JP2021515324A - 電圧レベル及びドループイベントのオンボードモニタリング - Google Patents

電圧レベル及びドループイベントのオンボードモニタリング Download PDF

Info

Publication number
JP2021515324A
JP2021515324A JP2020545269A JP2020545269A JP2021515324A JP 2021515324 A JP2021515324 A JP 2021515324A JP 2020545269 A JP2020545269 A JP 2020545269A JP 2020545269 A JP2020545269 A JP 2020545269A JP 2021515324 A JP2021515324 A JP 2021515324A
Authority
JP
Japan
Prior art keywords
processor
detector
frequency
voltage
count
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020545269A
Other languages
English (en)
Other versions
JPWO2019168944A5 (ja
Inventor
メーラ アミタブ
メーラ アミタブ
ジー. ルイス ダナ
ジー. ルイス ダナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of JP2021515324A publication Critical patent/JP2021515324A/ja
Publication of JPWO2019168944A5 publication Critical patent/JPWO2019168944A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0038Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing pulses or pulse trains according to amplitude)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/255Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques using analogue/digital converters of the type with counting of pulses during a period of time proportional to voltage or current, delivered by a pulse generator with fixed frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31721Power aspects, e.g. power supplies for test circuits, power saving during test
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Sources (AREA)
  • Microcomputers (AREA)
  • Debugging And Monitoring (AREA)

Abstract

プロセッサ(100)は、プロセッサの複数のポイントに配置された複数の電圧ドループ検出器(130)を含む。検出器は、リアルタイムで、電圧レベルをモニタリングし、ドループイベントが検出された場合にプロセッサに警告する。複数のドループを同時に検出することができ、検出された各ドループイベントが警告を生成し、この警告をクロック制御モジュール等のプロセッサモジュールに送信し、このプロセッサモジュールが、検出されたドループに基づいて動作する。各検出器は、リングオシレータ(206)を用いて、周期信号と、その信号に基づく対応するカウントと、を生成し、信号の周波数は、モニタリングされている対応するポイントにおける電圧に基づいて変化する。【選択図】図7

