JP2022010836A - 噴射制御装置 - Google Patents

噴射制御装置 Download PDF

Info

Publication number
JP2022010836A
JP2022010836A JP2020111596A JP2020111596A JP2022010836A JP 2022010836 A JP2022010836 A JP 2022010836A JP 2020111596 A JP2020111596 A JP 2020111596A JP 2020111596 A JP2020111596 A JP 2020111596A JP 2022010836 A JP2022010836 A JP 2022010836A
Authority
JP
Japan
Prior art keywords
correction amount
energization
time correction
energization time
drive control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020111596A
Other languages
English (en)
Other versions
JP7367625B2 (ja
Inventor
一将 金井
Kazumasa Kanai
洋平 菅沼
yohei Suganuma
寛之 福田
Hiroyuki Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020111596A priority Critical patent/JP7367625B2/ja
Priority to US17/357,329 priority patent/US11313308B2/en
Publication of JP2022010836A publication Critical patent/JP2022010836A/ja
Application granted granted Critical
Publication of JP7367625B2 publication Critical patent/JP7367625B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2034Control of the current gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2048Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit said control involving a limitation, e.g. applying current or voltage limits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】燃料噴射弁の駆動状態を適切に停止させることができるようにした噴射制御装置を提供する。【解決手段】燃料噴射弁を電流駆動する噴射制御装置であって、燃料噴射弁を電流駆動して燃料を噴射させる際に、燃料噴射弁に流れる電流の面積補正を実施して通電時間補正量(ΔTi)を算出する通電時間補正量算出部(5d)を備え、通電指示時間を補正して通電制御する駆動制御部(5)と、駆動制御部により算出された通電時間補正量が予め設定された上限値を超えるときに駆動制御部の制御系統の異常判定をする異常判定部(12)と、異常判定部が前記駆動制御部の制御系統の異常判定をしたときに、前記通電時間補正量算出部による前記通電時間補正量の算出を停止させ、駆動制御部に前記異常判定時の通電時間補正量を直接もしくは段階的に減じるように設定する補正量減算設定部(11)とを備える。【選択図】図1

