(Td-TL)+FL
The control device 54
The rotation speed F of the cooling fan 52 is the minimum rotation speed FL, the maximum rotation speed FH, the lower limit value TL and the upper limit value TH of the corresponding temperature range TL-TH, and the temperature Td in the supply flow path 40. Based on the above, it may be obtained by the following formula 3 (claim 15).
[Equation 3] F = (FH-FL) / (TH-TL) × (Td-TL) + FL

前記圧縮機本体10を,低圧段圧縮機11と,前記低圧段圧縮機11で生成された圧縮気体を更に圧縮する高圧段圧縮機12と,前記低圧段圧縮機11と前記高圧段圧縮機12間に設けられた中間熱交換器(インタークーラ)13を備えた多段式の圧縮機本体10とし,
前記冷却ファン52が,前記供給流路40に設けた前記熱交換器(アフタクーラ)51と共に前記中間熱交換器(インタークーラ)13に対しても冷却風を導入するよう構成することもできる(請求項16)。
The compressor body 10 is divided into a low-pressure stage compressor 11, a high-pressure stage compressor 12 that further compresses the compressed gas generated by the low-pressure stage compressor 11, the low-pressure stage compressor 11 and the high-pressure stage compressor 12. A multi-stage compressor body 10 equipped with an intermediate heat exchanger (intercooler) 13 provided between them is used.
The cooling fan 52 may be configured to introduce cooling air into the intermediate heat exchanger (intercooler) 13 together with the heat exchanger (aftercooler) 51 provided in the supply flow path 40 (claimed). Item 16).

以上で説明した本発明の構成により,本発明の圧縮機1における圧縮気体の冷却方法及び冷却装置50によれば,以下の顕著な効果を得ることができた。 According to the configuration of the present invention described above, according to the method for cooling the compressed gas and the cooling device 50 in the compressor 1 of the present invention, the following remarkable effects can be obtained.

前記制御装置54により,前記供給流路40内の温度Tdが前記供給流路40内の圧力Pdに基づいて下限値TL及び上限値THが決定される所定の対応温度域TL-THにあるとき,予め設定した前記供給流路40内の温度Tdと前記冷却ファン52の回転速度Fの対応関係に従い,所定の最低回転速度FLと最高回転速度FH間において前記圧縮気体温度Tdの上昇に伴い前記冷却ファン52の回転速度を上昇させると共に,前記圧縮気体温度Tdの下降に伴い前記冷却ファン52の回転速度を下降させる制御を行うように構成したことで,圧縮機本体10より吐出された圧縮気体を,その温度と圧力,並びに流量に応じて適切に冷却することができ,熱交換器51に対する冷却風の導入を効率的に行うことで,必要な冷却効果を得つつ,消費される電力を減少させることで省電力化を図ることができた。 When the temperature Td in the supply flow path 40 is in a predetermined corresponding temperature range TL-TH in which the lower limit value TL and the upper limit value TH are determined based on the pressure Pd in the supply flow path 40 by the control device 54. According to the correspondence between the preset temperature Td in the supply flow path 40 and the rotation speed F of the cooling fan 52, the compressed gas temperature Td rises between the predetermined minimum rotation speed FL and the maximum rotation speed FH. The compressed gas discharged from the compressor main body 10 is configured to increase the rotation speed of the cooling fan 52 and reduce the rotation speed of the cooling fan 52 as the compressed gas temperature Td decreases. Can be appropriately cooled according to its temperature, pressure, and flow rate, and by efficiently introducing cooling air into the heat exchanger 51, the required cooling effect can be obtained and the consumed power can be reduced. By reducing it, we were able to save power.

しかも,この構成では,供給流路40内の温度Tdが低いときにはファンモータ53の回転速度を低下させて冷却ファン52により熱交換器51に導入される冷却風量を減少させることで,熱交換器51における過冷却の発生も防止することができた。 Moreover, in this configuration, when the temperature Td in the supply flow path 40 is low, the rotation speed of the fan motor 53 is lowered to reduce the amount of cooling air introduced into the heat exchanger 51 by the cooling fan 52, thereby reducing the heat exchanger. It was also possible to prevent the occurrence of supercooling in 51.

制御装置54が,前記圧力検知手段55が検知した前記供給流路40内の圧力Pdの増加に対し,前記下限値TL及び前記上限値THを増加させるよう前記対応温度域TL-THを決定するようにした構成では,供給流路40内の圧力Pdに応じた適切な風量を熱交換器51に導入することで,より一層の消費電力の低減と過冷却の発生防止を図ることができた。 The control device 54 determines the corresponding temperature range TL-TH so as to increase the lower limit value TL and the upper limit value TH with respect to the increase in the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55. In such a configuration, by introducing an appropriate air volume according to the pressure Pd in the supply flow path 40 into the heat exchanger 51, it was possible to further reduce the power consumption and prevent the occurrence of supercooling. ..

すなわち,本発明の適用対象である容量制御型の圧縮機1では,消費側において圧縮気体の消費が行われている際には,圧縮気体の消費によって低下した供給流路40内の圧力を所定の目標圧力に維持するために,容量制御装置30は吸気制御弁31を開いて圧縮機本体10に圧縮気体の生成を行わせることで,消費側における消費量に対応した比較的大量の圧縮気体が熱交換器51内を通過することから,この大量の圧縮気体を冷却するために多量の冷却風を熱交換器51に対して導入する必要がある。 That is, in the capacity control type compressor 1 to which the present invention is applied, when the compressed gas is consumed on the consuming side, the pressure in the supply flow path 40 reduced by the consumption of the compressed gas is predetermined. In order to maintain the target pressure of, the capacity control device 30 opens the intake control valve 31 to cause the compressor main body 10 to generate the compressed gas, so that a relatively large amount of compressed gas corresponding to the consumption on the consumption side is generated. Passes through the heat exchanger 51, so it is necessary to introduce a large amount of cooling air into the heat exchanger 51 in order to cool this large amount of compressed gas.

一方,消費側における圧縮気体の消費が減少又は停止して供給流路40内の圧力が上昇して目標圧力に近づき,又は,目標圧力に達すると,容量制御装置30は吸気制御弁31によって圧縮機本体10の吸気口を絞り,又は閉じて圧縮機本体10による圧縮気体の生成量を減少し,又は圧縮気体の生成を停止することで,熱交換器51を通過する圧縮気体量は減少し,又は,熱交換器51を通過する圧縮気体量はゼロとなることから,このような状態においても熱交換器51に多量の冷却風を導入すると,熱交換器51が過冷却となり,凝集水の凍結やヒートショックによる熱交換器51の破損が生じ得る。 On the other hand, when the consumption of the compressed gas on the consumption side decreases or stops and the pressure in the supply flow path 40 rises to approach the target pressure or reaches the target pressure, the capacity control device 30 is compressed by the intake control valve 31. By narrowing or closing the intake port of the machine body 10 to reduce the amount of compressed gas produced by the compressor body 10 or to stop the generation of compressed gas, the amount of compressed gas passing through the heat exchanger 51 is reduced. Or, since the amount of compressed gas passing through the heat exchanger 51 becomes zero, if a large amount of cooling air is introduced into the heat exchanger 51 even in such a state, the heat exchanger 51 becomes overcooled and aggregated water. The heat exchanger 51 may be damaged due to freezing or heat shock.

また,前掲の特許文献2として紹介したように,消費側に供給する圧縮気体の圧力(目標圧力)を可変としたインバータ駆動型の圧縮機では,目標圧力の設定変更によっても圧縮機本体10を駆動するメインモータ20が定格出力を発生するよう,目標圧力の設定変更に応じてメインモータ20の回転速度を変化させることから,目標圧力を高圧に設定すると回転速度が低下して圧縮機本体が生成する圧縮気体量が減少し,また,目標圧力を低圧に設定すると回転速度が上昇して圧縮機本体10が生成する圧縮気体量が増加する。 Further, as introduced in Patent Document 2 described above, in an inverter-driven compressor in which the pressure (target pressure) of the compressed gas supplied to the consumption side is variable, the compressor body 10 can be changed by changing the setting of the target pressure. Since the rotation speed of the main motor 20 is changed according to the change in the target pressure setting so that the main motor 20 to be driven generates the rated output, when the target pressure is set to high pressure, the rotation speed decreases and the compressor body becomes The amount of compressed gas generated decreases, and when the target pressure is set to a low pressure, the rotation speed increases and the amount of compressed gas generated by the compressor body 10 increases.

そのため,目標圧力を高圧に設定した際の適正送風量を,目標圧力を低圧に設定した際に適用すると,圧縮気体の冷却不足が生じ得る一方,目標圧力を低圧に設定した際の適正送風量を,目標圧力を高圧に設定した際に適用すると,圧縮気体は必要以上に冷却されることとなり,余分な電力の消費等が行われることとなると共に,使用条件によっては過冷却が発生するおそれもある。 Therefore, if the appropriate amount of air blown when the target pressure is set to high pressure is applied when the target pressure is set to low pressure, insufficient cooling of the compressed gas may occur, while the appropriate amount of air blown when the target pressure is set to low pressure. If is applied when the target pressure is set to high pressure, the compressed gas will be cooled more than necessary, which will consume extra power and may cause supercooling depending on the usage conditions. There is also.

しかし,前述したように逆止弁41の二次側における供給流路40内の圧力Pdの上昇に伴い前記下限値TLと前記上限値THを増加して前記対応温度域TL-THを高温側にシフトさせることにより,供給流路40内の圧力Pdが低く多量の圧縮気体が熱交換器51内を通過している状態では,供給流路40内の温度Tdが低い状態でも熱交換器51に対し多量の冷却風を導入することができる一方,供給流路40内の圧力Pdが相対的に高く,熱交換器51を通過する圧縮気体量が少ない又はゼロである場合には,供給流路40内の温度Tdが比較的高い温度となるまで熱交換器51に対し導入する冷却風量の増加を行わないようにすることで,過冷却を防止して凝集水の凍結やヒートショックによる熱交換器51の破損等を防止できるようにしている。 However, as described above, as the pressure Pd in the supply flow path 40 on the secondary side of the check valve 41 increases, the lower limit value TL and the upper limit value TH are increased to move the corresponding temperature range TL-TH to the high temperature side. By shifting to, when the pressure Pd in the supply flow path 40 is low and a large amount of compressed gas is passing through the heat exchanger 51, the heat exchanger 51 is in a state where the temperature Td in the supply flow path 40 is low. On the other hand, when the pressure Pd in the supply flow path 40 is relatively high and the amount of compressed gas passing through the heat exchanger 51 is small or zero, the supply flow can be introduced. By not increasing the amount of cooling air introduced into the heat exchanger 51 until the temperature Td in the path 40 becomes a relatively high temperature, overcooling is prevented and heat due to freezing of aggregated water or heat shock is prevented. It is possible to prevent damage to the exchanger 51.