Description

(関連技術の説明)
最新のプロセッサ設計は、従来の設計と比較して、より多くの電力を消費し、回路密度を高める傾向が続いている。このような傾向により、ノイズや他の変動(プロセッサ負荷の変化による電圧レベルの変化等)に対する許容度が低くなり、プロセッサのパワーバジェットに対する要求が厳しくなる。閾値の大きさを超えると、これらの変動は、電圧「ドループ」と呼ばれる。ドループは、プロセッサの動作に悪影響を与える可能性がある。例えば、ドループは、データ破損、論理ゲートの動作の失敗、命令処理のスローダウン、及び、命令全体の適切な実行の失敗等の望ましくない影響を引き起こす可能性がある。しかしながら、従来のプロセッサ設計における電圧及びドループの検出及びモニタリングは、比較的非効率的である。
本開示は、添付の図面を参照することによって、より良く理解することができ、その多くの特徴及び利点が当業者に明らかになる。異なる図面で同じ符号を使用することは、類似又は同一の要素を示す。
いくつかの実施形態による、プロセッサの異なるポイントにおける電圧及び電圧ドループを検出及びモニタリングする複数のドループ検出器を含むプロセッサを備える処理システムである。 いくつかの実施形態による、リングオシレータ及び比較モジュールを用いて、プロセッサのパワーバスにおける電圧をモニタリングする図1のドループ検出器のブロック図である。 いくつかの実施形態による、図1のプロセッサ上のポイントにおける電圧及びドループイベントの検出及びモニタリングを示す図である。 いくつかの実施形態による、図1のプロセッサにおけるクロック及びクロックストレッチ信号を示す図である。 いくつかの実施形態による、図1のドループ検出器に用いられるリングオシレータの出力をカウントするブロック図である。 いくつかの実施形態による、プロセッサのドループイベントをモニタリングする方法を示すフロー図である。 いくつかの実施形態による、プロセッサの複数のポイントにおいてドループイベントを同時にモニタリングする方法を示すフロー図である。
本明細書には、1つ以上の電圧/ドループ検出器(複数の検出器)を使用することによって、プロセッサの複数のポイントにおいて電圧及び電圧ドループを検出及びモニタリングする方法及びシステムが開示される。これらの検出器は、プロセッサ全体の様々なポイントに配置され、リアルタイムで、電圧レベルをモニタリングし、ドループイベントが検出された場合にプロセッサに警告する。いくつかの実施形態では、複数のドループが同時に検出され、検出された各ドループイベントが、検出されたドループに基づいて動作するようにプロセッサモジュール(クロック制御モジュール等)に送られる警告を生成する。各検出器は、リングオシレータを用いて、周期信号と、その信号に基づく対応するカウントとを生成し、信号の周波数は、モニタリングされている対応するポイントにおける電圧に基づいて変化する。したがって、入力電圧(例えば、プロセッサに送られる電源電圧)がドループイベントによって低下すると、リングオシレータの周期信号の周波数が低下し、ドループを示すカウントにおいて対応する変化が生じる。また、検出器は、電圧レベルをモニタリングし、ドループイベントの前、最中及び後に電圧の正確な読み出しを提供することにより、プロセッサがドループイベントにより適切に応答することを可能にする。
また、検出器は、リングオシレータから所定の基準値(閾値)カウントを受信する比較モジュールを使用する。この閾値は、指定された許容値であり、この値を下回ると、電源電圧がドループイベントを起こしていると特徴付けられる。リングオシレータからのカウントが閾値を下回ると、比較モジュールは、警告をプロセッサに送信する。次に、プロセッサは、実行している命令の数を減らすこと、又は、1つ以上のシステムクロックにクロックストレッチングを実行することを含むが、これらに限定されない、いくつかの是正措置を行う。さらに、いくつかの実施形態では、これらの検出器は、プロセッサ内に形成され、プロセッサを形成するときと同時に同じプロセスを使用して製造される。さらに他の実施形態では、検出器からのカウント及び警告は、後の分析のためにメモリに記憶される。リングオシレータを用いることにより、ドループ検出器は、比較的小さな回路フットプリントをサポートする。これにより、プロセッサの様々なポイントで複数の検出器を使用することが可能になり、ドループイベントに対するより詳細な応答が可能になるだけでなく、ドループイベントの比較的高速な検出及び改善がサポートされる。
図1は、いくつかの実施形態による、プロセッサの異なるポイントにおける電圧及び電圧ドループを検出及びモニタリングする複数のドループ検出器を含むプロセッサ102を備える処理システム100である。図1は、複数の内部モジュールを含むプロセッサ102を示しており、これらの内部モジュールは、第1プロセッサコア104と、第2プロセッサコア106と、入出力(I/O)バッファ108と、レベル1(L1)キャッシュ(メモリ)110と、L2キャッシュ112と、L3キャッシュ114と、第1基準クロック116と、第2基準クロック118と、クロック制御モジュール120と、複数のドループ検出器(検出器)130A〜130Fと、を含むが、これらに限定されない。また、プロセッサ102は、クロック制御モジュール120から各基準クロック116,118への制御線を含み、これらの制御線は、第1クロック116への第1制御線122と、第2クロック118への第2制御線124と、を含む。図示されたプロセッサ102のモジュールは、代表的なものに過ぎず、他の実施形態では、プロセッサ102は、他のモジュール、デバイス及び回路を含む。
プロセッサ102は、概して、電子デバイスに代わってタスクを実行するために、コンピュータプログラムの形式で構成された命令セットを実行するように構成されている。したがって、プロセッサ102は、デスクトップ又はラップトップコンピュータ、サーバ、スマートフォン、タブレット、ゲームコンソール等の様々な電子デバイスの何れにも使用され得る。第1コア及び第2コア104,106は、プロセッサの命令を実行し、互いに独立して動作し、独自のクロックを有し、異なるプロセス、命令及びI/O信号を実行する機能を有する。I/Oバッファ108は、プロセッサ102内のモジュールとの間の入力信号及び出力信号と、プロセッサ102の外部からの信号と、を制御する。
L1キャッシュメモリ、L2キャッシュメモリ及びL3キャッシュメモリ110,112,114の各々は、概して、データを記憶するように構成されたメモリデバイスであるので、ランダムアクセスメモリ(RAM)メモリモジュール、不揮発性メモリデバイス(例えば、フラッシュメモリ)等とすることができる。L1キャッシュメモリ、L2キャッシュメモリ及びL3キャッシュメモリ110,112,114は、コア104,106による後の取得のために他のシステムメモリから取得したデータを記憶し、処理システム100のメモリ階層を形成する。さらに、プロセッサ102のメモリ階層は、図1に示されていない追加のキャッシュ等の他のメモリモジュールを含んでもよい。
第1基準クロック及び第2基準クロック116,118は、対応するコア104,106及び他のモジュールに対して、安定したシステム同期信号を供給する。クロック制御モジュール120は、クロック116,118の周波数を制御する。異なる実施形態では、クロック116,118は、同じ又は異なる周波数で動作し、各クロック信号の周波数は、クロック制御モジュール120によって指示され、プロセッサ102における動作条件に基づいて、低下(クロックストレッチ)又は増加する。
