JP2021181780A - Geothermal exchanger and geothermal power generating set - Google Patents

Geothermal exchanger and geothermal power generating set Download PDF

Info

Publication number
JP2021181780A
JP2021181780A JP2020111284A JP2020111284A JP2021181780A JP 2021181780 A JP2021181780 A JP 2021181780A JP 2020111284 A JP2020111284 A JP 2020111284A JP 2020111284 A JP2020111284 A JP 2020111284A JP 2021181780 A JP2021181780 A JP 2021181780A
Authority
JP
Japan
Prior art keywords
water
pressure
steam
temperature
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020111284A
Other languages
Japanese (ja)
Other versions
JP7320271B2 (en
Inventor
千年生 田原
Chitose Tawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Inc Association Hyper Energy
Original Assignee
General Inc Association Hyper Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Inc Association Hyper Energy filed Critical General Inc Association Hyper Energy
Publication of JP2021181780A publication Critical patent/JP2021181780A/en
Application granted granted Critical
Publication of JP7320271B2 publication Critical patent/JP7320271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

To provide a geothermal exchanger which can stabilize a temperature and a flow rate of steam to be produced while being adapted to a situation of a temperature change of a well even in a situation that a temperature of withdrawn geothermal energy is not stabilized, can efficiently perform heat exchange even if using a geothermal zone in a middle-low temperature which is equal to, or lower than about 180°C, and can increase a geothermal energy sampling amount by increasing the number of places being objects of a geothermal development.SOLUTION: A geothermal exchanger 1 comprises a pressure water heater 14 for heating pressure water which is withdrawn on the ground, and heating by the pressure water heater 14 is performed by an external heat source other than a heat source which is acquired from a geothermal zone. The geothermal exchanger also comprises a circulation water heater 17 for heating water which is accumulated in a first circulation water tank 16, and heating by the circulation water heater 17 is performed by the external heat source other than the heat source which is acquired from the geothermal zone.SELECTED DRAWING: Figure 1

Description

本発明は、地熱エネルギーを効率よく取り出すことができる地熱交換器および地熱発電装置に関する。 The present invention relates to a geothermal exchanger and a geothermal power generation device capable of efficiently extracting geothermal energy.

地熱エネルギーを利用して発電する地熱発電は、高温のマグマ層を熱源とするものであり、半永久的な熱エネルギーとすることができるとともに、発電の過程において温室効果ガスを発生しないことから、化石燃料の代替手段として近年注目されている。また、原子力発電所の事故により、原子力に多くを依存していた日本のエネルギー政策は根本から見直すことを余儀なくされており、地熱エネルギーの活用への期待が高まっている。 Geothermal power generation, which uses geothermal energy to generate electricity, uses a high-temperature magma layer as a heat source, can be semi-permanent heat energy, and does not generate greenhouse gases in the process of power generation. In recent years, it has been attracting attention as an alternative to fuel. In addition, the accident at the nuclear power plant has forced Japan's energy policy, which relied heavily on nuclear power, to be fundamentally reviewed, raising expectations for the utilization of geothermal energy.

従来の地熱発電は、地熱帯をボーリングし、地熱帯に存在する自然の蒸気や熱水を自然の圧力を利用して取り出し発電を行っている。そのため、取り出された蒸気と熱水には、地熱帯特有の硫黄その他の不純物が多量に含まれている。この不純物はスケールとなって、熱井戸や配管類、あるいはタービン等に付着する。スケールが付着すると、経年的に発電出力が減少し長期間の使用が困難となる。 In the conventional geothermal power generation, the geothermal power is bored, and the natural steam and hot water existing in the geothermal power are extracted by using the natural pressure to generate electricity. Therefore, the extracted steam and hot water contain a large amount of sulfur and other impurities peculiar to the tropics. These impurities become scales and adhere to hot wells, pipes, turbines, and the like. If the scale adheres, the power generation output will decrease over time, making it difficult to use for a long period of time.

