JP2022006899A - 電解質膜の短絡検査方法及び電解質膜の短絡検査装置 - Google Patents

電解質膜の短絡検査方法及び電解質膜の短絡検査装置 Download PDF

Info

Publication number
JP2022006899A
JP2022006899A JP2020109469A JP2020109469A JP2022006899A JP 2022006899 A JP2022006899 A JP 2022006899A JP 2020109469 A JP2020109469 A JP 2020109469A JP 2020109469 A JP2020109469 A JP 2020109469A JP 2022006899 A JP2022006899 A JP 2022006899A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
short
limited range
circuit inspection
divided portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020109469A
Other languages
English (en)
Other versions
JP7041716B2 (ja
Inventor
弘晃 川西
Hiroaki Kawanishi
弘幸 山岸
Hiroyuki Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020109469A priority Critical patent/JP7041716B2/ja
Priority to US17/356,859 priority patent/US11594743B2/en
Priority to CN202110703931.8A priority patent/CN113848505A/zh
Publication of JP2022006899A publication Critical patent/JP2022006899A/ja
Application granted granted Critical
Publication of JP7041716B2 publication Critical patent/JP7041716B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Figure 2022006899000001
【課題】電解質膜部材における互いに隣接する分割部位の間に短絡部位が存在している場合であっても、電解質膜に当該短絡部位が存在しているか否かを精度よく検出することができる電解質膜の短絡検査方法及び電解質膜の短絡検査装置を提供する。
【解決手段】短絡検査装置10で検査される電解質膜16の短絡検査方法は、複数の分割部位72の全体範囲よりも小さい範囲で互いに隣接する分割部位72を含む限定範囲74の通電状態を取得する処理を、互いに位置が異なる複数の限定範囲74の各々について行う取得工程と、複数の限定範囲74の通電状態に基づいて電解質膜16に短絡部位Sが存在しているか否かを判定する判定工程と、を含む。
【選択図】図2