検出器130A〜130Fは、プロセッサ102内のポイントにおける電圧をリアルタイムにモニタリングすることによって、ドループイベントを検出する。いくつかの実施形態では、検出器130A〜130Fの各々は、リングオシレータと比較モジュールとを含む。検出器130A〜130Fは、リングオシレータを使用してドループイベントを検出し、その結果、本明細書にさらに説明するようにプロセッサ102に送信される警告信号を生成する。リングオシレータは、電源電圧及び周囲温度が安定している場合に、安定した周期信号を生成する。電源電圧又は温度の何れか一方又は両方が変化すると、リングオシレータの周期信号も変化の大きさに正比例して変化する。また、リングオシレータは、リングオシレータの周期信号の単一のクロックサイクルの持続時間を表すカウントを生成する。このカウントは、リングオシレータによって検出された、プロセッサ102における電圧レベルの正確な表現である。また、このカウントを使用して、ドループイベントがプロセッサ102に送られる間、その前、及び、その後に電圧レベルをモニタリングする。このようにして、プロセッサ102に送られる電圧レベルがリアルタイムで測定及び定量され、このデータは、さらなる分析のためにプロセッサ102によって使用される。例えば、いくつかの実施形態では、このデータを使用して、異なるドループイベントを特徴付けて、異なるタイプのドループイベントに対する異なる応答をサポートする。比較モジュールは、カウントを受信し、このカウントが所定の閾値レベルを下回った場合に警告を生成する。動作中、ドループ検出器は、カウントをモニタリングし、モニタリングされた電圧の変化によってカウントが変化すると、警告を送信する。
電力がプロセッサ102全体に分配される場合に、電源電圧の変動が存在する。したがって、検出器130A〜130Fは、プロセッサ102内の複数のポイントに配置され、異なるポイントにおいて電圧レベルを同時にモニタリングする。いくつかの実施形態では、複数の検出器130A〜130Fの各々は、プロセッサ102全体に亘ってドループを検出するように、単一のポイントにおいて電圧を感知する。さらに他の実施形態では、単一の検出器130Aがプロセッサ102内の複数のポイントに電気的に接続され、複数の位置においてドループをモニタリング及び検出する。
いくつかの実施形態では、クロック制御モジュール120は、検出器130A〜130Fから制御信号を受信し、ドループイベントが検出される毎にクロックストレッチング動作を開始するように指示された信号をクロック116,118に送信する。クロック制御モジュール120は、概して、クロックストレッチング技術を使用してクロック116,118の出力周波数を変更することによって、プロセッサ102の基準クロック116,118を管理するように構成されている。クロックストレッチングが発生すると、クロック116,118の周波数が低下し、プロセッサ102内の全てのモジュールの電力使用量も低減し、コア104,106がより低速で命令を実行し、電力使用量をさらに減少させ、クロックストレッチング応答を引き起こすドループイベントが緩和される。このようにして、ドループイベントを緩和して、プロセッサ102への悪影響を最小限にする。
図2は、いくつかの実施形態による、リングオシレータ206及び比較モジュール208を用いて、プロセッサ102のパワーバス204における電圧212をモニタリングする図1のドループ検出器130Aのブロック図である。検出器130Aは、電圧検出線212を介してローカルパワーバス204に電気的に接続されており、図1のプロセッサ102のモジュール202に電力を供給する。モジュール202は、ドループの検出が望まれるプロセッサ102のモジュールを表し、図1を参照して説明したように、プロセッサ102のコア、キャッシュ、I/Oバッファ等である。別の実施形態では、検出器130Aをパワーピンに接続して、モジュール202に供給される電圧を検出する。検出器130Aは、リングオシレータ206と比較モジュール208とを含み、比較モジュール208は、リングオシレータ206の出力を閾値216と比較し、図1のクロック制御モジュール120に送信される応答210を生成する。
リングオシレータ206は、電源電圧及び周囲温度が安定している場合に、安定した周期信号を生成する。電源電圧又は温度の何れか一方又は両方が変化すると、リングオシレータ206の周期信号も変化の大きさに正比例して変化する。リングオシレータ206は、カウント214を生成し、このカウント214は、リングオシレータ206によって生成される周期信号の周波数の定量的表現である。一例として、100MHzリングオシレータ(すなわち、100MHz信号を生成するリングオシレータ)によって生成されるカウントを1000とすることができる。リングオシレータ206の周期信号が変化すると、対応するカウント214も比例して変化する。上記の例に従って、100MHzリングオシレータが95MHzで動作している場合、カウントを1050とすることができる。いくつかの実施形態では、カウント214は、リングオシレータ206からの出力信号の個々のサイクル毎に一意のカウント214を提供するために、クロックサイクル毎にリセットされる。また、いくつかの実施形態では、カウント214は、経時的にインクリメントし、結果として、クロックサイクルが低速になるほどカウント214が増加し、クロックサイクルが高速になるほどカウント214が低減するようになる。或いは、いくつかの実施形態では、カウント214は、経時的にデクリメントし、結果として、クロックサイクルが高速になるほどカウント214が増加し、クロックサイクルが低速になるほどカウント214が低減する。一実施形態では、検出器130Aは、合計持続時間において3ミリボルト(mV)及び1ナノ秒(ns)未満のドループを検出する。
また、検出器130Aは、所定の最小基準周波数の十進表現である閾値216を含む。比較モジュール208は、リングオシレータ206からのカウント214を入力として使用し、その十進値を入力閾値216と比較する。これらの2つの入力から、比較モジュール208は、応答210を生成し、さらなる動作のために、応答210をプロセッサ102のクロック制御モジュール120に送信する。いくつかの実施形態では、カウント214は、プロセッサ102による後の取得のためにメモリに記憶される。
動作中、検出器130Aは、電圧検出線212をモニタリングする。リングオシレータ206は、量子化され、カウント214として比較モジュール208に送信される周期信号を生成する。また、比較モジュール208は、閾値216を受信し、2つの値を比較する。公称動作の間(すなわち、ドループがない場合)、カウント214は閾値216を上回り、比較モジュール208は応答210を生成しない。ローカルパワーバス204上にドループ状態が現れると、リングオシレータ206の周期信号の周波数が低下し、カウント214を減少させる。比較モジュール208は、カウント214を閾値216と比較し、カウントが閾値216を下回ると、クロック制御モジュール120に送信される応答210を生成する。したがって、検出器130A〜130Fは、プロセッサ102上のポイントに印加された電圧をリアルタイムでモニタリングし、ドループイベントの前、最中及び後に正確な電圧データを提供する。
いくつかの実施形態では、カウント214は、プロセッサクロックサイクル毎にリセットされる。応答210を受信すると、クロック制御モジュール120は、本明細書で説明するように、第1クロック116及び第2クロック118からの信号をストレッチすること、又は、プロセッサ102が実行している命令の数を減らすことを含むが、これらに限定されないさらなる動作を行う。他の動作も可能であり、示された実施例は、限定するものではない。
図3は、いくつかの実施形態による、図1のプロセッサ102上のポイントにおける電圧及びドループイベント300の検出及びモニタリングを示す図である。ドループイベント300は、ドループイベントの一例であるが、より長い又はより短い持続時間又は大きさを有するイベントを含む他のドループイベントも可能である。ドループイベント300は、横軸306にナノ秒(ns)の時間、及び、縦軸304に電圧を有するグラフ上に表示される。このグラフは、100%の公称電圧308の基準線と、(図2に示す)閾値216の基準線と、を表示している。図3では、閾値216は、公称電圧308の97%に設定されているが、他の値も可能である。この図は、電圧ドループ302の波形も表示しており、このドループ302は、約10nsの合計持続時間を有し、約3nsの間、公称電圧レベルの3%未満の大きさを有し、次の5nsを超えると公称電圧308に戻る。図1を参照して説明したように、1nsと短く、50mVの大きさのドループイベントは、プロセッサ102の動作において、命令のミスやモジュールの誤動作等の悪影響をもたらす。図2に示す検出器130Aを使用して、ドループイベント300等のドループを検出及びモニタリングし、応答210を図2に示すクロック制御モジュール120に送信する。
