WO2009147873A1 - Steam system - Google Patents

Steam system Download PDF

Info

Publication number
WO2009147873A1
WO2009147873A1 PCT/JP2009/052790 JP2009052790W WO2009147873A1 WO 2009147873 A1 WO2009147873 A1 WO 2009147873A1 JP 2009052790 W JP2009052790 W JP 2009052790W WO 2009147873 A1 WO2009147873 A1 WO 2009147873A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
water
supply tank
water supply
load
Prior art date
Application number
PCT/JP2009/052790
Other languages
French (fr)
Japanese (ja)
Inventor
康夫 越智
大輔 森
靖国 田中
裕介 岡本
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2009147873A1 publication Critical patent/WO2009147873A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/44Use of steam for feed-water heating and another purpose

Definitions

  • the present invention relates to a steam system that uses a steam to drive a compressor or the like to reduce power consumption.
  • an air compressor (2) is driven by a screw expander (1), and when the load of the air compressor (2) varies, the steam flowing into the screw expander (1) is controlled. (10) is controlled and responded, and by controlling the bypass valve (9) provided between the steam inflow side and the steam outflow side of the screw expander (1), the steam is controlled regardless of the load fluctuation.
  • a method of keeping the back pressure of steam on the outflow side constant is disclosed.
  • the bypass valve (9) is controlled by detecting the back pressure of the steam outlet pipe (5) from the screw expander (1) by the detector (20).
  • the control of the adjusting valve (10) is performed by detecting the rotational speed of the drive shaft of the screw expander (1) by the detector (23).
  • JP-A-63-45403 (Claims, FIG. 1, page 2, lower left column, lines 1-5)
  • the amount of steam supplied to the screw type expander is controlled by adjusting the adjusting valve in order to keep the rotation constant despite the load fluctuation of the air compressor.
  • the capacity control of the air compressor is performed by an unloader (gazette page 2, lower right column, line 18-page 3, upper left column, line 5).
  • the capacity control of the air compressor is performed by changing the rotation speed of the screw expander by controlling the amount of steam supplied to the screw expander by an adjusting valve (see the upper left column, page 5-5- 9).
  • it is not intended to detect a load change of the air compressor and to respond quickly and accurately to the load change.
  • the problem to be solved by the present invention is to control not only the fluid load but also the steam load with a simple configuration and control, and to save energy by heat recovery.
  • the present invention has been made to solve the above problems, and the invention according to claim 1 is a motor that generates power using steam from a boiler, and is driven by the motor to discharge or inhale a fluid.
  • the water supply to the boiler is stored and the steam or drain leaking from the shaft seal of the prime mover, the drain generated by the prime mover, or the heat generated by the driven machine, is stored or replenished.
  • a steam system characterized in that it comprises a water supply tank is warmed.
  • steam supply to the motor is controlled in consideration of not only fluid load but also steam load, steam or drain leaking from the shaft seal of the motor, drain generated by the motor, Alternatively, it is possible to save energy by using the heat generated by the driven machine to warm the water stored in the water supply tank or the makeup water to the water supply tank.
  • the steam leaking from the shaft seal portion of the prime mover and / or the drain leaking from the shaft seal portion of the prime mover are supplied to the water supply tank, and the stored water in the water supply tank is The steam system according to claim 1, wherein the steam system is warmed.
  • the stored water in the water supply tank is warmed by the steam leaking from the shaft seal portion of the prime mover and / or the drain leaking from the shaft seal portion of the prime mover, so that heat loss can be prevented.
  • the invention according to claim 3 is characterized in that the drain generated in the prime mover is supplied to the water supply tank, and the stored water in the water supply tank is warmed. System.
  • Invention of Claim 4 performs cooling of the said driven machine using the stored water in the said water supply tank, or the replenishment water to the said water supply tank, so that the stored water in the said water supply tank or the said water supply tank is supplied.
  • the stored water in the water supply tank or the makeup water to the water supply tank is warmed by the heat of the driven machine, so that energy saving can be achieved.
  • the invention described in claim 5 is further provided with a second driven machine that is driven by an electric motor and discharges or sucks fluid, and is provided at a location where steam from the prime mover and steam from the bypass path are supplied.
  • Steam supply to the prime mover is controlled based on the steam load and the fluid load in the space where the fluid is discharged or sucked by each driven machine, and in the space where the fluid is discharged or sucked by each driven machine
  • the electric motor is controlled, and the second driven machine is cooled using the stored water in the water supply tank or the makeup water to the water supply tank, so that the stored water in the water supply tank or
  • the steam system according to any one of claims 1 to 4, wherein makeup water to the water supply tank is warmed.
  • the heat stored in the water supply tank or the makeup water to the water supply tank is warmed by the heat of the second driven machine, so that energy saving can be achieved.
  • an electric motor that drives the second driven machine is provided, so that fluid can be discharged or sucked stably regardless of the steam load.
  • the steam system of the present invention it is possible to control not only the fluid load but also the steam load with a simple configuration and control, and to save energy by heat recovery.
  • the steam system of the present invention includes a prime mover that generates power using steam from a boiler, and a driven machine such as a compressor or a vacuum pump that is driven by the prime mover.
  • a boiler heats water supplied from a water supply tank and vaporizes it. Then, the steam can be supplied to steam utilization equipment such as a prime mover.
  • the prime mover is a steam engine that generates power using steam.
  • the steam engine may be a steam turbine, but is preferably a screw steam engine.
  • a screw-type steam engine is an apparatus in which steam is introduced between screw rotors that mesh with each other, and the steam is expanded and decompressed while rotating the screw rotor by the steam, and power is obtained by rotation of the screw rotor at that time.
  • the driven machine is a device driven by a steam engine to discharge or suck fluid.
  • the driven machine is a pump, a blower, a compressor, a vacuum pump, or the like.
  • the driven machine discharges a fluid
  • the driven machine sucks the fluid.
  • the driven machine is, for example, an air compressor.
  • the type of the air compressor is not particularly limited, such as a reciprocating type or a rotary type, but is preferably a screw type compressor.
  • a screw compressor is a device that sucks gas between screw rotors that mesh with each other and rotate, and compresses and discharges the gas by rotation of the screw rotor.
  • Steam is supplied to the steam engine from the boiler via the steam supply path.
  • Steam from the boiler may be supplied to a steam header (referred to as a first steam header), and the steam in the steam header may be supplied to the steam engine via a steam supply path.
  • Steam after use in the steam engine is discharged through the exhaust steam path. Since the steam engine depressurizes steam, it also functions as a pressure reducing valve. Therefore, the steam after use in the steam engine can be used in the same manner as the steam after passing through the conventional pressure reducing valve. That is, conventionally, the steam from the boiler is supplied to the steam using device via the pressure reducing valve. Similarly, the steam after use in the steam engine can be supplied to the steam using device. At this time, the steam from the steam engine may be supplied to the steam header (referred to as the second steam header) via the exhaust steam path, and the steam in the steam header may be supplied to the steam utilization device.
  • the steam header referred to as the second steam header
  • Steam can be supplied to the steam-utilizing equipment via a bypass without going through a steam engine.
  • the steam from the boiler can be supplied to the exhaust steam path or the second steam header even via the bypass path.
  • the steam supply path and the exhaust steam path for the steam engine may be connected by a bypass path, or the first steam header and the second steam header may be connected by a bypass path.
  • a bypass valve is provided in the bypass path.
  • the bypass valve may be an electromagnetic valve or an electric valve, but may be a self-reducing pressure reducing valve.
  • the steam engine is controlled by controlling whether or not steam is supplied to the steam engine.
  • a steam supply valve is provided in the steam supply path to the steam engine, and the opening / closing or opening degree of the steam supply valve is controlled. Thereby, the presence / absence or amount of steam supply to the steam engine can be changed, and the presence / absence or output of the steam engine can be changed.
  • the presence or absence of steam supply to the steam turbine may be switched by controlling the opening and closing of the steam supply valve.
  • operation of a steam turbine can be changed.
  • the opening / closing of the steam supply valve may be controlled as in the case of the steam turbine, or the opening of the steam supply valve may be controlled.
  • the output of the screw steam engine can be changed by adjusting the amount of steam supply to the screw steam engine.
  • the control of the steam engine is not limited to the above configuration. That is, the steam engine only needs to be able to change the presence or amount of steaming, and it is not always necessary to provide a steaming valve in the steaming path and control the steaming valve.
  • the steam supply path and the exhaust steam path for the steam engine may be connected by a bypass path, and the opening / closing or opening degree of the bypass valve provided in the bypass path may be controlled.
  • this bypass valve may be provided.
  • the steam engine is controlled for steam supply based on the fluid load in the space where the fluid is discharged or sucked by the driven machine and the steam load on the outlet side of the steam engine.
  • the fluid load is a load of the fluid in the space where the fluid is discharged or sucked by the driven machine.
  • the driven machine is a pump, a blower or a compressor
  • this is the amount of fluid used in the space discharged.
  • the driven machine is a vacuum pump
  • this is the amount of fluid in the space to be sucked. That is, when the driven machine is a vacuum pump, if the degree of vacuum is low, there is a fluid load. Any fluid load can be detected by the pressure in the space where the fluid is discharged or sucked by the driven machine.
  • the steam load is the amount of steam used at the location where steam after use is supplied by the steam engine.
  • This steam load can be detected by the steam pressure at the location where steam after use is supplied by the steam engine.
  • the use load (steam load) of steam can be detected based on the steam pressure in the exhaust steam path from the steam engine or in the second steam header provided at the end thereof. That is, when steam is used in the steam utilization device, the steam pressure in the exhaust steam passage or the second steam header is lowered, so that the steam load can be detected.
  • steam supply to the steam engine can be controlled based on the pressure in the space where the fluid is discharged or sucked by the driven machine and the steam pressure at the location where the steam after use in the steam engine is supplied. .
  • the water stored in the water supply tank or the replenishment water to the water supply tank is warmed by using steam or drain leaking from the shaft seal of the prime mover, drain generated by the prime mover, or heat generated by the driven machine.
  • the following three embodiments can be mentioned. Of these three embodiments, a plurality of embodiments may be combined.
  • steam leaking from the shaft seal portion of the prime mover and / or drain leaking from the shaft seal portion of the prime mover are supplied to the water supply tank via the leakage heat recovery path.
  • the stored water in a water supply tank can be warmed.
  • the drain generated by the prime mover is supplied to the water supply tank via the drain recovery path.
  • the stored water in a water supply tank can be warmed.
  • a steam trap is preferably provided in the middle of the drain recovery path.
  • the driven machine is cooled by water stored in the water supply tank or makeup water supplied to the water supply tank.
  • the stored water in a water supply tank is circulated through the driven machine so that it may return into the water supply tank.
  • the driven machine is cooled by makeup water to the feed water tank, the makeup water to the feed water tank is supplied to the feed water tank via the driven machine.
  • the driven machine may be cooled through a medium such as oil.
  • the steam system of the present invention may further include a second driven machine different from the driven machine (first driven machine) driven by the steam engine.
  • the second driven machine is a device that discharges or sucks fluid to the space where the fluid is discharged or sucked by the first driven machine, like the first driven machine. Therefore, the second driven machine has the same function as the first driven machine.
  • the first driven machine is an air compressor
  • the second driven machine is also an air compressor.
  • the mechanism need not be the same.
  • the first driven machine is a screw type air compressor
  • the second driven machine is not limited to the screw type but may be a reciprocating type as long as it is an air compressor.
  • the second driven machine can be driven by an electric motor.
  • the electric motor is controlled based on a fluid load in a space in which fluid is discharged or sucked by each driven machine.
  • the steam engine is controlled based on a steam load at a location where steam from the steam engine and steam from the bypass path are supplied, and a fluid load in a space where fluid is discharged or sucked by each driven machine. .
  • the electric motor is auxiliary driven. Further, when the steam engine is stopped, the electric motor can be driven and fluid can be discharged or sucked by the second driven machine.
  • the second driven machine may be cooled by the water stored in the water supply tank or the makeup water supplied to the water supply tank.
  • the second driven machine When the second driven machine is cooled by the stored water in the water supply tank, the stored water in the water supply tank is circulated back to the water supply tank via the second driven machine.
  • the second driven machine when the second driven machine is cooled with makeup water to the feed water tank, the makeup water to the feed water tank is supplied to the feed water tank via the second driven machine.
  • the second driven machine may be cooled through a medium such as oil.
  • FIG. 1 is a schematic view showing an embodiment of the steam system of the present invention.
  • the steam system 1 of the present embodiment includes a prime mover 3 that generates power using steam from a boiler 2 and a driven machine 4 that is driven thereby.
  • the boiler 2 heats and vaporizes the water supplied from the water supply tank 5.
  • the water in the water supply tank 5 is supplied to the boiler 2 via the water supply pump 6 and is vaporized in the boiler 2.
  • the prime mover 3 is a steam engine that receives power from the boiler 2 and generates power.
  • the steam engine 3 may be a steam turbine, but is preferably a screw-type steam engine.
  • FIG. 2 is a schematic structural diagram of an example of a screw-type steam engine, and a part thereof is shown in cross section.
  • the screw steam engine 3 is configured by providing screw rotors 8 and 8 in a hollow casing 7 so as to mesh with each other. At this time, both end shaft portions of each screw rotor 8 are rotatably held by the casing 7 via the bearings 9.
  • the shaft seal portion of the steam engine 3 is normally a non-contact seal (O-ring or the like) 10, and therefore steam and / or drain leak from the shaft seal portion.
  • the screw-type steam engine 3 expands steam while rotating the screw rotors 8 and 8 by the steam introduced from the boiler 2 between the screw rotors 8 and 8 meshing with each other through the suction port 11. And depressurize. And power can be obtained by rotation of the screw rotor 8 in that case.
  • the decompressed steam is discharged from the steam engine 3 through the discharge port 12.
  • the driven machine 4 is a device that is driven by the steam engine 3 to discharge or suck a fluid.
  • the driven machine 4 is a pump, a blower, a compressor, a vacuum pump, or the like.
  • the driven machine 4 of the present embodiment is an air compressor.
  • the compressor 4 is not particularly limited in type, but is preferably a screw type compressor.
  • a screw compressor is a device that sucks gas between screw rotors that mesh with each other and rotate, and compresses and discharges the gas by rotation of the screw rotor.
  • the compressor 4 is driven by the steam engine 3. Specifically, the screw rotor of the screw compressor 4 is rotated using the rotational driving force of the screw rotor 8 of the screw steam engine 3. At this time, the output shaft 13 of the steam engine 3 and the input shaft 14 of the compressor 4 are connected by a coupling 15 without a generator. However, the output shaft 13 and the input shaft 14 may be connected via a clutch. In this case, whether or not the compressor 4 is driven by the steam engine 3 can be switched by the clutch. Further, the clutch may include a transmission. In this case, the discharge pressure of the compressor 4 can be changed by changing the gear ratio. Furthermore, the output shaft 13 and the input shaft 14 may be connected via an electric motor (motor).
  • the drive ratio of the compressor 4 can be changed so that it can be driven by one or both of the steam engine 3 and the electric motor.
  • the compressor 4 is connected to the steam engine 3 and the electric motor 16 as shown in FIG.
  • the compressor 4 can be driven by the steam engine 3 and can also be driven by the electric motor 16.
  • the steam from the boiler 2 is supplied to the steam engine 3 through the steam supply path 17.
  • the steam from the boiler 2 is supplied to the first steam header 18, and the steam of the first steam header 18 is supplied to the steam engine 3 through the steam supply path 17.
  • a steam supply valve 19 is provided in the steam supply path 17 from the first steam header 18 to the steam engine 3. By controlling the opening and closing of the steam supply valve 19, the presence or absence of the operation of the steam engine 3 is switched. However, the output of the steam engine 3 may be adjusted by controlling the opening of the steam supply valve 19.
  • the steam after being used in the steam engine 3 can be used in various steam utilization devices (not shown).
  • the steam from the steam engine 3 is supplied to the second steam header 21 via the exhaust steam path 20, and the steam in the second steam header 21 is supplied to various steam utilizing devices.
  • the steam engine 3 not only drives the compressor 4 but also functions as a pressure reducing valve. Therefore, the steam after use in the steam engine 3 can be used as it is in various steam utilizing devices as the steam after passing through the pressure reducing valve.
  • the first steam header 18 and the second steam header 21 are also connected via the bypass path 22.
  • a bypass valve 23 is provided in the middle of the bypass path 22.
  • the bypass valve 23 may be an electromagnetic valve or an electric valve controlled by the controller 24, but is a self-powered pressure reducing valve in this embodiment.
  • the bypass valve 23 mechanically adjusts the opening degree by itself so as to maintain the steam pressure in the second steam header 21 at a predetermined level.
  • steam supply via the steam engine 3 should be prioritized under conditions where steam may be supplied to the second steam header 21 via either the steam engine 3 or the bypass valve 23.
  • the steam system 1 of the present embodiment includes the two steam headers 18 and 21 having different pressures and temperatures.
  • the steam in each of the steam headers 18 and 21 can be supplied to a desired steam utilization device (not shown). Since the steam in each of the steam headers 18 and 21 has a different temperature, it is possible to use the steam according to the application. That is, when a relatively high temperature steam is required, the steam may be supplied from the first steam header 18, and when a lower temperature steam is required, the second steam header 21 is supplied. Steam may be supplied from
  • the operation state of the boiler 2 of the present embodiment is controlled based on the steam pressure in the first steam header 18.
  • the burner combustion amount is controlled based on the steam pressure in the first steam header 18.
  • the first steam sensor 21 is provided with a first pressure sensor 25 in order to grasp the use load of the steam.
  • the first pressure sensor 25 monitors the vapor pressure in the second vapor header 21. Therefore, whether or not there is a steam load can be detected based on whether or not the steam pressure is less than a predetermined value. That is, when steam is used, the steam pressure in the second steam header 21 is lowered, so that it is possible to detect the use load of steam depending on whether or not it is less than a predetermined value.
  • Compressed air from the compressor 4 can be supplied to one or a plurality of compressed air utilization devices (not shown) via the compressed air passage 26.
  • a second pressure sensor 27 is provided in the compressed air passage 26 in order to grasp the usage load of the compressed air.
  • the second pressure sensor 27 monitors the air pressure in the compressed air passage 26. Therefore, whether or not there is an air load can be detected based on whether or not the air pressure is less than the set value. That is, when compressed air is used, since the air pressure in the compressed air passage 26 decreases, the use load of the compressed air can be detected based on whether or not it is less than the set value.
  • a hollow air tank (not shown) may be provided in the middle of the compressed air passage 26, and a second pressure sensor 27 may be provided in the air tank to detect the use load of the compressed air.
  • the controller 24 constantly monitors the detected pressures of the first pressure sensor 25 and the second pressure sensor 27, and controls the opening and closing of the steam supply valve 19 based on this, as will be described later.
  • the opening degree of the steam supply valve 19 may be controlled as desired.
  • the controller 24 may control the bypass valve 23, the clutch, and the like as desired.
  • the bypass valve 23 is a self-reducing pressure reducing valve as described above.
  • the controller 24 detects that there is an air load when the air pressure of the second pressure sensor 27 is less than a set value, and if there is a steam load when the vapor pressure of the first pressure sensor 25 is less than a predetermined value. When detecting, the steam supply valve 19 is opened and the steam engine 3 is operated.
  • the controller 24 detects that there is no air load when the air pressure of the second pressure sensor 27 is equal to or higher than a set value, and the steam load is detected when the vapor pressure of the first pressure sensor 25 is equal to or higher than a predetermined value.
  • the steam supply valve 19 is closed and the steam engine 3 is stopped.
  • the controller 24 detects that there is no air load when the air pressure of the second pressure sensor 27 is equal to or higher than the set value, and the steam load is detected when the vapor pressure of the first pressure sensor 25 is less than a predetermined value.
  • the steam supply valve 19 is closed and the steam engine 3 is stopped. In this case, the steam is supplied to the second steam header 21 and thus the steam using device via the bypass 22.
  • the controller 24 detects that there is an air load when the air pressure of the second pressure sensor 27 is less than the set value, and the steam load is detected when the vapor pressure of the first pressure sensor 25 is equal to or greater than a predetermined value.
  • the compressor 4 is driven by the electric motor 16.
  • the electric motor 16 may be capable of driving the compressor 4 or a different compressor may be driven.
  • the compressed air from the first compressor 4 driven by the steam engine 3 and the compressed air from the second compressor driven by the electric motor 16 have a common compressed air passage 26 or an air tank. Via the compressed air.
  • the electric motor 16 that drives the second compressor is controlled based on the air pressure detected by the second pressure sensor 27.
  • the controller 24 detects that there is an air load when the air pressure of the second pressure sensor 27 is less than the set value, and the steam load is detected when the vapor pressure of the first pressure sensor 25 is equal to or greater than a predetermined value.
  • the steam engine 3 may be operated by opening the steam supply valve 19.
  • the electric motor 16 is not necessarily required.
  • Steam can be supplied to the engine 3.
  • the second compressor may be driven by the electric motor 16.
  • the driving of the steam engine 3 is prioritized, and the electric motor 16 is auxiliary driven when the steam engine 3 alone cannot cover.
  • the electric motor 16 that drives the second compressor is controlled based on the air pressure detected by the second pressure sensor 27.
  • the shaft seal portion of the steam engine 3 is a non-contact seal 10
  • a small gap is generated between the shaft of the screw rotor 8 and the seal 10.
  • the steam and / or drain reaches the shaft seal through the bearing 9 and leaks out of the casing 7 through the gap.
  • the steam leaking from the shaft seal portion of the steam engine 3 and / or the drain leaking from the shaft seal portion of the steam engine 3 is supplied to the water supply tank 5 via the leak heat recovery path 28. Thereby, the stored water in the water supply tank 5 is warmed.
  • drain generated in the steam engine 3 is supplied to the water supply tank 5 via the drain recovery path 29. Thereby, the stored water in the water supply tank 5 is warmed.
  • a steam trap 30 is provided in the middle of the drain recovery path 29.
  • the water supply path 31 to the water supply tank 5 is connected to the water supply tank 5 via the compressor 4.
  • the makeup water to the feed water tank 5 and the compressor 4 can exchange heat, so that the makeup water to the feed water tank 5 can be warmed and the compressor 4 can be cooled.
  • the compressor 4 may be cooled via a medium such as oil, and the oil may be cooled with makeup water supplied to the water supply tank 5.
  • the steam system of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate.
  • the steam engine 3 is a screw type, but may be a turbine type in some cases.
  • the compressor 4 is on / off controlled.
  • the capacity may be controlled according to circumstances. In that case, it is easy to adjust the opening degree of the steam supply valve 19 to the steam engine 3 or to perform inverter control of the electric motor 16.
  • the 1st pressure sensor 25 is not the 2nd steam header 21, but the steam engine 3 from. You may provide in the pipe line after the confluence
  • a pump or a blower may be installed in place of the compressor 4.
  • the control may be performed in the same manner as in the above embodiment.
  • a vacuum pump may be installed in place of the compressor 4.
  • the steam engine 3 or the electric motor 16 may be controlled based on the pressure in the space sucked by the vacuum pump driven by the steam engine 3 or the electric motor 16.
  • the “set value” and / or “predetermined value” may each set an operation gap (differential). is there.
  • the steam supply valve 19 is opened, and when the set upper limit pressure is reached, the steam supply valve 19 may be closed.
  • the controller 24 may control the opening degree of the steam supply valve 19 based on the pressure detected by the second pressure sensor 27 so as to maintain the air pressure in the set pressure range.
  • the controller 24 may control the opening degree of the steam supply valve 19 based on the detected pressure of the first pressure sensor 25 so as to maintain the vapor pressure in a predetermined pressure range.
  • the heat exchange between the supply water to the water supply tank 5 and the compressor 4 is performed.
  • the heat exchange between the stored water in the water supply tank 5 and the compressor 4 may be performed.
  • the stored water in the water supply tank 5 can be circulated between the water supply tank 5 and the compressor 4.
  • the compressor 4 may be cooled through a medium such as oil, and the oil may be cooled with circulating water between the water supply tank 5 and the compressor 4.
  • the heating and heating of the makeup water by the compression heat of the compressor 4 one or more may be executed.
  • the stored water in the water supply tank 5 or the makeup water to the water supply tank And heat exchange may be performed between the second compressor and the second compressor.
  • the stored water in the water supply tank 5 is circulated between the water supply tank 5 and the second compressor.
  • cooling of a 2nd compressor can be aimed at.
  • the makeup water to the feed water tank 5 is supplied to the feed water tank 5 via the second compressor.
  • the second compressor may be cooled through a medium such as oil.