Description

本発明は、電解質膜の短絡検査方法及び電解質膜の短絡検査装置に関する。
固体高分子形燃料電池は、プロトン伝導性を示す固体高分子からなる電解質膜が一組の電極触媒層で挟持された電解質膜部材を備える。例えば、特許文献1には、電解質膜部材に通電することにより電解質膜に短絡部位が存在するか否かを検査する電解質膜の短絡検査方法及びその装置が開示されている。
特許文献1の電解質膜の短絡検査装置は、一方の電極触媒層に電気的に接続する複数の第1測定端子部と、他方の電極触媒層に電気的に接続する第2測定端子部とを有する。複数の第1測定端子は、互いに電気的に絶縁した状態で格子状に配置されている。そして、特許文献1の電解質膜の短絡検査方法では、複数の第1測定端子部と第2測定端子との間に電圧を印加し、電解質膜部材のうち複数の第1測定端子部に対向する部位(複数の分割部位)に流れる電流を測定している。
特開2018-160371号公報
上述したような従来技術では、電解質膜部材を面方向に分割した複数の分割部位(電解質膜部材のうち複数の第1測定端子部に対応する部位)にピンホール等の短絡部位が存在する場合、電解質膜に当該短絡部位が存在しているか否かを精度よく検出することができる。しかしながら、電解質膜部材のうち互いに隣接する分割部位の間(電解質膜部材のうち互いに隣接する第1測定端子部の間の絶縁部分に対向する部位)に短絡部位が存在する場合、当該短絡部位を流れた電流は、複数の第1測定端子部に拡散して流れる。そのため、このような短絡部位を精度よく検出することができないおそれがある。
本発明は、このような課題を考慮してなされたものであり、電解質膜部材における互いに隣接する分割部位の間に短絡部位が存在している場合であっても、電解質膜に当該短絡部位が存在しているか否かを精度よく検出することができる電解質膜の短絡検査方法及び電解質膜の短絡検査装置を提供することを目的とする。
本発明の一態様は、固体高分子からなる電解質膜を有する電解質膜部材に通電することにより前記電解質膜に短絡部位が存在しているか否かを検査する電解質膜の短絡検査方法であって、前記電解質膜部材の両面に配置された一組の測定端子部を介して、当該電解質膜部材を面方向に分割した複数の分割部位に通電する通電工程と、前記複数の分割部位の全体範囲よりも小さい範囲で互いに隣接する分割部位を含む限定範囲の通電状態を取得する処理を、互いに位置が異なる複数の前記限定範囲の各々について行う取得工程と、前記取得工程で取得された複数の前記限定範囲の前記通電状態に基づいて前記電解質膜に前記短絡部位が存在しているか否かを判定する判定工程と、を含む、電解質膜の短絡検査方法である。
本発明の他の態様は、固体高分子からなる電解質膜を有する電解質膜部材に通電することにより前記電解質膜に短絡部位が存在しているか否かを検査する電解質膜の短絡検査装置であって、前記電解質膜部材を挟持するための第1測定端子部及び第2測定端子部と、前記第1測定端子部と前記第2測定端子部との間に通電を行うための電源と、前記電解質膜部材の通電状態を取得する取得部と、前記取得部で取得された通電状態に基づいて前記電解質膜に前記短絡部位が存在しているか否かを判定する判定部と、を備え、前記第1測定端子部は、互いに電気的に絶縁した状態で複数配置され、前記取得部は、前記電解質膜部材のうち複数の前記第1測定端子部に対向する複数の分割部位の全体範囲よりも小さい範囲で互いに隣接する分割部位を含む限定範囲の通電状態を取得する、電解質膜の短絡検査装置である。
本発明によれば、電解質膜部材の複数の分割部位の全体範囲よりも小さい範囲で互いに隣接する分割部位を含む限定範囲の通電状態を取得している。そのため、電解質膜部材のうち互いに隣接する分割部位の間に短絡部位が存在している場合であっても、当該短絡部位の周囲の分割部位を含む限定範囲の通電状態に基づいて電解質膜に当該短絡部位が存在しているか否かを精度よく検出することができる。
本発明の一実施形態に係る電解質膜の短絡検査装置の要部概略斜視図である。 図1の短絡検査装置の要部概略一部断面構成図である。 本発明の一実施形態に係る電解質膜の短絡検査方法を説明するフローチャートである。 図3の取得工程を説明するフローチャートである。 特定工程の第1説明図である。 特定工程の第2説明図である。 図7Aは、判定工程の第1説明図であり、図7Bは、判定工程の第2説明図である。 図8Aは、判定工程の第3説明図であり、図8Bは、判定工程の第4説明図である。 ノイズが除去される前の測定電圧と測定電圧からノイズが除去された電圧を示すグラフである。 合成範囲の大きさと合成電圧との関係を示すグラフである。 変形例に係る判定工程の説明図である。 測定位置と合成抵抗値との関係を示すグラフである。
以下、本発明に係る電解質膜の短絡検査方法及び電解質膜の短絡検査装置について好適な実施形態を挙げ、添付の図面を参照しながら説明する。
図1及び図2に示すように、本発明の一実施形態に係る電解質膜16の短絡検査装置10(以下、単に「短絡検査装置10」という。)は、電解質膜部材12に通電することにより電解質膜16に短絡部位S(図7A等参照)が存在しているか否かを検査するためのものである。ここで、短絡部位Sとは、異常電流が流れるような(品質に影響を与えるような)ピンホール等をいう。換言すれば、短絡検査装置10は、電解質膜16の膜厚を評価するためのものである。
まず、電解質膜部材12について説明する。本実施形態において、電解質膜部材12は、発電セル(燃料電池)を形成する電解質膜・電極構造体(MEA14)である。電解質膜部材12は、長方形状(四角形状)に形成されている。電解質膜部材12は、電解質膜16と、電解質膜16の一方の面に設けられた第1電極18と、電解質膜16の他方の面に設けられた第2電極20とを有する。
電解質膜16は、固体高分子電解質膜(陽イオン交換膜)である。電解質膜16は、プロトン伝導性を示す固体高分子からなる。この種の固体高分子の好適な例としてはパーフルオロスルホン酸が挙げられるが、特にこれに限定されるものではない。また、電解質膜16は、例えば、イオン伝導性を有する高分子溶液を原材料として膜状に成形することで得られる。
第1電極18は、アノード電極及びカソード電極のいずれか一方を構成する。第2電極20は、アノード電極及びカソード電極のいずれか他方を構成する。図2において、第1電極18は、電解質膜16の一方の面に接合される第1電極触媒層22と、第1電極触媒層22に積層される第1ガス拡散層24とを有する。第2電極20は、電解質膜16の他方の面に接合される第2電極触媒層26と、第2電極触媒層26に積層される第2ガス拡散層28とを有する。
第1電極触媒層22は、例えば、白金合金が表面に担持された多孔質カーボン粒子が、イオン導電性高分子バインダとともに第1ガス拡散層24の表面に一様に塗布されて形成される。第2電極触媒層26は、例えば、白金合金が表面に担持された多孔質カーボン粒子が、イオン導電性高分子バインダとともに第2ガス拡散層28の表面に一様に塗布されて形成される。第1ガス拡散層24及び第2ガス拡散層28は、カーボンペーパ又はカーボンクロス等から形成される。