図4は、いくつかの実施形態による、図1のプロセッサ102におけるクロック及びクロックストレッチ信号400を示す図である。信号400は、100%の周波数レベルで動作するクロックのクロック信号402を含む。この例では、クロック信号402は、1000のカウント214を有する矩形波である。一方、クロック信号404は、クロック信号402の100%の周波数レートと比較して低減した周波数レートで動作するクロック(例えば、公称周波数の75%で動作するクロック)を示している。低減した周波数レートのクロック信号404の結果として得られるカウント214は1250であり、カウント214は、経時的にインクリメントし、周波数レートが低減するにつれて増加するカウント214を形成する。本明細書で説明するように、クロック信号404が元のクロック信号402から減速するので、低減したレートのクロック信号404は、「クロックストレッチング」とも呼ばれる。ハイブリッドクロック信号406は、システムクロックのクロックストレッチングの一例であり、公称レート(例えば、クロック信号402)から低減したレート(例えば、クロック信号404)に遷移するクロック信号を示している。ハイブリッドクロック信号406は、中断又はスプリアスノイズ無しに或る周波数から別の周波数に滑らかに遷移する。いくつかの実施形態では、ハイブリッドクロック信号406は、図2に示すように、検出器130Aがドループイベントを検出及びモニタリングし、クロック制御モジュール120に対する応答210を生成した結果として形成され、クロック制御モジュール120は、第1制御線122を生成して、第1クロック116の周波数レートを低下させる。
図5は、いくつかの実施形態による、図1のドループ検出器130A〜130Fに用いられるリングオシレータ500の出力をカウントするブロック図である。図5は、100%の周波数レートで動作する図4のクロック信号402と、低下した周波数レートで動作する図4のストレッチクロック信号404と、のグラフを含む。所定のサイクルについて、図1の検出器130Aは、図4で説明したクロックの周波数を表すカウント214を生成する。少なくとも1つの実施形態では、単一のクロックサイクルがアクティブである場合、カウント214がインクリメントされ、結果として、周波数が低いほどカウント214が高くなる。他の実施形態では、カウント214は、所定の値からデクリメントされ、結果として、周波数が低いほどカウント214が小さくなる。クロック信号402について、1サイクルのカウント502は1000であり、カウント504は、クロックサイクルの終了時にリセットされる。カウントは、クロックサイクル毎に継続し、この例では、0から始まり1000までインクリメントし、その後リセットされ、クロックが動作し続ける場合に繰り返される継続的なデータフローをもたらす。低減したクロック信号404について、カウント506は1500である。これにより、0から始まり1500までインクリメントした後に0にリセットされ、次に、再びインクリメントし始める継続的なデータフローが生じる。いくつかの実施形態では、カウント214は、任意の数で始まり、クロック信号がアクティブである限りデクリメントしてもよい。
図6は、いくつかの実施形態による、図1のプロセッサ102のドループイベント300をモニタリングする方法600を示すフロー図である。方法600は、ブロック602において、図1で説明したように、プロセッサ102における電圧をモニタリングする単一のドループ検出器130Aを含む。この実施形態では、プロセッサ102内の1つのポイントに供給される電圧をモニタリングするために使用される単一の検出器130Aが存在する。フロー図は、ブロック604に続き、ここで、検出器130Aは、図2で説明したように、リングオシレータ206及び比較モジュール208を使用することによって検出された電圧に基づいてカウント214を生成する。カウント214は、リングオシレータ206の出力のデジタル表現である。リングオシレータ206の出力は、入力電圧又は温度の変化に応じて変化するため、カウント214の変化をもたらす。次に、ブロック606において、比較モジュール208は、カウント214及び閾値216を入力として受け入れ、2つの値が一致するか異なるかを判別し、異なる場合に、差の大きさを計算する。次に、判別ブロック610において、比較モジュールは、カウント214が閾値216を超えているか否か、及び、その大きさを判別する。このようにして、検出器130Aは、ドループイベントを検出する。ブロック610における判別が「いいえ」である場合、フローは開始ブロック602に戻る。しかしながら、ブロック610における判別が「はい」である場合、ドループイベントが検出され、方法600はブロック612に進む。ブロック612において、比較モジュール208は、応答210を生成し、さらなる動作のために、この応答210をプロセッサ102のクロック制御モジュール120に送信する。最後に、ブロック614において、クロック制御モジュール120は、第1クロック116のクロック周波数を低下させ、電力使用量を制限し、ドループイベントの影響を最小限にする。
図7は、いくつかの実施形態による、図1のプロセッサ102の複数のポイントにおいてドループイベント300を同時にモニタリングする方法700を示すフロー図である。方法700は、上述した方法600と同様であるが、プロセッサ102の複数のポイントを同時にモニタリングするために複数の検出器130A〜130Fを使用する。さらに、方法700は、例えば、プロセッサ102内の異なるシステムクロック又は異なるモジュールに影響を与え得る複数の応答を用いる。
方法700は、ブロック702において、図1で説明したように、単一のドループ検出器130Aがプロセッサ102において電圧をモニタリングすることを含む。フロー図は、ブロック704に進み、ここで検出器130Aは、図2で説明したように、リングオシレータ206及び比較モジュール208を使用して検出された電圧に基づいてカウント214を生成する。カウント214は、リングオシレータ206の出力のデジタル表現である。リングオシレータ206の出力は、入力電圧又は温度の変化に応じて変化するため、カウント214の変化をもたらす。次に、ブロック706において、比較モジュール208は、カウント214及び第1閾値708を入力として受け入れ、2つの値が一致するか異なるかを判別し、異なる場合、差の大きさを計算する。次に、判別ブロック710において、比較モジュールは、カウント214が第1閾値708を超えているか否か、及び、その大きさを判別する。このようにして、検出器130Aはドループイベントを検出する。ブロック710における判別が「いいえ」である場合、フローは開始ブロック702に戻る。しかしながら、判別が「はい」である場合、ドループイベントが検出され、方法700はブロック712に進む。ブロック712において、比較モジュール208は、応答210を生成し、さらなる動作のために、この応答210をプロセッサ102のクロック制御モジュール120に送信する。最後に、ブロック714において、クロック制御モジュール120は、第1クロック116のクロック周波数を低下させ、電力使用量を制限し、ドループイベントの影響を最小限にする。