前記制御装置54が,前記下限値TL及び前記上限値THの増加率IRL,IRHを,供給流路40内の圧力Pdの数値範囲毎に異なる値に設定した構成,及び/又は,供給流路40内の圧力Pdが取り得る圧力の範囲の少なくとも一部の範囲において前記下限値TLの増加率IRLと前記上限値THの増加率IRHを異なる値に設定した構成では,本発明を適用する圧縮機の特性等に応じてより適切な設定とすることができた。 The control device 54 sets the increase rates IRL and IRH of the lower limit value TL and the upper limit value TH to different values for each numerical range of the pressure Pd in the supply flow path 40, and / or the supply flow path. In the configuration in which the increase rate IRL of the lower limit value TL and the increase rate IRH of the upper limit value TH are set to different values in at least a part of the range of the pressure that the pressure Pd in 40 can take, the compression to which the present invention is applied. It was possible to make more appropriate settings according to the characteristics of the machine.

なお,前記対応温度域TL-THは,制御装置54による演算によって求めるものとすることなく,供給流路40内の圧力Pdの所定の数値範囲毎に適用される対応温度域TL-THを予め設定するものとしても良く,これにより制御装置54が行う演算処理を簡略化して装置構成の簡略化等が可能である。 The corresponding temperature range TL-TH is not determined by calculation by the control device 54, but the corresponding temperature range TL-TH applied in each predetermined numerical range of the pressure Pd in the supply flow path 40 is set in advance. It may be set, and this makes it possible to simplify the arithmetic processing performed by the control device 54 and simplify the device configuration and the like.

本発明の圧縮気体冷却装置を備えた圧縮機の説明図。Explanatory drawing of the compressor provided with the compressed gas cooling apparatus of this invention. 本発明の圧縮気体冷却装置を備えたインバータ駆動型圧縮機の説明図。Explanatory drawing of the inverter drive type compressor provided with the compressed gas cooling apparatus of this invention. 制御装置の動作を説明したフローチャート(実施例1~3)。A flowchart illustrating the operation of the control device (Examples 1 to 3). 供給流路内の圧力Pdの変化に対する対応温度域TL-THの変化を示した相関図(実施例1)。Correlation diagram showing the change of the corresponding temperature range TL-TH with respect to the change of the pressure Pd in the supply flow path (Example 1). 供給流路内の温度Tdの変化に対するファンモータの回転速度(インバータの出力周波数)の変化を示した相関図(実施例1)。FIG. 6 is a correlation diagram (Example 1) showing a change in the rotation speed (output frequency of the inverter) of the fan motor with respect to a change in the temperature Td in the supply flow path. 供給流路内の圧力Pdの変化に対する対応温度域TL-THの変化を示した相関図(実施例2)。Correlation diagram showing the change of the corresponding temperature range TL-TH with respect to the change of the pressure Pd in the supply flow path (Example 2). 供給流路内の温度Tdの変化に対するファンモータの回転速度(インバータの出力周波数)の変化を示した相関図(実施例2)。FIG. 6 is a correlation diagram (Example 2) showing changes in the rotation speed (output frequency of the inverter) of the fan motor with respect to changes in the temperature Td in the supply flow path. 供給流路内の圧力Pdの変化に対する対応温度域TL-THの変化を示した相関図(実施例3)。The correlation diagram which showed the change of the corresponding temperature range TL-TH with respect to the change of the pressure Pd in a supply flow path (Example 3). 供給流路内の温度Tdの変化に対するファンモータの回転速度(インバータの出力周波数)の変化を示した相関図(実施例3)。FIG. 6 is a correlation diagram (Example 3) showing changes in the rotation speed (output frequency of the inverter) of the fan motor with respect to changes in the temperature Td in the supply flow path. 制御装置の動作を説明したフローチャート(実施例4)。FIG. 6 is a flowchart illustrating the operation of the control device (Example 4). 供給流路内の温度Tdの変化に対するファンモータの回転速度(インバータの出力周波数)の変化を示した相関図(実施例4)。FIG. 6 is a correlation diagram (Example 4) showing changes in the rotation speed (output frequency of the inverter) of the fan motor with respect to changes in the temperature Td in the supply flow path. 従来の圧縮機の説明図(特許文献1の図3に対応)。Explanatory drawing of a conventional compressor (corresponding to FIG. 3 of Patent Document 1).

以下に,添付図面を参照しながら本発明の構成につき説明する。 Hereinafter, the configuration of the present invention will be described with reference to the accompanying drawings.

〔エンジン駆動型発電機の全体構成〕
図1及び図2において,符号1は,本発明の冷却装置を備えた圧縮機であり,この圧縮機1には,被圧縮気体を圧縮する圧縮機本体10と,前記圧縮機本体10の駆動源20,前記圧縮機本体10の吸気口を開閉制御する吸気制御弁31,前記圧縮機本体10の吐出口から消費側に至る供給流路40,前記供給流路に設けた逆止弁41を備え,この逆止弁41の二次側における供給流路内40の圧力Pdが所定の目標圧力に近づくよう,前記吸気制御弁31の操作によって圧縮機本体10の吸気量を制御する容量制御装置30を備えた,容量制御型の圧縮機として構成されている。
[Overall configuration of engine-driven generator]
In FIGS. 1 and 2, reference numeral 1 is a compressor provided with the cooling device of the present invention, and the compressor 1 includes a compressor body 10 for compressing a gas to be compressed and a drive of the compressor body 10. The source 20, the intake control valve 31 for controlling the opening and closing of the intake port of the compressor main body 10, the supply flow path 40 from the discharge port of the compressor main body 10 to the consumption side, and the check valve 41 provided in the supply flow path are provided. A capacity control device that controls the intake amount of the compressor body 10 by operating the intake control valve 31 so that the pressure Pd in the supply flow path 40 on the secondary side of the check valve 41 approaches a predetermined target pressure. It is configured as a capacity control type compressor equipped with 30.

なお,図示の例では,前記圧縮機本体10の駆動源20として,電動機であるメインモータを設けた構成を示したが,この構成に代えて,圧縮機本体10の駆動源をエンジンとするものとしても良く,また,圧縮機本体10を駆動させることができるものであれば,電動機やエンジン以外の既知の各種の駆動源によって構成するものであって良い。 In the illustrated example, a configuration in which a main motor, which is an electric motor, is provided as the drive source 20 of the compressor main body 10 is shown, but instead of this configuration, the drive source of the compressor main body 10 is used as an engine. However, as long as the compressor body 10 can be driven, it may be configured by various known drive sources other than the motor and the engine.

前述の供給流路40には,圧縮機本体より吐出された圧縮気体を消費側に供給する前に冷却する熱交換器(アフタクーラ)51と,この熱交換器51に対し冷却風を導入する冷却ファン52,前記冷却ファン52を駆動するファンモータ53,及び,前記ファンモータ53の回転速度を制御する制御装置54を備えた,本発明の圧縮気体冷却装置50が設けられている。 In the above-mentioned supply flow path 40, a heat exchanger (aftercooler) 51 that cools the compressed gas discharged from the compressor body before being supplied to the consumption side, and cooling that introduces cooling air into the heat exchanger 51 are cooled. The compressed gas cooling device 50 of the present invention is provided, which includes a fan 52, a fan motor 53 for driving the cooling fan 52, and a control device 54 for controlling the rotation speed of the fan motor 53.

〔圧縮機本体〕
図1及び図2に示す圧縮機1の構成要素のうち,前述の圧縮機本体10は,被圧縮気体を圧縮して圧縮気体を生成して消費側に供給することができるものであれば既知の各種構成のものが採用可能である。
[Compressor body]
Among the components of the compressor 1 shown in FIGS. 1 and 2, the compressor body 10 described above is known as long as it can compress the compressed gas to generate the compressed gas and supply it to the consumption side. Various configurations can be adopted.

図示の実施形態にあっては,この圧縮機本体10を,低圧段圧縮機11と,この低圧段圧縮機11によって得た圧縮気体を更に圧縮する高圧段圧縮機12,及び低圧段圧縮機11と高圧段圧縮機12間に設けられた中間熱交換器(インタークーラ)13を備えた二段型のオイルフリースクリュ圧縮機によって構成している。 In the illustrated embodiment, the compressor main body 10 is used as a low-pressure compressor 11, a high-pressure compressor 12 for further compressing the compressed gas obtained by the low-pressure compressor 11, and a low-pressure compressor 11. It is composed of a two-stage oil-free screw compressor equipped with an intermediate heat exchanger (intercooler) 13 provided between the high-pressure stage compressor 12 and the high-pressure stage compressor 12.

もっとも,圧縮機本体10の構造は,図1及び図2に示す二段式の構成に限定されず,単段構成としたものであっても良く,また,二段以上の多段に構成したものであっても良く,単段構成とした場合には,前述した中間熱交換器(インタークーラ)13はこれを省略することができ,また,二段以上の多段構成とした場合,各段の圧縮機間に中間熱交換器13を設ける構成としても良い。 However, the structure of the compressor main body 10 is not limited to the two-stage configuration shown in FIGS. 1 and 2, and may be a single-stage configuration or a multi-stage configuration of two or more stages. In the case of a single-stage configuration, the above-mentioned intermediate heat exchanger (intercooler) 13 can omit this, and in the case of a multi-stage configuration of two or more stages, each stage An intermediate heat exchanger 13 may be provided between the compressors.

また,図示の実施形態では圧縮作用空間内に冷却油の導入を必要としないオイルフリー式のスクリュ圧縮機によって圧縮機本体10を構成しているが,この構成に代えて,圧縮作用空間内に冷却油の導入を行う,油冷式のスクリュ圧縮機によって圧縮機本体10を構成する等,既知の各種構成が採用可能である。 Further, in the illustrated embodiment, the compressor main body 10 is configured by an oil-free screw compressor that does not require the introduction of cooling oil into the compression action space, but instead of this configuration, the compressor body 10 is formed in the compression action space. Various known configurations can be adopted, such as introducing cooling oil and configuring the compressor body 10 with an oil-cooled screw compressor.

このように圧縮機本体10を油冷式の構成とした場合には,吐出された圧縮気体より冷却油を分離するためのレシーバタンクやオイルセパレータ等を圧縮機本体の構成に含めるものとしても良い。 When the compressor main body 10 has an oil-cooled configuration as described above, a receiver tank, an oil separator, or the like for separating cooling oil from the discharged compressed gas may be included in the compressor main body configuration. ..