図1及び図2に示すように、電解質膜16、第1電極18及び第2電極20のそれぞれは、長方形状(四角形状)に形成されている。電解質膜16の平面寸法は、第1電極18(第1電極触媒層22)及び第2電極20(第2電極触媒層26)のそれぞれの平面寸法よりも一回り大きく形成されている。すなわち、電解質膜16のうち第1電極18及び第2電極20よりも外方に突出した部分は、枠状(四角環状)に延在している。第1電極18の平面寸法は、第2電極20の平面寸法と同一である。ただし、電解質膜16、第1電極18及び第2電極20のそれぞれの形状及び大きさは、適宜設定可能である。
電解質膜部材12は、MEA14ではなく、膜・触媒層接合体(CCM)であってもよい。CCMは、電解質膜16、第1電極触媒層22及び第2電極触媒層26から構成される。つまり、CCMは、第1ガス拡散層24及び第2ガス拡散層28を有していない。
次に、短絡検査装置10について説明する。図1及び図2に示すように、短絡検査装置10は、下型30と上型32とを備える。下型30は、固定型である。上型32は、下型30に対して近接及び離間することができるように配置された昇降可能な可動型である。
下型30のうち上型32を指向する面(上面)には、第1絶縁膜34を介して複数の第1測定端子部36が設けられている。第1絶縁膜34は、長方形状に形成されている。複数の第1測定端子部36は、第1絶縁膜34の長辺方向(矢印X方向)と第1絶縁膜34の短辺方向(矢印Y方向)とのそれぞれに複数並んでいる(図5参照)。換言すれば、複数の第1測定端子部36は、矢印X方向及び矢印Y方向に格子状に配列されている。
互いに隣接する第1測定端子部36は、離間している。換言すれば、互いに隣接する第1測定端子部36の間には、第1絶縁膜34が介在されている。そのため、複数の第1測定端子部36は、互いに電気的に絶縁されている。複数の第1測定端子部36は、第1電極18に直接的に接触可能なように表面が露出した状態で第1絶縁膜34に埋設されている(図2参照)。各第1測定端子部36は、第1電極18に対して電気的に接続する。各第1測定端子部36は、四角形状に形成された金属板である。各第1測定端子部36は、四角形状に限定されず、円形状、多角形状(四角形状以外)であってもよい。
上型32のうち下型30を指向する面(下面)には、第2絶縁膜38を介して第2測定端子部40が設けられている。第2測定端子部40は、連続した一枚の金属板として構成される。第2測定端子部40の平面寸法は、第2電極20の平面寸法と同一である。ただし、第2測定端子部40の平面寸法は、第2電極20の平面寸法よりも大きくても小さくてもよい。上型32は、ロッド42を介して図示しない昇降機構(例えば、シリンダ等)に付設されており、当該昇降機構の作用下に昇降する。上型32には、昇降をガイドする複数本のガイドロッドが設けられてもよい。
短絡検査装置10は、電源44と、電源44の負極と各第1測定端子部36とを互いに電気的に接続する第1導線部46と、電源44の正極と第2測定端子部40とを互いに電気的に接続する第2導線部48と、第1導線部46に設けられた測定部50と、制御部52とをさらに備える。
電源44は、直流電源である。図2において、第1導線部46は、各第1測定端子部36に電気的に接続された複数本の分岐導線部46aと、これら分岐導線部46aと電源44の負極とを互いに電気的に接続する接続導線部46bとを含む。各分岐導線部46aには、抵抗54が設けられている。接続導線部46bは、アースに接続されている。
測定部50は、電解質膜部材12を面方向に分割した複数の分割部位72(電解質膜部材12のうち複数の第1測定端子部36に対向する部位)の通電状態を測定する(図5参照)。具体的に、測定部50は、電解質膜部材12の各分割部位72の電圧を測定する。換言すれば、測定部50は、各分岐導線部46aに設けられた複数の電圧計56を有する。各電圧計56は、抵抗54に対して並列に配置されるように分岐導線部46aに設けられる。各電圧計56の出力信号は、ケーブル58を介して制御部52に入力される。
測定部50は、電圧を測定する例に限定されない。測定部50は、電解質膜部材12の各分割部位72に流れる電流(第1測定端子部36に流れる電流)を測定してもよいし、電解質膜部材12の各分割部位72の抵抗を測定してもよい。
制御部52は、ECU(Electronic Control Unit:電子制御ユニット)を含んで構成されている。ECUは、マイクロコンピュータを含む計算機であり、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリ、A/D変換器及びD/A変換器等の入力装置、並びに時計部としてのタイマ等を有している。ECUは、CPUがROMに記録されているプログラムを読み出し実行することで各種機能実現部(機能実現手段)として機能する。また、制御部52には、図示しないディスプレイが接続されている。
制御部52は、機能実現部として、特定取得部60(取得部)、通電制御部62、合成電圧算出部64、合成抵抗算出部66、判定部68及び記憶部70を有する。
特定取得部60は、複数の分割部位72の全体範囲よりも小さい範囲で互いに隣接する分割部位72を含む複数の限定範囲74のうちの1つを特定する(図5参照)。通電制御部62は、電源44のオンオフを制御する。合成電圧算出部64は、複数の電圧計56により測定された電圧値に基づいて限定範囲74の合成電圧値を算出する。合成抵抗算出部66は、合成電圧算出部64により算出された合成電圧値に基づいて合成抵抗値を算出する。判定部68は、合成抵抗値に基づいて電解質膜16に短絡部位Sが存在しているか否かを判定する。
次に、電解質膜16の短絡検査方法(以下、単に「短絡検査方法」という。)について説明する。短絡検査方法は、配置工程、当接工程、通電工程、取得工程、判定工程を含む。
まず、図1及び図2に示すように、配置工程(図3のステップS1)において、予め作製された電解質膜部材12を下型30に設けられた複数の第1測定端子部36に配置する。この際、電解質膜部材12の第1電極18は、複数の第1測定端子部36のそれぞれに接触する。電解質膜部材12の第2電極20は、上型32に設けられた第2測定端子部40に対向する。
続いて、当接工程(ステップS2)において、ロッド42を動作させて上型32を下型30に向かって変位させることにより、第2測定端子部40を第2電極20に当接させる。これにより、電解質膜部材12は、複数の第1測定端子部36と第2測定端子部40とによって挟持される。換言すれば、電解質膜部材12の第1電極18は、複数の第1測定端子部36によって上方に向かって押圧される。また、電解質膜部材12の第2電極20は、第2測定端子部40によって下方に押圧される。
その後、通電工程(ステップS3)において、通電制御部62は、電解質膜部材12に対して通電を開始する。すなわち、電源44から直流電流を供給することにより、第1測定端子部36と第2測定端子部40との間に通電がなされる。この際、下型30と上型32との間には所定の隙間が形成されるため、下型30及び上型32に電流が流れることはない。