Abstract

When an air compressor is driven using a steam engine, the air compressor is controlled while taking account of a load for using steam as well as a load for using compressed air. Energy is saved by recovering heat from the steam engine and the air compressor. An air compressor (4) is driven by a steam engine (3) which generates power by using steam from a boiler (2). A load for using steam is monitored by a pressure sensor (25) provided in a steam header (21). A load for using compressed air is monitored by a pressure sensor (27) provided in a compressed air passage (26). Steam supply to the steam engine (3) is controlled based on pressures detected by pressure sensors (25, 27). Steam and drain leaking from the shaft seal portion of the steam engine (3), and drain generated from the steam engine (3) are supplied to a water supply tank (5) via recovery passages (28, 29). Supply water to the water supply tank (5) is supplied through the compressor (4).

Description

蒸気システムSteam system
 この発明は、蒸気を用いて圧縮機などを駆動して、消費電力の削減を図る蒸気システムに関するものである。
本願は、2008年6月5日に日本に出願された特願2008-147545に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a steam system that uses a steam to drive a compressor or the like to reduce power consumption.
This application claims priority based on Japanese Patent Application No. 2008-147545 filed in Japan on June 5, 2008, the contents of which are incorporated herein by reference.
 下記特許文献1には、スクリュ型膨張機(1)により空気圧縮機(2)を駆動し、空気圧縮機(2)の負荷変動に際してはスクリュ型膨張機(1)に流入する蒸気を加減弁(10)により制御して対応すると共に、スクリュ型膨張機(1)の蒸気流入側と蒸気流出側との間に設けたバイパス弁(9)を制御することにより、前記負荷変動に拘らず蒸気流出側における蒸気の背圧を一定に保持する方法が開示されている。ここで、バイパス弁(9)の制御は、スクリュ型膨張機(1)からの蒸気出口管(5)の背圧を検出器(20)により検出してなされる。また、加減弁(10)の制御は、スクリュ型膨張機(1)の駆動軸の回転数を検出器(23)により検出してなされる。
特開昭63-45403号公報 (特許請求の範囲、図1、公報第2頁左下欄第1-5行)
In Patent Document 1 below, an air compressor (2) is driven by a screw expander (1), and when the load of the air compressor (2) varies, the steam flowing into the screw expander (1) is controlled. (10) is controlled and responded, and by controlling the bypass valve (9) provided between the steam inflow side and the steam outflow side of the screw expander (1), the steam is controlled regardless of the load fluctuation. A method of keeping the back pressure of steam on the outflow side constant is disclosed. Here, the bypass valve (9) is controlled by detecting the back pressure of the steam outlet pipe (5) from the screw expander (1) by the detector (20). Further, the control of the adjusting valve (10) is performed by detecting the rotational speed of the drive shaft of the screw expander (1) by the detector (23).
JP-A-63-45403 (Claims, FIG. 1, page 2, lower left column, lines 1-5)
 前記特許文献1に開示される発明の場合、空気圧縮機の負荷変動にも拘らずその回転を一定に保持するために、加減弁を調整してスクリュ型膨張機へ供給する蒸気量が制御されるが、空気圧縮機の能力制御はアンローダによって行われる(公報第2頁右下欄第18行-第3頁左上欄第5行)。あるいは、空気圧縮機の能力制御は、スクリュ型膨張機へ供給する蒸気量を加減弁によって制御して、スクリュ型膨張機の回転数を変化させて行われる(公報第3頁左上欄第5-9行)。しかしながら、空気圧縮機の負荷変動を検知して、その負荷変動に対し迅速で正確に応答するように制御するものではない。 In the case of the invention disclosed in Patent Document 1, the amount of steam supplied to the screw type expander is controlled by adjusting the adjusting valve in order to keep the rotation constant despite the load fluctuation of the air compressor. However, the capacity control of the air compressor is performed by an unloader (gazette page 2, lower right column, line 18-page 3, upper left column, line 5). Alternatively, the capacity control of the air compressor is performed by changing the rotation speed of the screw expander by controlling the amount of steam supplied to the screw expander by an adjusting valve (see the upper left column, page 5-5- 9). However, it is not intended to detect a load change of the air compressor and to respond quickly and accurately to the load change.
 また、前記特許文献1に開示される発明の場合、蒸気の使用負荷をも考慮して、スクリュ型膨張機への給蒸を制御できない。すなわち、前記特許文献1に開示される発明の場合、蒸気の使用負荷と、圧縮機から吐出される流体の使用負荷との双方に基づき制御できない。 In the case of the invention disclosed in Patent Document 1, steam supply to the screw expander cannot be controlled in consideration of the use load of steam. That is, in the case of the invention disclosed in Patent Document 1, control cannot be performed based on both the use load of steam and the use load of fluid discharged from the compressor.
 さらに、前記特許文献1に開示される発明の場合、空気圧縮機の能力制御はアンローダによって行われる。従って、スクリュ型膨張機は、アンローダ時に不要な運転があるために熱損失が発生し、その際に発生する熱も回収されないため、省エネルギーを図ることができない。 Furthermore, in the case of the invention disclosed in Patent Document 1, the capacity control of the air compressor is performed by an unloader. Therefore, the screw expander has an unnecessary operation at the time of unloading, and thus heat loss occurs, and heat generated at that time is not recovered, so that it is not possible to save energy.
 この発明が解決しようとする課題は、簡易な構成および制御で、流体負荷だけでなく蒸気負荷をも考慮して制御すると共に、熱回収により省エネルギーを図ることにある。 The problem to be solved by the present invention is to control not only the fluid load but also the steam load with a simple configuration and control, and to save energy by heat recovery.
 この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、ボイラからの蒸気を用いて動力を起こす原動機と、この原動機により駆動され、流体を吐出または吸入する被動機と、前記原動機にて使用後の蒸気が供給される箇所へ、前記原動機を介することなく蒸気を供給するバイパス路と、このバイパス路に設けられるバイパス弁と、前記原動機からの蒸気と前記バイパス路からの蒸気とが供給される箇所の蒸気負荷と、前記被動機により流体が吐出または吸入される空間内の流体負荷とに基づき、前記原動機への給蒸を制御する制御器と、前記ボイラへの給水が貯留され、前記原動機の軸封部から漏れる蒸気もしくはドレン、前記原動機で発生するドレン、または前記被動機の発熱を利用して、貯留水または補給水が温められる給水タンクとを備えることを特徴とする蒸気システムである。 The present invention has been made to solve the above problems, and the invention according to claim 1 is a motor that generates power using steam from a boiler, and is driven by the motor to discharge or inhale a fluid. A bypass path for supplying steam to the location where the steam after use in the prime mover is supplied without going through the prime mover, a bypass valve provided in the bypass path, the steam from the prime mover, and the A controller that controls steaming to the prime mover based on a steam load at a location where steam from the bypass passage is supplied and a fluid load in a space where fluid is discharged or sucked by the driven machine; and The water supply to the boiler is stored and the steam or drain leaking from the shaft seal of the prime mover, the drain generated by the prime mover, or the heat generated by the driven machine, is stored or replenished. A steam system, characterized in that it comprises a water supply tank is warmed.
 請求項1に記載の発明によれば、流体負荷だけでなく蒸気負荷をも考慮して原動機への給蒸を制御すると共に、原動機の軸封部から漏れる蒸気もしくはドレン、原動機で発生するドレン、または被動機の発熱を利用して、給水タンク内の貯留水または給水タンクへの補給水を温めることで、省エネルギーを図ることができる。 According to the first aspect of the present invention, steam supply to the motor is controlled in consideration of not only fluid load but also steam load, steam or drain leaking from the shaft seal of the motor, drain generated by the motor, Alternatively, it is possible to save energy by using the heat generated by the driven machine to warm the water stored in the water supply tank or the makeup water to the water supply tank.
 請求項2に記載の発明は、前記原動機の軸封部から漏れる蒸気、および/または、前記原動機の軸封部から漏れるドレンが、前記給水タンクへ供給されて、前記給水タンク内の貯留水が温められることを特徴とする請求項1に記載の蒸気システムである。 According to a second aspect of the present invention, the steam leaking from the shaft seal portion of the prime mover and / or the drain leaking from the shaft seal portion of the prime mover are supplied to the water supply tank, and the stored water in the water supply tank is The steam system according to claim 1, wherein the steam system is warmed.
 請求項2に記載の発明によれば、原動機の軸封部から漏れる蒸気、および/または、原動機の軸封部から漏れるドレンにより、給水タンク内の貯留水が温められるため、熱損失を防止できる。 According to the second aspect of the present invention, the stored water in the water supply tank is warmed by the steam leaking from the shaft seal portion of the prime mover and / or the drain leaking from the shaft seal portion of the prime mover, so that heat loss can be prevented. .
 請求項3に記載の発明は、前記原動機で発生するドレンが前記給水タンクへ供給されて、前記給水タンク内の貯留水が温められることを特徴とする請求項1または請求項2に記載の蒸気システムである。 The invention according to claim 3 is characterized in that the drain generated in the prime mover is supplied to the water supply tank, and the stored water in the water supply tank is warmed. System.
 請求項3に記載の発明によれば、原動機で発生するドレンにより、給水タンク内の貯留水が温められるため、原動機からの熱回収を有効に図ることができる。 According to the third aspect of the present invention, since the water stored in the water supply tank is warmed by the drain generated by the prime mover, heat recovery from the prime mover can be effectively achieved.
 請求項4に記載の発明は、前記被動機の冷却を前記給水タンク内の貯留水または前記給水タンクへの補給水を用いて行うことで、前記給水タンク内の貯留水または前記給水タンクへの補給水が温められることを特徴とする請求項1~3のいずれか1項に記載の蒸気システムである。 Invention of Claim 4 performs cooling of the said driven machine using the stored water in the said water supply tank, or the replenishment water to the said water supply tank, so that the stored water in the said water supply tank or the said water supply tank is supplied. The steam system according to any one of claims 1 to 3, wherein the makeup water is warmed.
 請求項4に記載の発明によれば、被動機の熱により、給水タンク内の貯留水または給水タンクへの補給水が温められるため、省エネルギーを図ることができる。 According to the fourth aspect of the present invention, the stored water in the water supply tank or the makeup water to the water supply tank is warmed by the heat of the driven machine, so that energy saving can be achieved.
 さらに、請求項5に記載の発明は、電動機により駆動され、流体を吐出または吸入する第二の被動機をさらに備え、前記原動機からの蒸気と前記バイパス路からの蒸気とが供給される箇所の蒸気負荷と、前記各被動機により流体が吐出または吸入される空間内の流体負荷とに基づき、前記原動機への給蒸が制御され、前記各被動機により流体が吐出または吸入される空間内の流体負荷に基づき、前記電動機が制御され、前記第二の被動機の冷却を前記給水タンク内の貯留水または前記給水タンクへの補給水を用いて行うことで、前記給水タンク内の貯留水または前記給水タンクへの補給水が温められることを特徴とする請求項1~4のいずれか1項に記載の蒸気システムである。 Furthermore, the invention described in claim 5 is further provided with a second driven machine that is driven by an electric motor and discharges or sucks fluid, and is provided at a location where steam from the prime mover and steam from the bypass path are supplied. Steam supply to the prime mover is controlled based on the steam load and the fluid load in the space where the fluid is discharged or sucked by each driven machine, and in the space where the fluid is discharged or sucked by each driven machine Based on the fluid load, the electric motor is controlled, and the second driven machine is cooled using the stored water in the water supply tank or the makeup water to the water supply tank, so that the stored water in the water supply tank or The steam system according to any one of claims 1 to 4, wherein makeup water to the water supply tank is warmed.