〔容量制御装置〕
前述した圧縮機本体10の吸気口,図示の例では圧縮機本体10を構成する低圧段圧縮機11の吸気口には,圧縮機本体10に対する被圧縮気体の吸気を制御する吸気制御弁31と,消費側に供給される圧縮気体の圧力に応じて前記吸気制御弁31の動作を制御する制御装置54を備えた容量制御装置30が設けられており,この容量制御装置30による容量制御によって消費側に所定の圧力の圧縮気体を供給することができるように構成されている。
[Capacity control device]
The intake port of the compressor body 10 described above, and in the illustrated example, the intake port of the low-pressure stage compressor 11 constituting the compressor body 10 is provided with an intake control valve 31 for controlling the intake of the compressed gas to the compressor body 10. A capacity control device 30 provided with a control device 54 that controls the operation of the intake control valve 31 according to the pressure of the compressed gas supplied to the consumption side is provided, and the capacity is consumed by the capacity control by the capacity control device 30. It is configured to be able to supply a compressed gas of a predetermined pressure to the side.

図示の実施形態においてこの容量制御装置30は,前述の吸気制御弁31と制御装置54の他に,逆止弁41の二次側の供給流路40に設けた圧力検知手段55を備え,前記圧力検知手段55からの検知信号に基づいて制御装置54が出力した制御信号に基づいて,比例制御弁等によって構成される吸気制御弁31の動作を制御できるように構成されている。 In the illustrated embodiment, the capacity control device 30 includes the pressure detecting means 55 provided in the supply flow path 40 on the secondary side of the check valve 41 in addition to the intake control valve 31 and the control device 54 described above. It is configured to be able to control the operation of the intake control valve 31 configured by the proportional control valve or the like based on the control signal output by the control device 54 based on the detection signal from the pressure detecting means 55.

これにより,圧力検知手段55が検知した逆止弁41二次側の供給流路40内の圧力Pdに応じ,供給流路40内の圧力Pdの低下時に吸気制御弁31を開くと共に,供給流路40内の圧力Pdが上昇して所定の目標圧力に近付き又は達すると吸気制御弁31を絞り又は閉じて圧縮機本体10の吸気量を制御することで,逆止弁41の二次側の供給流路内の圧力Pd,すなわち消費側に供給される圧縮気体の圧力が所定の目標圧力に近付くように制御する。 As a result, the intake control valve 31 is opened and the supply flow flows when the pressure Pd in the supply flow path 40 drops according to the pressure Pd in the supply flow path 40 on the secondary side of the check valve 41 detected by the pressure detecting means 55. When the pressure Pd in the path 40 rises and approaches or reaches a predetermined target pressure, the intake control valve 31 is throttled or closed to control the intake amount of the compressor main body 10, thereby controlling the intake amount of the check valve 41 on the secondary side. The pressure Pd in the supply flow path, that is, the pressure of the compressed gas supplied to the consumption side is controlled so as to approach a predetermined target pressure.

なお,図示の実施形態では,容量制御装置30の構成要素である制御装置54と圧力検知手段55を,本発明の圧縮気体冷却装置50の構成要素である制御装置54及び圧力検知手段55と共用することにより部品点数の減少を図っているが,容量制御装置30と圧縮気体冷却装置50は,独立した構成として設けるものとしても良い。 In the illustrated embodiment, the control device 54 and the pressure detecting means 55, which are the components of the capacity control device 30, are shared with the control device 54 and the pressure detecting means 55, which are the components of the compressed gas cooling device 50 of the present invention. Although the number of parts is reduced by doing so, the capacity control device 30 and the compressed gas cooling device 50 may be provided as independent configurations.

図2に示すように,圧縮機本体10を駆動するメインモータ20の回転速度を制御するインバータ21を備えたインバータ式の圧縮機を制御対象とする場合,前述の制御装置54には,吸気制御弁31の動作を制御させるだけでなく,インバータ21を制御して供給流路40内の圧力Pdの低下に対しメインモータ20の回転速度を増加させると共に,供給流路40内の圧力Pdの上昇に対しメインモータ20の回転速度を低下させる,圧縮機本体の回転速度制御についても行わせるようにしても良く,吸気制御と回転速度制御の併用により,消費側に供給する圧縮気体の圧力を目標圧力に近付ける前述の容量制御を行うようにしても良い。 As shown in FIG. 2, when an inverter type compressor provided with an inverter 21 for controlling the rotation speed of the main motor 20 for driving the compressor main body 10 is to be controlled, the above-mentioned control device 54 is used for intake control. Not only the operation of the valve 31 is controlled, but also the inverter 21 is controlled to increase the rotation speed of the main motor 20 in response to the decrease in the pressure Pd in the supply flow path 40, and the pressure Pd in the supply flow path 40 increases. On the other hand, the rotation speed of the compressor body may be controlled to reduce the rotation speed of the main motor 20, and the pressure of the compressed gas supplied to the consumption side is targeted by the combined use of intake control and rotation speed control. The above-mentioned capacity control that approaches the pressure may be performed.

このようにインバータ式の圧縮機を対象とする場合,前掲の特許文献2に記載の圧縮機のように,前述の目標圧力の設定を可変とするものとしても良い。 When the inverter type compressor is targeted as described above, the above-mentioned target pressure setting may be variable as in the compressor described in Patent Document 2 described above.

なお,容量制御装置30の構成は,図示の実施形態の構成に限定されず,既知の各種の構成のものが採用可能である。 The configuration of the capacity control device 30 is not limited to the configuration of the illustrated embodiment, and various known configurations can be adopted.

〔圧縮気体冷却装置〕
実施例1
以上のように構成された圧縮機1には,前述の圧縮機本体10によって生成された圧縮気体を冷却する,本発明の圧縮気体冷却装置50が設けられている。
[Compressed gas cooling device]
Example 1
The compressor 1 configured as described above is provided with the compressed gas cooling device 50 of the present invention for cooling the compressed gas generated by the compressor main body 10 described above.

この圧縮気体冷却装置50は,前述の供給流路40に設けられた熱交換器(アフタクーラ)51と,この熱交換器(アフタクーラ)51に対し冷却風を導入する冷却ファン52,前記冷却ファン52を駆動するファンモータ53,前記熱交換器51の一次側において前記供給流路40内の温度Tdを検知する温度検知手段56,前記逆止弁41の二次側における前記供給流路40内の圧力Pdを検知する圧力検知手段55,及び前記温度検知手段56の検知信号と圧力検知手段55の検知信号に基づいて,ファンモータ53に供給する電力を制御して前記ファンモータ53の回転速度を制御する制御装置54を備える。 The compressed gas cooling device 50 includes a heat exchanger (aftercooler) 51 provided in the above-mentioned supply flow path 40, a cooling fan 52 that introduces cooling air into the heat exchanger (aftercooler) 51, and the cooling fan 52. 53, a temperature detecting means 56 for detecting the temperature Td in the supply flow path 40 on the primary side of the heat exchanger 51, and the supply flow path 40 on the secondary side of the check valve 41. Based on the detection signal of the pressure detecting means 55 for detecting the pressure Pd and the detection signal of the temperature detecting means 56 and the detection signal of the pressure detecting means 55, the power supplied to the fan motor 53 is controlled to control the rotation speed of the fan motor 53. A control device 54 for controlling is provided.

なお,図1及び図2に示すように,圧縮機本体10を,中間熱交換器(インタークーラ)13を備えた多段式の構成とした場合には,中間熱交換器(インタークーラ)13を供給流路40に設けた熱交換器(アフタクーラ)51と共に,共通のシェラウド60内に配置するなどして,冷却ファン52からの冷却風を,供給流路40に設けた熱交換器(アフタクーラ)51だけでなく,中間熱交換器(インタクーラ)13に対しても導入できるようにしても良い。 As shown in FIGS. 1 and 2, when the compressor main body 10 has a multi-stage configuration including an intermediate heat exchanger (intercooler) 13, the intermediate heat exchanger (intercooler) 13 is used. The heat exchanger (aftercooler) provided in the supply flow path 40 is provided with the cooling air from the cooling fan 52 by arranging it in a common shroud 60 together with the heat exchanger (aftercooler) 51 provided in the supply flow path 40. It may be possible to introduce it not only to the 51 but also to the intermediate heat exchanger (intercooler) 13.

また,本発明の圧縮気体冷却装置50の構成要素である圧力検知手段55や制御装置54は,前述したように容量制御装置30の構成要素である圧力検知手段及び制御装置と共用する構成としても良く,また,温度検知手段56も圧縮機1に安全装置として設けられている,非常停止用の温度検知手段(異常温度検知用)のものと共用する等して部品点数の増加によるコスト増を抑制するものとしても良い。 Further, the pressure detecting means 55 and the control device 54, which are the components of the compressed gas cooling device 50 of the present invention, may be shared with the pressure detecting means and the control device, which are the components of the capacity control device 30, as described above. Also, the temperature detecting means 56 is shared with the temperature detecting means for emergency stop (for abnormal temperature detection) provided as a safety device in the compressor 1, and the cost increases due to the increase in the number of parts. It may be suppressed.

また,図示の実施例にあっては,前述のファンモータ53を三相交流モータによって構成すると共に,ファンモータ53用のインバータ57を設け,制御装置54からの制御信号によってインバータ57よりファンモータ53に供給される電力の周波数を制御してファンモータ53の回転速度を制御できるようにしている。 Further, in the illustrated embodiment, the above-mentioned fan motor 53 is configured by a three-phase AC motor, an inverter 57 for the fan motor 53 is provided, and the fan motor 53 is connected to the fan motor 53 by a control signal from the control device 54. The rotation speed of the fan motor 53 can be controlled by controlling the frequency of the electric power supplied to the inverter.

しかし,ファンモータ53の回転速度制御はこの構成に限定されず,例えばファンモータ53をDCモータによって構成し,制御装置54が直流電源よりファンモータ53に供給される電流値を変化させることでファンモータ53の回転速度を変化させるようにしても良く,ファンモータ53の回転速度,従って,冷却ファン52によって熱交換器51に導入される冷却風量を変化させることができるものであれば,既知の各種構成を採用することが可能できる。 However, the rotation speed control of the fan motor 53 is not limited to this configuration. For example, the fan motor 53 is configured by a DC motor, and the control device 54 changes the current value supplied to the fan motor 53 from the DC power supply to change the fan. The rotational speed of the motor 53 may be changed, and is known as long as the rotational speed of the fan motor 53, and therefore the amount of cooling air introduced into the heat exchanger 51 by the cooling fan 52, can be changed. Various configurations can be adopted.

このファンモータ53の回転速度は,前述の圧力検知手段55が検知した供給流路40内の圧力Pdと前述の温度検知手段56が検知した供給流路40内の温度Tdに基づいて,制御装置54により,図3にフローチャートで示すように,以下の手順に従って行われる。 The rotation speed of the fan motor 53 is a control device based on the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55 and the temperature Td in the supply flow path 40 detected by the temperature detecting means 56. According to 54, as shown in the flowchart in FIG. 3, the procedure is as follows.