ここで、第1電極18及び第2電極20のそれぞれは導電体であり、電解質膜16は誘電体である。電解質膜16に短絡部位Sが存在している場合、電源44から第2測定端子部40に供給された電流は、第2電極20、電解質膜16の短絡部位S及び第1測定端子部36へと流れる。通電工程では、全ての分割部位72の電圧値を複数の電圧計56で測定し、その測定された電圧値を記憶部70に記憶しておく。全ての電圧値を記憶部70に記憶した後、通電制御部62は、電源44をオフにする。
続いて、取得工程(ステップS4)では、図5に示すように、電解質膜部材12の複数の限定範囲74の通電状態を取得する。最も近接する限定範囲74同士は、分割部位72の1つ分だけ電解質膜部材12の面方向(矢印X方向又は矢印Y方向)にずれて位置する。
具体的に、取得工程では、図4に示すように、特定工程、合成電圧算出工程、合成抵抗算出工程が複数回繰り返される。
すなわち、特定工程(ステップS10)では、特定取得部60が複数の限定範囲74の1つを特定するとともに特定された限定範囲74の通電状態を取得する。限定範囲74の大きさは、後述するように予め設定されている。特定工程では、特定取得部60が、前回特定された限定範囲74を分割部位72の1つ分だけ面方向(矢印X方向又は矢印Y方向)に移動させた位置にある限定範囲74を特定する。
つまり、例えば、図5に示すように、1回目の特定工程において、特定取得部60は、複数の分割部位72のうち角(例えば、矢印X1方向及び矢印Y1方向の角)に位置する分割部位72(以下、「分割部位72a」という。)を含む限定範囲74aを特定した場合、2回目の特定工程では、当該限定範囲74aを矢印X2方向に分割部位72の1つ分だけ移動させた位置にある限定範囲74bを特定する。そして、特定取得部60は、前回特定された限定範囲74を矢印X2方向に分割部位72の1つ分だけ移動させた位置にある限定範囲74を特定する処理を、矢印X2方向の端に位置する分割部位72を含む限定範囲74cが特定されるまで続ける。
続いて、例えば、図6において、特定取得部60は、図5の限定範囲74aを矢印Y2方向に分割部位72の1つ分だけ移動させた位置にある限定範囲74dを特定した後、当該限定範囲74dを矢印X2方向に分割部位72の1つ分だけ移動させた位置にある限定範囲74eを特定する。そして、特定取得部60は、前回特定された限定範囲74を矢印X2方向に分割部位72の1つ分だけ移動させた位置にある限定範囲74を特定する処理を、矢印X2方向の端に位置する分割部位72を含む限定範囲74fが特定されるまで続ける。このような特定工程は、矢印X2方向及び矢印Y2方向の角に位置する分割部位72aを含む限定範囲74が特定されるまで続けられる。
特定工程において、限定範囲74を特定する順番は適宜変更可能である。特定工程では、例えば、図5の限定範囲74cを特定した後、当該限定範囲74cを矢印Y2方向に分割部位72の1つ分だけ移動させた位置にある限定範囲74fを特定してもよい。この場合、前回特定された限定範囲74を矢印X1方向に分割部位72の1つ分だけ移動させた位置にある限定範囲74を特定する処理を、矢印X1方向の端に位置する分割部位72を含む限定範囲74が特定されるまで続ける。
また、特定工程では、前回特定された限定範囲74を矢印Y方向に分割部位72の1つ分だけ移動させた位置にある限定範囲74を特定する処理を、矢印Y方向の一端から他端まで行うようにしてもよい。
また、特定工程において、特定取得部60は、限定範囲74を特定する毎に特定された限定範囲74が含む各分割部位72の電圧値を記憶部70から取得する。
合成電圧算出工程(ステップS11)では、合成電圧算出部64が、特定工程で取得された電圧値を合成することにより限定範囲74の合成電圧値を算出する。
合成抵抗算出工程(ステップS12)では、合成抵抗算出部66が、合成電圧算出部64により算出された合成電圧値に基づいて限定範囲74の合成抵抗値を算出する。算出された合成抵抗値は、記憶部70に記憶される。
その後、制御部52は、全ての限定範囲74において合成抵抗値が算出されたか否か(全ての限定範囲74を特定したか否か)を判定する(ステップS13)。全ての限定範囲74において合成抵抗値が算出されていないと制御部52が判定した場合(ステップS13:NO)、特定工程、合成電圧算出工程及び合成抵抗算出工程が再び行われる。全ての限定範囲74において合成抵抗値が算出されたと制御部52が判定した場合(ステップS13:YES)、判定工程(図3のステップS5)が行われる。
判定工程において、判定部68は、取得工程で取得された複数の限定範囲74の通電状態に基づいて電解質膜16に短絡部位S(図7A参照)が存在するか否かを判定する。具体的に、判定部68は、複数の限定範囲74の合成抵抗値のうち最も低い合成抵抗値が抵抗閾値R0(図12参照)よりも低い場合に、最も低い合成抵抗値を有する限定範囲74に短絡部位Sが存在していると判定する。この際、判定部68は、最も低い合成抵抗値を含む限定範囲74の中心付近に短絡部位Sが存在すると判定する。また、判定部68は、複数の限定範囲74の合成抵抗値のうち最も低い合成抵抗値が抵抗閾値R0以上である場合に、電解質膜16の全体に短絡部位Sは存在しないと判定する。
図7Aに示すように、例えば、電解質膜16のうち互いに隣接する分割部位72の間に短絡部位S(以下、「短絡部位Sa」ということがある。)が1つだけ存在していたとする。この場合、電源44から第2測定端子部40に供給された電流は、短絡部位Saを介して短絡部位Saの周囲に位置する複数の第1測定端子部36(例えば、図7Aにおいてハッチングで示した部分に位置する第1測定端子部36)に流れる。この際、短絡部位Saに近い第1測定端子部36ほどより大きな電流が流れる。
そうすると、図7Aに示す限定範囲74gの合成抵抗値は、当該限定範囲74gを分割部位72の1つ分だけ移動させた位置にある限定範囲74(例えば、図7Bに示す限定範囲74h)の合成抵抗値よりも低くなる。つまり、限定範囲74gは、複数の限定範囲74の中で最も低い合成抵抗値を有する。そのため、判定部68は、当該限定範囲74gの中心付近に短絡部位Saが存在していると判定する。
また、図8Aに示すように、例えば、電解質膜16の角に位置する分割部位72aと当該分割部位72aに隣接する分割部位72との間に短絡部位S(以下、「短絡部位Sb」ということがある。)が1つだけ存在していたとする。この場合、電源44から第2測定端子部40に供給された電流は、短絡部位Sbから内方(矢印X2方向及び矢印Y2方向)に向かって広がる(例えば、図8Aにおいてハッチングで示した部分に位置する第1測定端子部36に流れる)。
そうすると、図8Aに示す限定範囲74iの合成抵抗値は、当該限定範囲74iを分割部位72の1つ分だけ移動させた位置にある限定範囲74(例えば、図8Bに示す限定範囲74j)の合成抵抗値よりも低くなる。つまり、限定範囲74iは、複数の限定範囲74の中で最も低い合成抵抗値を有する。このような場合、判定部68は、当該限定範囲74の中心よりも分割部位72a寄りの位置に短絡部位Sbが存在していると判定する。
判定工程において、電解質膜16に短絡部位Sが存在していると判定された場合、当該電解質膜16を含む電解質膜部材12は廃棄される。判定工程において、電解質膜16に短絡部位Sが存在していないと判定された場合、当該電解質膜16を含む電解質膜部材12は、燃料電池の製造に用いられる。判定工程の後、一連の動作フローが終了する。
