WO2017130303A1 - Gas compressor and gas compressor system - Google Patents

Gas compressor and gas compressor system Download PDF

Info

Publication number
WO2017130303A1
WO2017130303A1 PCT/JP2016/052224 JP2016052224W WO2017130303A1 WO 2017130303 A1 WO2017130303 A1 WO 2017130303A1 JP 2016052224 W JP2016052224 W JP 2016052224W WO 2017130303 A1 WO2017130303 A1 WO 2017130303A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
gas
gas compressor
valve
air
Prior art date
Application number
PCT/JP2016/052224
Other languages
French (fr)
Japanese (ja)
Inventor
山本 健太郎
正彦 高野
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2017563439A priority Critical patent/JP6595008B2/en
Priority to PCT/JP2016/052224 priority patent/WO2017130303A1/en
Publication of WO2017130303A1 publication Critical patent/WO2017130303A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control

Definitions

  • the present invention relates to a gas compressor and a gas compressor system, and relates to a gas compressor and a gas compressor system for regenerating energy.
  • Patent Document 1 discloses a configuration in which high-temperature compressed air discharged from a gas compressor main body and heat of lubricating oil that performs lubrication of the gas compressor main body and cooling of the compressed gas are heat-exchanged, and power is generated by a Rankine cycle. Is disclosed.
  • Patent Document 2 discloses a positive displacement screw expander as a steam expander (expander) for expanding steam as means for reversing the electric motor.
  • Patent Document 2 discloses a configuration in which expansion of steam supplied from a steam supply system such as a boiler is converted into rotational force by a screw expander, and this is used as a drive source for a generator.
  • JP 2011-12659 A Japanese Patent No. 5148117
  • variable speed controller for controlling the motor at a variable speed by mounting an inverter and a constant speed controller for operating the motor at a constant speed.
  • capacity control of constant speed controllers there are those that perform load / unload operation control that repeats load operation and no-load operation according to the amount of gas used by the user, etc., and also automatic stop control etc. is there.
  • capacity control of the variable speed controller energy can be saved by variable speed control using an inverter in addition to these.
  • the compressed gas in the compressor internal piping system is discharged to the atmosphere to reduce the pressure, thereby reducing the load on the motor that is the driving source, thereby obtaining an energy saving effect.
  • a gas compressor having a compressor main body that sucks gas and generates compressed gas, and is an electric motor that drives the compressor main body by receiving supply power, and obtains power from the compressor main body and regenerates electric power.
  • a rotating electrical machine that is a generator for generating the power, an inverter that controls the rotational speed of the rotating electrical machine by changing the frequency of the supplied power, a converter that generates output power from the generated power, and a compressor body
  • a check valve that permits the flow of compressed air from the compressor body side to the discharge side on the discharge side piping, and when the compressor body stops driving, the compressor air upstream from the check valve is It is a gas compressor that generates power for generating regenerative power by reversely rotating the main body of the compressor by reverse flow.
  • Another configuration is a gas compressor system including a plurality of gas compressors having a compressor body that sucks gas and generates compressed gas, and at least one gas compressor of the plurality of gas compressors A is an electric motor that receives supply power and drives the compressor body, and a rotating electrical machine that is a generator that generates regenerative power by obtaining power from the compressor body, and changes the frequency of the supply power to change the frequency Permits the flow of compressed air from the compressor body side to the discharge side on the inverter that controls the rotation speed of the rotating electrical machine, the converter that generates output power from the generated power, and the discharge side piping of the compressor body A check valve that communicates with a discharge pipe path from the discharge side of the compressor body to the upstream of the check valve, and an external intake pipe that takes in compressed air from one or more other gas compressors B And before At the time of standby of the compressor body, the compressor body reversely rotates by the compressor air taken in from the external intake pipe, and generates power for generating the regenerative power, and the gas
  • a gas compressor that generates compressed gas can also be used as a device that generates regenerative energy using surplus gas, thereby improving the energy saving effect.
  • regenerative energy can be generated by the other gas compressor using the discharged gas of one gas compressor. , Energy saving can be achieved in the entire system.
  • FIG. 1 schematically shows a configuration of an oil supply type air compressor 100 according to an embodiment to which the present invention is applied.
  • an oil supply type air compressor that takes in air and discharges compressed air is illustrated, but the present invention is not limited to this, and the type and supply of gas to be compressed are within the scope of the present invention. It can also be applied to a liquid (water etc.) type compression device.
  • the air compressor 100 includes a compressor body 5 that compresses air taken in through the air filter 1 and the suction throttle valve 2 from the outside, a rotating electrical machine 6 that serves as a drive source and a power generation source of the compressor body, and discharge mixing.
  • a temperature sensor that detects the temperature of the gas
  • an oil separator 9 that primarily separates compressed air and lubricating oil from the discharged mixed gas
  • an element 10 that further separates oil from the separated compressed air, and a secondary separation.
  • a pressure regulating check valve 11 disposed on the compressed air discharge piping path, and a heat exchanger 13 for cooling the compressed air and the lubricating oil described later with cooling air from the fan 14 through the check valve 11;
  • the control pipe system disposed on the downstream side of the oil separator 9 and the air discharge solenoid valve 17, the operation solenoid valve 18 and the regeneration valve respectively disposed on the three pipes branched from the air discharge pipe system.
  • An external housing (package) 23 for storing these is provided as a main component.
  • Compressed air generated by the air compressor 100 is temporarily stored in an external tank (reservoir tank) 45 and then sent to a user device. In addition, you may make it send compressed air directly to a user side apparatus, without installing the external tank 45.
  • FIG. 1 Compressed air generated by the air compressor 100 is temporarily stored in an external tank (reservoir tank) 45 and then sent to a user device. In addition, you may make it send compressed air directly to a user side apparatus, without installing the external tank 45.
  • the compressor body 5 is a screw type compressor composed of one or a plurality of screw rotors.
  • the compressor body 5 and the rotating electrical machine 6 are configured so that the rotor and the motor shaft are in the same axis (in a divided or integrated configuration). Being on the same axis can reduce opportunity loss and contribute to efficient compression and efficient power generation.
  • the present invention can also be applied to other types of compressor bodies and other connection configurations.
  • the oil separator 9 has a lubricating oil passage 30 for returning the lubricating oil accumulated at the bottom thereof to the compressor body side.
  • the lubricating oil path 30 is branched into two systems on the downstream side via the temperature control valve 12 in the middle. One is a reflux path that directly communicates with the compressor body 5, and the other is a path that is connected to the reflux path after passing through the heat exchanger 13.
  • the temperature control valve 12 is a valve that switches the flow path of the lubricating oil with the lubricating oil temperature as a threshold. When the lubricating oil temperature is lower than the threshold, the path that directly recirculates to the compressor body 5 is opened, and vice versa.
  • the flow path is switched with the path connected to the heat exchanger 13 opened.
  • lubricating oil is circulated through a path that does not flow into the heat exchanger 13 to increase the discharge temperature in order to prevent drain generation.
  • it is switched to a path flowing into the heat exchanger 13 so that the discharge temperature does not rise any further.
  • the lubricating oil that has circulated through one of the paths then returns to the compressor body 5 through the oil filter 20.
  • the heat exchanger 13 is a cooler that exchanges heat between the separated compressed air and the lubricating oil with the cooling air generated by the fan 14.
  • the control unit 26 changes the rotation speed of the cooling fan by the fan inverter 16 and the fan motor 15 according to the detection value of the temperature sensor 25 that detects the temperature of the discharge air discharged from the compressor body 5. It has become.
  • the control piping system 31 which is connected to the downstream side of the element 10 that performs secondary separation of the lubricating oil and is different from the discharge piping system that leads to the user side, has a compressed air discharge path, a suction throttle valve 2, and the like. It functions as a path for supplying the drive control pressure of the ejection valve 3.
  • the discharge air solenoid valve 17 discharges the compressed air between the pressure check valve 11 and the compressor body 5 to reduce the pressure, and drives the rotating electrical machine 6.
  • the power is reduced. More specifically, the control unit 26 “closes” the operation solenoid valve 18 and the regenerative solenoid valve 19 and “opens” the release solenoid valve 17 to perform external release.
  • the operation solenoid valve (suction throttle valve control device) 18 is “open” during the load operation, the suction throttle valve 2 is opened, and the outside air is sucked into the compressor body 5.
  • the operation solenoid valve 18 is “closed” when the compressor main body 5 is automatically stopped, and the suction throttle valve 2 having a biasing force in the closing direction is closed by a spring or the like, so that the compressor main body 5 is closed. Prevent outside air from circulating. Opening and closing of the operation control valve 18 is controlled by the control unit 26.
  • the regenerative solenoid valve (valve element control device) 3 is “closed” in the load operation or unload operation, and as a result, the ejection valve 3 prohibits the communication between the ejection element 4 side and the intake path. .
  • the regenerative solenoid valve 3 is “open”, and the ejection valve 3 permits communication between the ejection element 4 side and the intake path.
  • the opening and closing of the regenerative solenoid valve 3 is controlled by the control unit 26.
  • the suction pipe path through which the air sucked through the suction throttle valve 2 flows into the compressor main body 5 is branched into two, one connected to the compressor main body 5 and the other for ejection (oil). It is connected to the element 4 and the oil recovery mechanism.
  • the air flow to the other path is controlled by the regenerative solenoid valve 3 as described above.
  • the compressed air that flows backward from the suction side of the compressor body 5 is a mixed gas of air and lubricating oil, so an oil recovery mechanism is provided to provide an inside or outside of the lubricating oil housing. To prevent splashing.
  • the oil recovery mechanism includes an oil receiver 40 and a check valve 41.
  • the ejection element 4 separates oil and air from the compressed air flowing backward from the compressor body 5 side during the regenerative operation, and the separated oil passes through an oil receiver 40 and a check valve 41 installed at the drop destination.
  • the refrigerant is returned to the suction pipe path.
  • the suction pipe path side is at a high pressure, and the oil does not recirculate from the upstream side of the check valve 41.
  • the system is allowed to recirculate lubricating oil.
  • the control unit 26 is a control function unit realized by the cooperation of an arithmetic device such as a CPU or MPU and a program, and outputs various control commands to the solenoid valve, the inverter 7, the converter 8, and the fan inverter 16. . Further, the control unit 26 includes a memory (not shown), and can store or set an air discharge pressure, various control threshold values, and the like that are externally input via an operation panel or a network (not shown).
  • the air compressor 100 has a pressure sensor 28 as a pressure detection device on the user side discharge piping path downstream from the pressure regulating valve 11.
  • the pressure sensor 28 detects the compressed air pressure on the user side (equipment machine, reservoir tank, etc.).
  • the control unit 26 outputs a control command to the inverter 7 according to the detection value of the pressure sensor 28, and executes inverter control operation, load operation, unload operation, and automatic stop operation.
  • the inverter control operation is control for changing the output frequency value of the inverter based on the detection value of the pressure sensor 28 so that the discharge pressure on the user side maintains a predetermined set discharge pressure. For example, if the user-side discharge pressure is equal to or higher than the set pressure, the output frequency is reduced and the rotational speed of the compressor body 5 is reduced. Conversely, when the pressure falls below the set pressure, the output frequency is increased to increase the rotational speed of the compressor body 5.
  • the air release solenoid valve 17 is opened and the operation electromagnetic In this operation, the valve 18 is set to “closed”, the rotational speed of the rotating electrical machine 6 is further reduced, and the drive power of the compressor body 5 is saved.
  • the degree of decrease in the rotational speed include, but are not limited to, a minimum rotational speed that can generate a pressure necessary for the lubricating oil to flow through the lubricating oil passage 30.
  • the suction throttle valve 2 is “closed”, the discharge side of the compressor body 5 can generate an environment whose pressure is higher than the atmospheric pressure by the air slightly sucked from the valve closing gap or the like. Thereafter, when it is detected that the air usage amount on the user side has increased to a value close to the set discharge pressure, the air discharge electromagnetic valve 17 is closed and the compression on the upstream side of the pressure regulating check valve 11 is resumed. In addition to this, the rotation speed of the rotating electrical machine 6 is increased, and the user side is maintained at a set discharge pressure or higher with the upper limit pressure as a limit. In addition, when the user side pressure falls to a predetermined lower limit pressure lower than the set discharge pressure, it is preferable to switch to the load operation.
  • the load operation is an operation in which the rotary electric machine 6 is driven at a rating while the discharge valve 17 is kept “closed” and the operation solenoid valve 17 is kept “open” until the set discharge pressure is reached.
  • the present invention is applicable even when the suction throttle valve 2 and the operation solenoid valve 16 are not included in the configuration.
  • the automatic stop operation is an operation in which the drive of the compressor body 5 is temporarily stopped when, for example, the user side air consumption decreases and the state where the user side pressure is equal to or higher than the set discharge pressure continues for a predetermined time. .
  • the control unit 26 performs the unload operation. Is temporarily stopped (the power supply to the rotating electrical machine 6 is stopped), and the passage of a predetermined time and the user-side pressure are set to a predetermined pressure (for example, a lower limit in unload operation). In some cases, it is more efficient in terms of energy saving when the driving is restarted when the pressure becomes lower than a return pressure lower than the pressure.
  • the power supply to the rotating electrical machine 6 is stopped to save power.
  • the pressure reference for starting the automatic stop operation is not limited to the set discharge pressure, and may be an arbitrary pressure such as an upper limit pressure.
