JP2021196115A - 輸送用冷凍機械 - Google Patents

輸送用冷凍機械 Download PDF

Info

Publication number
JP2021196115A
JP2021196115A JP2020103255A JP2020103255A JP2021196115A JP 2021196115 A JP2021196115 A JP 2021196115A JP 2020103255 A JP2020103255 A JP 2020103255A JP 2020103255 A JP2020103255 A JP 2020103255A JP 2021196115 A JP2021196115 A JP 2021196115A
Authority
JP
Japan
Prior art keywords
compressor
inverter
heat exchanger
refrigerant
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020103255A
Other languages
English (en)
Inventor
直樹 小林
Naoki Kobayashi
弘季 山岸
Hiroki Yamagishi
将弘 太田
Masahiro Ota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020103255A priority Critical patent/JP2021196115A/ja
Publication of JP2021196115A publication Critical patent/JP2021196115A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Superstructure Of Vehicle (AREA)

Abstract

【課題】効率がさらに向上した輸送用冷凍機械を提供する。【解決手段】輸送用冷凍機械は、冷凍室内の空気と第一冷媒とを熱交換させる室内熱交換器と、室内熱交換器に第一冷媒を圧縮して供給する第一圧縮機と、第一圧縮機を駆動する第一インバータと、外気と第二冷媒とを熱交換させる室外熱交換器と、室外熱交換器に第二冷媒を圧縮して供給する第二圧縮機と、第二圧縮機を駆動する第二インバータと、第一圧縮機から流通する第一冷媒と室外熱交換器から流通する第二冷媒とを熱交換させる中間熱交換器と、冷凍室内と外気との温度差に基づいて、第一インバータ、及び第二インバータに駆動信号を送出する制御部と、を備える。【選択図】図2