このスケールによる問題を解決するために、地上から水を送り、エネルギーを採取する方式を採用した地熱交換器が、特許文献1、特許文献2に記載されている。また、地熱エネルギーを有効に取り出すことを目的として、地下においてフラッシュ率を向上させる手段を備えた地熱交換器に関する発明が、特許文献3に記載されている。 In order to solve the problem of this scale, a geothermal exchanger that adopts a method of sending water from the ground and extracting energy is described in Patent Document 1 and Patent Document 2. Further, Patent Document 3 describes an invention relating to a geothermal exchanger provided with a means for improving the flash rate underground for the purpose of effectively extracting geothermal energy.

特許第4927136号公報Japanese Patent No. 4927136 特許第5731051号公報Japanese Patent No. 5731051 特許第6176890号公報Japanese Patent No. 6176890

特許文献1、2,3において開示されたいずれの方式においても、地下に埋設された2重管式の地熱交換器を使用しており、これによって生じる共通する欠点は、取り出す地熱エネルギーの温度が一定しないことにある。特に、地熱開発においては、全国に圧倒的に多く存在する、約180℃以下の中低温地帯を対象とした地熱発電システムの開発が重要であるが、このような中低温地帯を熱源として用いる場合には、地熱エネルギーの温度の不安定性に起因する問題点が顕著となる。そのため、生産される蒸気の温度、流量が安定せず、発電出力が安定しないという問題点を生じる。また、地熱帯には地熱流体が流動していることも、地熱温度が安定化しない原因となっている。 Both of the methods disclosed in Patent Documents 1, 2 and 3 use a double-tube geothermal exchanger buried underground, and a common drawback caused by this is the temperature of the geothermal energy to be extracted. It is not constant. In particular, in geothermal development, it is important to develop a geothermal power generation system targeting the mid-low temperature zone of about 180 ° C or less, which is overwhelmingly present in the whole country. The problem caused by the temperature instability of geothermal energy becomes remarkable. Therefore, there arises a problem that the temperature and flow rate of the produced steam are not stable and the power generation output is not stable. In addition, the flow of geothermal fluid in the geotropics also causes the geothermal temperature to not stabilize.

地下を流動して連続して熱交換をすることが可能な地熱流体を探し当てることは困難であり、このことが、ボーリング費用の上昇要因となっている。また、熱交換後は坑井の温度が下がるため、坑井を熱源とするにあたって、坑井の温度変化の状況に対応できるようにすることが必要となる。 It is difficult to find a geothermal fluid that can flow underground and exchange heat continuously, which is a factor in increasing boring costs. In addition, since the temperature of the well drops after heat exchange, it is necessary to be able to respond to the situation of temperature change in the well when using the well as a heat source.

本発明は、このような事情を考慮してなされたもので、取り出す地熱エネルギーの温度が安定しないという状況下であっても、坑井の温度変化の状況に対応することを可能として、生産される蒸気の温度、流量を安定させることができ、約180℃以下の中低温の地熱帯を用いても、効率良く熱交換を行うことができ、地熱開発の対象となる場所の数を増やして、地熱エネルギー採取量を増やすことを可能とする地熱交換器と、この地熱交換器を用いて効率良く大容量の発電を行い、発電地域の地熱資源を有効に利用することが可能な地熱発電装置を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and is produced by making it possible to cope with the situation of temperature change in the well even under the situation where the temperature of the geothermal energy to be taken out is not stable. The temperature and flow rate of the steam can be stabilized, and even in the mid-low temperature geothermal area of about 180 ° C or less, heat can be exchanged efficiently, increasing the number of places targeted for geothermal development. , A geothermal exchanger that can increase the amount of geothermal energy collected, and a geothermal power generation device that can efficiently generate a large amount of power using this geothermal exchanger and effectively utilize the geothermal resources in the power generation area. The purpose is to provide.