  • the duration of the predetermined pressure state is not limited to the start timing of the automatic stop operation, but the control unit 26 monitors and calculates the ratio of the unload operation and the load operation per unit time interval, and the ratio of the unload operation Various modes may be applied, for example, an automatic stop operation is performed when becomes large. Further, in the embodiment, an example in which the unload operation is executed before the automatic stop operation will be described, but the present invention can be applied even if the unload operation is not necessarily assumed as the automatic stop operation.
  • the regenerative operation function will be described with reference to FIG.
  • the rotation of the compressor body 5 is temporarily stopped (power supply to the rotating electrical machine 6 is stopped), but on the downstream side from the pressure regulating check valve 11, the compressor body 5 is discharged to the discharge side.
  • a back pressure is generated by backflow.
  • the venting solenoid valve 17 is set to “closed” and downstream from the pressure regulating check valve 11. The compressed air is caused to flow backward to the compressor body 5.
  • the screw rotor of the compressor body 5 functions as a generator by rotating in reverse by the compressed air flowing backward, and the rotating electric machine 6 also rotating in reverse. Electricity generated by the reverse rotation of the rotating electrical machine 6 can be used as regenerative power by the converter 8. As described above, the compressed air discharged from the suction side of the compressor body 5 to the suction piping path is then discharged to the outside of the piping system.
  • the regenerative power is used as power for the fan motor 15 that drives the cooling fan 14. Since the regenerative electric power is generated using the discharged air, this is equivalent to the fact that there is no compressed air generated by the compressor body 5 during an automatic stop operation or the like. Since there are few factors that increase the lubricating oil, the rotation speed of the cooling fan may be relatively low. For this reason, the generated power can be generated only during the time during which the discharged air is released, but sufficient power can be obtained when a cooling environment with a low load is sufficient.
  • the time t0 indicates a state in which the rotating electrical machine 6 is driven at a rating and the user-side pressure is set discharge pressure.
  • the load factor of the rotary electric machine 6 is 100% (rated)
  • the operation solenoid valve 18 is “open (that is, the suction throttle valve 2 is open)”
  • the air release solenoid valve 17 is “closed”
  • the electromagnetic valve 19 is in a “closed” state (in an inverter control operation), and a load operation is performed.
  • the “rotation direction” is the rotation direction of the rotating electrical machine 6, and the rotation direction during compression is “forward rotation”.
  • control unit 26 detects that the user-side discharge pressure has reached the upper limit value, it starts the unload operation. That is, a frequency reduction command (for example, the minimum rotation frequency) is output to the inverter 7 to reduce the load factor of the rotating electrical machine 6. Similarly, the control unit 26 “closes” the operation solenoid valve 18 and “opens” the air release solenoid valve 17 to restrict the intake of air and reduce the pressure in the piping system upstream from the pressure regulating check valve 11. . Thereby, the load factor of the rotary electric machine 6 further decreases. Thereafter, the user-side discharge pressure gradually decreases according to the user-side air consumption.
  • a frequency reduction command for example, the minimum rotation frequency
  • the control unit 26 switches from the unload operation to the load operation.
  • the load operation at this time is a load operation performed by controlling the air discharge electromagnetic valve and the operation control valve while the load factor of the rotating electrical machine 6 is reduced.
  • the control unit 26 “opens” the operation solenoid valve 18 and “closes” the discharge solenoid valve 17, and boosts the piping system upstream from the pressure regulating check valve 11. That is, by using the rotation of the rotating electrical machine 6 at a low load factor, the pressure is increased by increasing the suction amount and limiting the air discharge amount.
  • the control unit 26 detects that the user-side discharge pressure has reached the upper limit value, it again sets the operation solenoid valve 18 to “closed” and the air release solenoid valve 17 to “open”. That is, the operation state is the same as the unload operation at time t1.
  • the solenoid valve is controlled to increase the pressure again similarly to time t3.
  • the trigger for switching from the unload operation to the load operation is described as the upper limit pressure, but in addition to this, any pressure between the set discharge pressure and the upper limit pressure may be used as the trigger for switching. . This is because if the installation value of the upper limit pressure is relatively high, it may take a considerable amount of time to increase the pressure to the pressure during unload operation.
  • the air compressor 100 repeats the unload operation and the load operation based on the user-side discharge pressure, but the control unit 26 activates the timer simultaneously with the detection of the upper limit pressure, and then sets the lower limit pressure.
  • the execution of the automatic stop operation is started.
  • the operation solenoid valve 18 is “open” and the discharge solenoid valve 17 is “closed” to increase the user-side discharge pressure to the upper limit value.
  • the rotational speed of the rotating electrical machine 6 may be increased. That is, before the compressor main body 5 is stopped, the user side pressure is controlled to be high.
  • the automatic stop function occurs when the user side air consumption is considerably low or absent for a predetermined elapsed time. For example, high-pressure compressed air filled in a reservoir tank or user equipment is cooled by natural heat dissipation or the like. Then, drainage may occur.
  • the control mode in which the unload operation is performed has been described.
  • the combination control mode includes only the inverter control operation and the automatic stop operation
  • the present invention can be applied if the electric machine 6 can be reversed.
  • the example in which the automatic stop operation increases the pressure to the upper limit value before the stop has been described, but it is also possible to configure so that the air is released without increasing the pressure.
  • regenerative power can be obtained using air to be discharged (discarded). Further, since the compressor body itself is used for the compression means and the expansion means, and the rotating electric machine is used for the electric motor and the generator, the usability as a device is remarkably increased. Further, in this embodiment, boosting before the automatic stop operation is performed from the viewpoint of preventing the occurrence of drain on the user side and usability at the time of resuming air use. However, further power can be obtained using this boosted pressure, and air compression is performed. Excellent effect on machine convenience and energy loss reduction. In addition, the valve control on the suction piping path side associated with the regenerative operation prevents oil scattering in the external housing 23 or the surrounding external environment, and has both maintenance and environmental effects.
  • the first embodiment is an example in which regenerative electric power is generated by causing the compressed air in the air compressor 100 to flow backward to the compressor body 5, but the second embodiment uses the air discharged from another air compressor.
  • This is a configuration example for generating electric power.
  • Example 2 will be described with reference to the drawings.
  • symbol is attached
  • FIG. 3 schematically shows a configuration of an air compressor system 300 according to the second embodiment.
  • the air compressor system 300 includes the air compressor 100 according to the first embodiment and the air compressor 200.
  • the air compressor system 300 is a compressor system that enables control of a plurality of units according to the amount of air used, for example. Both units are driven, one is driven and the other is stopped (compressor) under the control of the number control unit 50 connected to each of the control units 26A and 26B in a wired or wireless manner (including network connection such as the Internet).
  • Various operations such as a stand-by state in which the main body 5 stops driving) or both stop are enabled.
  • the number control unit 50 is realized by the cooperation of an arithmetic device such as a CPU or MPU and a program.
  • the number control unit 50 is installed outside the air compressors 100 and 200, but may be configured to be mounted on the control panel 27 or the like of any of the air compressors.
  • the main difference between the air compressor 100 and the first embodiment is that the air discharged from the air compressor 200 is taken into the discharge pipe connected to the oil separator 9 from the compressed air main body 5. It is a point provided with intake piping (external intake piping) 22.
  • the discharge air intake pipe 22 is provided with a three-way solenoid valve 60.
  • the air compressor 100 is in an unload operation or automatic stop operation (in a state where the regenerative operation cannot be performed)
  • the air from the air compressor 200 is supplied. Inhalation air intake is prohibited, and distribution to a route on the outside emission side is permitted.
  • the three-way solenoid valve 60 is in a state in which the regenerative operation is possible, the flow on the external discharge side is prohibited and the intake of the discharge air from the air compressor 200 is permitted.
  • the air compressor 200 is an oil supply type screw compressor. Each configuration for generating compressed air is the same as that of the air compressor 100, but does not include elements (converter 8, regenerative solenoid valve 19, converter 8, oil recovery mechanism, etc.) that generate regenerative power.
  • the air compressor 200 is also provided with an element for generating line power, and the air discharged from each of the air compressors 100 and 200 can be used by connecting the air discharge pipe and the intake pipe. It is also possible to make it possible to generate electricity with a machine.
  • the air compressor 200 is not limited to the air compressor 200 which is an oil supply type screw compressor, and may be other oil supply type or non-oil supply type compressors such as a vane, a scroll, a reciprocator, and the like.
  • the air discharge pipe system of the air compressor 200 is connected to the air discharge air intake pipe 22 of the air compressor 100.
  • the air compressor 200 discharges the air discharged during the unload operation and the automatic stop operation to the air compressor 100 side, and the air compressor 100 generates power.
  • power generation can be performed only by the air discharge during the automatic operation, but the second embodiment has a specific effect that the air discharge during the unload operation can also be used.
  • the compressed air generated by the air compressor 100 is temporarily stored in the external tank 45A as in the first embodiment.
  • the compressed air generated by the air compressor 200 may be temporarily stored in the external tank 45A or may be stored in another external tank 45B. Furthermore, you may make it supply compressed air directly to the apparatus by the side of a user, without using an external tank.
  • the discharged air intake pipe 22 of the air compressor 100 may be connected to the external tanks 45A and 45B and the user side device.
  • the compressed air temporarily stored in the external tank 45B may release the stored air when, for example, the use of the day ends. For example, when the time until reuse becomes long, drainage may occur in the tank due to the temperature if the pressure remains high.
  • Fig. 4 shows the processing flow of the air compressor system. This process is executed by the number control unit 50 and the control units 26A and 26B of the air compressors 100 and 200.
  • the unit control unit 50 determines whether the air compressor 100 is stopped driving or is on standby, and whether the air compressor 200 is driving (including load operation and unload operation). If there is (S101: Yes), the process proceeds to S103, the three-way solenoid valve 50 is set to "open", and the air discharge pipe system of the air compressor 200 and the discharge of the air compressor 100 are discharged via the air discharge air intake pipe 22. Connect side piping.
  • the process proceeds to S108, and the three-way solenoid valve 60 is set to “closed” so that the air discharged from the air compressor 200 flows through the external air discharge pipe. .
  • the unit control unit instructs the control unit 26A to set the discharge solenoid valve 17 of the air compressor 100 to “close”, the operation solenoid valve 18 to “close”, and the regeneration solenoid valve 19 to “open”. . Thereafter, the air compressor 200 is discharged by an unload operation or an automatic stop operation, and the rotating electrical machine 6 of the air compressor 100 is reversed to generate power. The generated power is sent to the air compressor 200 via the converter 8.
  • the control unit 26B causes the electric power sent from the air compressor 100 to be sent to the fan motor inverter 16 and used as regenerative energy.
  • electric power can be generated using the air discharged from another air compressor.
  • power can be generated only with the air discharged during the automatic stop operation, but in the case of Example 2, the air discharged during the unload operation of the other air compressor is used. be able to.
  • the regenerative power is used as the power for the fan of the air compressor 200.
  • it can be used for other purposes as well as the first embodiment.
  • the regenerative power generated by the air compressor 100 is used as the power for the fan of the air compressor 200, but the regenerative power is used as a (re) starting auxiliary power source for the air compressor 100. It is good also as the charge use.
  • Example 2 it is the structure which generate
  • the air compressor 200 is also provided with the same electric power generation mechanism, and each other ventilating piping system is connected to the other venting air intake piping. May be connected to each other, and the roles may be switched between the two depending on the driving situation. For example, from the aspect of ensuring the life of the equipment, in a control mode in which driving and stopping are alternately performed so that the driving time of a plurality of compressors is smoothed, the air discharged from both can be used for power generation.
  • Example 2 when using the excess compressed air of external tank 45A, 45B and a user side apparatus for regeneration, it was made to take in via a ventilating air intake piping, but pressure regulation check valve 11 is changed.
  • a bypass pipe and a valve body that permits and prohibits the circulation of the bypass pipe may be provided so that air discharged from an external tank or the like flows backward from the discharge side.
  • the line power is obtained by the electric / electronic control by the number control unit 50 or the like.
  • the air compressor main body 100 is not a spare system but a compressor system in which a plurality of units are driven and stopped in cooperation. It may be an air compressor, normally used only as a power generator, and may be used as an air compressor if necessary.
  • Air release air intake pipe 23 ... External housing (package) ), 25 ... Temperature sensor, 26 / 26A / 26B ... Control unit, 27 ... Control panel, 28 ... Pressure sensor, 30 ... Lubricating oil path, 31 ... Control piping path, 41 ... Oil receiver, 42 ... Check valve, 45 ⁇ 45A ⁇ 45B... External Link (reservoir tank), 50 ... count control unit, 60 ... three-way solenoid valve 100-200 ... air compressor 300 ... air compressor system

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

To generate regenerative power by means of a gas compressor using gases discharged from the gas compressor and other apparatuses. Disclosed is a gas compressor having a compressor main body that generates a compressed gas by sucking a gas. The gas compressor has: a rotating electrical machine, which is an electric motor that drives the compressor main body by receiving power supply, and which is also a power generator that generates regenerative power by obtaining power from the compressor main body; an inverter that controls the rotation number of the rotating electrical machine by changing the frequency of the power supply; a converter that generates output power from the power thus generated; and a check valve that allows, on a discharge-side pipe of the compressor main body, circulation of compressed air from the compressor main body side to the compressor discharge side. When driving of the compressor main body is stopped, the compressor main body reversely rotates due to the fact that compressor air in the upstream of the check valve reversely flows, and the gas compressor generates power for generating the regenerative power.