Description

本発明は、燃料噴射弁を開弁・閉弁制御する噴射制御装置に関する。
噴射制御装置は、燃料噴射弁を開弁・閉弁することで燃料を内燃機関に噴射するために用いられる。噴射制御装置は、電気的に駆動可能な燃料噴射弁に電流を通電することで開弁制御している。近年では、指令噴射量に基づく通電電流の理想電流プロファイルが定められており、噴射制御装置は、理想電流プロファイルに基づいて燃料噴射弁に電流を印加することで開弁制御している。
燃料噴射弁の通電電流の勾配が、周辺温度環境、経年劣化等の様々な要因を理由として理想電流プロファイルよりも低下してしまうと、実噴射量が指令噴射量から大きく低下してA/F値の悪化を来す虞がある。これを防ぐためには、予めばらつきを見込んで燃料噴射弁への通電指示時間を長めに調整することが望ましいが、通電指示時間を長めに確保すると反対に燃費が悪化してしまう虞がある。
そこで出願人は、目標ピーク電流に達するまでの目標となる理想電流プロファイルの積算電流と検出電流の積算電流との電流の面積補正技術により通電時間を補正することを先の出願(特願2019-41574号)により提案している。
この方法によれば、実際の通電電流プロファイルが理想電流プロファイルに対して低下している場合には、リアルタイムで面積補正の処理を実行することで通電指示時間を補正して予め指定した指令噴射量で燃料噴射弁を駆動制御することができる。
特開2016-33343号公報
しかしながら、燃料噴射弁やこれを駆動制御する系統において、経年劣化や電流検出精度の劣化などが発生するなどして、通電指示時間の補正量が上限値を超えて大きく設定される場合には、面積補正技術による通電時間の補正処理の動作を停止することがある。このとき、通電指示時間の補正量はキャンセルされるが、急激にキャンセルするとA/F荒を起こす虞がある。
本発明は、上記事情を考慮してなされたもので、その目的は、上記のように面積補正技術による通電時間の補正処理の動作を停止する場合でも、A/F荒を抑制して燃料噴射弁の駆動状態を適切に保持しながら行うことができるようにした噴射制御装置を提供することにある。
請求項1に記載の噴射制御装置は、エンジンへの燃料噴射を行う燃料噴射弁を電流駆動する噴射制御装置であって、前記燃料噴射弁を電流駆動して燃料を噴射させる際に、前記燃料噴射弁に流れる電流の面積補正を実施して通電時間補正量(ΔTi)を算出する通電時間補正量算出部(5d)を備え、通電指示時間を補正して通電制御する駆動制御部(5)と、前記駆動制御部により算出された前記通電時間補正量が予め設定された上限値を超えるときに前記駆動制御部の制御系統の異常判定をする異常判定部(12)と、前記異常判定部が前記駆動制御部の制御系統の異常判定をしたときに、前記通電時間補正量算出部による前記通電時間補正量の算出を停止させ、前記駆動制御部に前記異常判定時の前記通電時間補正量を直接もしくは段階的に減じるように設定する補正量減算設定部(11)とを備えている。
上記構成を採用することにより、通電時間補正量算出部により燃料噴射弁に流れる電流の面積補正を実施して通電時間補正量を算出し、算出した通電時間補正量が上限値を超えたか否かを異常判定部により判定し、異常判定をした場合には、最後に算出された通電時間補正量を減算設定部により段階的に減じるように設定することで、低負荷時でも内燃機関の状態に支障を来さぬように通電時間補正量算出部による補正処理を停止させることができる。
一実施形態を示す電気的構成図 マイコンおよび制御ICの機能ブロック構成図 積算電流差の算出方法の説明図 ピーク電流推定値の算出方法の説明図 ダイアグ検出後の処理の流れ図 エンジン負荷率に対する通電時間補正の分割回数のマップの例 補正後の通電指示TQの変化状態を示す説明図
以下、噴射制御装置の一実施形態について図面を参照しながら説明する。図1に示すように、電子制御装置1(ECU:Electronic Control Unit)は、例えば自動車などの車両に搭載された内燃機関に燃料を多段で噴射するソレノイド式の燃料噴射弁2(インジェクタとも称される)を駆動制御する噴射制御装置として構成される。ここでは4気筒分の燃料噴射弁2を示しているが、3気筒、6気筒、8気筒のエンジンにも適用可能である。
電子制御装置1は、昇圧回路3、マイクロコンピュータ4(以下、マイコン4と略す)、制御IC5、駆動回路6、及び電流検出部7としての電気的構成を備え、燃料を噴射制御する噴射制御装置として用いられる。マイコン4は、1又は複数のコア4a、ROM、RAMなどのメモリ4b、A/D変換器などの周辺回路4cを備えて構成され、メモリ4bに記憶されたプログラム、及び、各種のセンサ8から取得されるセンサ信号に基づいて各種制御を行う。
センサ8は、クランク軸が所定角回転するごとにパルス信号を出力するクランク角センサ、内燃機関のシリンダブロックに配置され冷却水温を検出する水温センサ、噴射時の燃料圧力を検出する燃圧センサ、吸気量を検出するエアフロメータ9、内燃機関の排気の空燃比すなわちA/F値を検出するA/Fセンサ、などである。また、マイコン4は、エアフロメータ9により取り込んだ信号から周辺回路4cを通じてエンジンの負荷率を算出することができる。
マイコン4は、クランク角センサのパルス信号によりエンジン回転数を算出すると共に、スロットル開度信号からスロットル開度を取得する。マイコン4は、水温センサの冷却水温から燃料噴射弁2の温度を推定すると共に、スロットル開度、油圧、及びA/F値に基づいて、内燃機関に要求される目標トルクを算出し、この目標トルクに基づいて目標となる要求噴射量を算出する。