Description

本開示は、輸送用冷凍機械に関する。
冷凍トラックのように、貨物を冷凍装置によって冷却した状態で運搬する輸送機械が広く用いられている。近年、この種の冷凍装置として、カスケードサイクルと呼ばれる形式のものが実用化されている(例えば下記特許文献1)。カスケードサイクルでは、冷凍室内外で異なる冷媒が用いられている。具体的には、カスケードサイクルは、室内熱交換器、膨張弁、及び室内側圧縮機を有する室内側サイクルと、室外熱交換器、膨張弁、及び室外側圧縮機を有する室外側サイクルと、中間熱交換器と、を備えている。室内側サイクルと室外側サイクルは、中間熱交換器を通じて互いの冷媒を熱交換させる。一例として、室内側サイクルでは二酸化炭素が冷媒として用いられ、室外側サイクルではプロパンが冷媒として用いられる。
米国特許公開第2020/0148038号明細書
冷凍トラックのように、運転条件が変化しやすい環境でカスケードサイクルを用いる場合、室内側サイクルと室外側サイクルの冷媒の循環量の比は一定とはならない。このため、室内側圧縮機と室外側圧縮機を通過する冷媒の流量(つまり、各圧縮機の回転数)は、互いに独立して制御できることが望ましい。しかしながら、従来の冷凍トラックでは、圧縮機がエンジンに直接接続されている。このため、圧縮機の回転数はエンジンの回転数に依存し、自由な制御が行えないという課題があった。
本開示は上記課題を解決するためになされたものであって、効率がさらに向上した輸送用冷凍機械を提供することを目的とする。
上記課題を解決するために、本開示に係る輸送用冷凍機械は、輸送機械に設けられた冷凍室を冷却するための輸送用冷凍機械であって、前記冷凍室内の空気と第一冷媒とを熱交換させる室内熱交換器と、前記室内熱交換器に前記第一冷媒を圧縮して供給する第一圧縮機と、前記第一圧縮機を駆動する第一インバータと、外気と第二冷媒とを熱交換させる室外熱交換器と、前記室外熱交換器に前記第二冷媒を圧縮して供給する第二圧縮機と、前記第二圧縮機を駆動する第二インバータと、前記前記第一圧縮機から流通する前記第一冷媒と前記室外熱交換器から流通する前記第二冷媒とを熱交換させる中間熱交換器と、前記冷凍室内と外気との温度差に基づいて、前記第一インバータ、及び前記第二インバータに駆動信号を送出する制御部と、を備える。
本開示によれば、効率がさらに向上した輸送用冷凍機械を提供することができる。
本開示の第一実施形態に係る輸送機械の構成を示す側面図である。 本開示の第一実施形態に係る輸送用冷凍機械の構成を示す回路図である。 本開示の第二実施形態に係る制御部の動作を示すフローチャートである。
<第一実施形態>
以下、本開示の第一実施形態に係る輸送機械100、及び輸送用冷凍機械3について、図1から図3を参照して説明する。
(輸送機械の構成)
図1に示すように、輸送機械100は、トラクター1と、トレーラー2と、を備えている。トラクター1は、キャブ1Cと、エンジン11と、オルタネータ13と、を有している。キャブ1Cは、運転台等の居住スペースを形成する。エンジン11は、トラクター1自体に推進力を与えるための駆動装置であり、キャブ1Cの下部に収容されている。エンジン11として具体的にはディーゼルエンジンや、ハイブリッドエンジンが用いられる。
エンジン11の出力軸にはオルタネータ13が接続されている。オルタネータ13は、エンジン11の出力軸の回転に伴ってともに回転することで電力を発生する。オルタネータ13が発生させた電力は、後述する輸送用冷凍機械3の駆動や、バッテリー4の充電に利用される。また、バッテリー4の電力は、輸送用冷凍機械3の駆動に用いられる。
トレーラー2は、トラクター1によってけん引される車両である。トレーラー2は、冷凍室21と、輸送用冷凍機械3と、バッテリー4と、を有している。冷凍室21は、トレーラー2の内部に形成された空間であり、冷蔵・冷凍が必要な貨物を積載する。輸送用冷凍機械3は、この冷凍室21内の温度を下げるために設けられている。
(輸送用冷凍機械の構成)
次に、図2を参照して、輸送用冷凍機械3の構成について説明する。同図に示すように、輸送用冷凍機械3は、室内側サイクル31と、室外側サイクル32と、中間熱交換器7と、制御部90と、を有している。
室内側サイクル31は、室内側配管P1と、第一圧縮機51と、第一膨張弁52と、室内熱交換器53と、室内用ファン54と、第一インバータ55と、を有している。室内側配管P1は、第一配管P11と、第二配管P12と、第三配管P13と、第四配管P14と、を有している。第一配管P11は、第一圧縮機51と中間熱交換器7を接続している。第二配管P12は、中間熱交換器7と第一膨張弁52とを接続している。第三配管P13は、第一膨張弁52と室内熱交換器53とを接続している。第四配管P14は、室内熱交換器53と第一圧縮機51とを接続している。これら室内側配管P1には第一冷媒として二酸化炭素が充填されている。
第一圧縮機51は、第四配管P14側から吸入された低圧の気相冷媒を圧縮して、高温高圧の気相冷媒を生成する。この高温高圧の気相冷媒は、第一配管P11を通じて中間熱交換器7に流入する。中間熱交換器7は、後述する室外側サイクル32を流通する第二冷媒と第一冷媒との間で熱交換を行う。これにより、中間熱交換器7では気相冷媒が凝縮し、高圧の液相冷媒が生成される。
高圧の液相冷媒は、第二配管P12を通じて第一膨張弁52に送られる。高圧の液相冷媒は、第一膨張弁52を通過することで圧力が下がり、低温低圧の液相冷媒となる。