上述したブロック702,704,706,710,712,714と同様に、第2検出器は、第1検出器と同時にプロセッサ102内の別のポイントをモニタリングする。方法700は、ブロック722に進み、単一のドループ検出器130Aは、図1で説明したように、プロセッサ102において電圧をモニタリングする。フロー図は、ブロック724に進み、検出器130Aは、図2で説明したように、リングオシレータ206及び比較モジュール208を使用して検出された電圧に基づいてカウント214を生成する。カウント214は、リングオシレータ206の出力のデジタル表現である。リングオシレータ206の出力は、入力電圧又は温度の変化に応じて変化するため、カウント214の変化をもたらす。次に、ブロック726において、比較モジュール208は、カウント214及び第2閾値728を入力として受け入れ、2つの値が一致するか異なるかを判別し、異なる場合、差の大きさを計算する。次に、判別ブロック730において、比較モジュールは、カウント214が第2閾値728を超えているか否か、及び、その大きさを判別する。このようにして、検出器130Aはドループイベントを検出する。ブロック730における判別が「いいえ」である場合、フローは開始ブロック722に戻る。しかしながら、判別が「はい」である場合、ドループイベントが検出され、方法700はブロック732に進む。ブロック732において、比較モジュール208は、応答210を生成し、さらなる動作のために、この応答210をプロセッサ102のクロック制御モジュール120に送信する。最後に、ブロック734において、クロック制御モジュール120は、第2クロック118のクロック周波数を低下させ、電力使用量を制限し、ドループイベントの影響を最小限にする。
第1態様において、方法は、第1検出器によって、プロセッサの第1ポイントで第1電圧レベルをモニタリングすることを含むことができ、第1検出器は、第1リングオシレータを含み、第1検出器は、第1電圧レベルを示す第1カウントを生成し、第1カウントを所定の第1閾値と比較して第1電圧ドループ状態を検出し、第1電圧ドループ状態を検出したことに応じて第1クロック信号の周波数を調整する。
第1態様の一実施形態では、方法は、第1電圧ドループ状態を検出したことに応じて第2クロック信号の周波数を調整することを含む。特定の実施形態では、第2クロック信号の周波数を調整することは、第1クロック周波数を調整することとは異なる大きさで第2クロック信号の周波数を調整することを含む。別の実施形態では、方法は、第1電圧ドループ状態を検出したことに応じて、プロセッサがサイクル当たりに実行する動作の数を調整することを含む。
第1態様の別の実施形態では、方法は、第2検出器によって、プロセッサの第2ポイントにおける第2電圧レベルをモニタリングすることを含み、第2検出器は、第2リングオシレータを含み、第2検出器は、第2電圧レベルを示す第2カウントを生成し、第2カウントを所定の第2閾値と比較して第2電圧ドループ状態を検出し、第2電圧ドループ状態を検出したことに応じて第2クロック信号の周波数を調整する。特定の実施形態では、第1閾値は、第2閾値と異なる。別の特定の実施形態では、第2クロック信号の周波数を調整することは、第1クロック周波数を調整することとは異なる大きさで第2クロック信号の周波数を調整することを含む。
第2態様では、方法は、複数の検出器によって、プロセッサ上の複数のポイントにおける電圧レベルをモニタリングすることを含むことができ、各検出器は、リングオシレータを含み、各検出器は、対応する電圧レベルを示すカウントを生成し、カウントを複数の所定の閾値と比較して第1電圧ドループ状態を検出し、第1電圧ドループ状態に基づいて複数のクロックの周波数を調整する。
第2態様の一実施形態では、検出器は、複数のクロックのうち異なるクロックの周波数を異なる大きさで調整する。別の実施形態では、方法は、カウントを複数の所定の閾値と比較して第2電圧ドループ状態を検出することと、第2電圧ドループ状態に基づいて複数のクロックの周波数を調整することと、を含む。さらに別の実施形態では、方法は、比較に基づいて、プロセッサが実行する動作の数を低減させることを含む。
第3態様では、モニタリングシステムは、プロセッサ上の第1ポイントに配置された第1検出器を含むことができ、第1検出器は、第1電圧レベルをモニタリングし、第1検出器は、第1リングオシレータを含み、第1検出器は、第1電圧レベルを示す第1カウントを生成する。また、システムは、第1カウントを所定の第1閾値と比較して第1電圧ドループ状態を検出する第1比較モジュールと、第1クロック制御モジュールと、を含み、第1クロック制御モジュールは、第1比較モジュールが第1電圧ドループ状態を検出したことに応じて、第1クロック信号の周波数を調整する。
第3態様の一実施形態では、第1クロック制御モジュールは、第1比較モジュールが第1電圧ドループ状態を検出したことに応じて、第2クロック信号の周波数を調整する。特定の実施形態では、第1クロック制御モジュールは、第2クロック信号の周波数を、第1クロック周波数とは異なる大きさで調整する。さらなる実施形態では、プロセッサは、第1比較モジュールが第1電圧ドループ状態を検出したことに応じて、プロセッサがサイクル当たりに実行する動作の数を調整する。
第3態様の別の実施形態では、モニタリングシステムは、プロセッサ上の第2ポイントに配置された第2検出器であって、第2検出器は、第2電圧レベルをモニタリングし、第2検出器は、第2リングオシレータを含み、第2検出器は、第2電圧レベルを示す第2カウントを生成する、第2検出器と、第2カウントを所定の第2閾値と比較して第2電圧ドループ状態を検出する第2比較モジュールと、第2クロック制御モジュールであって、第2クロック制御モジュールは、第2クロック信号の周波数を調整する、第2クロック制御モジュールと、を備える。特定の実施形態では、第1閾値は、第2閾値と異なる。別の特定の実施形態では、第2クロック制御モジュールは、第1クロック制御モジュールが第1クロック信号の周波数を調整することとは異なる大きさで第2クロック信号の周波数を調整する。さらに別の特定の実施形態では、第1クロック信号は、プロセッサのプロセッサコアに供給され、第2クロック信号は、プロセッサのキャッシュに供給される。さらなる特定の実施形態では、プロセッサは、第2比較モジュールが第2電圧ドループ状態を検出したことに応じて、プロセッサが実行する動作の数を低減させる。
概要説明において上述したアクティビティ又は要素の全てが必須ではないこと、特定のアクティビティ又はデバイスの一部が必要とされない場合があること、説明したものに加えて1つ以上のさらなるアクティビティが実行されてもよいし、要素が含まれてもよいことに留意されたい。さらに、アクティビティがリストされる順序は、必ずしもこれらが実行される順序ではない。また、これらの概念は、特定の実施形態を参照して説明されている。しかし、当業者は、添付の特許請求の範囲に記載されている本発明の範囲から逸脱することなく、様々な修正及び変更を行うことができることを理解する。したがって、明細書及び図面は、限定的な意味ではなく例示的な意味でみなされるべきであり、このような全ての修正は、本発明の範囲内に含まれることが意図される。
特定の実施形態に関して、利益、他の利点、及び、問題に対する解決策が上述されている。但し、利益、他の利点、及び、問題に対する解決策、並びに、任意の利益、利点若しくは解決策を生じさせるか、又は、より顕著になる可能性のある任意の特徴(複数可)は、何れか又は全ての請求項の重要な、必要な若しくは不可欠な特徴として解釈されるべきではない。さらに、開示された発明は、本明細書の教示の利益を受ける当業者には明らかな、異なっているが同等の方法で修正され、実施されてもよいので、上記に開示された特定の実施形態は、例示に過ぎない。添付の特許請求の範囲に記載されているもの以外に、本明細書に示されている構造又は設計の詳細に対する制限は意図されない。したがって、上記に開示された特定の実施形態は変更又は修正されてもよく、このような全ての変更は、開示された発明の範囲内であるとみなされることが明らかである。したがって、本明細書において求められる保護は、特許請求の範囲に記載されている通りである。