 請求項5に記載の発明によれば、第二の被動機の熱により、給水タンク内の貯留水または給水タンクへの補給水が温められるため、省エネルギーを図ることができる。また、ボイラからの蒸気を用いて動力を起こす原動機の他に、第二の被動機を駆動させる電動機を備えるので、蒸気負荷に拘わらず、安定して流体を吐出または吸入することができる。 According to the fifth aspect of the invention, the heat stored in the water supply tank or the makeup water to the water supply tank is warmed by the heat of the second driven machine, so that energy saving can be achieved. In addition to the prime mover that generates power using steam from the boiler, an electric motor that drives the second driven machine is provided, so that fluid can be discharged or sucked stably regardless of the steam load.
 この発明の蒸気システムによれば、簡易な構成および制御で、流体負荷だけでなく蒸気負荷をも考慮して制御すると共に、熱回収により省エネルギーを図ることができる。 According to the steam system of the present invention, it is possible to control not only the fluid load but also the steam load with a simple configuration and control, and to save energy by heat recovery.
本発明の蒸気システムの一実施例を示す概略図である。It is the schematic which shows one Example of the steam system of this invention. 図1の蒸気システムのスクリュ式蒸気エンジンの一例の概略構造図であり、一部を断面にして示している。It is a schematic structure figure of an example of the screw type steam engine of the steam system of Drawing 1, and shows a part in section.
符号の説明Explanation of symbols
  1 蒸気システム
  2 ボイラ
  3 蒸気エンジン(原動機)
  4 圧縮機(被動機)
  5 給水タンク
 16 電動機
 18 第一蒸気ヘッダ
 19 給蒸弁
 21 第二蒸気ヘッダ
 22 バイパス路
 23 バイパス弁
 24 制御器
 25 第一圧力センサ
 26 圧縮空気路
 27 第二圧力センサ
 28 漏れ熱回収路
 29 ドレン回収路
 31 給水路
1 Steam system 2 Boiler 3 Steam engine (motor)
4 Compressor (driven machine)
5 Water Supply Tank 16 Electric Motor 18 First Steam Header 19 Steam Supply Valve 21 Second Steam Header 22 Bypass Path 23 Bypass Valve 24 Controller 25 First Pressure Sensor 26 Compressed Air Path 27 Second Pressure Sensor 28 Leakage Heat Recovery Path 29 Drain Recovery Road 31 water supply channel
 つぎに、この発明の実施の形態について説明する。
 本発明の蒸気システムは、ボイラからの蒸気を用いて動力を起こす原動機と、この原動機により駆動される圧縮機または真空ポンプなどの被動機とを備える。
Next, an embodiment of the present invention will be described.
The steam system of the present invention includes a prime mover that generates power using steam from a boiler, and a driven machine such as a compressor or a vacuum pump that is driven by the prime mover.
 ボイラは、周知のとおり、給水タンクから供給される水を加熱して蒸気化する。そして、その蒸気は、原動機などの蒸気利用機器へ供給可能とされる。 As is well known, a boiler heats water supplied from a water supply tank and vaporizes it. Then, the steam can be supplied to steam utilization equipment such as a prime mover.
 原動機は、蒸気を用いて動力を起こす蒸気エンジンである。蒸気エンジンは、蒸気タービンでもよいが、好適にはスクリュ式蒸気エンジンである。スクリュ式蒸気エンジンは、互いにかみ合うスクリュロータ間に蒸気が導入され、その蒸気によりスクリュロータを回転させつつ蒸気を膨張して減圧し、その際のスクリュロータの回転により動力を得る装置である。 The prime mover is a steam engine that generates power using steam. The steam engine may be a steam turbine, but is preferably a screw steam engine. A screw-type steam engine is an apparatus in which steam is introduced between screw rotors that mesh with each other, and the steam is expanded and decompressed while rotating the screw rotor by the steam, and power is obtained by rotation of the screw rotor at that time.
 被動機は、蒸気エンジンにより駆動され、流体を吐出または吸入する装置である。具体的には、被動機は、ポンプ、送風機、圧縮機、または真空ポンプなどである。被動機は、ポンプ、送風機または圧縮機の場合、流体を吐出し、真空ポンプの場合、流体を吸入する。 The driven machine is a device driven by a steam engine to discharge or suck fluid. Specifically, the driven machine is a pump, a blower, a compressor, a vacuum pump, or the like. In the case of a pump, a blower, or a compressor, the driven machine discharges a fluid, and in the case of a vacuum pump, the driven machine sucks the fluid.
 被動機は、たとえば空気圧縮機とされる。この空気圧縮機は、往復式や回転式など、その種類を特に問わないが、好適にはスクリュ式圧縮機である。スクリュ式圧縮機は、互いにかみ合って回転するスクリュロータ間に気体を吸入して、スクリュロータの回転により圧縮して吐出する装置である。 The driven machine is, for example, an air compressor. The type of the air compressor is not particularly limited, such as a reciprocating type or a rotary type, but is preferably a screw type compressor. A screw compressor is a device that sucks gas between screw rotors that mesh with each other and rotate, and compresses and discharges the gas by rotation of the screw rotor.
 蒸気エンジンには、ボイラから給蒸路を介して、蒸気が供給される。ボイラからの蒸気は、蒸気ヘッダ(第一蒸気ヘッダという)に供給され、その蒸気ヘッダの蒸気が、給蒸路を介して蒸気エンジンに供給されてもよい。 Steam is supplied to the steam engine from the boiler via the steam supply path. Steam from the boiler may be supplied to a steam header (referred to as a first steam header), and the steam in the steam header may be supplied to the steam engine via a steam supply path.
 蒸気エンジンにて使用後の蒸気は、排蒸路を介して排出される。蒸気エンジンは、蒸気を減圧するものであるから、減圧弁としても機能する。それ故、蒸気エンジンにて使用後の蒸気は、従来の減圧弁通過後の蒸気と同様に利用可能である。すなわち、従来、ボイラからの蒸気は、減圧弁を介して蒸気利用機器に供給されるが、それと同様に、蒸気エンジンにて使用後の蒸気も、蒸気利用機器に供給できる。この際、蒸気エンジンからの蒸気は、排蒸路を介して蒸気ヘッダ(第二蒸気ヘッダという)に供給され、その蒸気ヘッダの蒸気が、蒸気利用機器に供給されてもよい。 Steam after use in the steam engine is discharged through the exhaust steam path. Since the steam engine depressurizes steam, it also functions as a pressure reducing valve. Therefore, the steam after use in the steam engine can be used in the same manner as the steam after passing through the conventional pressure reducing valve. That is, conventionally, the steam from the boiler is supplied to the steam using device via the pressure reducing valve. Similarly, the steam after use in the steam engine can be supplied to the steam using device. At this time, the steam from the steam engine may be supplied to the steam header (referred to as the second steam header) via the exhaust steam path, and the steam in the steam header may be supplied to the steam utilization device.
 蒸気利用機器には、蒸気エンジンを介することなく、バイパス路を介しても蒸気が供給可能とされる。典型的には、前記ボイラからの蒸気が、バイパス路を介しても、排蒸路または第二蒸気ヘッダに供給可能とされる。この際、蒸気エンジンに対する給蒸路と排蒸路とをバイパス路で接続してもよいし、第一蒸気ヘッダと第二蒸気ヘッダとをバイパス路で接続してもよい。また、前記ボイラとは異なる箇所からバイパス路を介して、排蒸路または第二蒸気ヘッダに蒸気を供給可能としてもよい。いずれにしても、バイパス路には、バイパス弁が設けられる。このバイパス弁は、電磁弁または電動弁でもよいが、自力式の減圧弁でもよい。 Steam can be supplied to the steam-utilizing equipment via a bypass without going through a steam engine. Typically, the steam from the boiler can be supplied to the exhaust steam path or the second steam header even via the bypass path. At this time, the steam supply path and the exhaust steam path for the steam engine may be connected by a bypass path, or the first steam header and the second steam header may be connected by a bypass path. Moreover, it is good also as supply of a vapor | steam to a waste steam path or a 2nd steam header from a location different from the said boiler via a bypass path. In any case, a bypass valve is provided in the bypass path. The bypass valve may be an electromagnetic valve or an electric valve, but may be a self-reducing pressure reducing valve.
 蒸気エンジンの制御は、蒸気エンジンへの給蒸の有無または量を制御してなされる。具体的には、蒸気エンジンへの給蒸路に給蒸弁を設け、この給蒸弁の開閉または開度を制御する。これにより、蒸気エンジンへの給蒸の有無または量を変更でき、蒸気エンジンの作動の有無または出力を変更できる。 The steam engine is controlled by controlling whether or not steam is supplied to the steam engine. Specifically, a steam supply valve is provided in the steam supply path to the steam engine, and the opening / closing or opening degree of the steam supply valve is controlled. Thereby, the presence / absence or amount of steam supply to the steam engine can be changed, and the presence / absence or output of the steam engine can be changed.
 たとえば、蒸気エンジンが蒸気タービンの場合、給蒸弁の開閉を制御することで、蒸気タービンへの給蒸の有無を切り替えればよい。これにより、蒸気タービンの作動の有無を変更することができる。一方、蒸気エンジンがスクリュ式蒸気エンジンの場合、蒸気タービンの場合と同様に給蒸弁の開閉を制御してもよいし、給蒸弁の開度を制御してもよい。給蒸弁の開度を制御する場合、スクリュ式蒸気エンジンへの給蒸量を調整して、スクリュ式蒸気エンジンの出力を変更することができる。 For example, when the steam engine is a steam turbine, the presence or absence of steam supply to the steam turbine may be switched by controlling the opening and closing of the steam supply valve. Thereby, the presence or absence of the action | operation of a steam turbine can be changed. On the other hand, when the steam engine is a screw-type steam engine, the opening / closing of the steam supply valve may be controlled as in the case of the steam turbine, or the opening of the steam supply valve may be controlled. When controlling the opening degree of the steam supply valve, the output of the screw steam engine can be changed by adjusting the amount of steam supply to the screw steam engine.
 但し、蒸気エンジンの制御は、以上の構成に限らない。すなわち、蒸気エンジンは、給蒸の有無または量が変更可能であれば足り、給蒸路に給蒸弁を設けて、その給蒸弁により制御する必要は必ずしもない。たとえば、前述したように、蒸気エンジンに対する給蒸路と排蒸路とをバイパス路で接続し、このバイパス路に設けたバイパス弁の開閉または開度を制御してもよい。また、前記給蒸弁に加えて、このバイパス弁を設けてもよい。 However, the control of the steam engine is not limited to the above configuration. That is, the steam engine only needs to be able to change the presence or amount of steaming, and it is not always necessary to provide a steaming valve in the steaming path and control the steaming valve. For example, as described above, the steam supply path and the exhaust steam path for the steam engine may be connected by a bypass path, and the opening / closing or opening degree of the bypass valve provided in the bypass path may be controlled. In addition to the steam supply valve, this bypass valve may be provided.
 蒸気エンジンは、被動機により流体が吐出または吸入される空間内の流体負荷と、蒸気エンジンの出口側の蒸気負荷とに基づき、給蒸を制御される。 The steam engine is controlled for steam supply based on the fluid load in the space where the fluid is discharged or sucked by the driven machine and the steam load on the outlet side of the steam engine.
 ここで、流体負荷とは、被動機により流体が吐出または吸入される空間内の流体の負荷である。具体的には、被動機がポンプ、送風機または圧縮機の場合、これが吐出する空間内の流体の使用量である。また、被動機が真空ポンプの場合、これが吸入する空間内の流体の存在量である。つまり、被動機が真空ポンプの場合、真空度が低くなれば、流体負荷があることになる。いずれの流体負荷も、被動機により流体が吐出または吸入される空間内の圧力により検出できる。 Here, the fluid load is a load of the fluid in the space where the fluid is discharged or sucked by the driven machine. Specifically, when the driven machine is a pump, a blower or a compressor, this is the amount of fluid used in the space discharged. When the driven machine is a vacuum pump, this is the amount of fluid in the space to be sucked. That is, when the driven machine is a vacuum pump, if the degree of vacuum is low, there is a fluid load. Any fluid load can be detected by the pressure in the space where the fluid is discharged or sucked by the driven machine.