第一膨張弁52を経て低温低圧となった液相冷媒は、第三配管P13を通じて室内熱交換器53に流入する。室内熱交換器53は、冷凍室21の内部に設けられている。室内熱交換器53では、冷凍室21内の空気と第一冷媒との間で熱交換が行われる。室内用ファン54は、室内熱交換器53に冷凍室21内の空気を送るために設けられている。低温の液相冷媒によって冷凍室21内の熱が吸収されることで、冷凍室21内の温度が低くなる方向に変化する。つまり、冷凍室21内が冷却される。これに伴って、液相冷媒の温度が上昇するとともに、液相から気相に変化する。
室内熱交換器53を経て気相となった冷媒は、第四配管P14を通じて再び第一圧縮機51に吸入される。
第一圧縮機51の回転数は、第一インバータ55によって制御される。第一インバータ55は、上述のオルタネータ13やバッテリー4から供給された電力を変換して第一圧縮機51を駆動するための最適な電力を生成する。なお、第一インバータ55の動作は、後述する制御部90によって制御される。
室外側サイクル32は、室外側配管P2と、第二圧縮機61と、第二膨張弁62と、室外熱交換器63と、室外用ファン64と、第二インバータ65と、を有している。室外側配管P2は、第一配管P21と、第二配管P22と、第三配管P23と、第四配管P24と、を有している。第一配管P21は、第二圧縮機61と室外熱交換器63を接続している。第二配管P22は、室外熱交換器63と第二膨張弁62とを接続している。第三配管P23は、第二膨張弁62と中間熱交換器7とを接続している。第四配管P24は、中間熱交換器7と第二圧縮機61とを接続している。これら室外側配管P2には第二冷媒として、例えばプロパンが充填されている。
第二圧縮機61は、第四配管P24側から吸入された低圧の気相冷媒を圧縮して、高温高圧の気相冷媒を生成する。この高温高圧の気相冷媒は、第一配管P21を通じて室外熱交換器63に流入する。室外熱交換器63は、上述の冷凍室21の外部に設けられている。室外熱交換器63は、外部の空気と第二冷媒との間で熱交換を行う。室外用ファン64は、室外熱交換器63に向かって外部の空気を送るために設けられている。これにより、室外熱交換器63では気相冷媒が凝縮し、高圧の液相冷媒が生成される。
高圧の液相冷媒は、第二配管P22を通じて第二膨張弁62に送られる。高圧の液相冷媒は、第二膨張弁62を通過することで圧力が下がり、低温低圧の液相冷媒となる。
第二膨張弁62を経て低温低圧となった液相冷媒は、第三配管P23を通じて中間熱交換器7に流入する。中間熱交換器7は、上述の室内側サイクル31を流通する第一冷媒と第二冷媒との間で熱交換を行う。具体的には、室内側サイクル31の第一配管P11を流通する高温高圧の気相冷媒(第一冷媒)と、室外側サイクル32の第三配管P23を流通する低温低圧の液相冷媒(第二冷媒)との間で熱交換が行われる。これに伴って、室外側サイクル32では、第三配管P23を流通する液相冷媒の温度が上昇するとともに、液相から気相に変化する。
中間熱交換器7を経て気相となった冷媒は、第四配管P24を通じて再び第二圧縮機61に吸入される。このようなサイクルが連続的に行われることで、冷凍室21の温度が所望の値に調節される。
第二圧縮機61の回転数は、第二インバータ65によって制御される。第二インバータ65は、上述のオルタネータ13やバッテリー4から供給された電力を変換して第二圧縮機61を駆動するための最適な電力を生成する。なお、第二インバータ65の動作は、後述する制御部90によって制御される。
制御部90は、輸送用冷凍機械3の運転状態に基づいて、第一インバータ55と、第二インバータ65に駆動信号を送出する。より具体的には、制御部90は、冷凍室21内と外気との温度差に基づいて、第一インバータ55、及び第二インバータ65に駆動信号を送出する。
制御部90は、まず冷凍室21と外気との温度差に基づいて、第一圧縮機51と第二圧縮機61の回転数の比の最適範囲を定める。その後、制御部90は、実際の圧縮機の回転数の比が上記の最適範囲内にあるように、第一インバータ55、及び第二インバータ65に駆動信号を送出する。
(作用効果)
上記構成によれば、第一圧縮機51と第二圧縮機61とを互いに独立した回転数で運転しつつ、その回転数の比を最適範囲内に収めることができる。したがって、例えば冷凍室21と外気の温度差が大きい場合等、第一冷媒と第二冷媒の流量に差が必要となるときに、第一圧縮機51と第二圧縮機61との回転数に差を持たせ、最適な運転点に近づけることができる。
以上、本開示の第一実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記第一実施形態では、制御部90が第一圧縮機51と第二圧縮機61の回転数比の最適範囲を定め、実際の回転数比がこの最適範囲内に収まるように運転する例について説明した。しかしながら、制御部90は、このような数値範囲ではなく、特定の回転数比を決定し、当該値となるように実際の回転数比を変化させる構成を採ることも可能である。
<第二実施形態>
次に、本開示の第二実施形態について、図3を参照して説明する。なお、上記の第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。図3に示すように、本実施形態では、制御部90は、第一圧縮機51と第二圧縮機61とが、予め与えられている互いの共振回転数とならないように第一インバータ55、及び第二インバータ65に駆動信号を送出する。