以上の課題を解決するために、本発明の地熱交換器は、地中に設けられ地上から加圧された水が供給される外管と、前記外管の内側に配置されて、前記外管中を地熱帯まで下降する圧力水に対して、地熱帯から熱が供給されて生成される熱水が蒸気を含まない状態で上昇する内管とを備え、前記内管から取出された圧力水が蒸気発生器に送られて、蒸気発生器内で蒸気として取り出される地熱交換器であって、第一のフラッシュ率向上手段を備え、第一のフラッシュ率向上手段は、地上に取出された圧力水を加熱する圧力水加熱器によって構成され、圧力水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、前記内管から取出された圧力水は、圧力水加熱器によって加熱された後、蒸気発生器に送られるものであることを特徴とする。 In order to solve the above problems, the geothermal exchanger of the present invention has an outer pipe provided in the ground and to which water pressurized from the ground is supplied, and an outer pipe arranged inside the outer pipe. The pressure water taken out from the inner pipe is provided with an inner pipe in which the hot water generated by supplying heat from the geotropic rises without containing steam with respect to the pressure water descending to the geotroph. Is a geothermal exchanger that is sent to a steam generator and taken out as steam in the steam generator, with a first flash rate improving means, the first flash rate improving means being the pressure taken out to the ground. It is composed of a pressure water heater that heats water, heating by the pressure water heater is performed by an external heat source other than the heat source obtained from the geotropa, and the pressure water taken out from the inner pipe is heated by the pressure water heater. It is characterized in that it is sent to a steam generator after being generated.

地上に取出された圧力水を圧力水加熱器によって加熱し、圧力水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされるようにすることにより、取り出す地熱エネルギーの温度が安定しないという状況下であっても、地熱エネルギーの温度に応じて、圧力水加熱器による加熱の程度を設定することにより、フラッシュ率を向上することができ、蒸気発生量を増やすことができる。 The pressure water taken out to the ground is heated by a pressure water heater, and the heating by the pressure water heater is performed by an external heat source other than the heat source obtained from the geotropic, so that the temperature of the geothermal energy to be taken out is stable. Even under such circumstances, the flash rate can be improved and the amount of steam generated can be increased by setting the degree of heating by the pressure water heater according to the temperature of the geothermal energy.

地上に取出された圧力水は、蒸気よりも熱容量が大きいため、加熱するために必要なエネルギーは、蒸気を加熱する場合と比較して大きくなるが、圧力水を加熱することによってフラッシュ率は各段に向上する。また、加熱するために必要なエネルギーは、地熱帯から得られる熱源以外の外部熱源によってなされるため、地熱帯からの熱エネルギーの取得に支障を生じることがない。フラッシュ率の向上は、循環水量を削減する効果が大きく、坑井循環ポンプ容量の削減を行うことができ、発電効率が大きく向上する。また、循環水量を一定にした場合には、フラッシュ率の向上はそのまま蒸気量の増大につながり、発電出力が増大する。 Since the pressure water taken out to the ground has a larger heat capacity than the steam, the energy required for heating is larger than that when the steam is heated, but the flash rate is increased by heating the pressure water. It will improve step by step. Further, since the energy required for heating is generated by an external heat source other than the heat source obtained from the geotropa, there is no hindrance to the acquisition of heat energy from the geotropa. The improvement of the flash rate has a great effect of reducing the amount of circulating water, the capacity of the well circulation pump can be reduced, and the power generation efficiency is greatly improved. Further, when the circulating water amount is kept constant, the improvement of the flash rate directly leads to the increase of the steam amount, and the power generation output increases.

そのため、約180℃以下の中低温の地熱帯を用いても、生産する高温の熱水の温度、流量を安定させて、効率良く熱交換を行うことができ、地熱開発の対象となる場所の数を増やして、地熱エネルギー採取量を増やすことが可能となる。 Therefore, even in the mid-low temperature geothermal area of about 180 ° C or less, the temperature and flow rate of the hot water to be produced can be stabilized and heat exchange can be performed efficiently, which is the target of geothermal development. It is possible to increase the number and increase the amount of geothermal energy collected.

本発明の地熱交換器においては、前記内管から取出される圧力水を地上に上昇させて増圧する増圧ポンプと、前記外管に循環水を注入する坑井循環ポンプとを備えていることとすることができる。 The geothermal exchanger of the present invention includes a pressure boosting pump that raises the pressure water taken out from the inner pipe to the ground to increase the pressure, and a well circulation pump that injects circulating water into the outer pipe. Can be.