 一方、蒸気負荷とは、蒸気エンジンにて使用後の蒸気が供給される箇所の蒸気の使用量である。この蒸気負荷は、蒸気エンジンにて使用後の蒸気が供給される箇所の蒸気圧により検出できる。たとえば、蒸気エンジンからの排蒸路またはその先に設けられる第二蒸気ヘッダ内の蒸気圧に基づき、蒸気の使用負荷(蒸気負荷)を検出できる。すなわち、蒸気利用機器にて蒸気が使用される場合には、排蒸路内または第二蒸気ヘッダ内の蒸気圧が下がるので、蒸気負荷を検出できる。 On the other hand, the steam load is the amount of steam used at the location where steam after use is supplied by the steam engine. This steam load can be detected by the steam pressure at the location where steam after use is supplied by the steam engine. For example, the use load (steam load) of steam can be detected based on the steam pressure in the exhaust steam path from the steam engine or in the second steam header provided at the end thereof. That is, when steam is used in the steam utilization device, the steam pressure in the exhaust steam passage or the second steam header is lowered, so that the steam load can be detected.
 このように、流体負荷も蒸気負荷も、圧力にて検出するのが簡易である。従って、被動機により流体が吐出または吸入される空間内の圧力と、蒸気エンジンにて使用後の蒸気が供給される箇所の蒸気圧とに基づき、蒸気エンジンへの給蒸を制御することができる。 Thus, it is easy to detect both fluid load and steam load by pressure. Therefore, steam supply to the steam engine can be controlled based on the pressure in the space where the fluid is discharged or sucked by the driven machine and the steam pressure at the location where the steam after use in the steam engine is supplied. .
 ところで、給水タンク内の貯留水または給水タンクへの補給水は、原動機の軸封部から漏れる蒸気もしくはドレン、原動機で発生するドレン、または被動機の発熱を利用して温められる。その手段として、次の三つの実施形態を挙げることができる。なお、これらの三つの実施形態の内、複数の実施形態を組み合わせてもよい。 By the way, the water stored in the water supply tank or the replenishment water to the water supply tank is warmed by using steam or drain leaking from the shaft seal of the prime mover, drain generated by the prime mover, or heat generated by the driven machine. As the means, the following three embodiments can be mentioned. Of these three embodiments, a plurality of embodiments may be combined.
 第一実施形態では、原動機の軸封部から漏れる蒸気、および/または、原動機の軸封部から漏れるドレンは、漏れ熱回収路を介して、給水タンクへ供給される。これにより、給水タンク内の貯留水を温めることができる。 In the first embodiment, steam leaking from the shaft seal portion of the prime mover and / or drain leaking from the shaft seal portion of the prime mover are supplied to the water supply tank via the leakage heat recovery path. Thereby, the stored water in a water supply tank can be warmed.
 第二実施形態では、原動機で発生するドレンは、ドレン回収路を介して、給水タンクへ供給される。これにより、給水タンク内の貯留水を温めることができる。なお、ドレン回収路の中途には、スチームトラップを設けるのが好ましい。 In the second embodiment, the drain generated by the prime mover is supplied to the water supply tank via the drain recovery path. Thereby, the stored water in a water supply tank can be warmed. A steam trap is preferably provided in the middle of the drain recovery path.
 第三実施形態では、給水タンク内の貯留水または給水タンクへの補給水により、被動機の冷却が図られる。給水タンク内の貯留水にて被動機を冷却する場合、給水タンク内の貯留水は、被動機を介して、給水タンク内に戻るよう循環される。一方、給水タンクへの補給水にて被動機を冷却する場合、給水タンクへの補給水は、被動機を介して、給水タンクへ供給される。いずれの場合も、被動機は、油などの媒体を介して冷却を図られてもよい。 In the third embodiment, the driven machine is cooled by water stored in the water supply tank or makeup water supplied to the water supply tank. When cooling a driven machine with the stored water in a water supply tank, the stored water in a water supply tank is circulated through the driven machine so that it may return into the water supply tank. On the other hand, when the driven machine is cooled by makeup water to the feed water tank, the makeup water to the feed water tank is supplied to the feed water tank via the driven machine. In either case, the driven machine may be cooled through a medium such as oil.
 本発明の蒸気システムは、蒸気エンジンにより駆動される被動機(第一の被動機)とは異なる第二の被動機をさらに備えてもよい。 The steam system of the present invention may further include a second driven machine different from the driven machine (first driven machine) driven by the steam engine.
 第二の被動機は、第一の被動機により流体が吐出または吸入される空間に対し、第一の被動機と同様に、流体を吐出または吸入する装置である。そのため、第二の被動機は、第一の被動機と同一機能のものとされる。たとえば、第一の被動機が空気圧縮機の場合には、第二の被動機も空気圧縮機とされる。但し、第二の被動機は、第一の被動機と機能が同一であれば、機構まで同一である必要はない。たとえば、第一の被動機がスクリュ式の空気圧縮機である場合、第二の被動機は、空気圧縮機である限り、スクリュ式に限らず、往復式などでもよい。 The second driven machine is a device that discharges or sucks fluid to the space where the fluid is discharged or sucked by the first driven machine, like the first driven machine. Therefore, the second driven machine has the same function as the first driven machine. For example, when the first driven machine is an air compressor, the second driven machine is also an air compressor. However, if the second driven machine has the same function as the first driven machine, the mechanism need not be the same. For example, when the first driven machine is a screw type air compressor, the second driven machine is not limited to the screw type but may be a reciprocating type as long as it is an air compressor.
 第二の被動機は、電動機により駆動可能とされる。電動機は、各被動機により流体が吐出または吸入される空間内の流体負荷に基づき制御される。また、蒸気エンジンは、蒸気エンジンからの蒸気とバイパス路からの蒸気とが供給される箇所の蒸気負荷と、各被動機により流体が吐出または吸入される空間内の流体負荷とに基づき制御される。このようにして制御される蒸気エンジンと電動機とは、蒸気エンジンの駆動だけでは不十分な場合、電動機を補助駆動させるのが好ましい。また、蒸気エンジンの停止中は、電動機を駆動して、第二の被動機にて流体を吐出または吸入できる。 The second driven machine can be driven by an electric motor. The electric motor is controlled based on a fluid load in a space in which fluid is discharged or sucked by each driven machine. The steam engine is controlled based on a steam load at a location where steam from the steam engine and steam from the bypass path are supplied, and a fluid load in a space where fluid is discharged or sucked by each driven machine. . When the steam engine and the electric motor controlled in this way are not enough to drive the steam engine, it is preferable that the electric motor is auxiliary driven. Further, when the steam engine is stopped, the electric motor can be driven and fluid can be discharged or sucked by the second driven machine.
 このような構成の場合、給水タンク内の貯留水または給水タンクへの補給水により、第二の被動機の冷却を図ってもよい。給水タンク内の貯留水にて第二の被動機を冷却する場合、給水タンク内の貯留水は、第二の被動機を介して、給水タンク内に戻るよう循環される。一方、給水タンクへの補給水にて第二の被動機を冷却する場合、給水タンクへの補給水は、第二の被動機を介して、給水タンクへ供給される。いずれの場合も、第二の被動機は、油などの媒体を介して冷却を図られてもよい。 In such a configuration, the second driven machine may be cooled by the water stored in the water supply tank or the makeup water supplied to the water supply tank. When the second driven machine is cooled by the stored water in the water supply tank, the stored water in the water supply tank is circulated back to the water supply tank via the second driven machine. On the other hand, when the second driven machine is cooled with makeup water to the feed water tank, the makeup water to the feed water tank is supplied to the feed water tank via the second driven machine. In any case, the second driven machine may be cooled through a medium such as oil.
 以下、この発明の具体的実施例を図面に基づいて詳細に説明する。
 図1は、本発明の蒸気システムの一実施例を示す概略図である。本実施例の蒸気システム1は、ボイラ2からの蒸気を用いて動力を起こす原動機3と、これにより駆動される被動機4とを備える。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the steam system of the present invention. The steam system 1 of the present embodiment includes a prime mover 3 that generates power using steam from a boiler 2 and a driven machine 4 that is driven thereby.
 ボイラ2は、周知のとおり、給水タンク5から供給される水を加熱して蒸気化する。給水タンク5内の水は、給水ポンプ6を介してボイラ2へ供給され、ボイラ2において蒸気化される。 As is well known, the boiler 2 heats and vaporizes the water supplied from the water supply tank 5. The water in the water supply tank 5 is supplied to the boiler 2 via the water supply pump 6 and is vaporized in the boiler 2.
 原動機3は、ボイラ2からの蒸気を受けて動力を起こす蒸気エンジンである。蒸気エンジン3は、蒸気タービンでもよいが、好適にはスクリュ式蒸気エンジンである。図2は、スクリュ式蒸気エンジンの一例の概略構造図であり、一部を断面にして示している。 The prime mover 3 is a steam engine that receives power from the boiler 2 and generates power. The steam engine 3 may be a steam turbine, but is preferably a screw-type steam engine. FIG. 2 is a schematic structural diagram of an example of a screw-type steam engine, and a part thereof is shown in cross section.
 図2に示すとおり、スクリュ式蒸気エンジン3は、中空のケーシング7内に、互いにかみ合うようスクリュロータ8,8が設けられて構成される。この際、各スクリュロータ8の両端軸部は、軸受9を介して、ケーシング7に回転自在に保持される。なお、蒸気エンジン3の軸封部は、通常、非接触のシール(Oリングなど)10のため、この軸封部から蒸気および/またはドレンが漏れてしまうものである。 2, the screw steam engine 3 is configured by providing screw rotors 8 and 8 in a hollow casing 7 so as to mesh with each other. At this time, both end shaft portions of each screw rotor 8 are rotatably held by the casing 7 via the bearings 9. Note that the shaft seal portion of the steam engine 3 is normally a non-contact seal (O-ring or the like) 10, and therefore steam and / or drain leak from the shaft seal portion.
 スクリュ式蒸気エンジン3は、互いにかみ合うスクリュロータ8,8間に、ボイラ2からの蒸気が吸込口11を介して導入されることで、その蒸気によりスクリュロータ8,8を回転させつつ蒸気を膨張して減圧する。そして、その際のスクリュロータ8の回転により動力を得ることができる。減圧後の蒸気は、吐出口12を介して、蒸気エンジン3から排出される。 The screw-type steam engine 3 expands steam while rotating the screw rotors 8 and 8 by the steam introduced from the boiler 2 between the screw rotors 8 and 8 meshing with each other through the suction port 11. And depressurize. And power can be obtained by rotation of the screw rotor 8 in that case. The decompressed steam is discharged from the steam engine 3 through the discharge port 12.
 被動機4は、蒸気エンジン3により駆動され、流体を吐出または吸入する装置である。具体的には、被動機4は、ポンプ、送風機、圧縮機または真空ポンプなどである。本実施例の被動機4は、空気圧縮機である。この圧縮機4は、その種類を特に問わないが、好適にはスクリュ式圧縮機である。スクリュ式圧縮機は、互いにかみ合って回転するスクリュロータ間に気体を吸入して、スクリュロータの回転により圧縮して吐出する装置である。 The driven machine 4 is a device that is driven by the steam engine 3 to discharge or suck a fluid. Specifically, the driven machine 4 is a pump, a blower, a compressor, a vacuum pump, or the like. The driven machine 4 of the present embodiment is an air compressor. The compressor 4 is not particularly limited in type, but is preferably a screw type compressor. A screw compressor is a device that sucks gas between screw rotors that mesh with each other and rotate, and compresses and discharges the gas by rotation of the screw rotor.
 圧縮機4は、蒸気エンジン3により駆動される。具体的には、スクリュ式蒸気エンジン3のスクリュロータ8の回転駆動力を用いて、スクリュ式圧縮機4のスクリュロータが回転される。この際、蒸気エンジン3の出力軸13と、圧縮機4の入力軸14とは、発電機を介することなく、カップリング15で接続される。但し、出力軸13と入力軸14とは、クラッチを介して接続されてもよい。この場合、蒸気エンジン3による圧縮機4の駆動の有無を、クラッチにより切り替えることができる。また、クラッチは、変速機を備えてもよい。この場合、変速比を変更することで、圧縮機4の吐出圧力を変更することができる。さらに、出力軸13と入力軸14とは、電動機(モータ)を介して接続されてもよい。この場合、圧縮機4は、蒸気エンジン3と電動機との内、一方または双方により駆動可能に、駆動割合を変更可能とされる。本実施例では、圧縮機4は、図1に示すように、蒸気エンジン3と電動機16とに接続されている。これにより、圧縮機4は、蒸気エンジン3で駆動可能とされると共に、電動機16でも駆動可能とされる。 The compressor 4 is driven by the steam engine 3. Specifically, the screw rotor of the screw compressor 4 is rotated using the rotational driving force of the screw rotor 8 of the screw steam engine 3. At this time, the output shaft 13 of the steam engine 3 and the input shaft 14 of the compressor 4 are connected by a coupling 15 without a generator. However, the output shaft 13 and the input shaft 14 may be connected via a clutch. In this case, whether or not the compressor 4 is driven by the steam engine 3 can be switched by the clutch. Further, the clutch may include a transmission. In this case, the discharge pressure of the compressor 4 can be changed by changing the gear ratio. Furthermore, the output shaft 13 and the input shaft 14 may be connected via an electric motor (motor). In this case, the drive ratio of the compressor 4 can be changed so that it can be driven by one or both of the steam engine 3 and the electric motor. In the present embodiment, the compressor 4 is connected to the steam engine 3 and the electric motor 16 as shown in FIG. Thus, the compressor 4 can be driven by the steam engine 3 and can also be driven by the electric motor 16.