またマイコン4は、この目標となる要求噴射量、及び、燃圧センサにより検出される燃料圧力に基づいて通電指示TQの通電指示時間Tiを算出する。マイコン4は、前述した各種のセンサ8から入力されるセンサ信号に基づいて各気筒に対する噴射指令タイミングを算出し、この噴射指令タイミングにおいて燃料の通電指示TQを制御IC5に出力する。
なおマイコン4は、クランク角センサのパルス信号により算出されるエンジン回転数に基づいて、各気筒に対する噴射開始時間を算出できる。
制御IC5は、例えばASICによる集積回路装置であり、例えばロジック回路、CPUなどによる制御主体と、RAM、ROM、EEPROMなどの記憶部、コンパレータを用いた比較器など(何れも図示せず)を備え、ハードウェア及びソフトウェアに基づいて各種制御を実行するように構成される。制御IC5は、昇圧制御部5a、通電制御部5b1、及び電流モニタ部5cとしての機能を備える。
昇圧回路3は、昇圧型のDCDCコンバータにより構成されバッテリ電圧VBを入力して動作する。昇圧制御部5aは、昇圧回路3に入力されたバッテリ電圧VBを昇圧制御し、昇圧回路3から昇圧電圧Vboostを駆動回路6に供給させる。
駆動回路6は、バッテリ電圧VBおよび昇圧電圧Vboostから給電され、制御IC5の通電制御部11の通電制御により、各気筒の燃料噴射弁2のソレノイドコイル2aに電圧、すなわち昇圧電圧Vboost又はバッテリ電圧VBを印加することで燃料噴射弁2を駆動して燃料を噴射させる。
電流検出部7は、電流検出抵抗により構成される。制御IC5の電流モニタ部5cは、例えばコンパレータによる比較部及びA/D変換器等(何れも図示せず)などが設けられ、燃料噴射弁2のソレノイドコイル2aに流れる電流を、電流検出部7を通じてモニタする。
また、図2にはマイコン4及び制御IC5の機能的構成の一部を概略的に示している。マイコン4は、コア4aがメモリ4bに記憶されたプログラムを実行することで、通電指示時間算出部10、補正量減算設定部11、異常判定部12、エンジン負荷率算出部13およびマップ14として機能する。また制御IC5は、前述した昇圧制御部5a、通電制御部5b、電流モニタ部5cとしての機能の他、面積補正部としての通電時間補正量算出部5dの機能も備える。
通電指示時間算出部10は、内燃機関に係る各種センサ8のセンサ信号に基づいて噴射制御の開始時に要求噴射量を演算し、通電指示TQの通電指示時間Tiを演算する。通電指示TQの通電指示時間Tiは、噴射制御時に電圧、例えば昇圧電圧Vboostを燃料噴射弁2に印加指示する時間を示している。
また、通電指示時間算出部10は補正係数α、βを設定する。補正係数αは、燃料噴射弁2に流す通常電流プロファイルPIと実際の通電電流EIとの電流差を推定するために用いられる係数である。補正係数αは、燃料噴射弁2の負荷特性などにより予め算出されるゼロ以上の値に設定される係数であり、αマップによってメモリ4bに予め記録されている。
αマップは、通電指示TQの通電指示時間Tiと噴射時の燃圧センサによる燃圧とから補正係数αを導出するためのマップを示すもので、ピーク電流未到達~ピーク電流到達を超える範囲まで補正係数αを設定するために設けられる。補正係数αは、後述する(1)式~(4)式において通電時間補正量ΔTiを算出するために設けられる。補正係数αを大きく設定することで通電時間補正量ΔTiを大きくでき、ゼロに設定することで通電時間補正量ΔTiをゼロにもできる。
また補正係数βは、噴射制御のピーク電流推定値Ipkiを推定するために用いられる係数であり、燃料噴射弁2の負荷特性などにより通電電流EIの非線形性に起因した誤差を修正するために予め設定される係数である。
制御IC5の通電制御部5bは通電指示TQの通電指示時間Tiを入力し、通電時間補正量算出部5dは補正係数α、βを入力する。制御IC5の通電制御部5bは、通電指示TQの通電指示時間Tiを入力すると駆動回路6から電源(例えば昇圧電圧Vboost)を燃料噴射弁2に通電制御する。他方、制御IC5の通電時間補正量算出部5dは、通電制御部5bにより燃料噴射弁2を電流駆動して燃料噴射弁2から燃料を噴射する際に、燃料噴射弁2に流れる電流を取得して当該電流の面積補正を実施することで通電時間補正量ΔTiを算出する。
通電時間補正量算出部5dは、通電時間補正量ΔTiを算出すると通電制御部5bにフィードバックする。通電制御部5bは、ある噴射に対応して入力される通電指示TQの通電指示時間Tiに対して通電時間補正量ΔTiをリアルタイムに反映して燃料噴射弁2に通電制御する。
マイコン4においては、上記した制御IC5による通電時間補正量ΔTiの算出処理が正常に実施されているか否かを、ダイアグ機能を実施して判定および異常検出後の処理を実施する構成を備えている。
異常判定部12は、制御IC5の通電時間補正量算出部5dにより算出された通電時間補正量ΔTiのデータを取り込み、予め設定された上限値ΔTmaxを超えているか否かを判定するもので、上限値ΔTmaxを超えている場合にはΔTi異常のダイアグ信号を補正量減算設定部11に出力する。また、異常判定部12は、ΔTi異常を判定したときには、制御IC5の通電時間補正量算出部5dにΔTi算出停止指令を出力する。