Description

気体圧縮機及び気体圧縮機システムGas compressor and gas compressor system
 本発明は気体圧縮機及び気体圧縮機システム係り、エネルギを回生する気体圧縮機及び気体圧縮機システムに関する。 The present invention relates to a gas compressor and a gas compressor system, and relates to a gas compressor and a gas compressor system for regenerating energy.
 工場等全体で消費されるエネルギのうち、空気圧縮機などの気体圧縮機によって消費されるエネルギは、20~25%に相当すると言われており、気体圧縮機の省エネ化に対する効果は大きい。 It is said that the energy consumed by a gas compressor such as an air compressor out of the energy consumed by the entire factory etc. is equivalent to 20 to 25%, and the effect on energy saving of the gas compressor is great.
 近年では、気体圧縮機装置自体の高性能化は当然として、気体(例えば、空気)圧縮機にインバータを用いた駆動制御面からの省エネの他、圧縮途中に発生する排熱を回収し、暖房への利用、温水活用、ボイラの給水予熱への活用などの取組みもなされている。 In recent years, as a matter of course, the performance of the gas compressor device itself has been improved, and in addition to energy saving from the drive control surface using an inverter for a gas (for example, air) compressor, exhaust heat generated during compression is recovered and heating is performed. Efforts are also being made to use it for hot water, use hot water, and preheat water for boilers.
 また、特許文献1は、気体圧縮機本体から吐き出された高温の圧縮空気や気体圧縮機本体の潤滑や圧縮気体の冷却等を行う潤滑油の熱を熱交換し、ランキンサイクルによって発電を行う構成を開示する。 Patent Document 1 discloses a configuration in which high-temperature compressed air discharged from a gas compressor main body and heat of lubricating oil that performs lubrication of the gas compressor main body and cooling of the compressed gas are heat-exchanged, and power is generated by a Rankine cycle. Is disclosed.
 なお、気体圧縮機本体を駆動する駆動源として用いる電動機(モータ)は、逆転させることで発電機(ジェネレータ)として機能する回転電機である。特許文献2は、電動機を逆転させる手段として、蒸気を膨張させるスチームエキスパンダ(膨張機)として容積式スクリュエキスパンダを開示する。特許文献2は、ボイラ等の蒸気供給システムから供給される蒸気の膨張をスクリュエキスパンダによって回転力に変換し、これを発電機の駆動源とする構成を開示する。 In addition, the electric motor (motor) used as a drive source which drives a gas compressor main body is a rotary electric machine which functions as a generator (generator) by making it reverse. Patent Document 2 discloses a positive displacement screw expander as a steam expander (expander) for expanding steam as means for reversing the electric motor. Patent Document 2 discloses a configuration in which expansion of steam supplied from a steam supply system such as a boiler is converted into rotational force by a screw expander, and this is used as a drive source for a generator.
特開2011-12659号公報JP 2011-12659 A 特許第5148117号公報Japanese Patent No. 5148117
 ところで、一般に気体圧縮機は、インバータを搭載してモータを可変速制御する可変速制御機と、モータを一定速で運転する一定速制御機が知られている。省エネ視点から、一定速制御機の容量制御では、ユーザ側の使用気体量等に応じて、負荷運転と無負荷運転を繰り返すロード・アンロード運転制御や更には、自動停止制御等を行うものがある。他方、可変速制御機の容量制御では、これらに加えてインバータによる可変速制御によっても省エネを図ることができる。 By the way, in general, as the gas compressor, there are known a variable speed controller for controlling the motor at a variable speed by mounting an inverter and a constant speed controller for operating the motor at a constant speed. From the viewpoint of energy saving, in the capacity control of constant speed controllers, there are those that perform load / unload operation control that repeats load operation and no-load operation according to the amount of gas used by the user, etc., and also automatic stop control etc. is there. On the other hand, in the capacity control of the variable speed controller, energy can be saved by variable speed control using an inverter in addition to these.
 かかる制御では、アンロード運転時や自動停止時に圧縮機内部配管系統の圧縮気体を大気に放出して減圧し、駆動源である電動機の負荷を低減させることで省エネ効果を得るようになっている。 In such control, during unloading operation or automatic stop, the compressed gas in the compressor internal piping system is discharged to the atmosphere to reduce the pressure, thereby reducing the load on the motor that is the driving source, thereby obtaining an energy saving effect. .
 しかしながら、放出した圧縮気体は破棄することから、この点、放気気体を有効活用できれば、気体圧縮機の省エネに繋がる。 However, since the released compressed gas is discarded, if the discharged gas can be used effectively, this will lead to energy saving of the gas compressor.
 上記課題を解決するために、例えば、特許請求の範囲に記載の構成を適用する。即ち気体を吸気して圧縮気体を生成する圧縮機本体を有する気体圧縮機であって、供給電力を受けて前記圧縮機本体を駆動する電動機であると共に前記圧縮機本体から動力を得て回生電力を生成する発電機となる回転電機と、前記供給電力の周波数を変更して前記回転電機の回転数を制御するインバータと、生成された前記電力から出力電力を生成するコンバータと、圧縮機本体の吐出側配管上で、圧縮機本体側から吐出側への圧縮空気の流通を許可する逆止弁とを有し、前記圧縮機本体の駆動停止時に、前記逆止弁より上流の圧縮機空気が逆流することで前記圧縮機本体が逆回転し、前記回生電力を生成する動力を生成する気体圧縮機である。 In order to solve the above problems, for example, the configuration described in the claims is applied. That is, a gas compressor having a compressor main body that sucks gas and generates compressed gas, and is an electric motor that drives the compressor main body by receiving supply power, and obtains power from the compressor main body and regenerates electric power. A rotating electrical machine that is a generator for generating the power, an inverter that controls the rotational speed of the rotating electrical machine by changing the frequency of the supplied power, a converter that generates output power from the generated power, and a compressor body A check valve that permits the flow of compressed air from the compressor body side to the discharge side on the discharge side piping, and when the compressor body stops driving, the compressor air upstream from the check valve is It is a gas compressor that generates power for generating regenerative power by reversely rotating the main body of the compressor by reverse flow.
 また、他の構成は、気体を吸気して圧縮気体を生成する圧縮機本体を有する複数の気体圧縮機からなる気体圧縮機システムであって、前記複数の気体圧縮機の少なくとも1つの気体圧縮機Aが供給電力を受けて前記圧縮機本体を駆動する電動機であると共に前記圧縮機本体から動力を得て回生電力を生成する発電機となる回転電機と、前記供給電力の周波数を変更して前記回転電機の回転数を制御するインバータと、生成された前記電力から出力電力を生成するコンバータと、圧縮機本体の吐出側配管上で、圧縮機本体側から吐出側への圧縮空気の流通を許可する逆止弁と、前記圧縮機本体の吐出し側から前記逆止弁の上流までの吐出配管経路と連通し、他の1又は2以上の気体圧縮機Bから圧縮空気を取り込む外部取込配管とを有し、前記圧縮機本体の運転待機時に、前記外部取込み配管から取り込んだ圧縮機空気によって前記圧縮機本体が逆回転し、前記回生電力を生成する動力を生成するものであり、前記気体圧縮機Bが、前記圧縮機本体を駆動する電動機と、該圧縮機本体の吐出側配管上で、圧縮機本体側から吐出側への圧縮空気の流通を許可する逆止弁と、該逆止弁より上流の圧縮空気を放気する放気配管と、該放気配管上に設置する放気弁とを有するものであり、前記気体圧縮機システムが、前記気体圧縮機Bの放気弁から下流と前記気体圧縮機Aの外部取込配管が連通するものであり、前記複数の気体圧縮機と通信可能に接続し、前記気体圧縮Aが運転待機時且つ前記気体圧縮機Bの放気時に、前記放気弁を開とする制御装置を有するものである気体圧縮機システムである。 Another configuration is a gas compressor system including a plurality of gas compressors having a compressor body that sucks gas and generates compressed gas, and at least one gas compressor of the plurality of gas compressors A is an electric motor that receives supply power and drives the compressor body, and a rotating electrical machine that is a generator that generates regenerative power by obtaining power from the compressor body, and changes the frequency of the supply power to change the frequency Permits the flow of compressed air from the compressor body side to the discharge side on the inverter that controls the rotation speed of the rotating electrical machine, the converter that generates output power from the generated power, and the discharge side piping of the compressor body A check valve that communicates with a discharge pipe path from the discharge side of the compressor body to the upstream of the check valve, and an external intake pipe that takes in compressed air from one or more other gas compressors B And before At the time of standby of the compressor body, the compressor body reversely rotates by the compressor air taken in from the external intake pipe, and generates power for generating the regenerative power, and the gas compressor B is An electric motor that drives the compressor body, a check valve that permits the flow of compressed air from the compressor body side to the discharge side on the discharge side piping of the compressor body, and compressed air upstream from the check valve The gas compressor system has an air discharge pipe installed on the air discharge pipe, and the gas compressor system is disposed downstream from the air discharge valve of the gas compressor B and the gas compressor. A external intake pipe of A communicates, and is connected to be able to communicate with the plurality of gas compressors, and when the gas compression A is on standby and the gas compressor B is venting, the vent valve is Gas compressor system having a control device for opening It is.
 本発明の一側面によれば、圧縮気体を生成する気体圧縮機が、余剰気体を利用して回生エネルギを生成する装置としても利用することができ、省エネ効果が向上する。 According to one aspect of the present invention, a gas compressor that generates compressed gas can also be used as a device that generates regenerative energy using surplus gas, thereby improving the energy saving effect.
 また、本発明の一側面によれば、複数台の気体圧縮機からなる気体圧縮機システムにおいて、一方気体圧縮機の放気気体を利用して他方気体圧縮機で回生エネルギを生成することができ、システム全体での省エネを図ることができる。
  本発明の他の課題・構成・効果は、以下の記載から明らかになる。
Further, according to one aspect of the present invention, in a gas compressor system including a plurality of gas compressors, regenerative energy can be generated by the other gas compressor using the discharged gas of one gas compressor. , Energy saving can be achieved in the entire system.
Other problems, configurations, and effects of the present invention will become apparent from the following description.
本発明を適用した実施例1による空気圧縮機の構成を示す模式図である。It is a schematic diagram which shows the structure of the air compressor by Example 1 to which this invention is applied. 実施例1による空気圧縮機の動作の流れを示すタイミングチャートである。3 is a timing chart illustrating the operation flow of the air compressor according to the first embodiment. 本発明を適用した実施例2による空気圧縮機システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the air compressor system by Example 2 to which this invention is applied. 実施例2による台数制御部の処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of a number control unit according to the second embodiment.
 以下、本発明を実施するための形態について図面を用いて説明する。
  図1に、本発明を適用した一実施例である給油式の空気圧縮機100の構成を模式的に示す。本実施例では、空気を吸気して圧縮空気を吐出す給油式空気圧縮機を例示するが、本発明はこれに限定するものではなく、趣旨を逸脱しない範囲で、圧縮する気体の種別や給液(水等)式圧縮装置に適用することもできる。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a configuration of an oil supply type air compressor 100 according to an embodiment to which the present invention is applied. In this embodiment, an oil supply type air compressor that takes in air and discharges compressed air is illustrated, but the present invention is not limited to this, and the type and supply of gas to be compressed are within the scope of the present invention. It can also be applied to a liquid (water etc.) type compression device.
 空気圧縮機100は、外部からのエアフィルタ1及び吸込絞り弁2を介して吸気した空気を圧縮する圧縮機本体5と、圧縮機本体の駆動源及び発電源となる回転電機6と、吐出混合気体の温度を検出する温度センサと、吐出混合気体から圧縮空気と潤滑油を一次分離する油分離器9と、分離された圧縮空気から更に油分を二次分離するエレメント10と、二次分離された圧縮空気の吐出配管経路上に配置する調圧逆止弁11と、逆止弁11を介して流通した圧縮空気及び後述する潤滑油をファン14からの冷却風で冷却する熱交換器13と、上記吐出配管とは異なり油分離器9の下流側に配置する制御配管系統と、当該放気配管系統から分岐する3つの配管上に各々配置する放気電磁弁17、操作電磁弁18及び回生用電磁弁19と、回生電磁弁19の下流に配置する噴出し弁3と、噴出し弁3の下流に配置する噴出し用エレメント4、噴出し用エレメント4が取り除いた潤滑油を圧縮機本体5に還流する回収機構(油受け40、逆止弁41)と、回転電機6、ファンモータ15及び各種電磁弁等の制御を行う制御盤27と、ファンモータ15に供給する電力の周波数変換を行うファン用インバータ16と、これらを格納する外部筺体(パッケージ)23とを主な構成要素として備える。 The air compressor 100 includes a compressor body 5 that compresses air taken in through the air filter 1 and the suction throttle valve 2 from the outside, a rotating electrical machine 6 that serves as a drive source and a power generation source of the compressor body, and discharge mixing. A temperature sensor that detects the temperature of the gas, an oil separator 9 that primarily separates compressed air and lubricating oil from the discharged mixed gas, an element 10 that further separates oil from the separated compressed air, and a secondary separation. A pressure regulating check valve 11 disposed on the compressed air discharge piping path, and a heat exchanger 13 for cooling the compressed air and the lubricating oil described later with cooling air from the fan 14 through the check valve 11; Unlike the discharge pipe, the control pipe system disposed on the downstream side of the oil separator 9 and the air discharge solenoid valve 17, the operation solenoid valve 18 and the regeneration valve respectively disposed on the three pipes branched from the air discharge pipe system. Solenoid valve 19 and regenerative An ejection valve 3 disposed downstream of the magnetic valve 19, an ejection element 4 disposed downstream of the ejection valve 3, and a recovery mechanism for returning the lubricating oil removed by the ejection element 4 to the compressor body 5 ( An oil receiver 40, a check valve 41), a control panel 27 for controlling the rotating electrical machine 6, the fan motor 15 and various electromagnetic valves, a fan inverter 16 for converting the frequency of electric power supplied to the fan motor 15, An external housing (package) 23 for storing these is provided as a main component.