 蒸気エンジン3には、ボイラ2からの蒸気が、給蒸路17を介して供給される。本実施例では、ボイラ2からの蒸気は、第一蒸気ヘッダ18に供給され、この第一蒸気ヘッダ18の蒸気が、給蒸路17を介して蒸気エンジン3に供給される。第一蒸気ヘッダ18から蒸気エンジン3への給蒸路17には、給蒸弁19が設けられる。この給蒸弁19の開閉を制御することで、蒸気エンジン3の作動の有無が切り替えられる。但し、給蒸弁19の開度を制御して、蒸気エンジン3の出力を調整してもよい。 The steam from the boiler 2 is supplied to the steam engine 3 through the steam supply path 17. In the present embodiment, the steam from the boiler 2 is supplied to the first steam header 18, and the steam of the first steam header 18 is supplied to the steam engine 3 through the steam supply path 17. A steam supply valve 19 is provided in the steam supply path 17 from the first steam header 18 to the steam engine 3. By controlling the opening and closing of the steam supply valve 19, the presence or absence of the operation of the steam engine 3 is switched. However, the output of the steam engine 3 may be adjusted by controlling the opening of the steam supply valve 19.
 蒸気エンジン3にて使用後の蒸気は、各種の蒸気利用機器(図示省略)において利用することができる。本実施例では、蒸気エンジン3からの蒸気は、排蒸路20を介して第二蒸気ヘッダ21に供給され、この第二蒸気ヘッダ21の蒸気が、各種の蒸気利用機器へ供給される。ところで、蒸気エンジン3は、圧縮機4を駆動するだけでなく、減圧弁としても機能する。従って、蒸気エンジン3にて使用後の蒸気は、減圧弁通過後の蒸気として、各種の蒸気利用機器において、そのまま利用することもできる。 The steam after being used in the steam engine 3 can be used in various steam utilization devices (not shown). In the present embodiment, the steam from the steam engine 3 is supplied to the second steam header 21 via the exhaust steam path 20, and the steam in the second steam header 21 is supplied to various steam utilizing devices. By the way, the steam engine 3 not only drives the compressor 4 but also functions as a pressure reducing valve. Therefore, the steam after use in the steam engine 3 can be used as it is in various steam utilizing devices as the steam after passing through the pressure reducing valve.
 第一蒸気ヘッダ18と第二蒸気ヘッダ21とは、バイパス路22を介しても接続される。図示例では、第一蒸気ヘッダ18から蒸気エンジン3への給蒸路17の内、給蒸弁19よりも上流部と、蒸気エンジン3から第二蒸気ヘッダ21への排蒸路20の中途部とが、バイパス路22で接続される。そして、このバイパス路22の中途部には、バイパス弁23が設けられる。このバイパス弁23は、制御器24により制御される電磁弁または電動弁とされてもよいが、本実施例では自力式の減圧弁とされる。具体的には、バイパス弁23は、第二蒸気ヘッダ21内の蒸気圧を所定に維持するように、機械的に自力で開度調整する。いずれにしても、蒸気エンジン3経由とバイパス弁23経由とのいずれで第二蒸気ヘッダ21に蒸気を供給してもよい条件では、蒸気エンジン3経由による蒸気供給が優先されるのがよい。 The first steam header 18 and the second steam header 21 are also connected via the bypass path 22. In the illustrated example, in the steam supply passage 17 from the first steam header 18 to the steam engine 3, an upstream portion from the steam supply valve 19 and a midway portion of the exhaust steam passage 20 from the steam engine 3 to the second steam header 21. Are connected by a bypass 22. A bypass valve 23 is provided in the middle of the bypass path 22. The bypass valve 23 may be an electromagnetic valve or an electric valve controlled by the controller 24, but is a self-powered pressure reducing valve in this embodiment. Specifically, the bypass valve 23 mechanically adjusts the opening degree by itself so as to maintain the steam pressure in the second steam header 21 at a predetermined level. In any case, steam supply via the steam engine 3 should be prioritized under conditions where steam may be supplied to the second steam header 21 via either the steam engine 3 or the bypass valve 23.
 このように、本実施例の蒸気システム1は、圧力および温度が異なる二つの蒸気ヘッダ18,21を備える。そして、各蒸気ヘッダ18,21内の蒸気は、それぞれ所望の蒸気利用機器(図示省略)へ供給可能とされる。各蒸気ヘッダ18,21内の蒸気は、温度が異なるので、用途に応じた蒸気の使用が可能となる。すなわち、比較的高温の蒸気が必要とされる場合には、第一蒸気ヘッダ18から蒸気を供給すればよいし、それよりも低温の蒸気が必要とされる場合には、第二蒸気ヘッダ21から蒸気を供給すればよい。 As described above, the steam system 1 of the present embodiment includes the two steam headers 18 and 21 having different pressures and temperatures. The steam in each of the steam headers 18 and 21 can be supplied to a desired steam utilization device (not shown). Since the steam in each of the steam headers 18 and 21 has a different temperature, it is possible to use the steam according to the application. That is, when a relatively high temperature steam is required, the steam may be supplied from the first steam header 18, and when a lower temperature steam is required, the second steam header 21 is supplied. Steam may be supplied from
 ところで、本実施例のボイラ2は、第一蒸気ヘッダ18内の蒸気圧に基づき、運転状態を制御される。具体的には、第一蒸気ヘッダ18内の蒸気圧に基づき、バーナの燃焼量を制御される。 Incidentally, the operation state of the boiler 2 of the present embodiment is controlled based on the steam pressure in the first steam header 18. Specifically, the burner combustion amount is controlled based on the steam pressure in the first steam header 18.
 第二蒸気ヘッダ21には、その蒸気の使用負荷を把握するために、第一圧力センサ25が設けられる。この第一圧力センサ25により、第二蒸気ヘッダ21内の蒸気圧が監視される。従って、その蒸気圧が所定値未満であるか否かにより、蒸気負荷があるか否かを検知できる。すなわち、蒸気が使用される場合には、第二蒸気ヘッダ21内の蒸気圧が下がるので、それが所定値未満であるか否かにより、蒸気の使用負荷を検知できる。 The first steam sensor 21 is provided with a first pressure sensor 25 in order to grasp the use load of the steam. The first pressure sensor 25 monitors the vapor pressure in the second vapor header 21. Therefore, whether or not there is a steam load can be detected based on whether or not the steam pressure is less than a predetermined value. That is, when steam is used, the steam pressure in the second steam header 21 is lowered, so that it is possible to detect the use load of steam depending on whether or not it is less than a predetermined value.
 圧縮機4からの圧縮空気は、圧縮空気路26を介して一または複数の圧縮空気利用機器(図示省略)へ供給可能とされる。圧縮空気路26には、圧縮空気の使用負荷を把握するために、第二圧力センサ27が設けられる。この第二圧力センサ27により、圧縮空気路26内の空気圧が監視される。従って、その空気圧が設定値未満であるか否かにより、空気負荷があるか否かを検知できる。すなわち、圧縮空気が使用される場合には、圧縮空気路26内の空気圧が下がるので、それが設定値未満であるか否かにより、圧縮空気の使用負荷を検知できる。但し、圧縮空気路26の中途に中空のエアタンク(図示省略)を設け、このエアタンクに第二圧力センサ27を設けて、圧縮空気の使用負荷を検知してもよい。 Compressed air from the compressor 4 can be supplied to one or a plurality of compressed air utilization devices (not shown) via the compressed air passage 26. A second pressure sensor 27 is provided in the compressed air passage 26 in order to grasp the usage load of the compressed air. The second pressure sensor 27 monitors the air pressure in the compressed air passage 26. Therefore, whether or not there is an air load can be detected based on whether or not the air pressure is less than the set value. That is, when compressed air is used, since the air pressure in the compressed air passage 26 decreases, the use load of the compressed air can be detected based on whether or not it is less than the set value. However, a hollow air tank (not shown) may be provided in the middle of the compressed air passage 26, and a second pressure sensor 27 may be provided in the air tank to detect the use load of the compressed air.
 本実施例の蒸気システム1では、制御器24は、第一圧力センサ25と第二圧力センサ27の検出圧力を常時監視し、これに基づき後述のとおり給蒸弁19の開閉を制御する。但し、所望により、給蒸弁19の開度を制御する構成としてもよい。さらに、制御器24は、所望によりバイパス弁23や前記クラッチなどを制御可能としてもよい。但し、本実施例では、バイパス弁23は、前述したとおり、自力式の減圧弁とされている。 In the steam system 1 of the present embodiment, the controller 24 constantly monitors the detected pressures of the first pressure sensor 25 and the second pressure sensor 27, and controls the opening and closing of the steam supply valve 19 based on this, as will be described later. However, the opening degree of the steam supply valve 19 may be controlled as desired. Furthermore, the controller 24 may control the bypass valve 23, the clutch, and the like as desired. However, in this embodiment, the bypass valve 23 is a self-reducing pressure reducing valve as described above.
 制御器24は、第二圧力センサ27の空気圧が設定値未満であることにより空気負荷があると検知し、且つ第一圧力センサ25の蒸気圧が所定値未満であることにより蒸気負荷があると検知する場合には、給蒸弁19を開いて蒸気エンジン3を運転する。 The controller 24 detects that there is an air load when the air pressure of the second pressure sensor 27 is less than a set value, and if there is a steam load when the vapor pressure of the first pressure sensor 25 is less than a predetermined value. When detecting, the steam supply valve 19 is opened and the steam engine 3 is operated.
 また、制御器24は、第二圧力センサ27の空気圧が設定値以上であることにより空気負荷がないと検知し、且つ第一圧力センサ25の蒸気圧が所定値以上であることにより蒸気負荷がないと検知する場合には、給蒸弁19を閉じて蒸気エンジン3を停止する。 Further, the controller 24 detects that there is no air load when the air pressure of the second pressure sensor 27 is equal to or higher than a set value, and the steam load is detected when the vapor pressure of the first pressure sensor 25 is equal to or higher than a predetermined value. When it is detected that the steam engine 3 is not present, the steam supply valve 19 is closed and the steam engine 3 is stopped.
 また、制御器24は、第二圧力センサ27の空気圧が設定値以上であることにより空気負荷がないと検知し、且つ第一圧力センサ25の蒸気圧が所定値未満であることにより蒸気負荷があると検知する場合には、給蒸弁19を閉じて蒸気エンジン3を停止する。この場合、第二蒸気ヘッダ21ひいては蒸気利用機器には、バイパス路22を介して蒸気が供給される。 The controller 24 detects that there is no air load when the air pressure of the second pressure sensor 27 is equal to or higher than the set value, and the steam load is detected when the vapor pressure of the first pressure sensor 25 is less than a predetermined value. When it is detected that there is, the steam supply valve 19 is closed and the steam engine 3 is stopped. In this case, the steam is supplied to the second steam header 21 and thus the steam using device via the bypass 22.
 さらに、制御器24は、第二圧力センサ27の空気圧が設定値未満であることにより空気負荷があると検知し、且つ第一圧力センサ25の蒸気圧が所定値以上であることにより蒸気負荷がないと検知する場合には、電動機16により圧縮機4を駆動する。この場合、電動機16で前記圧縮機4を駆動可能としてもよいし、異なる圧縮機を駆動可能としてもよい。後者の場合、蒸気エンジン3により駆動される第一の圧縮機4からの圧縮空気と、電動機16により駆動される第二の圧縮機からの圧縮空気とは、共通の圧縮空気路26またはエアタンクを介して、圧縮空気利用機器へ供給される。なお、第二の圧縮機を駆動させる電動機16は、第二圧力センサ27にて検出される空気圧に基づき制御される。 Furthermore, the controller 24 detects that there is an air load when the air pressure of the second pressure sensor 27 is less than the set value, and the steam load is detected when the vapor pressure of the first pressure sensor 25 is equal to or greater than a predetermined value. When it is detected that the compressor 4 is not present, the compressor 4 is driven by the electric motor 16. In this case, the electric motor 16 may be capable of driving the compressor 4 or a different compressor may be driven. In the latter case, the compressed air from the first compressor 4 driven by the steam engine 3 and the compressed air from the second compressor driven by the electric motor 16 have a common compressed air passage 26 or an air tank. Via the compressed air. The electric motor 16 that drives the second compressor is controlled based on the air pressure detected by the second pressure sensor 27.