エンジン負荷率算出部13は、エアフロメータ9から吸気量の情報をエンジン負荷データとして取り込み、エンジン負荷率を算出して補正量減算設定部11に出力する。
補正量減算設定部11は、制御IC5の通電時間補正量算出部5dから通電時間補正量ΔTiの情報が入力され、異常判定部12から異常検出があった場合にΔTi異常のダイアグ信号が入力される。補正量減算設定部11は、異常判定部12からΔTi異常のダイアグ信号が入力されると、エンジン負荷率算出部13から入力されたエンジン負荷率に対応したΔTiの分割回数Nの値をマップ14から読み取る。
補正量減算設定部11は、マップ14から読み取ったΔTiの分割回数Nの値に応じて、異常判定時に設定していた通電時間補正量ΔTiを段階的に減算して設定し、通電指示時間算出部10に出力する。通電指示時間算出部10は、これに応じて段階的に通電時間補正量ΔTiを減算した通電時間Tiの通電指示TQを制御IC5に出力する。
以下、燃料噴射弁2から多段筒内噴射する場合の詳細動作説明を行う。バッテリ電圧VBが電子制御装置1に与えられると、マイコン4及び制御IC5は起動する。制御IC5の昇圧制御部5aは、昇圧制御パルスを昇圧回路3に出力することで昇圧回路3の出力電圧を昇圧させる。昇圧電圧Vboostは、バッテリ電圧VBを超えた所定の昇圧完了電圧に充電される。
マイコン4は、通電指示をするオンタイミングt0にて通電指示時間算出部10によりピーク電流制御の通電開始時に要求噴射量を演算すると共に、通電指示TQの通電指示時間Tiを演算し、制御IC5の通電制御部5bに出力する。これによりマイコン4は、制御IC5に対し通電指示TQにより通電指示時間Tiを指示する。
制御IC5は、燃料噴射弁2に通電する目標電流となる通常電流プロファイルPIを内部メモリに記憶しており、通常電流プロファイルPIに基づいて、通電制御部5bの制御により燃料噴射弁2aに昇圧電圧Vboostを印加することで目標ピーク電流Ipkに達するようにピーク電流制御を行う。
制御IC5は、通電指示TQの通電指示時間Tiに基づいて理想電流プロファイルPIの示すピーク電流目標値Ipkに達するまで燃料噴射弁2aの端子間に昇圧電圧Vboostを印加し続ける。燃料噴射弁2aの通電電流EIはが急激に上昇し開弁する。図3に示すように、燃料噴射弁2aの通電電流EIは、燃料噴射弁2aの構造に基づいて非線形的に変化する。このとき、通電電流EIの電流勾配は理想電流プロファイルPIの勾配よりも小さくなって、時刻tnの時点では燃料噴射弁2aへの注入エネルギが不足することがある。
通電時間補正量算出部5dは、通常電流プロファイルPIと燃料噴射弁2aに通電する実電流EIとの積算電流差である不足エネルギEiを算出する。不足エネルギEiは、非線形の電流曲線に囲われた領域となるため、詳細に算出するには演算負荷が大きくなりやすい。このため、図3中に示す4つの点(t1n、I1)、(t1、I1)、(t2n、I2)、(t2、I2)、を頂点とした台形の面積ΔEがほぼ不足エネルギEiと比例関係にあると見做して簡易的に算出することができる。
Figure 2022010836000002
このため、通電時間補正量算出部5dは、電流閾値I1に達する理想到達時間t1nから電流閾値I2に達する理想到達時間t2nまでの通常電流プロファイルPIと、実際に電流閾値I1に達する到達時間t1から電流閾値I2に達する到達時間t2までの燃料噴射弁2aの通電電流EIとの間の積算電流差すなわち面積ΔEを簡易的に算出できる。通電時間補正量算出部5dは、算出した面積ΔEに式(2)に示すように、予め設定された補正係数αを面積ΔEに乗ずることで不足エネルギEiを算出する。
Figure 2022010836000003
通電時間補正量算出部5dは、図3に示すように、噴射指示信号のオンタイミングt0から電流閾値I1に達する到達時間t1までの電流勾配を算出し、通電指示TQの示す通電指示時間Tiを経過した時点のピーク電流推定値Ipkiを算出する。このとき、通電電流EIが非線形であることを考慮して、式(3)に示すように、補正係数βを切片として加算してピーク電流推定値Ipkiを算出することができる。
Figure 2022010836000004
補正係数βは、理想電流プロファイルPIの印加オフタイミング時tnのピーク電流推定値Ipkiを精度良く推定するためのオフセット項として設定している。なお、式(3)では、通電電流プロファイルEIの電流勾配を、通電指示TQのオンタイミングt0から電流閾値I1に達する時刻t1までの傾きで算出したが、オンタイミングt0から電流閾値I2に達する時刻t2までの傾きで算出することもできる。
次に、通電時間補正量算出部5dは、図3に例示したように、不足エネルギEiを補うための通電時間補正量ΔTiを算出する。具体的には、通電時間補正量算出部5dは、式(4)に示すように、推定したピーク電流推定値Ipkiにより、算出された不足エネルギEiを除することで通電時間補正量ΔTiを算出する。
Figure 2022010836000005
上記の式(4)では、実際には検出電流I1、I2のA/D変換値を物理量に変換するためのゲイン値を乗ずるが、式(4)中では省略して示している。なお、式(4)中、2で割り算をする項は、係数αに含めてαxとして表記している。このようにして不足分のエネルギEiおよびピーク電流推定値Ipkiに依存した式(4)を用いて通電時間補正量ΔTiを導出することで、不足分のエネルギEiを補うだけの延長時間の算出処理に要する演算負荷を軽減できている。