 空気圧縮機100が生成した圧縮空気は、外部タンク(リザーバタンク)45に一時的に貯留され、その後、ユーザ側の機器に送るようになっている。なお、外部タンク45を設置せずに、直接ユーザ側機器に圧縮空気を送るようにしてもよい。 Compressed air generated by the air compressor 100 is temporarily stored in an external tank (reservoir tank) 45 and then sent to a user device. In addition, you may make it send compressed air directly to a user side apparatus, without installing the external tank 45. FIG.
 圧縮機本体5は、1又は複数のスクリューロータからなるスクリュー式圧縮機である。圧縮機本体5と回転電機6とは、ロータ及びモータシャフト同士が(分割又は一体構成で)軸同に構成される。軸同であることで、機会ロスが低減でき効率圧縮及び効率発電に資する。なお、本発明は、他の形式の圧縮機本体や他の連結構成にも適用できる。 The compressor body 5 is a screw type compressor composed of one or a plurality of screw rotors. The compressor body 5 and the rotating electrical machine 6 are configured so that the rotor and the motor shaft are in the same axis (in a divided or integrated configuration). Being on the same axis can reduce opportunity loss and contribute to efficient compression and efficient power generation. The present invention can also be applied to other types of compressor bodies and other connection configurations.
 油分離器9は、その底部に溜まった潤滑油を圧縮機本体側に還流する潤滑油経路30を有する。潤滑油経路30は、途中で温調弁12を介してその下流側が2系統に分岐するようになっている。一方は、圧縮機本体5に直接的に連通する還流経路であり、他方は熱交換器13を経由した後にこの還流経路と接続する経路である。温調弁12は、潤滑油温度を閾として潤滑油の流通経路を切り替える弁であり、潤滑油温度が閾より低い場合には、圧縮機本体5に直接的に還流する経路を開とし、逆に閾以上に高い場合には、熱交換器13に接続する経路を開として流路を切り替える。例えば、起動直後などで吐出し空気温度がドレン発生限界温度に対して低い場合は、ドレンの発生を防止するために、熱交換器13に流入しない経路に潤滑油を循環させ吐出温度を上昇させる。逆にドレン発生限界温度に対して高い場合は、吐出温度がそれ以上上昇しないように為、熱交換器13に流入する経路に切り替えるようになっている。いずれかの経路を流通した潤滑油は、その後、オイルフィルタ20を介して圧縮機本体5に還流する。 The oil separator 9 has a lubricating oil passage 30 for returning the lubricating oil accumulated at the bottom thereof to the compressor body side. The lubricating oil path 30 is branched into two systems on the downstream side via the temperature control valve 12 in the middle. One is a reflux path that directly communicates with the compressor body 5, and the other is a path that is connected to the reflux path after passing through the heat exchanger 13. The temperature control valve 12 is a valve that switches the flow path of the lubricating oil with the lubricating oil temperature as a threshold. When the lubricating oil temperature is lower than the threshold, the path that directly recirculates to the compressor body 5 is opened, and vice versa. If it is higher than the threshold, the flow path is switched with the path connected to the heat exchanger 13 opened. For example, if the discharge air temperature is low immediately after startup or the like, and the drain generation limit temperature is low, lubricating oil is circulated through a path that does not flow into the heat exchanger 13 to increase the discharge temperature in order to prevent drain generation. . On the contrary, when it is higher than the drain generation limit temperature, it is switched to a path flowing into the heat exchanger 13 so that the discharge temperature does not rise any further. The lubricating oil that has circulated through one of the paths then returns to the compressor body 5 through the oil filter 20.
 熱交換器13は、分離後の圧縮空気及び潤滑油をファン14が生成する冷却風と熱交換する冷却器である。制御部26が、圧縮機本体5から吐き出された吐出空気の温度を検出する温度センサ25の検出値に応じて、冷却ファンの回転数をファン用インバータ16及びファン用モータ15によって変化させるようになっている。 The heat exchanger 13 is a cooler that exchanges heat between the separated compressed air and the lubricating oil with the cooling air generated by the fan 14. The control unit 26 changes the rotation speed of the cooling fan by the fan inverter 16 and the fan motor 15 according to the detection value of the temperature sensor 25 that detects the temperature of the discharge air discharged from the compressor body 5. It has become.
 潤滑油の二次分離を行うエレメント10の下流側と接続し、ユーザ側に通じる吐出配管系統と異なる経路である制御配管系統31は、外部への圧縮空気の放気経路や吸込み絞り弁2及び噴出し弁3の駆動制御圧力の供給を行う経路として機能する。 The control piping system 31, which is connected to the downstream side of the element 10 that performs secondary separation of the lubricating oil and is different from the discharge piping system that leads to the user side, has a compressed air discharge path, a suction throttle valve 2, and the like. It functions as a path for supplying the drive control pressure of the ejection valve 3.
 放気電磁弁17は、圧縮機本体5の駆動がアンロード運転となる場合、調圧逆止弁11から圧縮機本体5の間の圧縮空気を放気して減圧し、回転電機6の駆動電力を低減させるようになっている。より具体的には、制御部26は、操作電磁弁18及び回生用電磁弁19を「閉」にすると共に放気電磁弁17を「開」にし、外部放気を行う。 When the drive of the compressor body 5 is an unload operation, the discharge air solenoid valve 17 discharges the compressed air between the pressure check valve 11 and the compressor body 5 to reduce the pressure, and drives the rotating electrical machine 6. The power is reduced. More specifically, the control unit 26 “closes” the operation solenoid valve 18 and the regenerative solenoid valve 19 and “opens” the release solenoid valve 17 to perform external release.
 操作電磁弁(吸込み絞り弁制御装置)18は、ロード運転時に「開」となり、吸込み絞り弁2が開となって外気が圧縮機本体5に吸気される。また、操作電磁弁18は、圧縮機本体5が自動停止運転となる場合に「閉」となり、バネ等によって閉方向に付勢力を有する吸込み絞り弁2が閉となって、圧縮機本体5に外気が流通するのを防止する。操作制御弁18の開閉は制御部26によって制御される。 The operation solenoid valve (suction throttle valve control device) 18 is “open” during the load operation, the suction throttle valve 2 is opened, and the outside air is sucked into the compressor body 5. The operation solenoid valve 18 is “closed” when the compressor main body 5 is automatically stopped, and the suction throttle valve 2 having a biasing force in the closing direction is closed by a spring or the like, so that the compressor main body 5 is closed. Prevent outside air from circulating. Opening and closing of the operation control valve 18 is controlled by the control unit 26.
 回生用電磁弁(弁体制御装置)3は、ロード運転又はアンロード運転の場合には「閉」となり、この結果、噴出し弁3が噴出し用エレメント4側と吸気経路の連通を禁止する。自動停止運転となる場合、回生用電磁弁3は「開」となり、噴出し弁3が噴出し用エレメント4側と吸気経路の連通を許可するようになっている。回生用電磁弁3の開閉は、制御部26によって制御される。 The regenerative solenoid valve (valve element control device) 3 is “closed” in the load operation or unload operation, and as a result, the ejection valve 3 prohibits the communication between the ejection element 4 side and the intake path. . In the automatic stop operation, the regenerative solenoid valve 3 is “open”, and the ejection valve 3 permits communication between the ejection element 4 side and the intake path. The opening and closing of the regenerative solenoid valve 3 is controlled by the control unit 26.
 吸込み絞り弁2を介して吸込んだ空気が圧縮機本体5に流通する吸込配管経路は、その途中が2つに分岐し、一方は圧縮機本体5と接続し、他方は噴出し用(オイル)エレメント4及び油回収機構と接続するようになっている。この他方の経路への空気流通は、上述のように回生用電磁弁3によって制御される。後述する放気空気を利用した回生運転時に、圧縮機本体5の吸込み側から逆流する圧縮空気は、空気と潤滑油による混合気体であるため、油回収機構を設けて潤滑油の筺体内部或いは外部への飛散を防止するようになっている。 The suction pipe path through which the air sucked through the suction throttle valve 2 flows into the compressor main body 5 is branched into two, one connected to the compressor main body 5 and the other for ejection (oil). It is connected to the element 4 and the oil recovery mechanism. The air flow to the other path is controlled by the regenerative solenoid valve 3 as described above. During regenerative operation using air discharge described later, the compressed air that flows backward from the suction side of the compressor body 5 is a mixed gas of air and lubricating oil, so an oil recovery mechanism is provided to provide an inside or outside of the lubricating oil housing. To prevent splashing.
 油回収機構は、油受け40及び逆止弁41を備える。噴出し用エレメント4は、回生運転時に圧縮機本体5側から逆流する圧縮空気から油分と空気を分離し、分離された油は、その落下先に設置する油受け40及び逆止弁41を介して、吸込配管経路に還流するようになっている。回生運転時には、吸込配管経路側が高圧となり、逆止弁41の上流側から油が還流しないが、回生運転が終了して空気圧縮運転に復帰することで、吸込配管経路側が負圧となり、吸気配管系統に潤滑油の還流が許可されるようになっている。 The oil recovery mechanism includes an oil receiver 40 and a check valve 41. The ejection element 4 separates oil and air from the compressed air flowing backward from the compressor body 5 side during the regenerative operation, and the separated oil passes through an oil receiver 40 and a check valve 41 installed at the drop destination. Thus, the refrigerant is returned to the suction pipe path. During the regenerative operation, the suction pipe path side is at a high pressure, and the oil does not recirculate from the upstream side of the check valve 41. The system is allowed to recirculate lubricating oil.
 制御部26は、CPUやMPUといった演算装置と、プログラムとの協働によって実現される制御機能部であり、上記電磁弁、インバータ7、コンバータ8、ファン用インバータ16に種々の制御指令を出力する。また、制御部26は、メモリ(不図示)を備え、操作パネルやネットワークを介して(不図示)外部入力された空気吐出圧力や種々の制御閾値等を記憶又は設定可能になっている。 The control unit 26 is a control function unit realized by the cooperation of an arithmetic device such as a CPU or MPU and a program, and outputs various control commands to the solenoid valve, the inverter 7, the converter 8, and the fan inverter 16. . Further, the control unit 26 includes a memory (not shown), and can store or set an air discharge pressure, various control threshold values, and the like that are externally input via an operation panel or a network (not shown).
 なお、空気圧縮機100は、調圧弁11より下流のユーザ側吐出配管経路上に、圧力検出装置として圧力センサ28を有する。圧力センサ28は、ユーザ側(設備機械やリザーバタンク等)の圧縮空気圧力を検出する。制御部26は、圧力センサ28の検出値に応じて、インバータ7に制御指令を出力し、インバータ制御運転、ロード運転、アンロード運転及び自動停止運転を実行するようになっている。 The air compressor 100 has a pressure sensor 28 as a pressure detection device on the user side discharge piping path downstream from the pressure regulating valve 11. The pressure sensor 28 detects the compressed air pressure on the user side (equipment machine, reservoir tank, etc.). The control unit 26 outputs a control command to the inverter 7 according to the detection value of the pressure sensor 28, and executes inverter control operation, load operation, unload operation, and automatic stop operation.
 ここで、インバータ制御運転とは、圧力センサ28の検出値に基づいて、ユーザ側の吐出圧力が所定の設定吐出圧力を維持するようにインバータの出力周波数値を変更する制御である。例えば、ユーザ側吐出圧力が設定圧力以上になれば、出力周波数を低減させて圧縮機本体5の回転数を低下させる。逆に設定圧力を下回るときは、出力周波数を増加させて圧縮機本体5の回転数を上昇させる。 Here, the inverter control operation is control for changing the output frequency value of the inverter based on the detection value of the pressure sensor 28 so that the discharge pressure on the user side maintains a predetermined set discharge pressure. For example, if the user-side discharge pressure is equal to or higher than the set pressure, the output frequency is reduced and the rotational speed of the compressor body 5 is reduced. Conversely, when the pressure falls below the set pressure, the output frequency is increased to increase the rotational speed of the compressor body 5.
 アンロード運転とは、例えばユーザ側の空気使用量が減少し、ユーザ側圧力が設定吐出圧力よりも高い所定の上限圧力に達した場合、放気電磁弁17を「開」にすると共に操作電磁弁18を「閉」とし、更に回転電機6の回転数を低下させ、圧縮機本体5の駆動電力を省エネする運転である。回転数の低下度合いとしては、例えば、潤滑油が潤滑油経路30を流通するのに必要な圧力を生成する程度の最低限度の回転数等が挙げられるが、これに限定するものではない。なお、吸込み絞り弁2は「閉」であるが、閉弁隙間等から僅かに吸い込まれる空気によって、圧縮機本体5の吐出し側が大気圧よりも高圧の環境を生成することができる。
  その後、ユーザ側の空気使用量が増加する等によって、設定吐出圧力付近まで低下したことを検知すると、放気電磁弁17を「閉」として調圧逆止弁11よりも上流側の圧縮再開或いはこれに加えて回転電機6の回転数を上昇させ、上記上限圧力を限界として、ユーザ側を設定吐出圧力以上に維持する等の運転である。なお、設定吐出圧力よりも低い所定の下限圧力までユーザ側の圧力が下がった場合には、ロード運転に切り替えるのが好ましい。
In the unload operation, for example, when the air usage amount on the user side decreases and the user side pressure reaches a predetermined upper limit pressure higher than the set discharge pressure, the air release solenoid valve 17 is opened and the operation electromagnetic In this operation, the valve 18 is set to “closed”, the rotational speed of the rotating electrical machine 6 is further reduced, and the drive power of the compressor body 5 is saved. Examples of the degree of decrease in the rotational speed include, but are not limited to, a minimum rotational speed that can generate a pressure necessary for the lubricating oil to flow through the lubricating oil passage 30. In addition, although the suction throttle valve 2 is “closed”, the discharge side of the compressor body 5 can generate an environment whose pressure is higher than the atmospheric pressure by the air slightly sucked from the valve closing gap or the like.
Thereafter, when it is detected that the air usage amount on the user side has increased to a value close to the set discharge pressure, the air discharge electromagnetic valve 17 is closed and the compression on the upstream side of the pressure regulating check valve 11 is resumed. In addition to this, the rotation speed of the rotating electrical machine 6 is increased, and the user side is maintained at a set discharge pressure or higher with the upper limit pressure as a limit. In addition, when the user side pressure falls to a predetermined lower limit pressure lower than the set discharge pressure, it is preferable to switch to the load operation.