 但し、制御器24は、第二圧力センサ27の空気圧が設定値未満であることにより空気負荷があると検知し、且つ第一圧力センサ25の蒸気圧が所定値以上であることにより蒸気負荷がないと検知する場合にも、給蒸弁19を開いて蒸気エンジン3を運転してもよい。この場合、電動機16は、必ずしも必要でない。また、たとえば、夏場の電力ピーク時で、電気の使用を極力抑えたい場合には、蒸気負荷がない場合でも、消費電力の大きい電気式を使わずに、圧縮機4を駆動するために、蒸気エンジン3へ蒸気を供給することができる。 However, the controller 24 detects that there is an air load when the air pressure of the second pressure sensor 27 is less than the set value, and the steam load is detected when the vapor pressure of the first pressure sensor 25 is equal to or greater than a predetermined value. Even when it is detected that the steam engine 3 is not present, the steam engine 3 may be operated by opening the steam supply valve 19. In this case, the electric motor 16 is not necessarily required. Further, for example, when it is desired to suppress the use of electricity as much as possible at the time of electric power peak in summer, in order to drive the compressor 4 without using an electric type with high power consumption even when there is no steam load, Steam can be supplied to the engine 3.
 なお、空気負荷があるが蒸気負荷がない場合以外において、空気負荷がある場合には、電動機16にて第二の圧縮機を駆動してもよい。この際、蒸気エンジン3の駆動を優先し、この蒸気エンジン3だけでは賄いきれない場合に、電動機16を補助駆動させる。この場合も、第二の圧縮機を駆動させる電動機16は、第二圧力センサ27にて検出される空気圧に基づき制御される。 In addition, when there is an air load except when there is an air load but no steam load, the second compressor may be driven by the electric motor 16. At this time, the driving of the steam engine 3 is prioritized, and the electric motor 16 is auxiliary driven when the steam engine 3 alone cannot cover. Also in this case, the electric motor 16 that drives the second compressor is controlled based on the air pressure detected by the second pressure sensor 27.
 ところで、蒸気エンジン3の軸封部は、非接触のシール10のため、スクリュロータ8の軸とシール10との間に、小さな隙間が生じる。これにより、蒸気および/またはドレンは、軸受9を介して軸封部へ達し、前記隙間を介してケーシング7外へ漏れる。蒸気エンジン3の軸封部から漏れる蒸気、および/または、蒸気エンジン3の軸封部から漏れるドレンは、漏れ熱回収路28を介して、給水タンク5へ供給される。これにより、給水タンク5内の貯留水は温められる。 Incidentally, since the shaft seal portion of the steam engine 3 is a non-contact seal 10, a small gap is generated between the shaft of the screw rotor 8 and the seal 10. As a result, the steam and / or drain reaches the shaft seal through the bearing 9 and leaks out of the casing 7 through the gap. The steam leaking from the shaft seal portion of the steam engine 3 and / or the drain leaking from the shaft seal portion of the steam engine 3 is supplied to the water supply tank 5 via the leak heat recovery path 28. Thereby, the stored water in the water supply tank 5 is warmed.
 また、蒸気エンジン3で発生するドレンは、ドレン回収路29を介して、給水タンク5へ供給される。これにより、給水タンク5内の貯留水は温められる。なお、ドレン回収路29の中途には、スチームトラップ30が設けられている。 Further, drain generated in the steam engine 3 is supplied to the water supply tank 5 via the drain recovery path 29. Thereby, the stored water in the water supply tank 5 is warmed. A steam trap 30 is provided in the middle of the drain recovery path 29.
 さらに、給水タンク5への給水路31は、圧縮機4を介して、給水タンク5と接続される。これにより、給水タンク5への補給水と圧縮機4とが熱交換できるので、給水タンク5への補給水を温めることができると共に、圧縮機4の冷却を図ることができる。また、圧縮機4は、油などの媒体を介して冷却を図られ、この油が給水タンク5への補給水にて冷却されてもよい。 Furthermore, the water supply path 31 to the water supply tank 5 is connected to the water supply tank 5 via the compressor 4. As a result, the makeup water to the feed water tank 5 and the compressor 4 can exchange heat, so that the makeup water to the feed water tank 5 can be warmed and the compressor 4 can be cooled. The compressor 4 may be cooled via a medium such as oil, and the oil may be cooled with makeup water supplied to the water supply tank 5.
 本発明の蒸気システムは、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、蒸気エンジン3は、スクリュ式としたが、場合によりタービン式としてもよい。 The steam system of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above embodiment, the steam engine 3 is a screw type, but may be a turbine type in some cases.
 また、前記実施例では、圧縮機4は、オンオフ制御されたが、場合により容量制御されてもよい。その場合、蒸気エンジン3への給蒸弁19の開度を調整したり、電動機16をインバータ制御したりするのが簡易である。 In the above embodiment, the compressor 4 is on / off controlled. However, the capacity may be controlled according to circumstances. In that case, it is easy to adjust the opening degree of the steam supply valve 19 to the steam engine 3 or to perform inverter control of the electric motor 16.
 また、前記実施例では、蒸気の使用負荷は、第二蒸気ヘッダ21に設けた第一圧力センサ25により検出したが、第一圧力センサ25は第二蒸気ヘッダ21ではなく、蒸気エンジン3からの排蒸路20とバイパス路22との合流後の管路に設けてもよい。その場合、第二蒸気ヘッダ21は、その設置を省略することもできる。 Moreover, in the said Example, although the use load of the steam was detected by the 1st pressure sensor 25 provided in the 2nd steam header 21, the 1st pressure sensor 25 is not the 2nd steam header 21, but the steam engine 3 from. You may provide in the pipe line after the confluence | merging with the exhaust steam path 20 and the bypass path 22. FIG. In that case, the installation of the second steam header 21 can be omitted.
 また、前記実施例において、圧縮機4に代えて、ポンプまたは送風機を設置してもよい。その場合も、前記実施例と同様に制御すればよい。さらに、圧縮機4に代えて、真空ポンプを設置してもよい。その場合、蒸気エンジン3や電動機16により駆動される真空ポンプが吸引する空間内の圧力に基づき、蒸気エンジン3または電動機16を制御すればよい。 In the above embodiment, a pump or a blower may be installed in place of the compressor 4. In such a case, the control may be performed in the same manner as in the above embodiment. Further, a vacuum pump may be installed in place of the compressor 4. In that case, the steam engine 3 or the electric motor 16 may be controlled based on the pressure in the space sucked by the vacuum pump driven by the steam engine 3 or the electric motor 16.
 また、前記実施例において、給蒸弁19の開閉のハンチングを防止するために、「設定値」および/または「所定値」は、それぞれ動作隙間(ディファレンシャル)を設定してもよいのはもちろんである。たとえば、圧縮空気の使用に伴い、設定下限圧力になると、給蒸弁19を開ける一方、設定上限圧力になると、給蒸弁19を閉じればよい。また、第二蒸気ヘッダ21内の蒸気の使用に伴い、所定下限圧力になると、給蒸弁19を開ける一方、所定上限圧力になると、給蒸弁19を閉じればよい。同様に、制御器24は、第二圧力センサ27の検出圧力に基づき、空気圧を設定圧力域に維持するように、給蒸弁19の開度を制御してもよい。また、制御器24は、第一圧力センサ25の検出圧力に基づき、蒸気圧を所定圧力域に維持するように、給蒸弁19の開度を制御してもよい。 Further, in the above-described embodiment, in order to prevent the hunting of the opening and closing of the steam supply valve 19, the “set value” and / or “predetermined value” may each set an operation gap (differential). is there. For example, when the set lower limit pressure is reached due to the use of compressed air, the steam supply valve 19 is opened, and when the set upper limit pressure is reached, the steam supply valve 19 may be closed. Further, as the steam in the second steam header 21 is used, the steam supply valve 19 is opened when the predetermined lower limit pressure is reached, while the steam supply valve 19 is closed when the predetermined upper limit pressure is reached. Similarly, the controller 24 may control the opening degree of the steam supply valve 19 based on the pressure detected by the second pressure sensor 27 so as to maintain the air pressure in the set pressure range. Moreover, the controller 24 may control the opening degree of the steam supply valve 19 based on the detected pressure of the first pressure sensor 25 so as to maintain the vapor pressure in a predetermined pressure range.
 また、前記実施例では、給水タンク5への補給水と圧縮機4との熱交換を図ったが、給水タンク5内の貯留水と圧縮機4との熱交換を図ってもよい。具体的には、給水タンク5内の貯留水は、給水タンク5と圧縮機4との間において循環可能とされる。これにより、給水タンク5の貯留水を温めることができると共に、圧縮機4の冷却を図ることができる。また、圧縮機4は、油などの媒体を介して冷却を図られ、この油が、給水タンク5と圧縮機4との間の循環水にて冷却されてもよい。 In the above embodiment, the heat exchange between the supply water to the water supply tank 5 and the compressor 4 is performed. However, the heat exchange between the stored water in the water supply tank 5 and the compressor 4 may be performed. Specifically, the stored water in the water supply tank 5 can be circulated between the water supply tank 5 and the compressor 4. Thereby, the water stored in the water supply tank 5 can be warmed and the compressor 4 can be cooled. The compressor 4 may be cooled through a medium such as oil, and the oil may be cooled with circulating water between the water supply tank 5 and the compressor 4.
 また、前記実施例において、蒸気エンジン3の軸封部から漏れる蒸気、および/または、蒸気エンジン3の軸封部から漏れるドレンによる貯留水の加温、蒸気エンジン3で発生するドレンによる貯留水の加温、および圧縮機4の圧縮熱による補給水の加温の内、一または複数が実行可能であればよい。 Moreover, in the said Example, the heating of the stored water by the steam which leaks from the shaft seal part of the steam engine 3, and / or the drain which leaks from the shaft seal part of the steam engine 3, the stored water by the drain which generate | occur | produces in the steam engine 3 Of the heating and heating of the makeup water by the compression heat of the compressor 4, one or more may be executed.
 さらに、前記実施例において、蒸気エンジン3により駆動される圧縮機4と、電動機16により駆動される第二の圧縮機とを併設する場合、給水タンク5内の貯留水または給水タンクへの補給水と、第二の圧縮機とを熱交換してもよい。給水タンク5内の貯留水と第二の圧縮機とを熱交換する場合、給水タンク5内の貯留水は、給水タンク5と第二の圧縮機との間において循環される。これにより、給水タンク5の貯留水を温めることができると共に、第二の圧縮機の冷却を図ることができる。一方、給水タンク5への補給水と第二の圧縮機とを熱交換する場合、給水タンク5への補給水は、第二の圧縮機を介して、給水タンク5へ供給される。これにより、給水タンク5への補給水を温めることができると共に、第二の圧縮機の冷却を図ることができる。いずれの場合も、第二の圧縮機は、油などの媒体を介して冷却を図られてもよい。 Further, in the above embodiment, when the compressor 4 driven by the steam engine 3 and the second compressor driven by the electric motor 16 are provided side by side, the stored water in the water supply tank 5 or the makeup water to the water supply tank And heat exchange may be performed between the second compressor and the second compressor. When heat is exchanged between the stored water in the water supply tank 5 and the second compressor, the stored water in the water supply tank 5 is circulated between the water supply tank 5 and the second compressor. Thereby, while being able to warm the stored water of the feed water tank 5, cooling of a 2nd compressor can be aimed at. On the other hand, when heat is exchanged between the makeup water to the feed water tank 5 and the second compressor, the makeup water to the feed water tank 5 is supplied to the feed water tank 5 via the second compressor. Thereby, while being able to warm the supplementary water to the water supply tank 5, cooling of a 2nd compressor can be aimed at. In any case, the second compressor may be cooled through a medium such as oil.