Claims (20)

  1. 第1検出器(130A)によって、プロセッサ(100)の第1ポイントにおいて第1電圧レベル(212)をモニタリングすることであって、前記第1検出器は、第1リングオシレータ(206)を含み、前記第1検出器は、前記第1電圧レベルを示す第1カウント(214)を生成する、ことと、
    前記第1カウントを所定の第1閾値(216)と比較して、第1電圧ドループ状態を検出することと、
    前記第1電圧ドループ状態を検出したことに応じて、第1クロック信号(116)の周波数を調整することと、を含む、
    方法。
  2. 前記第1電圧ドループ状態を検出したことに応じて、第2クロック信号(118)の周波数を調整することをさらに含む、
    請求項1の方法。
  3. 前記第2クロック信号の周波数を調整することは、前記第1クロック周波数を調整することとは異なる大きさで前記第2クロック信号の周波数を調整することを含む、
    請求項2の方法。
  4. 前記第1電圧ドループ状態を検出したことに応じて、前記プロセッサがサイクル当たりに実行する動作の数を調整することをさらに含む、
    請求項1の方法。
  5. 第2検出器(130B)によって、前記プロセッサの第2ポイントにおいて第2電圧レベルをモニタリングすることであって、前記第2検出器は、第2リングオシレータを含み、前記第2検出器は、前記第2電圧レベルを示す第2カウントを生成する、ことと、
    前記第2カウントを所定の第2閾値と比較して、第2電圧ドループ状態を検出することと、
    前記第2電圧ドループ状態を検出したことに応じて、第2クロック信号の周波数を調整することと、をさらに含む、
    請求項1の方法。
  6. 前記第1閾値は、前記第2閾値とは異なる、
    請求項5の方法。
  7. 前記第2クロック信号の周波数を調整することは、前記第1クロック周波数を調整することとは異なる大きさで前記第2クロック信号の周波数を調整することを含む、
    請求項5の方法。
  8. 複数の検出器(130)によって、プロセッサ(100)上の複数のポイントにおいて電圧レベルをモニタリングすることであって、各検出器は、リングオシレータ(206)を含み、各検出器は、対応する電圧レベルを示すカウント(214)を生成する、ことと、
    前記カウントを複数の所定の閾値(216)と比較して、第1電圧ドループ状態を検出することと、
    前記第1電圧ドループ状態に基づいて複数のクロック(116,118)の周波数を調整することと、を含む、
    方法。
  9. 前記検出器は、異なる大きさで前記複数のクロックのうち異なるクロックの周波数を調整する、
    請求項8の方法。
  10. 前記カウントを前記複数の所定の閾値と比較して、第2電圧ドループ状態を検出することと、
    前記第2電圧ドループ状態に基いて前記複数のクロックの周波数を調整することと、をさらに含む、
    請求項8の方法。
  11. 前記比較することに基づいて、前記プロセッサが実行する動作の数を低減させることをさらに含む、
    請求項8の方法。
  12. プロセッサ(100)上の第1ポイントに配置された第1検出器(130A)であって、前記第1検出器は、第1電圧レベル(212)をモニタリングし、前記第1検出器は、第1リングオシレータ(206)を含み、前記第1検出器は、前記第1電圧レベルを示す第1カウント(214)を生成する、第1検出器と、
    前記第1カウントを所定の第1閾値(216)と比較して、第1電圧ドループ状態を検出する第1比較モジュール(208)と、
    第1クロック制御モジュール(120)と、を備え、
    前記第1クロック制御モジュールは、前記第1比較モジュールが前記第1電圧ドループ状態を検出したことに応じて、第1クロック信号(116)の周波数を調整する、
    モニタリングシステム。
  13. 前記第1クロック制御モジュールは、前記第1比較モジュールが前記第1電圧ドループ状態を検出したことに応じて、第2クロック信号(118)の周波数を調整する、
    請求項12のモニタリングシステム。
  14. 前記第1クロック制御モジュールは、前記第1クロック周波数とは異なる大きさで前記第2クロック信号の周波数を調整する、
    請求項13のモニタリングシステム。
  15. 前記プロセッサは、前記第1比較モジュールが前記第1電圧ドループ状態を検出したことに応じて、前記プロセッサがサイクル当たりに実行する動作の数を調整する、
    請求項12のモニタリングシステム。
  16. プロセッサ上の第2ポイントに配置された第2検出器(130B)であって、前記第2検出器は、第2電圧レベルをモニタリングし、前記第2検出器は、第2リングオシレータを含み、前記第2検出器は、前記第2電圧レベルを示す第2カウントを生成する、第2検出器と、
    前記第2カウントを所定の第2閾値と比較して、第2電圧ドループ状態を検出する第2比較モジュールと、
    第2クロック制御モジュールであって、前記第2クロック制御モジュールは、第2クロック信号の周波数を調整する、第2クロック制御モジュールと、をさらに備える、
    請求項12のモニタリングシステム。
  17. 前記第1閾値は、前記第2閾値とは異なる、
    請求項16のモニタリングシステム。
  18. 前記第2クロック制御モジュールは、前記第1クロック制御モジュールが前記第1クロック信号の周波数を調整することとは異なる大きさで前記第2クロック信号の周波数を調整する、
    請求項16のモニタリングシステム。
  19. 前記第1クロック信号は、前記プロセッサのプロセッサコアに供給され、前記第2クロック信号は、前記プロセッサのキャッシュに供給される、
    請求項16のモニタリングシステム。
  20. 前記プロセッサは、前記第2比較モジュールが前記第2電圧ドループ状態を検出したことに応じて、前記プロセッサが実行する動作の数を低減させる、
    請求項16のモニタリングシステム。
JP2020545269A 2018-02-28 2019-02-27 電圧レベル及びドループイベントのオンボードモニタリング Pending JP2021515324A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/907,744 US10627883B2 (en) 2018-02-28 2018-02-28 Onboard monitoring of voltage levels and droop events
US15/907,744 2018-02-28
PCT/US2019/019783 WO2019168944A1 (en) 2018-02-28 2019-02-27 Onboard monitoring of voltage levels and droop events