制御装置40は,温度検知手段56及び圧力検知手段55からの検知信号を受信すると(S1-1),圧力検知手段55が検知した供給流路40内の圧力Pdに基づき,検知された圧力Pdに対応したファンモータ53の回転速度制御の基準となる対応温度域TL-THを算出する(S1-2)。 When the control device 40 receives the detection signals from the temperature detecting means 56 and the pressure detecting means 55 (S1-1), the pressure Pd detected based on the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55. The corresponding temperature range TL-TH, which is the reference for the rotation speed control of the fan motor 53 corresponding to the above, is calculated (S1-2).

圧力検知手段55が検知した供給流路40内の圧力Pdに基づく前記対応温度域TL-THの算出(S1-2)は,対応温度域TL-THの下限値TLと上限値THが,前記供給流路40内の圧力Pdの増加に対し増加するように行われる。 In the calculation (S1-2) of the corresponding temperature range TL-TH based on the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55, the lower limit value TL and the upper limit value TH of the corresponding temperature range TL-TH are described above. It is performed so as to increase with increasing pressure Pd in the supply flow path 40.

このような対応温度域TL-THの下限値TL及び上限値THの算出は,一例として,供給流路内の圧力Pdがゲージ圧0.0MPaのときに適用される対応温度域TL-THの下限値を基準下限値TL0,上限値を基準上限値TH0として,
下記の式1により,前記供給流路40内の圧力Pdに,予め設定した下限値TL用の増加率IRLを乗算して得た加算値を,前記基準下限値TL0に加算することにより,検知された供給流路40内の圧力Pdに対応した下限値TLを求め,また,下記の式2により,前記供給流路内の圧力Pdに,予め設定した前記上限値TH用の増加率IRHを乗算して得た加算値を,前記基準上限値TH0に加算することにより,検知された供給流路40内の圧力Pdに対応した上限値THを求めることができる。
[式1]TL=IRL×Pd+TL0
[式2]TH=IRH×Pd+TH0
The calculation of the lower limit value TL and the upper limit value TH of the corresponding temperature range TL-TH is, for example, the corresponding temperature range TL-TH applied when the pressure Pd in the supply flow path is the gauge pressure 0.0 MPa. The lower limit is the reference lower limit TL0, and the upper limit is the reference upper limit TH0.
Detection is performed by adding the added value obtained by multiplying the pressure Pd in the supply flow path 40 by the preset lower limit value TL increase rate IRL to the reference lower limit value TL0 according to the following equation 1. The lower limit value TL corresponding to the pressure Pd in the supply flow path 40 is obtained, and the increase rate IRH for the upper limit value TH set in advance is set to the pressure Pd in the supply flow path by the following equation 2. By adding the added value obtained by multiplication to the reference upper limit value TH0, the upper limit value TH corresponding to the detected pressure Pd in the supply flow path 40 can be obtained.
[Equation 1] TL = IRL x Pd + TL0
[Equation 2] TH = IRH × Pd + TH0

本実施例では,一例として基準下限値TL0を80℃,基準上限値TH0を90℃とし,下限値TLの増加率IRLと,上限値THの増加率IRHを,いずれも同一値で,かつ,供給流路40内の圧力Pdの変化によっても変化しない一定値(一例として100)として設定している。 In this embodiment, as an example, the reference lower limit value TL0 is set to 80 ° C., the reference upper limit value TH0 is set to 90 ° C., and the increase rate IRL of the lower limit value TL and the increase rate IRH of the upper limit value TH are both the same value. It is set as a constant value (100 as an example) that does not change even if the pressure Pd in the supply flow path 40 changes.

この例における供給流路40内の圧力Pdの変化に対する対応温度域TL-THの変化(下限値TL及び上限値THの変化)を図4に,このうち,供給流路40内の圧力Pdが0.4MPa,0.5MPa,及び0.7MPaであるときの対応温度域TL-TH(下限値TL及び上限値TH)の算出値を下記の表1に示す。 The change in the temperature range TL-TH (change in the lower limit value TL and the upper limit value TH) corresponding to the change in the pressure Pd in the supply flow path 40 in this example is shown in FIG. The calculated values of the corresponding temperature range TL-TH (lower limit value TL and upper limit value TH) at 0.4 MPa, 0.5 MPa, and 0.7 MPa are shown in Table 1 below.

Figure 2022041737000002
Figure 2022041737000002

このようにして,圧力検知手段55が検知した供給流路40内の圧力Pdに基づいて,この圧力Pdにおける対応温度域TL-THが算出されると,制御装置54は,求めた対応温度域TL-THと温度検知手段56が検知した供給流路40内の温度Tdを比較する(S1-3)。 In this way, when the corresponding temperature range TL-TH in this pressure Pd is calculated based on the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55, the control device 54 determines the corresponding temperature range. The temperature Td in the supply flow path 40 detected by the TL-TH and the temperature detecting means 56 is compared (S1-3).

この比較の結果,供給流路40内の温度Tdが,前述の対応温度域TL-THの下限値TL未満(Td<TL)であるとき前記冷却ファン52を所定の最低回転速度FLで運転する(S1-4)。 As a result of this comparison, when the temperature Td in the supply flow path 40 is less than the lower limit value TL (Td <TL) of the corresponding temperature range TL-TH described above, the cooling fan 52 is operated at a predetermined minimum rotation speed FL. (S1-4).

また,供給流路40内の温度Tdが,前述の対応温度域TL-THの上限値THを超えているときTH<Tdには,前記冷却ファン52を前記最高回転速度FHで運転する(S1-5)。 Further, when the temperature Td in the supply flow path 40 exceeds the upper limit value TH of the corresponding temperature range TL-TH described above, the cooling fan 52 is operated at the maximum rotation speed FH when TH <Td (S1). -5).

更に,供給流路40内の温度Tdが,前述の対応温度域TL-THの範囲内であるとき(TL≦Td≦TH),予め設定された対応関係,一例として下記の式3に示した対応関係に従い,前記供給流路40内の温度Tdに応じて前記最低回転速度FLと前記最高回転速度FH間で前記冷却ファン52の回転速度を増減させる(S1-6)。
[式3]F=(FH-FL)/(TH-TL)×(Td-TL)+FL
Further, when the temperature Td in the supply flow path 40 is within the range of the above-mentioned corresponding temperature range TL-TH (TL ≦ Td ≦ TH), a preset correspondence relationship is shown in the following equation 3 as an example. According to the correspondence relationship, the rotation speed of the cooling fan 52 is increased or decreased between the minimum rotation speed FL and the maximum rotation speed FH according to the temperature Td in the supply flow path 40 (S1-6).
[Equation 3] F = (FH-FL) / (TH-TL) × (Td-TL) + FL

前掲の表1に示した対応温度域TL-THの下限値TL及び上限値THの計算結果に基づき,供給流路40内の圧力Pdがそれぞれ0.4MPa,0.5MPa,及び0.7MPaであるときの供給流路内の温度Tdの変化に対するファンモータ53の回転速度(インバータの出力周波数)の変化を図5に示す。 Based on the calculation results of the lower limit TL and upper limit TH of the corresponding temperature range TL-TH shown in Table 1 above, the pressures Pd in the supply flow path 40 are 0.4 MPa, 0.5 MPa, and 0.7 MPa, respectively. FIG. 5 shows a change in the rotation speed (output frequency of the inverter) of the fan motor 53 with respect to a change in the temperature Td in the supply flow path at a certain time.

このように,本発明の圧縮気体冷却装置50を備えた圧縮機では,供給流路40内の温度Tdが前述の対応温度域TL-THの範囲内にあるとき,供給流路40内の温度Tdの変化に応じて熱交換器51に導入する冷却風量を変化させることで,供給流路40内の温度が低く冷却の必要性が小さいときには冷却風量を減少させることで,過冷却の発生を防止しつつ,ファンモータ53の消費電力を低減して省エネを図ることができると共に,冷却ファン52の風切り音が減少することで,作動時の静音性を得ることができる。 As described above, in the compressor provided with the compressed gas cooling device 50 of the present invention, when the temperature Td in the supply flow path 40 is within the range of the corresponding temperature range TL-TH described above, the temperature in the supply flow path 40 is reached. By changing the amount of cooling air introduced into the heat exchanger 51 according to the change in Td, the amount of cooling air is reduced when the temperature in the supply flow path 40 is low and the need for cooling is small, thereby causing overcooling. While preventing this, the power consumption of the fan motor 53 can be reduced to save energy, and the wind noise of the cooling fan 52 can be reduced, so that quietness during operation can be obtained.

しかも,前述の対応温度域TL-THの下限値TLと上限値THを,図4に示すように供給流路内の圧力Pdの上昇に応じて上昇するように変化させる構成としたことで,消費側において圧縮気体の消費が行われることで供給流路40内の圧力Pdが低下し,容量制御装置30によって吸気制御弁31が開かれて圧縮機本体10が圧縮気体を生成している状態,すなわち,供給流路40に設けた熱交換器51内を大量の圧縮気体が通過している状態では,供給流路40内の温度Tdが相対的に低い状態から冷却風の導入量が増大されるように構成されていることで,熱交換器51を通過する多量の圧縮気体を好適に冷却することができる。 Moreover, as shown in FIG. 4, the lower limit value TL and the upper limit value TH of the corresponding temperature range TL-TH described above are changed so as to increase according to the increase of the pressure Pd in the supply flow path. A state in which the pressure Pd in the supply flow path 40 drops due to the consumption of the compressed gas on the consumption side, the intake control valve 31 is opened by the capacity control device 30, and the compressor main body 10 generates the compressed gas. That is, in a state where a large amount of compressed gas is passing through the heat exchanger 51 provided in the supply flow path 40, the amount of cooling air introduced increases from the state where the temperature Td in the supply flow path 40 is relatively low. It is possible to suitably cool a large amount of compressed gas passing through the heat exchanger 51.

一方,消費側における圧縮気体の消費量が減少し,又は,圧縮気体の消費が停止して,供給流路40内の圧力が上昇し,圧縮機本体10の吸気口が閉ざされて圧縮気体の生成量が減少,又は圧縮気体の生成が停止した状態,すなわち,熱交換器51内を通過する圧縮気体量が減少し,又は熱交換器51を通過する圧縮気体量がゼロとなった状態では,供給流路40内の温度Tdが相対的に高い温度となるまで熱交換器51に対し導入する冷却風量を増量しない構成となっており,これにより熱交換器51の過冷却による破損の発生などが好適に防止されている。 On the other hand, the consumption of the compressed gas on the consumption side decreases, or the consumption of the compressed gas stops, the pressure in the supply flow path 40 rises, the intake port of the compressor main body 10 is closed, and the compressed gas becomes available. When the amount of gas produced has decreased or the production of compressed gas has stopped, that is, when the amount of compressed gas passing through the heat exchanger 51 has decreased or the amount of compressed gas passing through the heat exchanger 51 has become zero. The configuration is such that the amount of cooling air introduced into the heat exchanger 51 is not increased until the temperature Td in the supply flow path 40 becomes a relatively high temperature, which causes damage due to overcooling of the heat exchanger 51. Etc. are preferably prevented.