次に、上述した限定範囲74の大きさの設定について説明する。限定範囲74の大きさを設定する場合、予め特定された短絡部位Sを有する電解質膜部材12を準備する。そして、この電解質膜部材12に短絡検査装置10を用いて通電するとともに当該短絡部位Sの周辺の分割部位72の電圧値を電圧計56により測定する。そうすると、電圧計56で測定された電圧値(測定電圧値)は、図9の仮想線L1のように示される。ここで、電解質膜16のうち短絡部位Sが存在していない箇所は、電解質膜16に含まれている水分等によって微弱な電流が流れる。そのため、図9に示すように、測定電圧には、電解質膜16の水分量等に応じたノイズ電圧が含まれる。
続いて、測定電圧値のうちバックグラウンド電圧閾値V0よりも低いものの平均値をバックグラウンド電圧(ノイズ電圧)として算出し、複数の分割部位72のそれぞれの電圧値からバックグラウンド電圧を差し引いた電圧値(補正電圧値)を算出する。補正電圧値は、図9の実線L2のように示される。
その後、補正電圧値(図9の実線L2の電圧値)を合成する数を増やしながら合成電圧値を算出し、当該合成電圧値の変化量が所定値以下となった時の合成範囲(複数の分割部位72の範囲)を限定範囲74とする。ここで、所定値は、補正電圧値の合成数をそれ以上増やしても合成電圧値に大きな変化がないような値に設定される。
図10は、合成範囲の大きさ(合成する電圧値の数)と合成電圧値との関係を示したグラフである。補正電圧値に基づいて算出された合成電圧値は、図10の実線L3のように示される。この場合、限定範囲74の大きさ(限定範囲74に含まれる分割部位72の数)は、合成範囲A1となる。
一方、測定電圧値(ノイズが除去される前の電圧値)に基づいて算出された合成電圧値は、図10の仮想線L4のように示される。この場合、限定範囲74の大きさ(限定範囲74に含まれる分割部位72の数)は、合成範囲A2となる。合成範囲A1は、合成範囲A2よりも小さい。このように、補正電圧値に基づいて限定範囲74の大きさを設定することにより、限定範囲74を適切な大きさにすることができる。
合成範囲が狭すぎる場合、合成電圧値が一定になる手前で限定範囲74(合成範囲)を設定することとなる。この場合、合成電圧値の立ち上がり方が短絡部位Sによって異なるため、測定にばらつきが生じるおそれがある。また、合成範囲が広すぎると、一つの限定範囲74の中に複数の短絡部位Sが存在している場合に、これら短絡部位Sの電圧値を合成してしまい、誤検出するおそれがある。
本実施形態に係る電解質膜16の短絡検査方法及び短絡検査装置10は、以下の効果を奏する。
短絡検査方法は、第1測定端子部36と第2測定端子部40とを介して、電解質膜部材12を面方向に分割した複数の分割部位72に通電する通電工程と、複数の分割部位72の全体範囲よりも小さい範囲で互いに隣接する分割部位72を含む限定範囲74の通電状態を取得する処理を、互いに位置が異なる複数の限定範囲74の各々について行う取得工程と、取得工程で取得された複数の限定範囲74の通電状態に基づいて電解質膜16に短絡部位Sが存在しているか否かを判定する判定工程と、を含む。
このような方法によれば、電解質膜部材12の複数の分割部位72の全体範囲よりも小さい範囲で互いに隣接する分割部位72を含む限定範囲74の通電状態を取得している。そのため、電解質膜部材12のうち互いに隣接する分割部位72の間に短絡部位Sが存在している場合であっても、当該短絡部位Sの周囲の分割部位72を含む限定範囲74の通電状態に基づいて電解質膜16に当該短絡部位Sが存在しているか否かを精度よく検出することができる。
複数の限定範囲74のうち最も近接する限定範囲74同士は、複数の分割部位72の1つ分だけ面方向にずれて位置する。
この場合、電解質膜16に短絡部位Sが存在しているか否かをより精度よく検出することができる。
取得工程では、複数の限定範囲74の1つを特定するとともに特定された限定範囲74の通電状態を取得する特定工程が複数回行われる。特定工程では、前回特定された限定範囲74を複数の分割部位72の1つ分だけ面方向に移動させた位置にある限定範囲74を特定する。
このような方法によれば、複数の限定範囲74の通電状態を効率的に取得することができる。
取得工程では、特定工程で特定された限定範囲74に含まれる複数の分割部位72のそれぞれの電圧値を取得する。取得工程は、複数の限定範囲74のそれぞれに含まれる複数の分割部位72の電圧値を合成した合成電圧値を算出する合成電圧算出工程を含む。判定工程では、合成電圧値に基づいて電解質膜16に短絡部位Sが存在しているか否かを判定する。
このような方法によれば、限定範囲74の通電状態を精度よく測定できる。
取得工程は、合成電圧値に基づいて複数の限定範囲74のそれぞれの合成抵抗値を算出する合成抵抗算出工程を含む。判定工程では、複数の限定範囲74の合成抵抗値のうち最も低い合成抵抗値が抵抗閾値R0よりも低い場合に、最も低い合成抵抗値を有する限定範囲74の中心付近に短絡部位Sが存在していると判定する。
このような方法によれば、互いに隣接する分割部位72の間に短絡部位Sが存在する場合であっても、当該短絡部位Sを精度よく検出することができる。
取得工程では、合成電圧値に基づいて複数の限定範囲74のそれぞれの合成抵抗値を算出する合成抵抗算出工程を含む。判定工程では、抵抗閾値R0よりも低い合成抵抗値を有する限定範囲74に短絡部位Sが存在していると判定する。
このような方法によれば、電解質膜16に複数の短絡部位Sが存在する場合であっても、これら短絡部位Sを精度よく検出することができる。
限定範囲74の大きさは、第1測定端子部36と第2測定端子部40とを介して電解質膜部材12に通電した際に、複数の分割部位72のそれぞれの電圧値のうちバックグラウンド電圧閾値V0以下のものの平均値をバックグラウンド電圧として算出し、複数の分割部位72のそれぞれの電圧値からバックグラウンド電圧を差し引いた補正電圧値に基づいて設定されている。
この場合、短絡部位Sの判定を行うにあたりノイズとなる電圧を除去して限定範囲74の範囲(合成範囲)を設定できるため、短絡部位Sの測定精度を向上させることができる。
限定範囲74の大きさは、予め特定された短絡部位Sの周辺に位置する複数の分割部位72のそれぞれの電圧値を測定し、これら電圧値を合成する数を増やしながら合成電圧値を算出した際に、当該合成電圧値の変化量が所定値以下になった時の複数の分割部位72の範囲に設定されている。
この場合、短絡部位Sの判定に効果的な限定範囲74の範囲(合成範囲)を設定されるため、短絡部位Sの測定精度を一層向上させることができる。
短絡検査装置10は、電解質膜部材12を挟持するための第1測定端子部36及び第2測定端子部40と、第1測定端子部36と第2測定端子部40との間に通電を行うための電源44と、前記電解質膜部材12の通電状態を取得する特定取得部60と、特定取得部60で取得された通電状態に基づいて電解質膜16に短絡部位Sが存在しているか否かを判定する判定部68と、を備える。第1測定端子部36は、互いに電気的に絶縁した状態で複数配置され、特定取得部60は、電解質膜部材12のうち複数の第1測定端子部36に対向する複数の分割部位72の全体範囲よりも小さい範囲で互いに隣接する分割部位72を含む限定範囲74の通電状態を測定する。