坑井循環ポンプは、2重管の損失水頭と地上部分の配管の損失水頭を受け持ち、増圧ポンプは、2重管から取り出された圧力水の沸騰圧分を受け持つことで、坑井循環ポンプのキャビテーションを防止する。2重管に対する水の圧入と取出の役割を、坑井循環ポンプと増圧ポンプの2つのポンプでそれぞれ分担することにより、なめらかな制御が可能となる。 The well circulation pump is responsible for the loss head of the double pipe and the loss head of the pipe above the ground, and the pressure booster pump is responsible for the boiling pressure of the pressure water taken out from the double pipe. Prevents cavitation. Smooth control is possible by sharing the roles of water injection and removal into the double pipe by the two pumps, the well circulation pump and the booster pump.

本発明の地熱交換器においては、前記内管から取出される圧力水を貯蔵する圧力水槽と、圧力水槽から圧力水を前記圧力水加熱器に送る圧力水ポンプと、圧力水槽内の圧力水の温度を計測する圧力水槽内圧力水温度計測部と、圧力水の流量を計測する圧力水流量計測部とを備え、前記増圧ポンプの回転数の制御圧力水ポンプの回転数の制御により圧力水の流量が制御され、圧力水槽内の圧力水の温度が制御されることとすることができる。 In the geothermal exchanger of the present invention, a pressure water tank for storing the pressure water taken out from the inner pipe, a pressure water pump for sending the pressure water from the pressure water tank to the pressure water heater, and the pressure water in the pressure water tank. pressure water tank pressure water temperature measuring unit for measuring a temperature, and a pressure water flow rate measuring unit that measures the flow rate of the pressure water, pressure by the rotation speed of the control of the rotational speed control and pressure water pump of the pressure increasing pump It can be assumed that the flow rate of water is controlled and the temperature of the pressure water in the pressure water tank is controlled.

これにより、圧力水の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 As a result, the temperature of the pressure water can be controlled, and even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to the temperature change of the geothermal heat, and it is possible to stabilize the temperature and the flow rate of the steam produced.

本発明の地熱交換器においては、タービン出口の蒸気を冷却して得られる復水と、前記蒸気発生器から減圧沸騰された蒸気を除いた圧力水とが導かれる第一の循環水槽を備えるとともに、第三のフラッシュ率向上手段を備え、第三のフラッシュ率向上手段は、第一の循環水槽に蓄えられた水を加熱する循環水加熱器によって構成され、循環水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされるものであることとすることができる。 The geothermal exchanger of the present invention includes a first circulating water tank in which the condensate water obtained by cooling the steam at the outlet of the turbine and the pressure water obtained by removing the steam boiled under reduced pressure from the steam generator are guided. , The third flash rate improving means is provided, and the third flash rate improving means is composed of a circulating water heater that heats the water stored in the first circulating water tank, and the heating by the circulating water heater is ground. It can be assumed that it is made by an external heat source other than the heat source obtained from the tropics.

第一の循環水槽に蓄えられた水を循環水加熱器によって加熱し、循環水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされるようにすることにより、取り出す地熱エネルギーの温度が安定しないという状況下であっても、地熱エネルギーの温度に応じて、循環水加熱器による加熱の程度を設定することにより、フラッシュ率を向上することができ、蒸気発生量を増やすことができる。 The water stored in the first circulating water tank is heated by the circulating water heater, and the heating by the circulating water heater is performed by an external heat source other than the heat source obtained from the geotropa. Even under the situation where the temperature is not stable, the flash rate can be improved and the amount of steam generated can be increased by setting the degree of heating by the circulating water heater according to the temperature of the geothermal energy. can.

本発明の地熱交換器においては、前記蒸気発生器から減圧沸騰された蒸気を除いた圧力水を、移送水として前記第一の循環水槽に送る移送水ポンプと、移送水の水量を計測する移送水量計測部と、前記蒸気発生器内の圧力水の温度を計測する蒸気発生器内圧力水温度計測部と、前記第一の循環水槽内の循環水の温度を計測する第一の循環水温度計測部とを備え、移送水ポンプの回転数の制御により移送水の流量が制御され、前記蒸気発生器内の圧力水の温度と前記第一の循環水槽内の循環水の温度が制御されることとすることができる。 In the geothermal exchanger of the present invention, a transfer water pump that sends pressure water excluding steam boiled under reduced pressure from the steam generator to the first circulating water tank as transfer water, and a transfer for measuring the amount of transfer water. The water amount measuring unit, the pressure water temperature measuring unit in the steam generator that measures the temperature of the pressure water in the steam generator, and the first circulating water temperature that measures the temperature of the circulating water in the first circulating water tank. A measuring unit is provided, and the flow rate of the transferred water is controlled by controlling the rotation speed of the transferred water pump, and the temperature of the pressure water in the steam generator and the temperature of the circulating water in the first circulating water tank are controlled. Can be.