また,消費側において冷凍式ドライヤ(図示せず)を設ける場合には,圧縮気体の過冷却が防止されることで供給流路40内の温度Td,すなわち冷凍式ドライヤの入口空気温度が所定の温度以上に保たれるため,冷凍式ドライヤ配管内の凍結の発生についても好適に防止できる。 When a freezing dryer (not shown) is provided on the consumption side, the temperature Td in the supply flow path 40, that is, the inlet air temperature of the freezing dryer is predetermined by preventing supercooling of the compressed gas. Since the temperature is kept above the temperature, it is possible to suitably prevent the occurrence of freezing in the freezing dryer pipe.

実施例2
実施例1として紹介した例では,対応温度域TL-THの下限値TLの増加率IRLと上限値THの増加率IRHを同じ値で,かつ,供給流路の圧力Pdの変化によって変化しない一定値(一例として「100」)とする構成例について説明した。
Example 2
In the example introduced as Example 1, the increase rate IRL of the lower limit value TL and the increase rate IRH of the upper limit value TH in the corresponding temperature range TL-TH are the same value, and are constant and do not change due to the change of the pressure Pd of the supply flow path. A configuration example using a value (“100” as an example) has been described.

これに対し,本実施例(実施例2)では,供給流路内の圧力Pdがとり得る圧力範囲を所定の数値範囲毎に分割し,分割した数値範囲毎に対応温度域TL-THの下限値TL及び上限値THの増加率IRL,IRHをそれぞれ異なる数値に設定しており,本実施例では,供給流路40内の圧力Pdの上昇に伴い,増加率IRL,IRHも上昇するように設定した。 On the other hand, in this embodiment (Example 2), the pressure range that the pressure Pd in the supply flow path can take is divided into predetermined numerical ranges, and the lower limit of the corresponding temperature range TL-TH is divided for each divided numerical range. The increase rates IRL and IRH of the value TL and the upper limit value TH are set to different values, and in this embodiment, the increase rates IRL and IRH also increase as the pressure Pd in the supply flow path 40 increases. I set it.

このような構成例として,本実施例では一例として基準下限値TL0を80℃,基準上限値を90℃とし,下限値TLの増加率IRLと,上限値THの増加率IRLを,いずれも同一値とするが,供給流路内の圧力Pdが0.4MPa以下(Pd≦0.4MPa)のときの増加率IRL,IRHをいずれも「50」としたのに対し,供給流路内の圧力Pdが0.4MPaを超えたとき(Pd>0.4MPa)の増加率IRL,IRHをいずれも2倍の「100」に増加するように構成した。 As such a configuration example, in this embodiment, as an example, the reference lower limit value TL0 is set to 80 ° C., the reference upper limit value is set to 90 ° C., and the increase rate IRL of the lower limit value TL and the increase rate IRL of the upper limit value TH are the same. As a value, when the pressure Pd in the supply flow path is 0.4 MPa or less (Pd ≤ 0.4 MPa), the increase rate IRL and IRH are both set to "50", whereas the pressure in the supply flow path is set to "50". When Pd exceeded 0.4 MPa (Pd> 0.4 MPa), the rate of increase IRL and IRH were both doubled to "100".

この例における,供給流路40内の圧力Pdの変化に対する対応温度域TL-TH(下限値TL及び上限値TH)の変化を図6に示す。 FIG. 6 shows the change of the corresponding temperature range TL-TH (lower limit value TL and upper limit value TH) with respect to the change of the pressure Pd in the supply flow path 40 in this example.

また,このうち,供給流路内の圧力Pdが0.4MPa,0.5MPa,0.7MPaであるときの下限値TL及び上限値THを算出した結果を表2に示す。 Table 2 shows the results of calculating the lower limit value TL and the upper limit value TH when the pressures Pd in the supply flow path are 0.4 MPa, 0.5 MPa, and 0.7 MPa.

更に,表2に示した下限値TLと上限値THの計算結果に基づく,供給流路40内の温度Tdの変化に対するファンモータ53の回転速度(インバータの出力周波数)の変化を図7に示す。 Further, FIG. 7 shows a change in the rotation speed (inverter output frequency) of the fan motor 53 with respect to a change in the temperature Td in the supply flow path 40 based on the calculation results of the lower limit value TL and the upper limit value TH shown in Table 2. ..

Figure 2022041737000003
Figure 2022041737000003

本実施例では,供給流路内の圧力Pdが0.4MPa以下(Pd≦0.4MPa)と低い状態では,図4を参照して説明した実施例に比較してより低い温度から冷却風量を増大させることができるようになっており,例えば目標圧力の設定を変更可能としたインバータ駆動型の圧縮機のように,目標圧力の設定を下げて低圧の圧縮気体の生成量が増大している圧縮機等に対し適用した場合であっても,好適に冷却を行うことができる。 In this embodiment, when the pressure Pd in the supply flow path is as low as 0.4 MPa or less (Pd ≦ 0.4 MPa), the cooling air volume is increased from a lower temperature than in the embodiment described with reference to FIG. It can be increased, for example, as in the case of an inverter-driven compressor that can change the target pressure setting, the target pressure setting is lowered and the amount of low-pressure compressed gas generated is increasing. Even when applied to a compressor or the like, cooling can be suitably performed.

実施例3
以上で実施例1,実施例2として説明した構成例では,いずれも対応温度域TL-THの下限値TLの増加率IRLと上限値THの増加率IRHが同一値に設定されおり,従って,供給流路40内の圧力Pdが変化しても,対応温度域TL-THの幅,すなわち,下限値TLと上限値THの差が一定(10℃)で変化しない構成となっていた。
Example 3
In the configuration examples described above as Example 1 and Example 2, the increase rate IRL of the lower limit value TL of the corresponding temperature range TL-TH and the increase rate IRH of the upper limit value TH are set to the same value. Therefore, Even if the pressure Pd in the supply flow path 40 changes, the width of the corresponding temperature range TL-TH, that is, the difference between the lower limit value TL and the upper limit value TH does not change at a constant level (10 ° C.).

これに対し,本実施例(実施例3)では,基準下限値TL0を80℃,基準上限値を90℃とする点では前述の実施例1及び実施例2と同様であるが,供給流路内の圧力Pdが0.4MPa以下(Pd≦0.4MPa)のときの下限値TLの増加率IRLを「50」,上限値THの増加率IRLを「75」と異なる値に設定した。 On the other hand, in this embodiment (Example 3), the reference lower limit value TL0 is set to 80 ° C. and the reference upper limit value is set to 90 ° C., which is the same as in the above-mentioned Examples 1 and 2, but the supply flow path. When the internal pressure Pd was 0.4 MPa or less (Pd ≦ 0.4 MPa), the increase rate IRL of the lower limit value TL was set to “50”, and the increase rate IRL of the upper limit value TH was set to a value different from “75”.

なお,本実施例でも,供給流路内の圧力Pdが0.4MPaを超えたとき(Pd>0.4MPa)のときの下限値TLの増加率IRLと上限値THの増加率IRHをいずれも同一の「100」として設定した点は,前述した実施例1及び実施例2と同様であるが,Pd>0.4MPaの範囲においても,下限値TLの増加率IRLと上限値THの増加率IRHを異なる値に設定しても良い。 Also in this embodiment, both the lower limit value TL increase rate IRL and the upper limit value TH increase rate IRH when the pressure Pd in the supply flow path exceeds 0.4 MPa (Pd> 0.4 MPa). The point set as the same "100" is the same as in Example 1 and Example 2 described above, but even in the range of Pd> 0.4 MPa, the increase rate of the lower limit value TL and the increase rate of the upper limit value TH. IRH may be set to a different value.

この構成例における供給流路40内の圧力Pdの変化に対する対応温度域TL-THの変化を図8に示す。 FIG. 8 shows the change in the temperature range TL-TH corresponding to the change in the pressure Pd in the supply flow path 40 in this configuration example.

また,このうちの供給流路内の圧力Pdが0.4MPa,0.5MPa,0.7MPaであるときの下限値TL及び上限値THを算出した結果を表3に示す。 Table 3 shows the results of calculating the lower limit value TL and the upper limit value TH when the pressures Pd in the supply flow path are 0.4 MPa, 0.5 MPa, and 0.7 MPa.

更に,表3で求めた下限値TL及び上限値THを使用して,式3に基づき求められる,供給流路内の圧力Pdが0.4MPa,0.5MPa,0.7MPaであるときの供給流路40内の温度Tdの変化に対するファンモータの回転速度(インバータの出力周波数)の変化の関係を図9に示す。 Further, using the lower limit value TL and the upper limit value TH obtained in Table 3, the supply when the pressure Pd in the supply flow path is 0.4 MPa, 0.5 MPa, 0.7 MPa, which is obtained based on Equation 3. FIG. 9 shows the relationship between the change in the rotation speed of the fan motor (the output frequency of the inverter) and the change in the temperature Td in the flow path 40.

Figure 2022041737000004
Figure 2022041737000004

このように,本実施例(実施例3)では,所定の圧力範囲毎(Pd≦0.4MPaの範囲と,Pd>0.4MPaの範囲毎)に,供給流路内の温度Tdの変化に対するファンモータの回転速度の変化の傾きを異ならせる設定とすることができ,圧縮機毎の特性に対応した冷却状態に設定することができる。 As described above, in this embodiment (Example 3), the temperature Td in the supply flow path is changed for each predetermined pressure range (Pd ≦ 0.4 MPa range and Pd> 0.4 MPa range). The inclination of the change in the rotation speed of the fan motor can be set to be different, and the cooling state can be set according to the characteristics of each compressor.

実施例4
以上で説明した実施例1~3は,いずれも圧力検知手段55が検知した供給流路40内の圧力Pdの継続的な変化に対し,対応温度域TL-THも継続的に変化するように構成した。
Example 4
In Examples 1 to 3 described above, the corresponding temperature range TL-TH also continuously changes with respect to the continuous change of the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55. Configured.

これに対し,本実施例(実施例4)では,供給流路内の圧力Pdが取り得る圧力範囲を所定の数値範囲毎に複数に分割し,分割した数値範囲毎に,該数値範囲の圧力Pdに対し共通して適用される対応温度域TL-THを設定する構成とした。 On the other hand, in this embodiment (Example 4), the pressure range that can be taken by the pressure Pd in the supply flow path is divided into a plurality of values for each predetermined numerical range, and the pressure in the numerical range is divided for each numerical range. The configuration is such that the corresponding temperature range TL-TH, which is commonly applied to Pd, is set.