通電時間補正量算出部5dは、算出した通電時間補正量ΔTiを通電制御部5aに出力すると、通電制御部5aは、電流モニタ部5cの検出電流Iがピーク電流推定値Ipkiに達するタイミングまでの間に、通電指示TQの通電指示算出値+通電時間補正量ΔTiを補正後の通電指示TQの通電指示時間Tiとして補正する。これにより、通電指示TQの通電指示時間Tiを簡易的に補正でき、通電時間を延長できる。
また、通電時間補正量算出部5dは、電流閾値I2に到達してからピーク電流推定値Ipkiに達するタイミングtnまでの間に通電時間補正量ΔTiを算出している。このため、余裕をもって通電指示時間Tiを補正できる。なお、式(1)~式(4)に基づいて通電指示時間補正量ΔTiを算出する形態を示したが、この数式は一例を示すものであり、この方法に限られるものではない。
なお、補正係数αは、設定可能な通電時間の全てに対応してαマップを設定しておくことができる。通電時間補正量算出部5dは、燃料噴射弁2の駆動電流が目標ピーク電流Ipkに到達したか否かに拘わらず、前述したように補正係数α、βを用いた面積補正を噴射毎に常時実施することで、通電時間補正量ΔTiを算出することができる。変換係数設定部11は、面積補正を実施する度に変換係数αを設定することができ、これによって燃料噴射毎に変換係数αを変更した通電指示時間補正量ΔTiを設定することができる。
次に、図5~図7を参照して、マイコン4が、制御IC5による通電指示時間補正量ΔTiの算出処理の結果についてのダイアグ検出処理を実施する場合の動作について説明する。図5はマイコン4による異常判定およびその後の処理内容の流れを示している。マイコン4は、通電指示時間補正量ΔTiのデータを受け取る毎に、図5の処理を実行するように設定されている。
マイコン4は、処理を開始すると、まず、ステップS100で、異常判定部12により制御IC5の通電時間補正量算出部5dが算出した通電指示時間補正量ΔTiの値を取り込み、予め設定された上限値ΔTmaxと比較し、上限値ΔTmaxを超えているか否かを判定する。マイコン4は、受け取った通電指示時間補正量ΔTiが上限値ΔTmax以下である場合には、異常判定部12においてNOと判断して処理を終了する。
一方、マイコン4は、通電指示時間補正量ΔTiの値が上限値ΔTmaxを超えている場合には、異常判定部12において異常値ダイアグの判定を行い、ステップS110に進む。異常値ダイアグの判定があった場合には、以後の通電指示時間の補正処理を行わず、最後に設定していた通電指示時間補正量ΔTiを以下のようにしてゼロになるまで減算して通電指示時間Tiに戻す処理を実行する。
なお、実際には、マイコン4は、通電指示時間補正量ΔTiの値が上限値ΔTmaxを超えている場合には、これが複数回にわたって連続して検出された場合に、異常判定部12において異常値ダイアグの判定を行うようにしている。これにより、ノイズの影響や一時的に通電指示時間補正量ΔTiが上限値ΔTmaxを超えてすぐに上限値ΔTmax以下に戻ったような場合に異常状態を判定しないようにしている。このため、複数回の設定は、2回以上であれば良く、実情に即した回数を設定することが好ましい。
マイコン4は、ステップS110で、停止フラグF1がON(オン)になっているか否かを判断する。マイコン4は、初めてΔTi異常値ダイアグが判定された場合には、まだ停止フラグF1はオフ状態であるので、NOと判断してステップS120に移行する。
マイコン4は、ステップS120で、制御IC5の通電時間補正量算出部5dに対して異常判定部12によりΔTi算出処理の停止指令を出力して、以後の動作を停止させる。次に、マイコン4は、ステップS130に進み、停止フラグF1をONに設定し、続くステップS140で、補正量減算設定部11によりエンジン負荷率算出部13からエンジン負荷率を取得し、ステップS150に移行する。
マイコン4は、ステップS150で、補正量減算設定部11により、取得したエンジン負荷率のデータに対応するΔTi減少分割回数N[回](以下、単に「分割回数N」という)を、マップ14を参照して取得する。マップ14は、例えば図6に示すように、エンジン負荷率[%]に対して、必要となる分割回数Nを設定したデータとして設けられている。
マイコン4は、エンジン負荷率[%]に対してマップ14から分割回数Nを読み取って決定する。また、分割回数Nは、エンジンが高負荷状態である場合には、通電指示時間補正量ΔTiを直接でゼロにキャンセルしても支障をきたさない場合に対応して「1」として設定することができる。
図6に示すマップ14のデータは、エンジン負荷率が高い場合には分割回数Nを小さく設定し、エンジン負荷率が低くなると分割回数を大きく設定する。
次に、マイコン4は、ステップS160で、補正量減算設定部11により、決定した分割回数Nにより最後に入力された通電指示時間補正量ΔTiを割り算してΔTiの減少割合ΔTNを決定する。ここで減少割合ΔTNを設定する理由は次のとおりである。
すなわち、異常値ダイアグの判定を行った時点で、すぐに通電指示時間補正量ΔTiをゼロに戻すと、A/F荒が発生してしまうからである。特に、エンジン負荷率が低負荷時には、総噴射量が少ないため急激な通電指示時間の低下によって噴射量が低下することとなり、A/Fへの影響が大きく、エンストを引き起こしてしまう懸念があるからである。