このような構成によれば、電解質膜部材12の複数の分割部位72の全体範囲よりも小さい範囲で互いに隣接する分割部位72を含む限定範囲74の通電状態を取得している。そのため、電解質膜部材12における互いに隣接する分割部位72の間に短絡部位Sが存在している場合であっても、当該短絡部位Sの周囲の分割部位72を含む複数の限定範囲74の通電状態に基づいて電解質膜16に当該短絡部位Sが存在しているか否かを精度よく検出することができる。
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能である。
電解質膜部材12は、ロール・ツー・ロール方式により搬送されたものであってもよい。この場合、電解質膜16の短絡部位Sの箇所をトリミングで切除する必要がある。つまり、図11に示すように、電解質膜16に複数の短絡部位Sが存在していた場合、これら短絡部位Sは、短絡検査の後で切除されることになる。
図11に示すように、このような電解質膜部材12において、電解質膜部材12のうち互いに隣接する分割部位72の間に複数の短絡部位S(短絡部位Scと短絡部位Sd)が存在していたとする。そうすると、短絡部位Scの周辺においては、限定範囲74kの合成抵抗値が最も低くなり、短絡部位Sdの周辺においては、限定範囲74lの合成抵抗値が最も低くなる。
この場合、図12に示すように、判定工程において、判定部68は、各限定範囲74k、74lの合成抵抗値が抵抗閾値R0よりも低いか否かを判定し、抵抗閾値R0よりも低い合成抵抗値を有する複数の限定範囲74k、74lのそれぞれに短絡部位Sc、Sdが存在していると判定する。この際、判定部68は、短絡部位Sc、Sdが存在していると判定された複数の限定範囲74のうち、抵抗閾値R0に最も近い合成抵抗値を有する限定範囲74(境界に位置する限定範囲74)の間に位置する限定範囲74において、最も小さい合成抵抗値を有する限定範囲74k、74lの中心付近に短絡部位Sc、Sdが存在していると判定する。また、判定部68は、抵抗閾値R0以上の合成抵抗値を有する限定範囲74については、短絡部位Sが存在していないと判定する。
上述した実施形態において、取得工程は、電解質膜部材12に通電した状態で行われてもよい。この場合、特定工程において、特定取得部60は、複数の限定範囲74の1つを特定するとともに特定された限定範囲74に対応する電圧計56の電圧値を取得する。
上述した実施形態では、特定工程において、複数の限定範囲74を1つずつ特定し、特定した限定範囲74に含まれる複数の分割部位72の電圧値を取得しているが、この例に限定されない。例えば、取得工程では、全ての限定範囲74において、各限定範囲74に含まれる複数の分割部位72の電圧値を一度に取得してもよい。
以上の実施形態をまとめると、以下のようになる。
上記実施形態は、固体高分子からなる電解質膜(16)を有する電解質膜部材(12)に通電することにより前記電解質膜に短絡部位(S)が存在しているか否かを検査する電解質膜の短絡検査方法であって、前記電解質膜部材の両面に配置された一組の測定端子部(36、40)を介して、当該電解質膜部材を面方向に分割した複数の分割部位(72)に通電する通電工程と、前記複数の分割部位の全体範囲よりも小さい範囲で互いに隣接する分割部位を含む限定範囲(74)の通電状態を取得する処理を、互いに位置が異なる複数の前記限定範囲の各々について行う取得工程と、前記取得工程で取得された複数の前記限定範囲の前記通電状態に基づいて前記電解質膜に前記短絡部位が存在しているか否かを判定する判定工程と、を含む、電解質膜の短絡検査方法を開示している。
上記の電解質膜の短絡検査方法において、複数の前記限定範囲のうち最も近接する限定範囲同士は、前記複数の分割部位の1つ分だけ前記面方向にずれて位置してもよい。
上記の電解質膜の短絡検査方法において、前記取得工程では、複数の前記限定範囲の1つを特定するとともに特定された前記限定範囲の通電状態を取得する特定工程が複数回行われ、前記特定工程では、前回特定された前記限定範囲を前記複数の分割部位の1つ分だけ前記面方向に移動させた位置にある限定範囲を特定してもよい。
上記の電解質膜の短絡検査方法において、前記特定工程では、特定された前記限定範囲に含まれる前記複数の分割部位のそれぞれの電圧値を取得し、前記取得工程は、複数の前記限定範囲のそれぞれに含まれる前記複数の分割部位の電圧値を合成した合成電圧値を算出する合成電圧算出工程を含み、前記判定工程では、前記合成電圧値に基づいて前記電解質膜に前記短絡部位が存在しているか否かを判定してもよい。
上記の電解質膜の短絡検査方法において、前記取得工程は、前記合成電圧値に基づいて複数の前記限定範囲のそれぞれの合成抵抗値を算出する合成抵抗算出工程を含み、前記判定工程では、複数の前記限定範囲の前記合成抵抗値のうち最も低い合成抵抗値が抵抗閾値(R0)よりも低い場合に、前記最も低い合成抵抗値を有する前記限定範囲の中心付近に前記短絡部位が存在していると判定してもよい。
上記の電解質膜の短絡検査方法において、前記取得工程では、前記合成電圧値に基づいて複数の前記限定範囲のそれぞれの合成抵抗値を算出する合成抵抗算出工程を含み、前記判定工程では、抵抗閾値よりも低い合成抵抗値を有する限定範囲に前記短絡部位が存在していると判定してもよい。
上記の電解質膜の短絡検査方法において、前記限定範囲の大きさは、前記一組の測定端子部を介して前記電解質膜部材に通電した際に、前記複数の分割部位のそれぞれの電圧値のうちバックグラウンド電圧閾値(V0)以下のものの平均値をバックグラウンド電圧として算出し、前記複数の分割部位のそれぞれの前記電圧値から前記バックグラウンド電圧を差し引いた補正電圧値に基づいて設定されてもよい。
上記の電解質膜の短絡検査方法において、前記限定範囲の大きさは、予め特定された短絡部位の周辺に位置する前記複数の分割部位のそれぞれの電圧値を測定し、これら電圧値を合成する数を増やしながら合成電圧値を算出した際に、当該合成電圧値の変化量が所定値以下になった時の前記複数の分割部位の範囲に設定されてもよい。
上記実施形態は、固体高分子からなる電解質膜を有する電解質膜部材に通電することにより前記電解質膜に短絡部位が存在しているか否かを検査する電解質膜の短絡検査装置(10)であって、前記電解質膜部材を挟持するための第1測定端子部(36)及び第2測定端子部(40)と、前記第1測定端子部と前記第2測定端子部との間に通電を行うための電源(44)と、前記電解質膜部材の通電状態を取得する取得部(60)と、前記取得部で取得された通電状態に基づいて前記電解質膜に前記短絡部位が存在しているか否かを判定する判定部(68)と、を備え、前記第1測定端子部は、互いに電気的に絶縁した状態で複数配置され、前記取得部は、前記電解質膜部材のうち複数の前記第1測定端子部に対向する複数の分割部位の全体範囲よりも小さい範囲で互いに隣接する分割部位を含む限定範囲の通電状態を取得する、電解質膜の短絡検査装置を開示している。
10…短絡検査装置 12…電解質膜部材
16…電解質膜 36…第1測定端子部
40…第2測定端子部 44…電源
50…測定部 68…判定部
72…分割部位 74…限定範囲
R0…抵抗閾値 S…短絡部位
V0…バックグラウンド電圧閾値