具体的には、この制御フローは、第一圧縮機51、及び第二圧縮機61それぞれについて実行される。以下では、第一圧縮機51における制御フローを例に説明する。このフローは、運転点決定ステップS1と、圧縮機回転数決定ステップS2と、第一判定ステップS3と、第一再設定ステップS4と、第二判定ステップS5と、第二再設定ステップS6と、を含む。
運転点決定ステップS1では、外気と冷凍室21の温度差等に基づいて、第一圧縮機51の運転点(つまり、第一冷媒の流量)を決定する。圧縮機回転数決定ステップS2では、上記の運転点に基づいて、第一圧縮機51の回転数を決定する。次いで、第一判定ステップS3では、第一圧縮機51の回転数が、上述の第一実施形態で説明した第二圧縮機61との回転数比の最適範囲内にあるか否かを判定する。第一判定ステップS3で回転数が最適範囲内にないと判定された場合(S3:No)、第一再設定ステップS4を実行することで、回転数を一定程度(Δrps)上昇させるか、低下させる。その後、再び第一判定ステップS3を実行する。
第一判定ステップS3で回転数が最適範囲内にあると判定された場合(S3:Yes)、第二判定ステップS5を実行することで、当該回転数が予め与えられている共振回転数と同一であるか否かを判定する。第二判定ステップS5で当該回転数が共振回転数と同一であると判定された場合(S5:No)、第二再設定ステップS6を実行することで、回転数を一定程度(Δrps)上昇させるか、低下させる。その後、再び第二判定ステップS5を実行する。第二判定ステップS5で回転数が最適範囲内にあると判定された場合(S5:Yes)、そのときの回転数のもとで第一圧縮機51の運転を継続する。
上記構成によれば、第一圧縮機51と第二圧縮機61の共振を回避し、より安定的に輸送用冷凍機械3を運転することができる。これにより、輸送用冷凍機械3の運転範囲をさらに拡大することができる。
以上、本開示の第二実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。
<付記>
各実施形態に記載の輸送用冷凍機械3は、例えば以下のように把握される。
(1)第1の態様に係る輸送用冷凍機械3は、輸送機械100に設けられた冷凍室21を冷却するための輸送用冷凍機械3であって、前記冷凍室21内の空気と第一冷媒とを熱交換させる室内熱交換器53と、前記室内熱交換器53に前記第一冷媒を圧縮して供給する第一圧縮機51と、前記第一圧縮機51を駆動する第一インバータ55と、外気と第二冷媒とを熱交換させる室外熱交換器63と、前記室外熱交換器63に前記第二冷媒を圧縮して供給する第二圧縮機61と、前記第二圧縮機61を駆動する第二インバータ65と、前記前記第一圧縮機51から流通する前記第一冷媒と前記室外熱交換器63から流通する前記第二冷媒とを熱交換させる中間熱交換器7と、前記冷凍室21内と外気との温度差に基づいて、前記第一インバータ55、及び前記第二インバータ65に駆動信号を送出する制御部90と、を備える。
上記構成によれば、第一インバータ55と、第二インバータ65とによって、第一圧縮機51と第二圧縮機61とを互いに独立して動作させることができる。したがって、例えば冷凍室21と外気の温度差が大きい場合等、第一冷媒と第二冷媒の流量に差が必要となるときに、第一圧縮機51と第二圧縮機61との回転数に差を持たせ、最適な運転点に近づけることができる。
(2)第2の態様に係る輸送用冷凍機械3では、前記制御部90は、前記冷凍室21と外気との温度差に基づいて、前記第一圧縮機51と前記第二圧縮機61の回転数の比の最適範囲を定めるとともに、前記回転数の比が前記最適範囲内にあるように前記第一インバータ55、及び前記第二インバータ65に駆動信号を送出する。
上記構成によれば、冷凍室21と外気の温度差が大きい場合等、第一冷媒と第二冷媒の流量に差が必要となるときに、第一圧縮機51と第二圧縮機61との回転数に差を持たせ、最適な運転点に近づけることができる。
(3)第3の態様に係る輸送用冷凍機械3では、前記制御部90は、前記冷凍室21と外気との温度差に基づいて、前記第一圧縮機51と前記第二圧縮機61の回転数の最適比を定めるとともに、前記回転数が前記最適比となるように前記第一インバータ55、及び前記第二インバータ65に駆動信号を送出する。
上記構成によれば、冷凍室21と外気の温度差が大きい場合等、第一冷媒と第二冷媒の流量に差が必要となるときに、第一圧縮機51と第二圧縮機61との回転数に差を持たせ、最適な運転点に近づけることができる。
(4)第4の態様に係る輸送用冷凍機械3では、前記制御部90は、前記第一圧縮機51と前記第二圧縮機61とが、予め与えられている互いの共振回転数とならないように前記第一インバータ55、及び前記第二インバータ65に駆動信号を送出する。
上記構成によれば、第一圧縮機51と第二圧縮機61の共振を回避し、より安定的に輸送用冷凍機械3を運転することができる。
100 輸送機械
1 トラクター
1C キャブ
2 トレーラー
3 輸送用冷凍機械
4 バッテリー
7 中間熱交換器
11 エンジン
13 オルタネータ
21 冷凍室
31 室内側サイクル
32 室外側サイクル
51 第一圧縮機
52 第一膨張弁
53 室内熱交換器
54 室内用ファン
55 第一インバータ
61 第二圧縮機
62 第二膨張弁
63 室外熱交換器
64 室外用ファン
65 第二インバータ
90 制御部
P1 室内側配管
P2 室外側配管
P11,P21 第一配管
P12,P22 第二配管
P13,P23 第三配管
P14,P24 第四配管