Publications (2)

Publication Number Publication Date
JP2021515324A true JP2021515324A (ja) 2021-06-17
JPWO2019168944A5 JPWO2019168944A5 (ja) 2022-03-03

Family

ID=67685815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020545269A Pending JP2021515324A (ja) 2018-02-28 2019-02-27 電圧レベル及びドループイベントのオンボードモニタリング

Country Status (6)

Country Link
US (1) US10627883B2 (ja)
EP (1) EP3759571A4 (ja)
JP (1) JP2021515324A (ja)
KR (1) KR102479013B1 (ja)
CN (1) CN111954859A (ja)
WO (1) WO2019168944A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11531385B2 (en) * 2018-09-17 2022-12-20 Samsung Electronics Co., Ltd. Voltage droop monitoring circuits, system-on chips and methods of operating the system-on chips
KR20220159029A (ko) * 2021-05-25 2022-12-02 삼성전자주식회사 동적 전력 모니터 및 주파수 컨트롤러를 포함하는 시스템-온-칩 및 이의 동작 방법
US11835998B2 (en) * 2021-06-29 2023-12-05 Advanced Micro Devices, Inc. System and method for enabling clock stretching during overclocking in response to voltage droop
US11886275B2 (en) * 2022-06-21 2024-01-30 Microsoft Technology Licensing, Llc Efficient system on chip power delivery with adaptive voltage headroom control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040017234A1 (en) * 2002-07-26 2004-01-29 Tam Simon M. VCC adaptive dynamically variable frequency clock system for high performance low power microprocessors
JP2006119777A (ja) * 2004-10-20 2006-05-11 Renesas Technology Corp 半導体装置
JP2014052969A (ja) * 2012-09-10 2014-03-20 Renesas Electronics Corp クロック周波数制御装置、半導体装置
WO2017127269A1 (en) * 2016-01-21 2017-07-27 Apple Inc. Method and apparatus for digital undervoltage detection and control
WO2018013156A1 (en) * 2016-07-12 2018-01-18 Advanced Micro Devices, Inc. Clock adjustment for voltage droop