 ロード運転とは、設定吐出圧力に達するまで放気弁17を「閉」及び操作電磁弁17を「開」に維持して、回転電機6を定格で駆動する運転である。なお、本発明は、吸込み絞り弁2及び操作電磁弁16を構成に含まない場合でも適用できるものである。 The load operation is an operation in which the rotary electric machine 6 is driven at a rating while the discharge valve 17 is kept “closed” and the operation solenoid valve 17 is kept “open” until the set discharge pressure is reached. The present invention is applicable even when the suction throttle valve 2 and the operation solenoid valve 16 are not included in the configuration.
 自動停止運転とは、ユーザ側の空気使用量が減少し、ユーザ側圧力が設定吐出圧力以上の状態が所定時間継続する等を契機として圧縮機本体5の駆動を一時的に停止する運転である。例えば、ユーザ側の空気使用量が減少し、ユーザ側圧力が設定吐出圧力以上となり、やがて上限圧力に達すると、制御部26は上記アンロード運転を実行するようになっているが、アンロード運転を長時間継続するよりも一時的に圧縮機本体5の駆動を停止(回転電機6への電力供給停止)し、所定時間の経過やユーザ側圧力が所定の圧力(例えば、アンロード運転における下限圧力よりも低い復帰圧力等)より低くなった時等に、再駆動する方が省エネ面から効率的となる場合もある。 The automatic stop operation is an operation in which the drive of the compressor body 5 is temporarily stopped when, for example, the user side air consumption decreases and the state where the user side pressure is equal to or higher than the set discharge pressure continues for a predetermined time. . For example, when the air usage on the user side decreases, the user side pressure becomes equal to or higher than the set discharge pressure, and eventually reaches the upper limit pressure, the control unit 26 performs the unload operation. Is temporarily stopped (the power supply to the rotating electrical machine 6 is stopped), and the passage of a predetermined time and the user-side pressure are set to a predetermined pressure (for example, a lower limit in unload operation). In some cases, it is more efficient in terms of energy saving when the driving is restarted when the pressure becomes lower than a return pressure lower than the pressure.
 そこで、本実施例では、設定吐出圧力以上の状態が所定時間継続すると、回転電機6への電力供給を停止し、電力を節約するようになっている。なお、自動停止運転開始の圧力基準は、設定吐出圧力に限るものではなく、上限圧力等の任意な圧力でもよい。また、所定圧力状態の継続時間は自動停止運転の開始契機に限定されるものではなく、単位時間間隔あたりのアンロード運転及びロード運転の比率を制御部26が監視演算し、アンロード運転の割合が大となった場合に自動停止運転を実行する等、種々の態様を適用してもよい。更に、実施例では、自動停止運転前にアンロード運転が実行される例を説明するが、必ずしもアンロード運転を自動停止運転の前提としなくても本発明を適用することができる。 Therefore, in this embodiment, when the state of the set discharge pressure or more continues for a predetermined time, the power supply to the rotating electrical machine 6 is stopped to save power. The pressure reference for starting the automatic stop operation is not limited to the set discharge pressure, and may be an arbitrary pressure such as an upper limit pressure. Further, the duration of the predetermined pressure state is not limited to the start timing of the automatic stop operation, but the control unit 26 monitors and calculates the ratio of the unload operation and the load operation per unit time interval, and the ratio of the unload operation Various modes may be applied, for example, an automatic stop operation is performed when becomes large. Further, in the embodiment, an example in which the unload operation is executed before the automatic stop operation will be described, but the present invention can be applied even if the unload operation is not necessarily assumed as the automatic stop operation.
 次いで、図2を用いて、回生運転機能について説明する。
  上述のように、自動停止運転時には圧縮機本体5の回転を一時停止(回転電機6への電力供給停止)するが、調圧逆止弁11から下流側では、圧縮機本体5の吐出側に対して逆流によるバック圧が発生する。アンロード運転時には、放気電磁弁17を介して外部に放気することでバック圧を解消するが、回生運転時には、放気電磁弁17を「閉」とし、調圧逆止弁11から下流の圧縮空気を圧縮機本体5に逆流させるようになっている。圧縮機本体5のスクリューロータは、逆流する圧縮空気により逆回転し、これに伴い回転電機6も逆回転することで発電機として機能する。回転電機6の逆回転によって生成された電気はコンバータ8によって回生電力として利用することができるようになっている。なお、その後圧縮機本体5の吸込み側から吸込配管経路に吐出された圧縮空気が、配管系統外部に放気されるのは既に述べた通りである。
Next, the regenerative operation function will be described with reference to FIG.
As described above, during the automatic stop operation, the rotation of the compressor body 5 is temporarily stopped (power supply to the rotating electrical machine 6 is stopped), but on the downstream side from the pressure regulating check valve 11, the compressor body 5 is discharged to the discharge side. On the other hand, a back pressure is generated by backflow. At the time of unloading operation, the back pressure is eliminated by venting outside through the venting solenoid valve 17, but at the time of regenerative operation, the venting solenoid valve 17 is set to “closed” and downstream from the pressure regulating check valve 11. The compressed air is caused to flow backward to the compressor body 5. The screw rotor of the compressor body 5 functions as a generator by rotating in reverse by the compressed air flowing backward, and the rotating electric machine 6 also rotating in reverse. Electricity generated by the reverse rotation of the rotating electrical machine 6 can be used as regenerative power by the converter 8. As described above, the compressed air discharged from the suction side of the compressor body 5 to the suction piping path is then discharged to the outside of the piping system.
 回生電力は、冷却ファン14を駆動するファン用モータ15の電力として利用する。回生電力は放気エアを利用して生成されることから、自動停止運転時等、圧縮機本体5が生成する圧縮空気は無いことに等しい。潤滑油も上昇する要因が少ないため、冷却ファンの回転数も比較的低回転でよい。このため発電電力は放気エアが放出されている間の時間しか生成できないが、低負荷での冷却環境でよい場合には十分な電力を得ることができる。 The regenerative power is used as power for the fan motor 15 that drives the cooling fan 14. Since the regenerative electric power is generated using the discharged air, this is equivalent to the fact that there is no compressed air generated by the compressor body 5 during an automatic stop operation or the like. Since there are few factors that increase the lubricating oil, the rotation speed of the cooling fan may be relatively low. For this reason, the generated power can be generated only during the time during which the discharged air is released, but sufficient power can be obtained when a cooling environment with a low load is sufficient.
 なお、本実施例では、ファンモータ用の電力として利用する例を説明するが、これに限定するものではなく、圧縮機100内部にバックアップ電源用等の蓄電池を備え、これの充電用など、種々の構成が可能である。 In the present embodiment, an example in which power is used for a fan motor will be described. However, the present invention is not limited to this example. Is possible.
 このような一連の動作の流れを説明する。
  時間t0は、回転電機6が定格で駆動しユーザ側の圧力が設定吐出圧力の状態を示す。この時の回転電機6の負荷率は100%(定格)であり、操作電磁弁18は「開(即ち吸込み絞り弁2が開)」であり、放気電磁弁17は「閉」、回生用電磁弁19は「閉」の状態で(インバータ制御運転における)ロード運転が行われる。なお、図において「回転方向」は回転電機6の回転方向であり、圧縮時の回転方向を「正回転」とするものである。
A flow of such a series of operations will be described.
The time t0 indicates a state in which the rotating electrical machine 6 is driven at a rating and the user-side pressure is set discharge pressure. At this time, the load factor of the rotary electric machine 6 is 100% (rated), the operation solenoid valve 18 is “open (that is, the suction throttle valve 2 is open)”, the air release solenoid valve 17 is “closed”, The electromagnetic valve 19 is in a “closed” state (in an inverter control operation), and a load operation is performed. In the drawing, the “rotation direction” is the rotation direction of the rotating electrical machine 6, and the rotation direction during compression is “forward rotation”.
 時間t1で、制御部26は、ユーザ側吐出圧力が上限値に達したことを検知すると、アンロード運転を開始する。即ちインバータ7に周波数低減の指令(例えば、最低回転周波数)を出力して回転電機6の負荷率を低下させる。同様に制御部26は、操作電磁弁18を「閉」、放気電磁弁17を「開」とし、空気の吸込みを制限すると共に調圧逆止弁11から上流の配管系統の圧力を低下させる。これにより回転電機6の負荷率が更に低下する。その後、ユーザ側吐出圧力は、ユーザ側の空気使用量に応じて徐々に低下する。 At time t1, when the control unit 26 detects that the user-side discharge pressure has reached the upper limit value, it starts the unload operation. That is, a frequency reduction command (for example, the minimum rotation frequency) is output to the inverter 7 to reduce the load factor of the rotating electrical machine 6. Similarly, the control unit 26 “closes” the operation solenoid valve 18 and “opens” the air release solenoid valve 17 to restrict the intake of air and reduce the pressure in the piping system upstream from the pressure regulating check valve 11. . Thereby, the load factor of the rotary electric machine 6 further decreases. Thereafter, the user-side discharge pressure gradually decreases according to the user-side air consumption.
 時間t2で、制御部26は、ユーザ側吐出圧力が設定吐出圧力と同値に設定された下限値に達したことを検知すると、アンロード運転からロード運転に切り替える。なお、この時のロード運転は、回転電機6の負荷率を低下させたままで、放気電磁弁及び操作制御弁の制御によって行う負荷運転である。
  制御部26は、操作電磁弁18を「開」、放気電磁弁17を「閉」とし、調圧逆止弁11から上流の配管系統を昇圧する。即ち回転電機6の低負荷率での回転を利用し、吸込み量を増加並びに放気量を制限することで昇圧を図る。
When detecting that the user-side discharge pressure has reached the lower limit value set to the same value as the set discharge pressure at time t2, the control unit 26 switches from the unload operation to the load operation. Note that the load operation at this time is a load operation performed by controlling the air discharge electromagnetic valve and the operation control valve while the load factor of the rotating electrical machine 6 is reduced.
The control unit 26 “opens” the operation solenoid valve 18 and “closes” the discharge solenoid valve 17, and boosts the piping system upstream from the pressure regulating check valve 11. That is, by using the rotation of the rotating electrical machine 6 at a low load factor, the pressure is increased by increasing the suction amount and limiting the air discharge amount.
 時間t3で、制御部26は、ユーザ側吐出圧力が上限値に達したことを検知すると、再度操作電磁弁18を「閉」、放気電磁弁17を「開」とする。即ち時間t1のアンロード運転と同じ運転状態となる。時間t4で、制御部26が再度ユーザ側吐出圧力が下限値に達したことを検知すると、時間t3と同様に電磁弁を制御して再昇圧を図る。なお、本実施例では、アンロード運転からロード運転に切り替える契機を上限圧として説明するが、これ以外にも、設定吐出圧力と、上限圧力との間の任意の圧力を切り替えの契機としてもよい。上限圧の設置値が比較的高い場合、アンロード運転で当該圧力まで昇圧するのに著しく時間を必要とする場合もあるからである。 At time t3, when the control unit 26 detects that the user-side discharge pressure has reached the upper limit value, it again sets the operation solenoid valve 18 to “closed” and the air release solenoid valve 17 to “open”. That is, the operation state is the same as the unload operation at time t1. When the control unit 26 detects again that the user-side discharge pressure has reached the lower limit value at time t4, the solenoid valve is controlled to increase the pressure again similarly to time t3. In this embodiment, the trigger for switching from the unload operation to the load operation is described as the upper limit pressure, but in addition to this, any pressure between the set discharge pressure and the upper limit pressure may be used as the trigger for switching. . This is because if the installation value of the upper limit pressure is relatively high, it may take a considerable amount of time to increase the pressure to the pressure during unload operation.
 このように、空気圧縮機100は、ユーザ側吐出圧力に基づいてアンロード運転と、ロード運転とを繰り返すが、制御部26は、上限圧の検知と同時にタイマを作動させ、その後、下限圧に達するまでに所定の時間の経過等を検出すると、自動停止運転の実行を開始する。 As described above, the air compressor 100 repeats the unload operation and the load operation based on the user-side discharge pressure, but the control unit 26 activates the timer simultaneously with the detection of the upper limit pressure, and then sets the lower limit pressure. When the elapse of a predetermined time or the like is detected before reaching, the execution of the automatic stop operation is started.
 時間t5で、制御部26は所定経過時間を検出すると、操作電磁弁18を「開」、放気電磁弁17を「閉」として、ユーザ側吐出圧力を上限値まで昇圧する。このとき必要であれば回転電機6の回転数を増加させてもよい。即ち圧縮機本体5を停止する前に、ユーザ側圧力を高圧にする制御を行う。自動停止機能は、所定の経過時間、ユーザ側の空気使用量がかなり少ない或いは無い状況で発生するため、例えば、リザーバタンクやユーザ機器内に充填された高圧の圧縮空気が自然放熱等によって冷却されるとドレンが発生する虞がある。また、ユーザが再び使用を開始する際に、設定吐出圧力より高い圧力を直ぐ得ることができる利点もある。更には、自動停止運転によって、空気圧縮機100の配管系統内は略大気圧となるため、空気使用量の増加によって再駆動しても、設定吐出圧力までの圧力を得るのに時間を要する等の理由にもよる。 At time t5, when the control unit 26 detects a predetermined elapsed time, the operation solenoid valve 18 is “open” and the discharge solenoid valve 17 is “closed” to increase the user-side discharge pressure to the upper limit value. At this time, if necessary, the rotational speed of the rotating electrical machine 6 may be increased. That is, before the compressor main body 5 is stopped, the user side pressure is controlled to be high. The automatic stop function occurs when the user side air consumption is considerably low or absent for a predetermined elapsed time. For example, high-pressure compressed air filled in a reservoir tank or user equipment is cooled by natural heat dissipation or the like. Then, drainage may occur. In addition, there is also an advantage that when the user starts using again, a pressure higher than the set discharge pressure can be obtained immediately. Furthermore, since the inside of the piping system of the air compressor 100 becomes substantially atmospheric pressure due to the automatic stop operation, it takes time to obtain the pressure up to the set discharge pressure even if it is re-driven due to an increase in the amount of air used. It depends on the reason.