マイコン4は、ステップS170に進むと、補正量減算設定部11において補正量ΔTnの初期値としてΔTiを設定する。すなわち、図7に示すように、最初の補正量ΔTn(1)は、最後に制御IC5にて算出した通電指示時間補正量ΔTiと等しい時間に設定される。
マイコン4は、続くステップS180に進むと、補正量減算設定部11においてk回目の補正量ΔTn(k)として、次式(5)に示すように、前回の補正量ΔTn(k-1)からΔTNを減算した値を設定する。
ΔTn(k)=ΔTn(k-1)-ΔTN …(5)
ここでは1回目の補正量ΔTn(1)として、ステップS170で設定した初期値ΔTn(0)からステップS160で算出した減少割合ΔTNを減算して設定する。
この後、マイコン4は、ステップS190に進み、ステップS180で算出した補正量ΔTn(k)が0以下になったか否かを判断する。NOの場合にはステップS200に進み、通電指示時間算出部10において、ステップS180で設定した補正量ΔTn(k)を通電指示時間Tiに反映させて補正後の通電指示TQ(k)を生成して制御IC5に出力する。ここでは、1回目の補正後の通電指示TQ(1)として出力される。
以上のようにして、マイコン4は、ダイアグ検出後の初回の処理を終了する。そして、この後、マイコン4は、燃料噴射の制御サイクル毎に図5のダイアグ検出後の処理を実行する。なお、2回目以降の処理では、マイコン4は、前回の処理でΔTi異常値ダイアグ有りを判定しているので、ステップS100でYESと判断してステップS110に進み、ここでは、前回の処理で停止フラグF1をONに設定していることからYESと判断してステップS180にジャンプする。
マイコン4は、ステップS180にて、補正量ΔTn(k)を式(5)に従って算出し、ステップS190を経てステップS200で、通電指示時間算出部10において、前回設定した補正量ΔTn(k)を通電指示時間Tiに反映させて補正後の通電指示TQ(k)を生成して制御IC5に出力する。ここでは2回目であるから、補正量ΔTn(2)は、図7に示すように前回補正量ΔTn(1)からΔTNを減じた値となり、補正後のTQ(2)が生成される。
以下、同様にして、マイコン4は、図5の処理を繰り返し実行することで、補正量ΔTn(k)を順次減少させていき、N回繰り返して補正量ΔTn(N)が最終的に0になると、ステップS190でYESとなり、処理を終了する。これにより、補正量ΔTn(N)がゼロになることで、通電指示時間算出部10において、補正後の通電指示TQ(N)で指定されている通電指示時間Tiとなり、制御IC5による通電指示時間補正量ΔTiの設定はゼロになる。
このような本実施形態によれば、上記のように、N回にわたる補正量ΔTn(k)の設定を行うことで、ダイアグ検出後にΔTiを段階的に徐々に減少させる制御を行うことができ、これによってA/F荒を防ぐことができる。
また、上記実施形態においては、最後に制御IC5にて算出した通電指示時間補正量ΔTiの分割回数Nは、車両のエンジン状態に応じてマップ14を参照して算出するので、例えば低負荷時においては、A/F荒を防ぐために細かい分割を行い、高負荷時には全体の噴射量に対する補正量分による影響が少ないため、従来通りダイアグ検出後に補正は止めることができる。
また、通電指示時間補正量ΔTiを減じるタイミングは、所定回数あるいは所定周期を単位として実施するようにしても良い。
(他の実施形態)
本発明は、前述した実施形態に限定されるものではなく、種々変形して実施することができ、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。例えば以下に示す変形又は拡張が可能である。前述した複数の実施形態を必要に応じて組み合わせて構成しても良い。
上記実施形態においては、燃料噴射弁2として内燃機関の燃焼室の中に直接噴射する筒内噴射に適用したが、これに限定されることはなく、周知の吸気バルブの手前で燃料を噴射するポート噴射に適用しても良い。
前述実施形態では台形の面積を算出することで簡易的に積算電流差に相当する不足エネルギΔEを算出する形態を示したが、演算処理能力が高い場合にはさらに精度を高める条件で不足エネルギΔEを算出することができる。
燃料噴射弁2aの通電電流EIは、ピーク電流Ipkに達する前、ピーク電流Ipkに達した後の何れにおいても非線形的に変化する。このため、三角形、長方形、台形などの多角形を用いて電流の積算電流を近似して算出することで、簡易的に積算電流差を算出すると良い。
マイコン4と制御IC5が別体の集積回路により構成されている形態を適用して説明したが一体に構成しても良い。一体構成する場合には、高速処理可能な演算処理装置などを用いて構成すると良い。
本発明は、前述した実施形態に準拠して記述したが、本発明は当該実施形態や構造に限定されるものではないと理解される。本発明は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本発明の範畴や思想範囲に入るものである。
図面中、1は電子制御装置(噴射制御装置)、2は燃料噴射弁、4はマイコン(マイクロコンピュータ)、5は制御IC、5bは通電制御部、5dは通電時間補正量算出部、9はエアフロメータ(センサ)、10は通電指示時間算出部、11は補正量減算設定部、12は異常判定部である。