Claims (9)

  1. 固体高分子からなる電解質膜を有する電解質膜部材に通電することにより前記電解質膜に短絡部位が存在しているか否かを検査する電解質膜の短絡検査方法であって、
    前記電解質膜部材の両面に配置された一組の測定端子部を介して、当該電解質膜部材を面方向に分割した複数の分割部位に通電する通電工程と、
    前記複数の分割部位の全体範囲よりも小さい範囲で互いに隣接する分割部位を含む限定範囲の通電状態を取得する処理を、互いに位置が異なる複数の前記限定範囲の各々について行う取得工程と、
    前記取得工程で取得された複数の前記限定範囲の前記通電状態に基づいて前記電解質膜に前記短絡部位が存在しているか否かを判定する判定工程と、を含む、電解質膜の短絡検査方法。
  2. 請求項1記載の電解質膜の短絡検査方法であって、
    複数の前記限定範囲のうち最も近接する限定範囲同士は、前記複数の分割部位の1つ分だけ前記面方向にずれて位置する、電解質膜の短絡検査方法。
  3. 請求項2記載の電解質膜の短絡検査方法であって、
    前記取得工程では、複数の前記限定範囲の1つを特定するとともに特定された前記限定範囲の通電状態を取得する特定工程が複数回行われ、
    前記特定工程では、前回特定された前記限定範囲を前記複数の分割部位の1つ分だけ前記面方向に移動させた位置にある限定範囲を特定する、電解質膜の短絡検査方法。
  4. 請求項3記載の電解質膜の短絡検査方法であって、
    前記特定工程では、特定された前記限定範囲に含まれる前記複数の分割部位のそれぞれの電圧値を取得し、
    前記取得工程は、複数の前記限定範囲のそれぞれに含まれる前記複数の分割部位の電圧値を合成した合成電圧値を算出する合成電圧算出工程を含み、
    前記判定工程では、前記合成電圧値に基づいて前記電解質膜に前記短絡部位が存在しているか否かを判定する、電解質膜の短絡検査方法。
  5. 請求項4記載の電解質膜の短絡検査方法であって、
    前記取得工程は、前記合成電圧値に基づいて複数の前記限定範囲のそれぞれの合成抵抗値を算出する合成抵抗算出工程を含み、
    前記判定工程では、複数の前記限定範囲の前記合成抵抗値のうち最も低い合成抵抗値が抵抗閾値よりも低い場合に、前記最も低い合成抵抗値を有する前記限定範囲の中心付近に前記短絡部位が存在していると判定する、電解質膜の短絡検査方法。
  6. 請求項4記載の電解質膜の短絡検査方法であって、
    前記取得工程では、前記合成電圧値に基づいて複数の前記限定範囲のそれぞれの合成抵抗値を算出する合成抵抗算出工程を含み、
    前記判定工程では、抵抗閾値よりも低い合成抵抗値を有する限定範囲に前記短絡部位が存在していると判定する、電解質膜の短絡検査方法。
  7. 請求項1~6のいずれか1項に記載の電解質膜の短絡検査方法であって、
    前記限定範囲の大きさは、前記一組の測定端子部を介して前記電解質膜部材に通電した際に、前記複数の分割部位のそれぞれの電圧値のうちバックグラウンド電圧閾値以下のものの平均値をバックグラウンド電圧として算出し、前記複数の分割部位のそれぞれの前記電圧値から前記バックグラウンド電圧を差し引いた補正電圧値に基づいて設定されている、電解質膜の短絡検査方法。
  8. 請求項7記載の電解質膜の短絡検査方法であって、
    前記限定範囲の大きさは、予め特定された短絡部位の周辺に位置する前記複数の分割部位のそれぞれの電圧値を測定し、これら電圧値を合成する数を増やしながら合成電圧値を算出した際に、当該合成電圧値の変化量が所定値以下になった時の前記複数の分割部位の範囲に設定されている、電解質膜の短絡検査方法。
  9. 固体高分子からなる電解質膜を有する電解質膜部材に通電することにより前記電解質膜に短絡部位が存在しているか否かを検査する電解質膜の短絡検査装置であって、
    前記電解質膜部材を挟持するための第1測定端子部及び第2測定端子部と、
    前記第1測定端子部と前記第2測定端子部との間に通電を行うための電源と、
    前記電解質膜部材の通電状態を取得する取得部と、
    前記取得部で取得された通電状態に基づいて前記電解質膜に前記短絡部位が存在しているか否かを判定する判定部と、を備え、
    前記第1測定端子部は、互いに電気的に絶縁した状態で複数配置され、
    前記取得部は、前記電解質膜部材のうち複数の前記第1測定端子部に対向する複数の分割部位の全体範囲よりも小さい範囲で互いに隣接する分割部位を含む限定範囲の通電状態を取得する、電解質膜の短絡検査装置。
JP2020109469A 2020-06-25 2020-06-25 電解質膜の短絡検査方法及び電解質膜の短絡検査装置 Active JP7041716B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020109469A JP7041716B2 (ja) 2020-06-25 2020-06-25 電解質膜の短絡検査方法及び電解質膜の短絡検査装置
US17/356,859 US11594743B2 (en) 2020-06-25 2021-06-24 Method of inspecting short circuit of electrolyte membrane and apparatus for inspecting short circuit of electrolyte membrane
CN202110703931.8A CN113848505A (zh) 2020-06-25 2021-06-24 电解质膜的短路检查方法和电解质膜的短路检查装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109469A JP7041716B2 (ja) 2020-06-25 2020-06-25 電解質膜の短絡検査方法及び電解質膜の短絡検査装置