 時間t6で、制御部26は、上限圧まで再昇圧を実行すると、操作電磁弁18を「閉」とするが、放気電磁弁17の「閉」を維持する。そして、操作電磁弁18を「閉」とした後、回生用電磁弁19を「開」とする。これにより調圧逆止弁11から上流の配管系統から圧縮空気が圧縮機本体5の吐出し側に逆流し、回転電機6による発電が開始される。なお、操作電磁弁18の「閉」の後(数秒)に回生用電磁弁19を「開」とすることで、油分が比較的含有された逆流圧縮空気が、吸込み絞り弁2やその上流に流通することを確実に防止できる。
  自動停止運転後は、所定の経過時間や任意の再駆動開始圧力を契機に(インバータ制御運転による)ロード運転を再開するようになっている。
At time t <b> 6, when the control unit 26 increases the pressure again to the upper limit pressure, the control electromagnetic valve 18 is “closed”, but the air release electromagnetic valve 17 is kept “closed”. Then, after the operation solenoid valve 18 is “closed”, the regenerative solenoid valve 19 is “open”. As a result, compressed air flows backward from the piping system upstream from the pressure regulating check valve 11 to the discharge side of the compressor body 5, and power generation by the rotating electrical machine 6 is started. In addition, after the operation solenoid valve 18 is “closed” (several seconds), the regenerative solenoid valve 19 is “opened”, so that the backflow compressed air containing a relatively large amount of oil is introduced into the suction throttle valve 2 and upstream thereof. It is possible to reliably prevent distribution.
After the automatic stop operation, the load operation (by the inverter control operation) is resumed at a predetermined elapsed time or an arbitrary redrive start pressure.
 なお、本実施例では、アンロード運転を行う制御態様について説明したが、アンロード運転がなく、インバータ制御運転と自動停止運転のみの組合せ制御の態様であっても、当該自動停止運転において、回転電機6の逆転が可能であれば適用できるものである。また、本実施例において、自動停止運転は、停止前に上限値まで昇圧する例を説明したが、昇圧せずに放気するように構成することも同然に可能である。 In the present embodiment, the control mode in which the unload operation is performed has been described. However, even if there is no unload operation and the combination control mode includes only the inverter control operation and the automatic stop operation, The present invention can be applied if the electric machine 6 can be reversed. Further, in the present embodiment, the example in which the automatic stop operation increases the pressure to the upper limit value before the stop has been described, but it is also possible to configure so that the air is released without increasing the pressure.
 以上のように、本実施例によれば、放気(破棄)する空気を利用して回生電力を得ることができる。更に、圧縮機本体自体を、圧縮手段及び膨張手段に利用するとともに、回転電機を電動機及び発電機に利用することから装置としての活用性が著しく高まる。
  また、本実施例では、ユーザ側のドレン発生防止や空気使用再開時のユーザビリティの面から自動停止運転前の昇圧を行うが、この昇圧圧力を利用して更に電力を得ることができ、空気圧縮機としての利便性とエネルギーロス低減に、優れた効果を発揮する。
  また、回生運転に伴う吸込み配管経路側に対する弁制御により、外部筺体23内或いは周辺外部環境に対する油飛散を防止し、整備面や環境面の効果も兼ね備える。
As described above, according to the present embodiment, regenerative power can be obtained using air to be discharged (discarded). Further, since the compressor body itself is used for the compression means and the expansion means, and the rotating electric machine is used for the electric motor and the generator, the usability as a device is remarkably increased.
Further, in this embodiment, boosting before the automatic stop operation is performed from the viewpoint of preventing the occurrence of drain on the user side and usability at the time of resuming air use. However, further power can be obtained using this boosted pressure, and air compression is performed. Excellent effect on machine convenience and energy loss reduction.
In addition, the valve control on the suction piping path side associated with the regenerative operation prevents oil scattering in the external housing 23 or the surrounding external environment, and has both maintenance and environmental effects.
  実施例1は、空気圧縮機100内の圧縮空気を圧縮機本体5に逆流させることで回生電力を生成する例であるが、実施例2は、他の空気圧縮機の放気エアを利用して電力を生成する構成例である。以下、実施例2を、図面を用いて説明する。なお、実施例1と同様の構成要素には同一符号を付し、詳細な説明は省略する。 The first embodiment is an example in which regenerative electric power is generated by causing the compressed air in the air compressor 100 to flow backward to the compressor body 5, but the second embodiment uses the air discharged from another air compressor. This is a configuration example for generating electric power. Hereinafter, Example 2 will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component similar to Example 1, and detailed description is abbreviate | omitted.
 図3に、実施例2による空気圧縮機システム300の構成を模式的に示す。空気圧縮機システム300は、実施例1の空気圧縮機100と、空気圧縮機200とからなる。空気圧縮機システム300は、例えば、空気使用量に応じて複数台制御を可能とする圧縮機システムである。夫々の制御部26A、26Bと通信可能に有線又は無線(インターネット等のネットワーク接続を含む。)接続された台数制御部50の制御により、両者を駆動、一方を駆動して他方を停止(圧縮機本体5が駆動停止する待機状態)又は両者停止等の種々の運転を可能とする。 FIG. 3 schematically shows a configuration of an air compressor system 300 according to the second embodiment. The air compressor system 300 includes the air compressor 100 according to the first embodiment and the air compressor 200. The air compressor system 300 is a compressor system that enables control of a plurality of units according to the amount of air used, for example. Both units are driven, one is driven and the other is stopped (compressor) under the control of the number control unit 50 connected to each of the control units 26A and 26B in a wired or wireless manner (including network connection such as the Internet). Various operations such as a stand-by state in which the main body 5 stops driving) or both stop are enabled.
 台数制御部50は、CPUやMPU等の演算装置と、プログラムとの協働によって実現される。本実施例では、台数制御部50が空気圧縮機100、200の外部に設置するものとするが、何れかの空気圧縮機の制御盤27等に実装する構成であってもよい。 The number control unit 50 is realized by the cooperation of an arithmetic device such as a CPU or MPU and a program. In the present embodiment, the number control unit 50 is installed outside the air compressors 100 and 200, but may be configured to be mounted on the control panel 27 or the like of any of the air compressors.
 空気圧縮機100において、実施例1との主な相違点は、圧縮空気本体5から油分離器9に接続された吐出配管途中に、空気圧縮機200の放気エアを取り入れる為の放気エア取込配管(外部取込配管)22を備える点である。放気エア取込配管22には、三方電磁弁60を備え、空気圧縮機100がアンロード運転や自動停止運転等の時(回生運転ができない状態の時)には、空気圧縮機200からの放気エア取込を禁止して、外部放気側の経路への流通を許可するようになっている。三方電磁弁60は回生運転が可能な状態のときには、外部放気側の流通を禁止し、空気圧縮機200からの放気エアの取込を許可する。 The main difference between the air compressor 100 and the first embodiment is that the air discharged from the air compressor 200 is taken into the discharge pipe connected to the oil separator 9 from the compressed air main body 5. It is a point provided with intake piping (external intake piping) 22. The discharge air intake pipe 22 is provided with a three-way solenoid valve 60. When the air compressor 100 is in an unload operation or automatic stop operation (in a state where the regenerative operation cannot be performed), the air from the air compressor 200 is supplied. Inhalation air intake is prohibited, and distribution to a route on the outside emission side is permitted. When the three-way solenoid valve 60 is in a state in which the regenerative operation is possible, the flow on the external discharge side is prohibited and the intake of the discharge air from the air compressor 200 is permitted.
 空気圧縮機200は、給油式スクリュー圧縮機である。圧縮空気を生成する為の各構成は空気圧縮機100と同様であるが、回生電力を生成する要素(コンバータ8、回生用電磁弁19、コンバータ8、油回収機構等)は、備えない。ここで、空気圧縮機200にも回線電力の生成要素を備えると共に空気圧縮機100及び200の互いの放気エアを夫々が利用可能に放気配管、取込配管を接続し、何れの空気圧縮機でも発電できるようにすることもできる。 The air compressor 200 is an oil supply type screw compressor. Each configuration for generating compressed air is the same as that of the air compressor 100, but does not include elements (converter 8, regenerative solenoid valve 19, converter 8, oil recovery mechanism, etc.) that generate regenerative power. Here, the air compressor 200 is also provided with an element for generating line power, and the air discharged from each of the air compressors 100 and 200 can be used by connecting the air discharge pipe and the intake pipe. It is also possible to make it possible to generate electricity with a machine.
 なお、空気圧縮機200は給油式スクリュー圧縮機である空気圧縮機200に限定するものではなく、ベーン、スクロール、レシプロ等、他の給油式或いは無給油式圧縮機であってもよい。 In addition, the air compressor 200 is not limited to the air compressor 200 which is an oil supply type screw compressor, and may be other oil supply type or non-oil supply type compressors such as a vane, a scroll, a reciprocator, and the like.
 空気圧縮機200の放気配管系統は、空気圧縮機100の放気エア取込配管22と接続する。例えば、空気圧縮機200が駆動しており、空気圧縮機100が停止(待機)であるとき、空気圧縮機100の圧縮機本体5は逆転が可能な状態である。そこで、空気圧縮機200が、アンロード運転及び自動停止運転時の放気エアを空気圧縮機100側に放出し、空気圧縮機100で発電を行うようになっている。実施例1では、自動的運転時の放気のみしか発電を実行できないが、実施例2はアンロード運転時の放気も利用できるという特有の効果がある。 The air discharge pipe system of the air compressor 200 is connected to the air discharge air intake pipe 22 of the air compressor 100. For example, when the air compressor 200 is driven and the air compressor 100 is stopped (standby), the compressor body 5 of the air compressor 100 is in a state in which it can be reversed. Therefore, the air compressor 200 discharges the air discharged during the unload operation and the automatic stop operation to the air compressor 100 side, and the air compressor 100 generates power. In the first embodiment, power generation can be performed only by the air discharge during the automatic operation, but the second embodiment has a specific effect that the air discharge during the unload operation can also be used.
 また、実施例2において、空気圧縮機100が生成した圧縮空気は、実施例1と同様に外部タンク45Aに一時貯留される。空気圧縮機200が生成した圧縮空気は、外部タンク45Aに一時貯留してもよいし、他の外部タンク45Bに貯留するようにしてもよい。更に、外部タンクを使用せずに直接ユーザ側の装置に圧縮空気を供給するようしてもよい。 In the second embodiment, the compressed air generated by the air compressor 100 is temporarily stored in the external tank 45A as in the first embodiment. The compressed air generated by the air compressor 200 may be temporarily stored in the external tank 45A or may be stored in another external tank 45B. Furthermore, you may make it supply compressed air directly to the apparatus by the side of a user, without using an external tank.
 このような構成において、空気圧縮機100の放気エア取込配管22には、外部タンク45A、45B及びユーザ側機器と接続する構成であってよい。これらの余剰圧縮空気を回生することで、より多くの回生電力を得ることができる。特に、外部タンク45Bに一時貯留された圧縮空気は、例えば、1日の利用が終了すると貯留空気を放気する場合がある。例えば、再使用までの時間が長時間になる場合には、高圧のままだと気温によってタンク内にドレンが発生する虞もある為である。 In such a configuration, the discharged air intake pipe 22 of the air compressor 100 may be connected to the external tanks 45A and 45B and the user side device. By regenerating these surplus compressed air, more regenerative electric power can be obtained. In particular, the compressed air temporarily stored in the external tank 45B may release the stored air when, for example, the use of the day ends. For example, when the time until reuse becomes long, drainage may occur in the tank due to the temperature if the pressure remains high.
 図4に、空気圧縮機システムの処理の流れを示す。なお、本処理は台数制御部50と、空気圧縮機100及び200の制御部26A、26Bによって実行される。 Fig. 4 shows the processing flow of the air compressor system. This process is executed by the number control unit 50 and the control units 26A and 26B of the air compressors 100 and 200.
 S101で、台数制御部50は、空気圧縮機100の駆動停止中又は運転待機中且つ空気圧縮機200が駆動運転中(ロード運転、アンロード運転を含む。)であるかを判断し、そうである場合(S101:Yes)、S103に進む、三方電磁弁50を「開」とし、放気エア取込配管22を介して、空気圧縮機200の放気配管系統と、空気圧縮機100の吐出側配管とを連通させる。空気圧縮機100が駆動運転中である場合(S101:No)、S108に進み、三方電磁弁60を「閉」として、外部放気配管に空気圧縮機200からの放気エアが流れるようにする。 In S101, the unit control unit 50 determines whether the air compressor 100 is stopped driving or is on standby, and whether the air compressor 200 is driving (including load operation and unload operation). If there is (S101: Yes), the process proceeds to S103, the three-way solenoid valve 50 is set to "open", and the air discharge pipe system of the air compressor 200 and the discharge of the air compressor 100 are discharged via the air discharge air intake pipe 22. Connect side piping. When the air compressor 100 is in driving operation (S101: No), the process proceeds to S108, and the three-way solenoid valve 60 is set to “closed” so that the air discharged from the air compressor 200 flows through the external air discharge pipe. .
 S105で、台数制御部は、制御部26Aに指示し、空気圧縮機100の放気電磁弁17を「閉」、操作電磁弁18を「閉」、回生用電磁弁19を「開」とさせる。その後、空気圧縮機200のアンロード運転や自動停止運転による放気が行われ、空気圧縮機100の回転電機6が逆転し、発電が実行される。発電電力はコンバータ8を介して空気圧縮機200に送られる