Claims (5)

  1. エンジンへの燃料噴射を行う燃料噴射弁を電流駆動する噴射制御装置であって、
    前記燃料噴射弁を電流駆動して燃料を噴射させる際に、前記燃料噴射弁に流れる電流の面積補正を実施して通電時間補正量(ΔTi)を算出する通電時間補正量算出部(5d)を備え、通電指示時間を補正して通電制御する駆動制御部(5)と、
    前記駆動制御部により算出された前記通電時間補正量が予め設定された上限値を超えるときに前記駆動制御部の制御系統の異常判定をする異常判定部(12)と、
    前記異常判定部が前記駆動制御部の制御系統の異常判定をしたときに、前記通電時間補正量算出部による前記通電時間補正量の算出を停止させ、前記駆動制御部に前記異常判定時の前記通電時間補正量を直接もしくは段階的に減じるように設定する補正量減算設定部(11)と
    を備えた噴射制御装置。
  2. 前記エンジンの負荷率を検出するセンサ(8)を備え、
    前記補正量減算設定部は、前記センサにより検出された前記エンジンの負荷率が高いほど減じる段階数を多く設定する請求項1に記載の噴射制御装置。
  3. 前記補正量減算設定部は、前記駆動制御部に前記異常判定時の前記通電時間補正量を前記上限値からゼロになるまで減じるように設定する請求項1または2に記載の噴射制御装置。
  4. 前記補正量減算設定部は、前記駆動制御部に前記異常判定時の前記通電時間補正量を前記上限値から回数を設定して段階的に減じるように設定する請求項1から3のいずれか一項に記載の噴射制御装置。
  5. 前記補正量減算設定部は、前記駆動制御部に前記異常判定時の前記通電時間補正量を前記上限値から所定周期毎に段階的に減じるように設定する請求項1から4のいずれか一項に記載の噴射制御装置。
JP2020111596A 2020-06-29 2020-06-29 噴射制御装置 Active JP7367625B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020111596A JP7367625B2 (ja) 2020-06-29 2020-06-29 噴射制御装置
US17/357,329 US11313308B2 (en) 2020-06-29 2021-06-24 Injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020111596A JP7367625B2 (ja) 2020-06-29 2020-06-29 噴射制御装置