一例として,本実施形態では,供給流路40内の圧力Pdが取り得る圧力範囲を,Pd≦0.4MPa,0.4MPa<Pd<0.6MPa,及び0.6MPa≦Pdの3つの範囲に分割し,数値範囲毎に前述の対応温度域TL-THを下記の表4の通りに設定した。 As an example, in the present embodiment, the pressure range that the pressure Pd in the supply flow path 40 can take is set to three ranges of Pd ≦ 0.4 MPa, 0.4 MPa <Pd <0.6 MPa, and 0.6 MPa ≦ Pd. It was divided and the corresponding temperature range TL-TH described above was set as shown in Table 4 below for each numerical range.

Figure 2022041737000005
Figure 2022041737000005

本実施例(実施例4)における制御装置54による処理手順を図10に示すフローチャートに基づいて説明する。 The processing procedure by the control device 54 in the present embodiment (Example 4) will be described with reference to the flowchart shown in FIG.

制御装置54が温度検知手段56及び圧力検知手段55からの検知信号を受信すると(S2-1),制御装置54は,圧力検知手段55が検知した供給流路40内の圧力Pdが,Pd≦0.4MPa,0.4MPa<Pd<0.6MPa,及び0.6MPa≦Pdのいずれの範囲にあるかを判断する(S2-2)。 When the control device 54 receives the detection signals from the temperature detecting means 56 and the pressure detecting means 55 (S2-1), the control device 54 changes the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55 to Pd ≦. It is determined in which range of 0.4MPa, 0.4MPa <Pd <0.6MPa, and 0.6MPa ≦ Pd (S2-2).

そして,制御装置54は前掲の表4に従い,供給流路40内の圧力PdがPd≦0.4MPaの範囲にあると判断すると前述の対応温度域TL-THを100-120℃に設定し(S2-3),供給流路内の圧力Pdが0.4MPa<Pd<0.6MPaの範囲にあると判断すると前述の対応温度域TL-THを130-140℃に設定し(S2-4),供給流路内の圧力Pdが0.6MPa≦Pdの範囲にあると判断すると前述の対応温度域TL-THを150-160℃に設定する(S2-5)。 Then, according to Table 4 above, the control device 54 determines that the pressure Pd in the supply flow path 40 is in the range of Pd ≦ 0.4 MPa, and sets the above-mentioned corresponding temperature range TL-TH to 100-120 ° C. ( S2-3) If it is determined that the pressure Pd in the supply flow path is in the range of 0.4 MPa <Pd <0.6 MPa, the above-mentioned corresponding temperature range TL-TH is set to 130-140 ° C. (S2-4). If it is determined that the pressure Pd in the supply flow path is in the range of 0.6 MPa ≦ Pd, the above-mentioned corresponding temperature range TL-TH is set to 150-160 ° C. (S2-5).

このようにして,圧力検知手段55が検知した供給流路40内の圧力Pdに基づいて,この圧力Pdに対応する対応温度域TL-THが決定されると,制御装置は,決定された対応温度域TL-THの下限値TL及び上限値THと温度検知手段が検知した供給流路内の温度Tdを比較する(S2-6)。 In this way, when the corresponding temperature range TL-TH corresponding to this pressure Pd is determined based on the pressure Pd in the supply flow path 40 detected by the pressure detecting means 55, the control device determines the determined response. The lower limit value TL and the upper limit value TH of the temperature range TL-TH are compared with the temperature Td in the supply flow path detected by the temperature detecting means (S2-6).

この比較の結果,供給流路内の温度Tdが,前述の対応温度域TL-THの下限値TL未満であるとき前記冷却ファン52を所定の最低回転速度FLで運転する(S2-7)。 As a result of this comparison, when the temperature Td in the supply flow path is less than the lower limit value TL of the corresponding temperature range TL-TH described above, the cooling fan 52 is operated at a predetermined minimum rotation speed FL (S2-7).

また,供給流路40内の温度Tdが,前述の対応温度域TL-THの上限値THを超えているときには,前記冷却ファン52を前記最高回転速度FHで運転する(S2-8)。 Further, when the temperature Td in the supply flow path 40 exceeds the upper limit value TH of the corresponding temperature range TL-TH described above, the cooling fan 52 is operated at the maximum rotation speed FH (S2-8).

更に,供給流路40内の温度Tdが,前述の対応温度域TL-THの範囲内であるとき,予め設定された対応関係,一例として前掲の式3に従い,前記供給流路40内の温度Tdに応じて前記最低回転速度FLと前記最高回転速度FH間で前記冷却ファンの回転速度を増減させる(S2-9)。 Further, when the temperature Td in the supply flow path 40 is within the range of the corresponding temperature range TL-TH described above, the temperature in the supply flow path 40 is according to a preset correspondence relationship, for example, the above-mentioned equation 3. The rotation speed of the cooling fan is increased or decreased between the minimum rotation speed FL and the maximum rotation speed FH according to Td (S2-9).

この例において,供給流路40内の圧力PdがPd≦0.4MPaの範囲内にあるとき,0.4MPa<Pd<0.6MPaの範囲内にあるとき,及び,0.6MPa≦Pdの範囲内にあるときのそれぞれの供給流路内の温度Tdの変化に対するファンモータの回転速度(インバータの出力周波数)の変化を図11に示す。 In this example, when the pressure Pd in the supply flow path 40 is in the range of Pd ≦ 0.4 MPa, when it is in the range of 0.4 MPa <Pd <0.6 MPa, and in the range of 0.6 MPa ≦ Pd. FIG. 11 shows the change in the rotation speed (output frequency of the inverter) of the fan motor with respect to the change in the temperature Td in each supply flow path when it is inside.

本実施例の構成例においても,供給流路40内の圧力Pdや供給流路40内の温度に基づいて適切に圧縮気体の冷却を行えるだけでなく,制御装置54に計算を行わせることなく対応温度域TL-THを決定することができることから,制御装置54の構成(プログラム)を容易に行うことができる。 Also in the configuration example of this embodiment, not only the compressed gas can be appropriately cooled based on the pressure Pd in the supply flow path 40 and the temperature in the supply flow path 40, but also the control device 54 does not have to perform the calculation. Since the corresponding temperature range TL-TH can be determined, the configuration (program) of the control device 54 can be easily performed.

しかも,計算式によらず,供給流路40内の圧力Pdの対応温度域TL-THを適宜設定することができるため,例えば前述した目標圧力の設定が可能なインバータ駆動式の圧縮機であって,目標圧力の設定毎に特性が変化等する圧縮機に対しても最適に圧縮気体の冷却を行うことができる。 Moreover, since the corresponding temperature range TL-TH of the pressure Pd in the supply flow path 40 can be appropriately set regardless of the calculation formula, for example, it is an inverter-driven compressor capable of setting the target pressure described above. Therefore, the compressed gas can be optimally cooled even for a compressor whose characteristics change each time the target pressure is set.

1 圧縮機
10 圧縮機本体
11 低圧段圧縮機
12 高圧段圧縮機
13 中間熱交換器(インタークーラ)
20 駆動源(メインモータ)
21 インバータ
30 容量制御装置
31 吸気制御弁
40 供給流路
41 逆止弁
50 圧縮気体冷却装置
51 熱交換器(アフタクーラ)
52 冷却ファン
53 ファンモータ
54 制御装置
55 圧力検知手段
56 温度検知手段
57 ファンモータ用インバータ
60 シェラウド
100 圧縮機
110 圧縮機本体
131 吸気制御弁
151 熱交換器(アフタクーラ)
152 冷却ファン
154 制御装置
155 圧力検知手段
Pd 供給流路内の圧力
Td 供給流路内の温度
TL-TH 対応温度域
TL 対応温度域の下限値
TH 対応温度域の上限値
F 冷却ファンの回転速度
FL 冷却ファンの最低回転速度
FH 冷却ファンの最高回転速度
IRL 対応温度域の下限値の増加率
IRH 対応温度域の上限値の増加率
TL0 基準下限値
TH0 基準上限値

1 Compressor 10 Compressor body 11 Low-pressure stage compressor 12 High-pressure stage compressor 13 Intermediate heat exchanger (intercooler)
20 Drive source (main motor)
21 Inverter 30 Capacity control device 31 Intake control valve 40 Supply flow path 41 Check valve 50 Compressed gas cooling device 51 Heat exchanger (aftercooler)
52 Cooling fan 53 Fan motor 54 Control device 55 Pressure detecting means 56 Temperature detecting means 57 Inverter for fan motor 60 Shellaud 100 Compressor 110 Compressor body 131 Intake control valve 151 Heat exchanger (aftercooler)
152 Cooling fan 154 Control device 155 Pressure detection means Pd Pressure in the supply flow path Td Temperature in the supply flow path TL-TH Corresponding temperature range TL Corresponding temperature range Lower limit TH Corresponding temperature range upper limit F Cooling fan rotation speed FL Minimum rotation speed of cooling fan FH Maximum rotation speed of cooling fan Increase rate of lower limit of IRL compatible temperature range Increase rate of upper limit value of IRH compatible temperature range TL0 Reference lower limit value TH0 Reference upper limit value

Claims (16)