 S107で、制御部26Bは、空気圧縮機100から送られた電力をファンモータ用インバータ16に送らせ、回生エネルギとして利用させる。
In S105, the unit control unit instructs the control unit 26A to set the discharge solenoid valve 17 of the air compressor 100 to “close”, the operation solenoid valve 18 to “close”, and the regeneration solenoid valve 19 to “open”. . Thereafter, the air compressor 200 is discharged by an unload operation or an automatic stop operation, and the rotating electrical machine 6 of the air compressor 100 is reversed to generate power. The generated power is sent to the air compressor 200 via the converter 8.

In S107, the control unit 26B causes the electric power sent from the air compressor 100 to be sent to the fan motor inverter 16 and used as regenerative energy.
 このように実施例2によれば、他の空気圧縮機の放気エアを利用して電力を生成することができる。また、空気圧縮機単体での回生の場合、自動停止運転時の放気エアのみでしか発電できないが、実施例2の場合、他の空気圧縮機のアンロード運転時の放気エアを利用することができる。 Thus, according to the second embodiment, electric power can be generated using the air discharged from another air compressor. In addition, in the case of regeneration with a single air compressor, power can be generated only with the air discharged during the automatic stop operation, but in the case of Example 2, the air discharged during the unload operation of the other air compressor is used. be able to.
 なお、実施例2では回生電力を空気圧縮機200のファン用電力として利用したが、他の用途に利用にも利用できるのは実施例1と同様である。 In the second embodiment, the regenerative power is used as the power for the fan of the air compressor 200. However, it can be used for other purposes as well as the first embodiment.
 以上、本発明を実施するための形態について説明したが、本発明は上記種々の実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、組合せや省略が可能である。
  例えば、実施例2では、空気圧縮機100で生成した回生電力を空気圧縮機200のファン用電力に利用する例であるが、回生電力を空気圧縮機100の(再)起動補助電源用として蓄電池の充電用途としてもよい。
As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said various Example, A combination and an omission are possible in the range which does not deviate from the meaning.
For example, in the second embodiment, the regenerative power generated by the air compressor 100 is used as the power for the fan of the air compressor 200, but the regenerative power is used as a (re) starting auxiliary power source for the air compressor 100. It is good also as the charge use.
 また、実施例2では、空気圧縮機100のみで発電をする構成であるが、空気圧縮機200にも同様な発電機構を備え、互いの放気配管系統を、他方の放気エア取込配管と相互に接続し、運転状況に応じて両者で役割を入れ替えて発電するようにしてもよい。例えば、機器の寿命確保の面から、複数台の圧縮機の駆動時間が平滑するように、交互に駆動、停止を繰り返す制御態様のときには、両者の放気エアを発電に利用することができる。 Moreover, in Example 2, it is the structure which generate | occur | produces electricity only with the air compressor 100, However, The air compressor 200 is also provided with the same electric power generation mechanism, and each other ventilating piping system is connected to the other venting air intake piping. May be connected to each other, and the roles may be switched between the two depending on the driving situation. For example, from the aspect of ensuring the life of the equipment, in a control mode in which driving and stopping are alternately performed so that the driving time of a plurality of compressors is smoothed, the air discharged from both can be used for power generation.
 また、実施例2では、外部タンク45A、45B及びユーザ側機器の余剰圧縮空気を回生に利用するに際し、放気エア取込配管を経由して取り込むようにしたが、調圧逆止弁11をバイパスする配管及びその流通を許可及び禁止する弁体を設けて、吐出し側から外部タンク等の放気エアを逆流させるように構成してもよい。 Moreover, in Example 2, when using the excess compressed air of external tank 45A, 45B and a user side apparatus for regeneration, it was made to take in via a ventilating air intake piping, but pressure regulation check valve 11 is changed. A bypass pipe and a valve body that permits and prohibits the circulation of the bypass pipe may be provided so that air discharged from an external tank or the like flows backward from the discharge side.
 更には、実施例2は、台数制御部50等による電気・電子制御によって回線電力を得たが、複数台が連携して駆動・停止を行う圧縮機システムではなく、空気圧縮機本体100を予備空気圧縮機とし、通常は発電装置としてのみ利用し、必要に応じて空気圧縮機として利用するようにしてもよい。 Further, in the second embodiment, the line power is obtained by the electric / electronic control by the number control unit 50 or the like. However, the air compressor main body 100 is not a spare system but a compressor system in which a plurality of units are driven and stopped in cooperation. It may be an air compressor, normally used only as a power generator, and may be used as an air compressor if necessary.
1…吸込フィルタ、2…吸込絞り弁、3…噴出し弁、4…噴出し用エレメント、5…圧縮機本体、6…回転電動機、7…回転電動機用インバータ、8…電源回生コンバータ、9…油分離器、10…エレメント、11…調圧逆止弁、12…温調弁、13:熱交換器(オイルクーラ・アフタークーラ)、14…冷却ファン、15…ファンモータ、16…ファンモータ用インバータ、17…放気電磁弁、18…操作電磁弁、19…回生用電磁弁、20…オイルフィルタ、21:油受けと回収経路、22…放気エア取込配管、23…外部筺体(パッケージ)、25…温度センサ、26・26A・26B…制御部、27…制御盤、28…圧力センサ、30…潤滑油経路、31…制御配管経路、41…油受け、42…逆止弁、45・45A・45B…外部タンク(リザーバタンク)、50…台数制御部、60…三方電磁弁、100・200…空気圧縮機、300…空気圧縮機システム DESCRIPTION OF SYMBOLS 1 ... Suction filter, 2 ... Suction throttle valve, 3 ... Injection valve, 4 ... Element for injection, 5 ... Compressor body, 6 ... Rotary motor, 7 ... Inverter for rotary motor, 8 ... Power regeneration converter, 9 ... Oil separator, 10 ... element, 11 ... pressure regulating check valve, 12 ... temperature regulating valve, 13: heat exchanger (oil cooler / aftercooler), 14 ... cooling fan, 15 ... fan motor, 16 ... for fan motor Inverter, 17 ... Air release solenoid valve, 18 ... Operation solenoid valve, 19 ... Regenerative solenoid valve, 20 ... Oil filter, 21: Oil receiver and recovery path, 22 ... Air release air intake pipe, 23 ... External housing (package) ), 25 ... Temperature sensor, 26 / 26A / 26B ... Control unit, 27 ... Control panel, 28 ... Pressure sensor, 30 ... Lubricating oil path, 31 ... Control piping path, 41 ... Oil receiver, 42 ... Check valve, 45・ 45A ・ 45B… External Link (reservoir tank), 50 ... count control unit, 60 ... three-way solenoid valve 100-200 ... air compressor 300 ... air compressor system

Claims (17)