Claims (5)

  1.  ボイラからの蒸気を用いて動力を起こす原動機と、
     この原動機により駆動され、流体を吐出または吸入する被動機と、
     前記原動機にて使用後の蒸気が供給される箇所へ、前記原動機を介することなく蒸気を供給するバイパス路と、
     このバイパス路に設けられるバイパス弁と、
     前記原動機からの蒸気と前記バイパス路からの蒸気とが供給される箇所の蒸気負荷と、前記被動機により流体が吐出または吸入される空間内の流体負荷とに基づき、前記原動機への給蒸を制御する制御器と、
     前記ボイラへの給水が貯留され、前記原動機の軸封部から漏れる蒸気もしくはドレン、前記原動機で発生するドレン、または前記被動機の発熱を利用して、貯留水または補給水が温められる給水タンクと
     を備えることを特徴とする蒸気システム。
    A prime mover that generates power using steam from the boiler;
    A driven machine that is driven by this prime mover and discharges or sucks fluid;
    A bypass for supplying steam to the location where steam after use in the prime mover is supplied without going through the prime mover;
    A bypass valve provided in the bypass passage;
    Based on the steam load at the location where the steam from the prime mover and the steam from the bypass passage are supplied, and the fluid load in the space where the fluid is discharged or sucked by the driven machine, steaming to the prime mover is performed. A controller to control;
    A water supply tank in which water supplied to the boiler is stored and steam or drain leaking from a shaft seal of the prime mover, drain generated in the prime mover, or heat generated by the driven machine is used to warm the stored water or makeup water; A steam system comprising:
  2.  前記原動機の軸封部から漏れる蒸気、および/または、前記原動機の軸封部から漏れるドレンが、前記給水タンクへ供給されて、前記給水タンク内の貯留水が温められる
     ことを特徴とする請求項1に記載の蒸気システム。
    The steam leaking from the shaft seal portion of the prime mover and / or the drain leaking from the shaft seal portion of the prime mover are supplied to the water supply tank, and the stored water in the water supply tank is warmed. 2. The steam system according to 1.
  3.  前記原動機で発生するドレンが前記給水タンクへ供給されて、前記給水タンク内の貯留水が温められる
     ことを特徴とする請求項1または請求項2に記載の蒸気システム。
    3. The steam system according to claim 1, wherein drain generated in the prime mover is supplied to the water supply tank and the stored water in the water supply tank is warmed.
  4.  前記被動機の冷却を前記給水タンク内の貯留水または前記給水タンクへの補給水を用いて行うことで、前記給水タンク内の貯留水または前記給水タンクへの補給水が温められる
     ことを特徴とする請求項1~3のいずれか1項に記載の蒸気システム。
    The stored water in the water supply tank or the supply water to the water supply tank is warmed by cooling the driven machine using the stored water in the water supply tank or the supply water to the water supply tank. The steam system according to any one of claims 1 to 3.
  5.  電動機により駆動され、流体を吐出または吸入する第二の被動機をさらに備え、
     前記原動機からの蒸気と前記バイパス路からの蒸気とが供給される箇所の蒸気負荷と、前記各被動機により流体が吐出または吸入される空間内の流体負荷とに基づき、前記原動機への給蒸が制御され、
     前記各被動機により流体が吐出または吸入される空間内の流体負荷に基づき、前記電動機が制御され、
     前記第二の被動機の冷却を前記給水タンク内の貯留水または前記給水タンクへの補給水を用いて行うことで、前記給水タンク内の貯留水または前記給水タンクへの補給水が温められる
     ことを特徴とする請求項1~4のいずれか1項に記載の蒸気システム。
    A second driven machine driven by an electric motor for discharging or sucking fluid;
    Steam supply to the prime mover is based on the steam load at the location where the steam from the prime mover and the steam from the bypass passage are supplied and the fluid load in the space where the fluid is discharged or sucked by each driven machine. Is controlled,
    Based on the fluid load in the space where fluid is discharged or sucked by each driven machine, the electric motor is controlled,
    Cooling of the second driven machine using the stored water in the water supply tank or makeup water to the water supply tank warms the stored water in the water supply tank or the makeup water to the water supply tank. The steam system according to any one of claims 1 to 4, wherein:
PCT/JP2009/052790 2008-06-05 2009-02-18 Steam system WO2009147873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-147545 2008-06-05
JP2008147545A JP4329875B1 (en) 2008-06-05 2008-06-05 Steam system