Publications (2)

Publication Number Publication Date
JP2022010836A true JP2022010836A (ja) 2022-01-17
JP7367625B2 JP7367625B2 (ja) 2023-10-24

Family

ID=79031587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111596A Active JP7367625B2 (ja) 2020-06-29 2020-06-29 噴射制御装置

Country Status (2)

Country Link
US (1) US11313308B2 (ja)
JP (1) JP7367625B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318594B2 (ja) * 2020-06-29 2023-08-01 株式会社デンソー 噴射制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104610A (ja) * 1998-09-29 2000-04-11 Denso Corp 内燃機関の燃料噴射制御装置
JP2002188501A (ja) * 2000-12-15 2002-07-05 Toyota Motor Corp 内燃機関の燃料供給系異常検出装置
WO2004053317A1 (ja) * 2002-12-10 2004-06-24 Mikuni Corporation 燃料噴射制御方法及び燃料噴射制御装置
JP2010223008A (ja) * 2009-03-19 2010-10-07 Denso Corp 内燃機関の自動停止始動制御装置
JP2011127474A (ja) * 2009-12-16 2011-06-30 Hitachi Automotive Systems Ltd 内燃機関の診断装置
JP2012031735A (ja) * 2010-07-28 2012-02-16 Toyota Motor Corp 多気筒内燃機関の制御装置
WO2019207903A1 (ja) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 燃料噴射制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4379332A (en) * 1978-09-25 1983-04-05 The Bendix Corporation Electronic fuel injection control system for an internal combustion engine
JPS5612027A (en) * 1979-07-10 1981-02-05 Nippon Denso Co Ltd Electric controller for injection pump
US5050562A (en) * 1988-01-13 1991-09-24 Hitachi, Ltd. Apparatus and method for controlling a car
JP4089244B2 (ja) * 2002-03-01 2008-05-28 株式会社デンソー 内燃機関用噴射量制御装置
JP3966096B2 (ja) * 2002-06-20 2007-08-29 株式会社デンソー 内燃機関用噴射量制御装置
JP4840288B2 (ja) * 2006-11-14 2011-12-21 株式会社デンソー 燃料噴射装置及びその調整方法
JP2008190388A (ja) * 2007-02-02 2008-08-21 Denso Corp 電磁弁駆動装置及び燃料噴射制御装置
JP4483908B2 (ja) * 2007-08-23 2010-06-16 株式会社デンソー 燃料噴射制御装置
JP4656198B2 (ja) * 2008-07-15 2011-03-23 株式会社デンソー 燃料噴射制御装置
JP5807948B2 (ja) * 2011-03-17 2015-11-10 ボッシュ株式会社 コモンレール式燃料噴射制御装置における燃料噴射量補正方法及びコモンレール式燃料噴射制御装置
JP6221828B2 (ja) * 2013-08-02 2017-11-01 株式会社デンソー 高圧ポンプの制御装置
JP6292070B2 (ja) 2014-07-31 2018-03-14 株式会社デンソー 燃料噴射制御装置
JP6973010B2 (ja) * 2017-12-13 2021-11-24 トヨタ自動車株式会社 燃料ポンプの制御装置
JP7172753B2 (ja) * 2019-03-07 2022-11-16 株式会社デンソー 噴射制御装置
JP7367614B2 (ja) * 2020-05-28 2023-10-24 株式会社デンソー 噴射制御装置
JP7322816B2 (ja) * 2020-05-28 2023-08-08 株式会社デンソー 噴射制御装置
JP7380425B2 (ja) * 2020-05-28 2023-11-15 株式会社デンソー 噴射制御装置
JP7415821B2 (ja) * 2020-06-29 2024-01-17 株式会社デンソー 噴射制御装置
JP7298555B2 (ja) * 2020-06-29 2023-06-27 株式会社デンソー 噴射制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104610A (ja) * 1998-09-29 2000-04-11 Denso Corp 内燃機関の燃料噴射制御装置
JP2002188501A (ja) * 2000-12-15 2002-07-05 Toyota Motor Corp 内燃機関の燃料供給系異常検出装置
WO2004053317A1 (ja) * 2002-12-10 2004-06-24 Mikuni Corporation 燃料噴射制御方法及び燃料噴射制御装置
JP2010223008A (ja) * 2009-03-19 2010-10-07 Denso Corp 内燃機関の自動停止始動制御装置
JP2011127474A (ja) * 2009-12-16 2011-06-30 Hitachi Automotive Systems Ltd 内燃機関の診断装置
JP2012031735A (ja) * 2010-07-28 2012-02-16 Toyota Motor Corp 多気筒内燃機関の制御装置
WO2019207903A1 (ja) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 燃料噴射制御装置

Also Published As

Publication number Publication date
JP7367625B2 (ja) 2023-10-24
US20210404408A1 (en) 2021-12-30
US11313308B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
JP7380425B2 (ja) 噴射制御装置
JP7298555B2 (ja) 噴射制御装置
US11326538B2 (en) Injection control device
JP7415821B2 (ja) 噴射制御装置
US11384704B2 (en) Injection control device
US20210404407A1 (en) Injection control device
JP2022010836A (ja) 噴射制御装置
US11306675B2 (en) Injection control device
US20220034278A1 (en) Injection control device
US11525418B2 (en) Injection control device
JP7298554B2 (ja) 噴射制御装置
US11674467B2 (en) Injection control device
US11255286B2 (en) Injection control device
JP7306339B2 (ja) 噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R151 Written notification of patent or utility model registration

Ref document number: 7367625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151