Publications (2)

Publication Number Publication Date
JP2022006899A true JP2022006899A (ja) 2022-01-13
JP7041716B2 JP7041716B2 (ja) 2022-03-24

Family

ID=78975248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109469A Active JP7041716B2 (ja) 2020-06-25 2020-06-25 電解質膜の短絡検査方法及び電解質膜の短絡検査装置

Country Status (3)

Country Link
US (1) US11594743B2 (ja)
JP (1) JP7041716B2 (ja)
CN (1) CN113848505A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250548A (ja) * 2005-03-08 2006-09-21 Hioki Ee Corp ショート検出装置
JP2008027712A (ja) * 2006-07-20 2008-02-07 Toyota Motor Corp 燃料電池膜評価装置、燃料電池膜評価装置の製造方法及び燃料電池の制御装置
JP2009014649A (ja) * 2007-07-09 2009-01-22 Atsumi Tec:Kk イオン伝導性電解質膜の検査方法および検査装置
KR20100075294A (ko) * 2008-12-24 2010-07-02 주식회사 포스코 고전압을 이용한 고체 산화물 연료전지용 전해질막 및 셀 결함 검사 장치 및 검사 방법
JP2013218859A (ja) * 2012-04-09 2013-10-24 Toyota Motor Corp 燃料電池用の膜電極接合体の検査方法および検査装置、並びに、この検査方法により検査される膜電極接合体
JP2018160371A (ja) * 2017-03-23 2018-10-11 本田技研工業株式会社 電解質膜の短絡検査方法及びその装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131410B (zh) * 2007-10-12 2010-07-28 新源动力股份有限公司 一种质子交换膜燃料电池膜电极短路检测装置及检测方法
JP5489969B2 (ja) * 2010-06-25 2014-05-14 株式会社日本自動車部品総合研究所 検査装置および検査方法
JP5628139B2 (ja) * 2011-10-18 2014-11-19 シャープ株式会社 配線欠陥検査方法
US20190041468A1 (en) * 2016-02-19 2019-02-07 Toyota Motor Europe Systems and methods for battery micro-short estimation
JP6617096B2 (ja) * 2016-12-02 2019-12-04 本田技研工業株式会社 電解質膜の膜厚評価方法及びその装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250548A (ja) * 2005-03-08 2006-09-21 Hioki Ee Corp ショート検出装置
JP2008027712A (ja) * 2006-07-20 2008-02-07 Toyota Motor Corp 燃料電池膜評価装置、燃料電池膜評価装置の製造方法及び燃料電池の制御装置
JP2009014649A (ja) * 2007-07-09 2009-01-22 Atsumi Tec:Kk イオン伝導性電解質膜の検査方法および検査装置
KR20100075294A (ko) * 2008-12-24 2010-07-02 주식회사 포스코 고전압을 이용한 고체 산화물 연료전지용 전해질막 및 셀 결함 검사 장치 및 검사 방법
JP2013218859A (ja) * 2012-04-09 2013-10-24 Toyota Motor Corp 燃料電池用の膜電極接合体の検査方法および検査装置、並びに、この検査方法により検査される膜電極接合体
JP2018160371A (ja) * 2017-03-23 2018-10-11 本田技研工業株式会社 電解質膜の短絡検査方法及びその装置

Also Published As

Publication number Publication date
US20210408565A1 (en) 2021-12-30
CN113848505A (zh) 2021-12-28
US11594743B2 (en) 2023-02-28
JP7041716B2 (ja) 2022-03-24

Similar Documents

Publication Publication Date Title
US20140239962A1 (en) Fuel cell inspection method and inspection device
KR101251229B1 (ko) 막 전극 접합체 및 가스확산층의 위치 정렬 오차 검출 장치 및 방법
US9985297B2 (en) Durability test device of membrane electrode assembly and durability test method thereof
US20160077033A1 (en) Crack detection in ceramics using electrical conductors
JP7041716B2 (ja) 電解質膜の短絡検査方法及び電解質膜の短絡検査装置
CN109612921B (zh) 一种腐蚀监测传感器及其制备方法
JP2005071882A (ja) 固体高分子型燃料電池の電極電解質膜接合体の検査方法とその検査装置、固体高分子型燃料電池の単位セルの検査方法とその検査装置、および固体高分子型燃料電池の製造方法
WO2017159709A1 (ja) 検査装置
JP2019169372A (ja) 燃料電池の電流リーク検査方法
JP2005310790A (ja) 膜電極接合体内の短絡の検出及び位置確認のための装置及び方法
CN109828216B (zh) 提高燃料电池分区电化学阻抗谱测量准确度的装置及方法
JP4590965B2 (ja) 電流測定装置
US20160154062A1 (en) Inspection method of fuel battery
JP5078573B2 (ja) 燃料電池システム
JP6860391B2 (ja) 電解質膜の短絡検査方法及びその装置
JP2010262896A (ja) 燃料電池の評価方法、燃料電池の製造方法、および燃料電池の評価装置
JP5152629B2 (ja) 燃料電池のインピーダンス計測方法およびインピーダンス計測装置
EP3070461B1 (en) Impedance method for calculating proton conductivity of a proton-conducting membrane and proton conductivity measurement device
JP2014049266A (ja) 燃料電池の電解質膜の抵抗測定方法および測定装置
KR20230045916A (ko) 이온전도도 측정기 및 이를 이용한 이온전도도 측정방법
WO2005112176A1 (en) Apparatus for determining electropotential properties of a membrane electrode assembly for a polymer electrolyte membrane fuel cell
JP5474744B2 (ja) 燃料電池システム
JP5508633B2 (ja) 燃料電池のセル異常検出装置、燃料電池装置、および、燃料電池のセル異常検出方法
KR20220077252A (ko) 분리막 손상 검사지그, 분리막 손상 검사장치 및 검사방법
KR20230033529A (ko) 파우치형 전지 셀의 전기적 특성 측정을 위한 전지 셀의 검사 장비 및 검사 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220311

R150 Certificate of patent or registration of utility model

Ref document number: 7041716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150