圧縮気体を生成する圧縮機本体と,前記圧縮機本体の吸気口を開閉制御する吸気制御弁と,前記圧縮機本体の吐出口から消費側に至る供給流路と,前記供給流路に設けた逆止弁とを備え,前記吸気制御弁による吸気量の制御によって,前記消費側に供給される圧縮気体の圧力が所定の目標圧力に近づくよう制御する容量制御型の圧縮機において,
前記供給流路を通過する圧縮気体を冷却する熱交換器と,前記熱交換器に対し冷却風を導入する冷却ファンとを設け,
前記逆止弁の二次側における前記供給流路内の圧力(Pd)に基づいて決定される所定の対応温度域(TL-TH)の下限値(TL)及び上限値(TH)と,前記熱交換器の一次側かつ前記逆止弁の一次側における前記供給流路内の温度(Td)とを比較し,
前記供給流路内の温度(Td)が,前記対応温度域の前記下限値(TL)未満であるとき前記冷却ファンを所定の最低回転速度(FL)で運転し,
前記供給流路内の温度(Td)が,前記対応温度域(TL-TH)の前記上限値(TH)を超えるとき前記冷却ファンを所定の最高回転速度(FH)で運転し,
前記供給流路内の温度(Td)が,前記対応温度域(TL-TH)の範囲内であるとき,予め設定した前記供給流路内の温度(Td)と前記冷却ファンの回転速度(F)の対応関係に従い,前記最低回転速度(FL)と前記最高回転速度(FH)間において前記供給流路内の温度(Td)の上昇に従い前記冷却ファンの回転速度(F)を上昇させると共に,前記供給流路内の温度(Td)の下降に従い前記冷却ファンの回転速度(F)を下降させることを特徴とする圧縮機における圧縮気体の冷却方法。
The compressor body that generates compressed gas, the intake control valve that controls the opening and closing of the intake port of the compressor body, the supply flow path from the discharge port of the compressor body to the consumption side, and the supply flow path are provided. In a capacity-controlled compressor equipped with a check valve and controlling the pressure of the compressed gas supplied to the consumption side to approach a predetermined target pressure by controlling the intake amount by the intake control valve.
A heat exchanger for cooling the compressed gas passing through the supply flow path and a cooling fan for introducing cooling air into the heat exchanger are provided.
The lower limit (TL) and upper limit (TH) of a predetermined corresponding temperature range (TL-TH) determined based on the pressure (Pd) in the supply flow path on the secondary side of the check valve, and the above. Compare with the temperature (Td) in the supply flow path on the primary side of the heat exchanger and the primary side of the check valve.
When the temperature (Td) in the supply flow path is less than the lower limit value (TL) in the corresponding temperature range, the cooling fan is operated at a predetermined minimum rotation speed (FL).
When the temperature (Td) in the supply flow path exceeds the upper limit value (TH) in the corresponding temperature range (TL-TH), the cooling fan is operated at a predetermined maximum rotation speed (FH).
When the temperature (Td) in the supply flow path is within the corresponding temperature range (TL-TH), the preset temperature (Td) in the supply flow path and the rotation speed (F) of the cooling fan are set in advance. ), The rotation speed (F) of the cooling fan is increased according to the increase in the temperature (Td) in the supply flow path between the minimum rotation speed (FL) and the maximum rotation speed (FH). A method for cooling a compressed gas in a compressor, which comprises lowering the rotation speed (F) of the cooling fan according to a decrease in the temperature (Td) in the supply flow path.
前記供給流路内の圧力(Pd)の増加に対し,前記下限値(TL)及び前記上限値(TH)が増加するよう前記対応温度域(TL-TH)を決定することを特徴とする請求項1記載の圧縮機における圧縮気体の冷却方法。 A claim characterized in that the corresponding temperature range (TL-TH) is determined so that the lower limit value (TL) and the upper limit value (TH) increase with respect to an increase in pressure (Pd) in the supply flow path. Item 1. The method for cooling a compressed gas in the compressor according to item 1. 前記供給流路内の圧力(Pd)が取り得る圧力の範囲を,所定の数値範囲毎に分割し,分割した前記数値範囲毎に前記下限値(TL)及び前記上限値(TH)の増加率(IRL,IRH)を異なる値に設定することを特徴とする請求項2記載の圧縮機における圧縮気体の冷却方法。 The range of pressure that the pressure (Pd) in the supply flow path can take is divided into predetermined numerical ranges, and the rate of increase of the lower limit value (TL) and the upper limit value (TH) is divided for each numerical range. The method for cooling a compressed gas in a compressor according to claim 2, wherein (IRL, IRH) are set to different values. 前記供給流路内の圧力(Pd)が取り得る圧力の範囲の少なくとも一部の範囲において,前記下限値(TL)の増加率(IRL)と前記上限値(TH)の増加率(IRH)を異なる値に設定することを特徴とする請求項2又は3記載の圧縮機における圧縮気体の冷却方法。 The increase rate (IRL) of the lower limit value (TL) and the increase rate (IRH) of the upper limit value (TH) are set in at least a part of the pressure range that the pressure (Pd) in the supply flow path can take. The method for cooling a compressed gas in a compressor according to claim 2 or 3, wherein the values are set to different values. 前記供給流路内の圧力(Pd)がゲージ圧0.0MPaのときに適用される前記対応温度域(TL-TH)の下限値(TL)と上限値(TH)を,それぞれ基準下限値(TL0)及び基準上限値(TH0)とし,
下記の式1に従い,前記供給流路内の圧力(Pd)に,前記下限値(TL)用の所定の前記増加率(IRL)を乗算して得た加算値を,前記基準下限値(TL0)に加算して前記供給流路内の圧力(Pd)に対応した前記下限値(TL)を求めると共に,
下記の式2に従い,前記供給流路内の圧力(Pd)に,前記上限値(TH)用の所定の前記増加率(IRH)を乗算して得た加算値を,前記基準上限値(TH0)に加算して前記供給流路内の圧力(Pd)に対応した前記上限値(TH)求めることを特徴とする請求項3又は4記載の圧縮機における圧縮気体の冷却方法。
[式1]TL=IRL×Pd+TL0
[式2]TH=IRH×Pd+TH0
The lower limit value (TL) and the upper limit value (TH) of the corresponding temperature range (TL-TH) applied when the pressure (Pd) in the supply flow path is 0.0 MPa of the gauge are set to the reference lower limit value (TH), respectively. TL0) and standard upper limit (TH0)
According to the following equation 1, the added value obtained by multiplying the pressure (Pd) in the supply flow path by the predetermined increase rate (IRL) for the lower limit value (TL) is the reference lower limit value (TL0). ) To obtain the lower limit value (TL) corresponding to the pressure (Pd) in the supply flow path.
According to the following equation 2, the added value obtained by multiplying the pressure (Pd) in the supply flow path by the predetermined increase rate (IRH) for the upper limit value (TH) is the reference upper limit value (TH0). ), The upper limit value (TH) corresponding to the pressure (Pd) in the supply flow path is obtained, and the method for cooling the compressed gas in the compressor according to claim 3 or 4.
[Equation 1] TL = IRL x Pd + TL0
[Equation 2] TH = IRH × Pd + TH0
前記供給流路内の圧力(Pd)が取り得る圧力の範囲を,所定の数値範囲毎に分割し,分割した前記数値範囲毎に適用される前記対応温度域(TL-TH)を予め設定することを特徴とする請求項2記載の圧縮機における圧縮気体の冷却方法。 The range of pressure that can be taken by the pressure (Pd) in the supply flow path is divided into predetermined numerical ranges, and the corresponding temperature range (TL-TH) applied to each divided numerical range is set in advance. The method for cooling a compressed gas in the compressor according to claim 2. 前記冷却ファンの回転速度(F)を,前記最低回転速度(FL),前記最高回転速度(FH),前記対応温度域(TL-TH)の前記下限値(TL)及び前記上限値(TH),並びに前記供給流路内の温度(Td)に基づいて,下記の式3によって求めることを特徴とする請求項5又は6記載の圧縮機における圧縮気体の冷却方法。
[式3]F=(FH-FL)/(TH-TL)×(Td-TL)+FL
The rotation speed (F) of the cooling fan is the minimum rotation speed (FL), the maximum rotation speed (FH), the lower limit value (TL) and the upper limit value (TH) of the corresponding temperature range (TL-TH). The method for cooling a compressed gas in a compressor according to claim 5 or 6, wherein the method is obtained by the following formula 3 based on the temperature (Td) in the supply flow path.
[Equation 3] F = (FH-FL) / (TH-TL) × (Td-TL) + FL
前記圧縮機本体を,低圧段圧縮機と,前記低圧段圧縮機で生成された圧縮気体を更に圧縮する高圧段圧縮機と,前記低圧段圧縮機と前記高圧段圧縮機間に設けられた中間熱交換器を備えた多段式の圧縮機本体とし,
前記供給流路に設けた前記熱交換器と共に,前記中間熱交換器に対しても前記冷却ファンからの冷却風を導入することを特徴とする請求項1~7いずれか1項記載の圧縮機における圧縮気体の冷却方法。
The compressor body is provided between a low-pressure stage compressor, a high-pressure stage compressor that further compresses the compressed gas generated by the low-pressure stage compressor, and an intermediate between the low-pressure stage compressor and the high-pressure stage compressor. A multi-stage compressor body equipped with a heat exchanger
The compressor according to any one of claims 1 to 7, wherein the cooling air from the cooling fan is introduced into the intermediate heat exchanger together with the heat exchanger provided in the supply flow path. How to cool the compressed gas in.
圧縮気体を生成する圧縮機本体と,前記圧縮機本体の吸気口を開閉制御する吸気制御弁と,前記圧縮機本体の吐出口から消費側に至る供給流路と,前記供給流路に設けた逆止弁とを備え,前記吸気制御弁による吸気量の制御によって,前記消費側に供給される圧縮気体の圧力が所定の目標圧力に近づくよう制御する容量制御型の圧縮機において,
前記供給流路を通過する圧縮気体を冷却する熱交換器と,前記熱交換器に対し冷却風を導入する冷却ファン,前記冷却ファンを駆動するファンモータ,前記熱交換器の一次側かつ前記逆止弁の一次側における前記供給流路内の温度(Td)を検知する温度検知手段,前記逆止弁の二次側における前記供給流路内の圧力(Pd)を検知する圧力検知手段,及び,前記温度検知手段が検知した前記供給流路内の温度(Td)と,前記圧力検知手段が検知した前記供給流路内の圧力(Pd)に基づいて前記ファンモータの回転速度を制御する制御装置を設け,
前記制御装置が,
前記圧力検知手段が検知した前記供給流路内の圧力(Pd)に基づいて決定した所定の対応温度域(TL-TH)の上限値(TH)及び下限値(TL)と,前記温度検知手段が検知した前記供給流路内の温度(Td)とを比較し,
前記供給流路内の温度(Td)が,前記対応温度域(TL-TH)の前記下限値(TL)未満であるとき前記冷却ファンを所定の最低回転速度(FL)で運転し,
前記供給流路内の温度(Td)が,前記対応温度域(TL-TH)の前記上限値(TH)を超えるとき前記冷却ファンを所定の最高回転速度(FH)で運転し,
前記供給流路内の温度(Td)が,前記対応温度域(TL-TH)の範囲内であるとき,予め設定した前記供給流路内の温度(Td)と前記冷却ファンの回転速度(F)の対応関係に従い,前記最低回転速度(FL)と前記最高回転速度(FH)間において前記供給流路内の温度(Td)の上昇に従い前記冷却ファンの回転速度を上昇させると共に,前記供給流路内の温度(Td)の下降に従い前記冷却ファンの回転速度を下降させる制御を行うことを特徴とする圧縮機における圧縮気体冷却装置。
The compressor body that generates compressed gas, the intake control valve that controls the opening and closing of the intake port of the compressor body, the supply flow path from the discharge port of the compressor body to the consumption side, and the supply flow path are provided. In a capacity-controlled compressor equipped with a check valve and controlling the pressure of the compressed gas supplied to the consumption side to approach a predetermined target pressure by controlling the intake amount by the intake control valve.
A heat exchanger that cools the compressed gas passing through the supply flow path, a cooling fan that introduces cooling air into the heat exchanger, a fan motor that drives the cooling fan, and the primary side and the reverse of the heat exchanger. A temperature detecting means for detecting the temperature (Td) in the supply flow path on the primary side of the stop valve, a pressure detecting means for detecting the pressure (Pd) in the supply flow path on the secondary side of the check valve, and a pressure detecting means. , Control to control the rotation speed of the fan motor based on the temperature (Td) in the supply flow path detected by the temperature detecting means and the pressure (Pd) in the supply flow path detected by the pressure detecting means. Install the device,
The control device
The upper limit value (TH) and lower limit value (TL) of a predetermined corresponding temperature range (TL-TH) determined based on the pressure (Pd) in the supply flow path detected by the pressure detecting means, and the temperature detecting means. Compared with the temperature (Td) in the supply flow path detected by
When the temperature (Td) in the supply flow path is less than the lower limit value (TL) in the corresponding temperature range (TL-TH), the cooling fan is operated at a predetermined minimum rotation speed (FL).
When the temperature (Td) in the supply flow path exceeds the upper limit value (TH) of the corresponding temperature range (TL-TH), the cooling fan is operated at a predetermined maximum rotation speed (FH).
When the temperature (Td) in the supply flow path is within the corresponding temperature range (TL-TH), the preset temperature (Td) in the supply flow path and the rotation speed (F) of the cooling fan are set in advance. ), The rotation speed of the cooling fan is increased according to the increase in the temperature (Td) in the supply flow path between the minimum rotation speed (FL) and the maximum rotation speed (FH), and the supply flow is increased. A compressed gas cooling device in a compressor, which controls to lower the rotation speed of the cooling fan according to a decrease in the temperature (Td) in the path.
前記制御装置は,
前記供給流路内の圧力(Pd)の増加に対し,前記下限値(TL)及び前記上限値(TH)を増加するよう前記対応温度域(TL-TH)を決定することを特徴とする請求項9記載の圧縮機における圧縮気体冷却装置。
The control device is
A claim characterized in that the corresponding temperature range (TL-TH) is determined so as to increase the lower limit value (TL) and the upper limit value (TH) with respect to an increase in pressure (Pd) in the supply flow path. Item 9. The compressed gas cooling device in the compressor according to item 9.
前記制御装置は,
前記供給流路内の圧力(Pd)が取り得る圧力の範囲を所定の数値範囲毎に分割して得た前記数値範囲毎に,異なる値として設定された前記下限値(TL)及び前記上限値(TH)の増加率(IRL,IRH)を記憶すると共に,該増加率(IRL,IRH)に基づいて前記対応温度域(TL-TH)を決定することを特徴とする請求項10記載の圧縮機における圧縮気体冷却装置。
The control device is
The lower limit value (TL) and the upper limit value set as different values for each numerical value range obtained by dividing the pressure range that can be taken by the pressure (Pd) in the supply flow path into predetermined numerical values. 10. The compression according to claim 10, wherein the rate of increase (IRL, IRH) of (TH) is stored and the corresponding temperature range (TL-TH) is determined based on the rate of increase (IRL, IRH). Compressed gas cooling device in the machine.
前記制御装置が,
前記供給流路内の圧力(Pd)が取り得る圧力の範囲の少なくとも一部の範囲において,異なる値に設定された前記下限値(TL)の増加率(IRL)と前記上限値(TH)の増加率(IRH)を記憶すると共に,前記各増加率(IRL,IRH)に基づいて前記対応温度域を決定することを特徴とする請求項10又は11記載の圧縮機における圧縮気体冷却装置。
The control device
The rate of increase (IRL) of the lower limit value (TL) and the upper limit value (TH) set to different values in at least a part of the range of pressure that the pressure (Pd) in the supply flow path can take. The compressed gas cooling device in a compressor according to claim 10 or 11, wherein the rate of increase (IRH) is stored and the corresponding temperature range is determined based on each rate of increase (IRL, IRH).
前記供給流路内の圧力(Pd)がゲージ圧0.0MPaのときに適用される前記対応温度域(TL-TH)の下限値を基準下限値(TL0),上限値を基準上限値(TH0)とし,
前記制御装置が,
下記の式1に従い,前記供給流路内の圧力(Pd)に,前記下限値(TL)用の所定の前記増加率(IRL)を乗算して得た加算値を,前記基準下限値(TL0)に加算して前記供給流路内の圧力(Pd)に対応した前記下限値(TL)を求めると共に,
下記の式2に従い,前記供給流路内の圧力(Pd)に,前記上限値(TH)用の所定の前記増加率(IRH)を乗算して得た加算値を,前記基準上限値(TH0)に加算して前記供給流路内の圧力(Pd)に対応した前記上限値(TH)を求めることを特徴とする請求項11又は12記載の圧縮機における圧縮気体冷却装置。
[式1]TL=IRL×Pd+TL0
[式2]TH=IRH×Pd+TH0
The lower limit value of the corresponding temperature range (TL-TH) applied when the pressure (Pd) in the supply flow path is 0.0 MPa is the reference lower limit value (TL0), and the upper limit value is the reference upper limit value (TH0). )age,
The control device
According to the following equation 1, the added value obtained by multiplying the pressure (Pd) in the supply flow path by the predetermined increase rate (IRL) for the lower limit value (TL) is the reference lower limit value (TL0). ) To obtain the lower limit value (TL) corresponding to the pressure (Pd) in the supply flow path.
According to the following equation 2, the added value obtained by multiplying the pressure (Pd) in the supply flow path by the predetermined increase rate (IRH) for the upper limit value (TH) is the reference upper limit value (TH0). The compressed gas cooling device in the compressor according to claim 11 or 12, wherein the upper limit value (TH) corresponding to the pressure (Pd) in the supply flow path is obtained in addition to the above.
[Equation 1] TL = IRL x Pd + TL0
[Equation 2] TH = IRH × Pd + TH0
前記制御装置が,
予め設定された,前記供給流路内の圧力(Pd)が取り得る圧力の範囲を所定の数値範囲毎に分割した前記数値範囲毎に適用される前記対応温度域(TL-TH)を記憶することを特徴とする請求項10記載の圧縮機における圧縮気体冷却装置。
The control device
The preset corresponding temperature range (TL-TH) applied to each numerical range obtained by dividing the range of pressure that can be taken by the pressure (Pd) in the supply flow path into predetermined numerical ranges is stored. The compressed gas cooling device in the compressor according to claim 10.
前記制御装置が,
前記冷却ファンの回転速度(F)を,前記最低回転速度(FL),前記最高回転速度(FH),前記対応温度域(TL-TH)の前記下限値(TL)及び前記上限値(TH),並びに前記供給流路内の温度(Td)に基づいて,下記の式3によって求めることを特徴とする請求項13又は14記載の圧縮機における圧縮気体冷却装置。
[式3]F=(FH-FL)/(TH-TL)×(Td-TL)+FL
The control device
The rotation speed (F) of the cooling fan is the minimum rotation speed (FL), the maximum rotation speed (FH), the lower limit value (TL) and the upper limit value (TH) of the corresponding temperature range (TL-TH). , And the compressed gas cooling device in the compressor according to claim 13 or 14, wherein the temperature (Td) in the supply flow path is obtained by the following formula 3.
[Equation 3] F = (FH-FL) / (TH-TL) × (Td-TL) + FL
前記圧縮機本体を,低圧段圧縮機と,前記低圧段圧縮機で生成された圧縮気体を更に圧縮する高圧段圧縮機と,前記低圧段圧縮機と前記高圧段圧縮機間に設けられた中間熱交換器を備えた多段式の圧縮機本体とし,
前記冷却ファンが,前記供給流路に設けた前記熱交換器と共に前記中間熱交換器に対しても冷却風を導入するよう構成したことを特徴とする請求項9~15いずれか1項記載の圧縮機における圧縮気体冷却装置。