Publications (1)

Publication Number Publication Date
WO2009147873A1 true WO2009147873A1 (en) 2009-12-10

Family

ID=41149115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052790 WO2009147873A1 (en) 2008-06-05 2009-02-18 Steam system

Country Status (2)

Country Link
JP (1) JP4329875B1 (en)
WO (1) WO2009147873A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107396A (en) * 2018-12-07 2019-08-09 吴金意 A kind of twin-screw rotary engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610495B1 (en) 2010-08-27 2018-03-07 Hitachi Industrial Equipment Systems Co., Ltd. Oil-cooled gas compressor
JP2013092144A (en) * 2011-10-03 2013-05-16 Kobe Steel Ltd Auxiliary power generation apparatus
JP5985405B2 (en) 2013-01-28 2016-09-06 株式会社日立産機システム Waste heat recovery system for oil-cooled gas compressor
US10578339B2 (en) 2013-01-28 2020-03-03 Hitachi Industrial Equipment Systems Co., Ltd. Waste-heat recovery system in oil-cooled gas compressor
CN114109525A (en) * 2021-11-08 2022-03-01 中国长江动力集团有限公司 Steam turbine shaft seal system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158401A (en) * 1980-04-18 1980-12-09 Mitsubishi Heavy Ind Ltd Steam generator
JPS6345403A (en) * 1986-08-13 1988-02-26 Mayekawa Mfg Co Ltd Method for controlling back pressure in rotary machine driven by screw type expansion machine
JPH0352301U (en) * 1989-09-28 1991-05-21

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158401A (en) * 1980-04-18 1980-12-09 Mitsubishi Heavy Ind Ltd Steam generator
JPS6345403A (en) * 1986-08-13 1988-02-26 Mayekawa Mfg Co Ltd Method for controlling back pressure in rotary machine driven by screw type expansion machine
JPH0352301U (en) * 1989-09-28 1991-05-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107396A (en) * 2018-12-07 2019-08-09 吴金意 A kind of twin-screw rotary engine

Also Published As

Publication number Publication date
JP2009293502A (en) 2009-12-17
JP4329875B1 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP4196307B1 (en) Steam system
JP4240155B1 (en) Steam system
JP4329875B1 (en) Steam system
WO2010070786A1 (en) Exhaust heat regeneration system
JP5598724B2 (en) Compression heat recovery system
JP2006342688A (en) Evacuation system
JP5415484B2 (en) Steam system
JP4353311B1 (en) Steam system
JP5256932B2 (en) Leakage steam heat recovery structure from steam motor shaft seal
JP6595008B2 (en) Gas compressor and gas compressor system
JP6511297B2 (en) Power generator
JP5163962B2 (en) Steam system
WO2011102319A1 (en) Rankine cycle apparatus
KR102617229B1 (en) Fluid circulation system and method, computer readable medium, and controller for operating the same
WO2017195536A1 (en) Exhaust heat recovery system
JP2009052489A (en) Steam system
JP2013015083A (en) Power generation system
JP2013044253A (en) Waste heat regeneration system
JP2007064492A (en) Refrigerating cycle device, and its control method
JP2009008111A (en) Vehicle hydraulic system
JP5144774B2 (en) Vacuum exhaust system
JP2005241085A (en) Hot water storage type water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758140

Country of ref document: EP

Kind code of ref document: A1