  1.  気体を吸気して圧縮気体を生成する圧縮機本体を有する気体圧縮機であって、
     供給電力を受けて前記圧縮機本体を駆動する電動機であると共に前記圧縮機本体から動力を得て回生電力を生成する発電機となる回転電機と、
     前記供給電力の周波数を変更して前記回転電機の回転数を制御するインバータと、
     生成された前記電力から出力電力を生成するコンバータと、
     圧縮機本体の吐出側配管上で、圧縮機本体側から吐出側への圧縮空気の流通を許可する逆止弁とを有し、
     前記圧縮機本体の駆動停止時に、前記逆止弁より上流の圧縮機空気が逆流することで前記圧縮機本体が逆回転し、前記回生電力を生成する動力を生成する気体圧縮機。
    A gas compressor having a compressor body that sucks gas and generates compressed gas,
    A rotating electric machine that is a motor that receives supply power and drives the compressor body and that generates power from the compressor body and generates regenerative power;
    An inverter that controls the rotational speed of the rotating electrical machine by changing the frequency of the supplied power;
    A converter that generates output power from the generated power;
    On the discharge side piping of the compressor body, it has a check valve that permits the flow of compressed air from the compressor body side to the discharge side,
    A gas compressor that generates power for generating regenerative electric power when the compressor main body is reversely rotated by the backflow of compressor air upstream from the check valve when driving of the compressor main body is stopped.
  2.  請求項1に記載の気体圧縮機であって、
     前記圧縮機本体が給液式であり、該圧縮機本体の下流且つ前記逆止弁の上流に気液分離器を有するものである気体圧縮機。
    The gas compressor according to claim 1,
    A gas compressor in which the compressor body is a liquid supply type and has a gas-liquid separator downstream of the compressor body and upstream of the check valve.
  3.  請求項2に記載の気体圧縮機であって、
     前記圧縮機本体の吸気経路上に設置し、開閉によって吸気気体の流通を許可及び禁止する吸込み絞り弁と、
     前記吸込み絞り弁の開閉を制御する吸込み絞り弁制御装置と、
     該吸込み絞り弁の下流且つ前記圧縮機本体の間で前記吸気経路から分岐する噴出配管経路と、
     前記吸気経路と前記噴出配管経路の連通を開閉によって許可及び禁止する弁体と、
     前記弁体の開閉を制御する弁体制御装置と、
     前記噴出配管経路の下流にオイルエレメントとを有し、
     前記圧縮機本体の駆動停止時に、前記吸込み絞り弁制御装置が前記吸込み絞り弁を閉、前記弁体制御装置が前記弁体を開とするものである気体圧縮機。
    The gas compressor according to claim 2,
    A suction throttle valve that is installed on the intake path of the compressor body and permits and prohibits the flow of intake gas by opening and closing;
    A suction throttle valve control device for controlling opening and closing of the suction throttle valve;
    An ejection piping path that branches from the intake path downstream of the suction throttle valve and between the compressor bodies;
    A valve body that permits and prohibits communication between the intake path and the ejection pipe path by opening and closing;
    A valve body control device for controlling opening and closing of the valve body;
    An oil element downstream of the ejection pipe path;
    A gas compressor in which the suction throttle valve control device closes the suction throttle valve and the valve body control device opens the valve body when driving of the compressor body is stopped.
  4.  請求項3に記載の気体圧縮機であって、
     前記吸込み絞り弁制御装置が、前記気液分離器と前記吸込み絞り弁を接続する配管経路上に設置された電磁弁である気体圧縮機。
    The gas compressor according to claim 3,
    The gas compressor, wherein the suction throttle valve control device is an electromagnetic valve installed on a piping path connecting the gas-liquid separator and the suction throttle valve.
  5.  請求項3に記載気体圧縮機であって、
     前記弁体制御装置が、前記気液分離器と前記弁体とを接続する配管経路上に設置された電磁弁である気体圧縮機。
    The gas compressor according to claim 3,
    A gas compressor, wherein the valve body control device is an electromagnetic valve installed on a piping path connecting the gas-liquid separator and the valve body.
  6.  請求項3に記載の気体圧縮機であって、
     前記オイルエレメントが回収する潤滑油を回収し、前記圧縮機本体に還流する油回収機構を有する気体圧縮機。
    The gas compressor according to claim 3,
    A gas compressor having an oil recovery mechanism for recovering the lubricating oil recovered by the oil element and returning it to the compressor body.
  7.  請求項1に記載の気体圧縮機であって、
     前記逆止弁より下流の吐出側圧力を検知する圧力検知装置と、
     前記圧力検知装置の検出圧力に基づいて、前記インバータを制御する制御部を有し、
     前記制御部が、前記検出圧力が所定圧力に達すると前記インバータに前記圧縮機本体の駆動を停止させるものである気体圧縮機。
    The gas compressor according to claim 1,
    A pressure detection device for detecting a discharge side pressure downstream from the check valve;
    Based on the detected pressure of the pressure detection device, having a control unit for controlling the inverter,
    The gas compressor, wherein the control unit causes the inverter to stop driving the compressor body when the detected pressure reaches a predetermined pressure.
  8.  請求項7に記載の気体圧縮機であって、
     前記制御部が、少なくとも前記所定圧力まで前記吐出側圧力を昇圧させた後に前記圧縮機本体を停止させるものである気体圧縮機。
    The gas compressor according to claim 7,
    A gas compressor in which the control unit stops the compressor body after increasing the discharge side pressure to at least the predetermined pressure.
  9.  請求項8に記載の気体圧縮機であって、
     前記制御部が、前記圧縮機本体の駆動停止後、所定時間経過した後或いは前記吐出側圧力が所定圧力を検出した時に前記回転電機を電動機として再駆動させるものである気体圧縮機。
    The gas compressor according to claim 8, wherein
    A gas compressor in which the control unit re-drives the rotating electrical machine as an electric motor after a predetermined time has elapsed after the driving of the compressor main body is stopped or when the discharge side pressure detects a predetermined pressure.
  10.  請求項7に記載の気体圧縮機であって、
     前記逆止弁より上流の圧縮空気を放気する放気配管と、該放気配管上に設置する放気弁とを有し、
     前記制御部が、前記圧力検知装置の検出値が所定圧力に達すると前記回転電機の回転数を定格より少ない回転数で回転させるとともに前記放気弁の開閉によって吐出し側圧力を所定の圧力範囲に維持するアンロード運転を実行するものである気体圧縮機。
    The gas compressor according to claim 7,
    An air discharge pipe for discharging compressed air upstream from the check valve, and an air discharge valve installed on the air discharge pipe,
    When the detected value of the pressure detection device reaches a predetermined pressure, the control unit rotates the rotational speed of the rotating electrical machine at a rotational speed less than a rated value, and opens and closes the discharge valve to set a discharge side pressure within a predetermined pressure range. A gas compressor that performs an unloading operation that is maintained at a low level.
  11.  請求項10に記載の気体圧縮機であって、
     前記制御部が、前記アンロード運転で前記放気弁を閉弁した後、前記圧力検出装置の検出値が前記所定の圧力範囲の下限圧力に達する前に、所定時間の経過を検出すると前記インバータに前記圧縮機本体の駆動を停止させるものである気体圧縮機。
    The gas compressor according to claim 10,
    When the control unit detects the elapse of a predetermined time after the discharge valve is closed in the unload operation and before the detection value of the pressure detection device reaches the lower limit pressure of the predetermined pressure range, the inverter A gas compressor for stopping the drive of the compressor body.
  12.  請求項1に記載の気体圧縮機であって、
     前記圧縮機本体の吐出し側から前記逆止弁の上流までの吐出配管経路と連通し、外部から圧縮気体を取り込む外部取込配管と、
     前記吐出配管と外部取込配管の連通を許可及び禁止する弁体とを有し、
     前記制御部が、前記圧縮機本体の駆動停止時に、前記吐出配管と外部取込配管の連通を許可するものである気体圧縮機。
    The gas compressor according to claim 1,
    Communicating with the discharge piping path from the discharge side of the compressor body to the upstream of the check valve, and an external intake piping for taking in compressed gas from the outside;
    A valve body that permits and prohibits communication between the discharge pipe and the external intake pipe;
    A gas compressor in which the control unit permits communication between the discharge pipe and an external intake pipe when driving of the compressor body is stopped.
  13.  請求項12に記載の気体圧縮機であって、
     前記外部取込配管から分岐し、外部に連通する放気配管を有し、
     前記吐出配管と外部取込配管の連通を許可及び禁止する弁体が、前記吐出配管と外部取込配管の連通のみを許可、前記外部取込配管と放気配管の連通のみの許可の何れかを切り替える三方弁であり、
     前記制御部が、前記圧縮本体の駆動時に前記三方弁を前記外部取込配管と放気配管の連通のみを許可するものである気体圧縮機。
    A gas compressor according to claim 12,
    Branching from the external intake pipe, and having an air discharge pipe communicating with the outside,
    The valve body that permits and prohibits communication between the discharge pipe and the external intake pipe is either allowed only for communication between the discharge pipe and the external intake pipe, or is allowed only for communication between the external intake pipe and the exhaust pipe. Is a three-way valve that switches between
    The gas compressor in which the control unit permits only the communication between the external intake pipe and the exhaust pipe for the three-way valve when the compression main body is driven.
  14.  請求項12に記載の気体圧縮機であって、
     前記外部取込配管から取り込む圧縮気体が、他の気体圧縮機から供給されるものである気体圧縮機。
    A gas compressor according to claim 12,
    A gas compressor in which the compressed gas taken in from the external intake pipe is supplied from another gas compressor.
  15.  請求項14に記載の気体圧縮機であって、
     前記外部取込配管から取り込む圧縮気体が、他の気体圧縮機のアンロード運転又は駆動停止による放気気体である気体圧縮機。
    A gas compressor according to claim 14,
    The gas compressor whose compressed gas taken in from the said external taking-in piping is an air release gas by the unload operation or drive stop of another gas compressor.
  16.  請求項12に記載の気体圧縮機であって、前記外部取込配管から取り込む圧縮気体が、前記気体圧縮機が生成した圧縮空気を貯留する外部タンクである気体圧縮機。 13. The gas compressor according to claim 12, wherein the compressed gas taken in from the external intake pipe is an external tank that stores compressed air generated by the gas compressor.
  17.  気体を吸気して圧縮気体を生成する圧縮機本体を有する複数の気体圧縮機からなる気体圧縮機システムであって、
     前記複数の気体圧縮機の少なくとも1つの気体圧縮機Aが
     供給電力を受けて前記圧縮機本体を駆動する電動機であると共に前記圧縮機本体から動力を得て回生電力を生成する発電機となる回転電機と、
     前記供給電力の周波数を変更して前記回転電機の回転数を制御するインバータと、
     生成された前記電力から出力電力を生成するコンバータと、
     圧縮機本体の吐出側配管上で、圧縮機本体側から吐出側への圧縮空気の流通を許可する逆止弁と、
     前記圧縮機本体の吐出し側から前記逆止弁の上流までの吐出配管経路と連通し、他の1又は2以上の気体圧縮機Bから圧縮空気を取り込む外部取込配管とを有し、
     前記圧縮機本体の運転待機時に、前記外部取込み配管から取り込んだ圧縮機空気によって前記圧縮機本体が逆回転し、前記回生電力を生成する動力を生成するものであり、
     前記気体圧縮機Bが、
     前記圧縮機本体を駆動する電動機と、該圧縮機本体の吐出側配管上で、圧縮機本体側から吐出側への圧縮空気の流通を許可する逆止弁と、
     該逆止弁より上流の圧縮空気を放気する放気配管と、該放気配管上に設置する放気弁とを有するものであり、
     前記気体圧縮機システムが、
     前記気体圧縮機Bの放気弁から下流と前記気体圧縮機Aの外部取込配管が連通するものであり、
     前記複数の気体圧縮機と通信可能に接続し、前記気体圧縮Aが運転待機時且つ前記気体圧縮機Bの放気時に、前記放気弁を開とする制御装置を有するものである気体圧縮機システム。
    A gas compressor system comprising a plurality of gas compressors having a compressor body that sucks gas and generates compressed gas,
    At least one gas compressor A of the plurality of gas compressors is an electric motor that receives supply power and drives the compressor main body, and also serves as a generator that generates power from the compressor main body and generates regenerative power. Electric
    An inverter that controls the rotational speed of the rotating electrical machine by changing the frequency of the supplied power;
    A converter that generates output power from the generated power;
    On the discharge side piping of the compressor body, a check valve that permits the flow of compressed air from the compressor body side to the discharge side;
    Communicating with the discharge piping path from the discharge side of the compressor body to the upstream of the check valve, and having an external intake piping for taking in compressed air from one or more other gas compressors B,
    During operation standby of the compressor body, the compressor body is reversely rotated by the compressor air taken in from the external intake pipe, and generates power to generate the regenerative power,
    The gas compressor B is
    An electric motor that drives the compressor body, and a check valve that permits the flow of compressed air from the compressor body side to the discharge side on the discharge side piping of the compressor body;
    An exhaust pipe for releasing compressed air upstream from the check valve, and an air release valve installed on the exhaust pipe;
    The gas compressor system comprises:
    The external intake pipe of the gas compressor A communicates with the downstream from the air release valve of the gas compressor B,
    A gas compressor having a control device that is communicably connected to the plurality of gas compressors, and that opens the gas release valve when the gas compression A is in operation standby and when the gas compressor B is discharged. system.
PCT/JP2016/052224 2016-01-27 2016-01-27 Gas compressor and gas compressor system WO2017130303A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017563439A JP6595008B2 (en) 2016-01-27 2016-01-27 Gas compressor and gas compressor system
PCT/JP2016/052224 WO2017130303A1 (en) 2016-01-27 2016-01-27 Gas compressor and gas compressor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/052224 WO2017130303A1 (en) 2016-01-27 2016-01-27 Gas compressor and gas compressor system

Publications (1)

Publication Number Publication Date
WO2017130303A1 true WO2017130303A1 (en) 2017-08-03

Family

ID=59397908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052224 WO2017130303A1 (en) 2016-01-27 2016-01-27 Gas compressor and gas compressor system

Country Status (2)

Country Link
JP (1) JP6595008B2 (en)
WO (1) WO2017130303A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020213353A1 (en) * 2019-04-15 2020-10-22
JP7461255B2 (en) 2020-09-01 2024-04-03 北越工業株式会社 Compressed gas cooling method and compressed gas cooling device in compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347335A (en) * 1991-05-23 1992-12-02 Mitsubishi Heavy Ind Ltd Compressed air storage generating device
JP2003120542A (en) * 2001-10-10 2003-04-23 Nissan Motor Co Ltd Air supplying device
JP2007170186A (en) * 2005-12-19 2007-07-05 Hitachi Industrial Equipment Systems Co Ltd Oil-cooled screw compressor
JP2011094611A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Screw compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347335A (en) * 1991-05-23 1992-12-02 Mitsubishi Heavy Ind Ltd Compressed air storage generating device
JP2003120542A (en) * 2001-10-10 2003-04-23 Nissan Motor Co Ltd Air supplying device
JP2007170186A (en) * 2005-12-19 2007-07-05 Hitachi Industrial Equipment Systems Co Ltd Oil-cooled screw compressor
JP2011094611A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Screw compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020213353A1 (en) * 2019-04-15 2020-10-22
WO2020213353A1 (en) * 2019-04-15 2020-10-22 株式会社日立産機システム Gas compressor
CN113728163A (en) * 2019-04-15 2021-11-30 株式会社日立产机系统 Gas compressor
JP7267407B2 (en) 2019-04-15 2023-05-01 株式会社日立産機システム gas compressor
CN113728163B (en) * 2019-04-15 2023-09-15 株式会社日立产机系统 gas compressor
US11994138B2 (en) 2019-04-15 2024-05-28 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor with a plurality of air realease systems each having an air release valve and an air regulating valve
JP7461255B2 (en) 2020-09-01 2024-04-03 北越工業株式会社 Compressed gas cooling method and compressed gas cooling device in compressor

Also Published As

Publication number Publication date
JPWO2017130303A1 (en) 2018-11-15
JP6595008B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
CN212431402U (en) Motor cooling system and refrigerating system of air suspension compressor
JP4196307B1 (en) Steam system
CN106593554B (en) Rankine cycle power generation device
JP2012067683A (en) Rankine cycle device
JP5934074B2 (en) Gas compressor
CN110475973B (en) Gas compressor
CN101103201A (en) Control and protection system for a variable capacity compressor
CN101317045B (en) Variable impulse-duration system with pressure regulating valve
US8522523B2 (en) Steam system
JP6595008B2 (en) Gas compressor and gas compressor system
JP5415484B2 (en) Steam system
WO2009147873A1 (en) Steam system
JP2017141992A (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
JP7267407B2 (en) gas compressor
JPH08319976A (en) Oil-cooled type air compressor
JPH09222087A (en) Oil-cooled type screw compressor and operation method therefor
JP2017150689A (en) Air conditioner
JP7056246B2 (en) Heat pump steam generation system
JP6249671B2 (en) Inverter-driven compressor operation control method and inverter-driven compressor
CN107942771B (en) Data center energy supply control system and method
CN113803910A (en) Motor cooling system and refrigerating system of air suspension compressor
JP5163962B2 (en) Steam system
WO2019186861A1 (en) Gas compressor
US11913463B2 (en) Gas bearing compressor backup power
JP2019066131A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017563439

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887890

Country of ref document: EP

Kind code of ref document: A1