Claims (4)

  1. 輸送機械に設けられた冷凍室を冷却するための輸送用冷凍機械であって、
    前記冷凍室内の空気と第一冷媒とを熱交換させる室内熱交換器と、
    前記室内熱交換器に前記第一冷媒を圧縮して供給する第一圧縮機と、
    前記第一圧縮機を駆動する第一インバータと、
    外気と第二冷媒とを熱交換させる室外熱交換器と、
    前記室外熱交換器に前記第二冷媒を圧縮して供給する第二圧縮機と、
    前記第二圧縮機を駆動する第二インバータと、
    前記前記第一圧縮機から流通する前記第一冷媒と前記室外熱交換器から流通する前記第二冷媒とを熱交換させる中間熱交換器と、
    前記冷凍室内と外気との温度差に基づいて、前記第一インバータ、及び前記第二インバータに駆動信号を送出する制御部と、
    を備える輸送用冷凍機械。
  2. 前記制御部は、前記冷凍室と外気との温度差に基づいて、前記第一圧縮機と前記第二圧縮機の回転数の比の最適範囲を定めるとともに、前記回転数の比が前記最適範囲内にあるように前記第一インバータ、及び前記第二インバータに駆動信号を送出する請求項1に記載の輸送用冷凍機械。
  3. 前記制御部は、前記冷凍室と外気との温度差に基づいて、前記第一圧縮機と前記第二圧縮機の回転数の最適比を定めるとともに、前記回転数が前記最適比となるように前記第一インバータ、及び前記第二インバータに駆動信号を送出する請求項1に記載の輸送用冷凍機械。
  4. 前記制御部は、前記第一圧縮機と前記第二圧縮機とが、予め与えられている互いの共振回転数とならないように前記第一インバータ、及び前記第二インバータに駆動信号を送出する請求項1から3のいずれか一項に記載の輸送用冷凍機械。
JP2020103255A 2020-06-15 2020-06-15 輸送用冷凍機械 Pending JP2021196115A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020103255A JP2021196115A (ja) 2020-06-15 2020-06-15 輸送用冷凍機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020103255A JP2021196115A (ja) 2020-06-15 2020-06-15 輸送用冷凍機械

Publications (1)

Publication Number Publication Date
JP2021196115A true JP2021196115A (ja) 2021-12-27

Family

ID=79197733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020103255A Pending JP2021196115A (ja) 2020-06-15 2020-06-15 輸送用冷凍機械

Country Status (1)

Country Link
JP (1) JP2021196115A (ja)

Similar Documents

Publication Publication Date Title
EP2128545B1 (en) Refrigeration device for refrigeration vehicle
JP2637943B2 (ja) 冷凍機手段の運転方法
JP3365273B2 (ja) 冷凍サイクル
JP2004198002A (ja) 蒸気圧縮式冷凍機
CN102203515A (zh) 多区制冷剂蒸气压缩系统的控制
US20140023519A1 (en) Efficient Control Algorithm for Start-Stop Operation of a Refrigeration Unit Powered by Engine
JP2012097936A (ja) 二段昇圧式冷凍サイクル
JP5018584B2 (ja) 蓄冷器付き冷凍サイクル装置
JP2007218460A (ja) 冷凍サイクル装置および保冷庫
JP2007292351A (ja) 循環型冷水装置の運転制御方法
KR20150094647A (ko) 냉장의 개선
JP4265228B2 (ja) エジェクタポンプを用いた冷凍機
JP4476946B2 (ja) 冷凍装置
JP2001004235A (ja) 蒸気圧縮式冷凍サイクル
JP2021196115A (ja) 輸送用冷凍機械
JP2005325746A (ja) 車両用排熱回収システム
JP2000205612A (ja) 蓄冷式空調装置
KR101038671B1 (ko) 냉동차량용 냉각장치
JP5571429B2 (ja) 気液熱交換型冷凍装置
JP2000337722A (ja) 蒸気圧縮式冷凍サイクル
KR101479705B1 (ko) 냉동실과 냉장실을 구비한 냉동차량의 냉각장치
JP4745567B2 (ja) 陸上輸送用冷凍装置及びその運転制御方法
JPH09119730A (ja) 2室冷却装置
JP2010065914A (ja) 車両用空調システムに用いられる凝縮器および車両用空調システム
JP2021196114A (ja) 輸送用冷凍機械、及び輸送機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240416