The compressor body is provided between a low-pressure stage compressor, a high-pressure stage compressor that further compresses the compressed gas generated by the low-pressure stage compressor, and an intermediate between the low-pressure stage compressor and the high-pressure stage compressor. A multi-stage compressor body equipped with a heat exchanger
The invention according to any one of claims 9 to 15, wherein the cooling fan is configured to introduce cooling air into the intermediate heat exchanger together with the heat exchanger provided in the supply flow path. Compressed gas cooling device in a compressor.

JP2020147115A 2020-09-01 2020-09-01 Compressed gas cooling method and compressed gas cooling device in compressor Active JP7461255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020147115A JP7461255B2 (en) 2020-09-01 2020-09-01 Compressed gas cooling method and compressed gas cooling device in compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020147115A JP7461255B2 (en) 2020-09-01 2020-09-01 Compressed gas cooling method and compressed gas cooling device in compressor

Publications (2)

Publication Number Publication Date
JP2022041737A true JP2022041737A (en) 2022-03-11
JP7461255B2 JP7461255B2 (en) 2024-04-03

Family

ID=80499963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020147115A Active JP7461255B2 (en) 2020-09-01 2020-09-01 Compressed gas cooling method and compressed gas cooling device in compressor

Country Status (1)

Country Link
JP (1) JP7461255B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030547B2 (en) 2006-11-17 2012-09-19 北越工業株式会社 Compressor power reduction method and power reduction device
JP5650922B2 (en) 2010-04-14 2015-01-07 株式会社神戸製鋼所 Compressor
JP5989072B2 (en) 2014-12-19 2016-09-07 株式会社日立産機システム Oil-free compressor and control method thereof
JP6595008B2 (en) 2016-01-27 2019-10-23 株式会社日立産機システム Gas compressor and gas compressor system
CN110475973B (en) 2017-03-31 2021-07-06 株式会社日立产机系统 Gas compressor
JP6964545B2 (en) 2018-03-26 2021-11-10 株式会社日立産機システム Gas compressor

Also Published As

Publication number Publication date
JP7461255B2 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
US9897103B2 (en) Compressor
JP6713439B2 (en) Refueling air compressor
JP5110882B2 (en) Oil-free screw compressor
KR100345843B1 (en) Screw compressor and method for controlling the operation of the same
US20170268498A1 (en) Multistage Compressor
KR20100046274A (en) Cryopump system
US6561766B2 (en) Oil free screw compressor operating at variable speeds and control method therefor
JP2006258397A (en) Refrigerator
JP5675568B2 (en) Oil-free screw compressor and control method thereof
CN113597511A (en) Compressor system and control method thereof
JP5568591B2 (en) Oil-free screw compressor
JP4767133B2 (en) Refrigeration cycle equipment
JP2016211584A (en) Compressor and control method thereof
TWI727363B (en) Cryogenic pump system
JP7461255B2 (en) Compressed gas cooling method and compressed gas cooling device in compressor
JP6271012B2 (en) Liquid-cooled compressor and operating method thereof
US20230243352A1 (en) Oiling device and abnormality detection method of the same
JP2021096043A (en) Exhaust heat recovery system and gas compressor used for the same
JP2005351169A (en) Screw compressor and its operation control method
JP6812248B2 (en) Capacity control method for multi-stage oil-free screw compressor and multi-stage oil-free screw compressor
JP2581622B2 (en) Method and apparatus for controlling capacity of screw compressor
CN116209829B (en) Gas compressor
CN217813929U (en) Oil injection screw compressor unit
JP4608289B2 (en) Operation control method of screw compressor
EP4357696A1 (en) Oil-lubricated cryocooler compressor and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240322

R150 Certificate of patent or registration of utility model

Ref document number: 7461255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150