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882238B2 (en) * 2003-03-21 2005-04-19 Intel Corporation Method and apparatus for detecting on-die voltage variations
JP5277528B2 (ja) * 2006-10-11 2013-08-28 日本電気株式会社 監視システム、光伝送装置、光伝送システム及び監視レベル設定方法
US7599808B2 (en) * 2007-08-31 2009-10-06 International Business Machines Corporation Application of multiple voltage droop detection and instruction throttling instances with customized thresholds across a semiconductor chip
US8368385B2 (en) 2009-09-25 2013-02-05 Intel Corporation Methods and systems to detect voltage changes within integrated circuits
US8775854B2 (en) * 2009-11-13 2014-07-08 Marvell World Trade Ltd. Clock turn-on strategy for power management
US8648645B2 (en) 2010-05-25 2014-02-11 Oracle International Corporation Microprocessor performance and power optimization through self calibrated inductive voltage droop monitoring and correction
US9069555B2 (en) * 2011-03-21 2015-06-30 Intel Corporation Managing power consumption in a multi-core processor
US8847777B2 (en) 2011-03-25 2014-09-30 Apple Inc. Voltage supply droop detector
US9194914B2 (en) 2013-07-16 2015-11-24 Advanced Micro Devices, Inc. Power supply monitor for detecting faults during scan testing
US10060955B2 (en) * 2014-06-25 2018-08-28 Advanced Micro Devices, Inc. Calibrating power supply voltages using reference measurements from code loop executions
US9692396B2 (en) 2015-05-13 2017-06-27 Qualcomm Incorporated Ring oscillator architecture with controlled sensitivity to supply voltage
US20160370837A1 (en) * 2015-06-17 2016-12-22 Samsung Electronics Co., Ltd. First droop event mitigation by clock generation frequency staggering for core power delivery
US10296076B2 (en) * 2016-05-16 2019-05-21 Qualcomm Incorporated Supply voltage droop management circuits for reducing or avoiding supply voltage droops
JP2018019152A (ja) * 2016-07-26 2018-02-01 ルネサスエレクトロニクス株式会社 電源制御コントローラ、半導体装置及び半導体システム
JP2018050219A (ja) * 2016-09-23 2018-03-29 ルネサスエレクトロニクス株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040017234A1 (en) * 2002-07-26 2004-01-29 Tam Simon M. VCC adaptive dynamically variable frequency clock system for high performance low power microprocessors
JP2006119777A (ja) * 2004-10-20 2006-05-11 Renesas Technology Corp 半導体装置
JP2014052969A (ja) * 2012-09-10 2014-03-20 Renesas Electronics Corp クロック周波数制御装置、半導体装置
WO2017127269A1 (en) * 2016-01-21 2017-07-27 Apple Inc. Method and apparatus for digital undervoltage detection and control
WO2018013156A1 (en) * 2016-07-12 2018-01-18 Advanced Micro Devices, Inc. Clock adjustment for voltage droop

Also Published As

Publication number Publication date
WO2019168944A1 (en) 2019-09-06
US10627883B2 (en) 2020-04-21
CN111954859A (zh) 2020-11-17
EP3759571A4 (en) 2021-11-03
KR102479013B1 (ko) 2022-12-19
KR20200116530A (ko) 2020-10-12
EP3759571A1 (en) 2021-01-06
US20190265767A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP2021515324A (ja) 電圧レベル及びドループイベントのオンボードモニタリング
US9383789B2 (en) Thermal control apparatus and methodology
US10296076B2 (en) Supply voltage droop management circuits for reducing or avoiding supply voltage droops
US11079831B2 (en) Control scheme to temporarily raise supply voltage in response to sudden change in current demand
US11119559B2 (en) Controlling a processor clock
US9489031B2 (en) Method to reduce acoustic noise induced by processor performance state changes in response to periodic application workloads
US11435798B2 (en) Adaptive on-chip digital power estimator
US8937511B2 (en) Frequency scaling of variable speed systems for fast response and power reduction
US20190146567A1 (en) Processor throttling based on accumulated combined current measurements
US10572183B2 (en) Power efficient retraining of memory accesses
US8762792B2 (en) Event monitor having switch matrix, separate counter, and compare circuitry
US10303200B2 (en) Clock divider device and methods thereof
US11942953B2 (en) Droop detection and control of digital frequency-locked loop
JP2014021786A (ja) コンピュータ・システム
CN109727626B (zh) 半导体装置及其闪存的存取周期的自动调节方法
US10346207B2 (en) Memory access controller, memory access control method, and recording medium stored with program
US11927612B1 (en) Digital droop detector
WO2015168349A1 (en) Systems and methods for controlling a memory performance point
CN116260748A (zh) CanFD总线的校正方法、装置、存储介质及电子设备
CN118033391A (en) Method, device and equipment for monitoring clock network in integrated circuit
JP2005216297A (ja) バス要求信号発生装置及びそれを含んだシステム
US20150205340A1 (en) Memory device and control method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221122