これにより、圧力水と循環水の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 This makes it possible to control the temperature of pressure water and circulating water, and even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to changes in the temperature of the geothermal heat and stabilize the temperature and flow rate of the steam produced. can.

本発明の地熱交換器においては、前記循環水加熱器によって加熱された循環水を貯蔵する第二の循環水槽と、前記第二の循環水槽内の循環水の温度を計測する第二の循環水温度計測部と、坑井循環ポンプを介して第二の循環水槽から前記外管へ送られる循環水の水量を計測する循環水量計測部とを備え、坑井循環ポンプの回転数の制御により前記外管へ送られる循環水の流量が制御され、前記第二の循環水槽内の循環水の温度が制御されることとすることができる。 In the geothermal exchanger of the present invention, the second circulating water tank for storing the circulating water heated by the circulating water heater and the second circulating water for measuring the temperature of the circulating water in the second circulating water tank. It is equipped with a temperature measuring unit and a circulating water amount measuring unit that measures the amount of circulating water sent from the second circulating water tank to the outer pipe via the well circulation pump, and is said to be controlled by controlling the rotation speed of the well circulation pump. The flow rate of the circulating water sent to the outer pipe can be controlled, and the temperature of the circulating water in the second circulating water tank can be controlled.

これにより、循環水の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 As a result, the temperature of the circulating water can be controlled, and even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to the temperature change of the geothermal heat, and it is possible to stabilize the temperature and the flow rate of the steam produced.

本発明の地熱交換器においては、前記第二の循環水槽からの戻水を前記圧力水槽に送る戻水ポンプと、戻水の水量を計測する戻水量計測部とを備え、戻水ポンプの回転数の制御により戻水の流量が制御され、前記圧力水槽内の圧力水の温度と前記第二の循環水槽内の循環水の温度が制御されることとすることができる。 The geothermal exchanger of the present invention includes a return water pump that sends the return water from the second circulating water tank to the pressure water tank, and a return water amount measuring unit that measures the amount of return water, and rotates the return water pump. The flow rate of the return water can be controlled by controlling the number, and the temperature of the pressure water in the pressure water tank and the temperature of the circulating water in the second circulating water tank can be controlled.

これにより、圧力水と循環水の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 This makes it possible to control the temperature of pressure water and circulating water, and even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to changes in the temperature of the geothermal heat and stabilize the temperature and flow rate of the steam produced. can.

また、本発明の地熱交換器は、地中に設けられ地上から水が供給される外管と、前記外管の内側に配置された内管とを備えた2重管構造であり、内管はその内部に設けられた圧力弁を備え、外管内の水に対して地熱帯から熱が供給されて、沸騰せずに高圧熱水が生成される高圧エリアが形成され、圧力弁が設置された位置における高圧エリア内の高圧熱水の圧力と内管内の減圧エリアとの圧力差が設定基準値を超えたときに圧力弁が開き、圧力弁が開いたときに高圧エリアの高圧熱水が内管内に流入し、内管内の減圧エリアにおける圧力はタービンが必要とする圧力近くに減圧されて気液2相流に変換される地熱交換器であって、第二のフラッシュ率向上手段を備え、第二のフラッシュ率向上手段は、地上に取出された気液2相流から蒸気を分離して得られる圧力水を加熱する圧力水加熱器によって構成され、圧力水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、気液2相流から蒸気を分離して得られる圧力水は、圧力水加熱器によって加熱された後、蒸気発生器に送られるものであることを特徴とする。 Further, the geoheat exchanger of the present invention has a double pipe structure including an outer pipe provided in the ground and to which water is supplied from the ground and an inner pipe arranged inside the outer pipe, and is an inner pipe. Is equipped with a pressure valve installed inside it, heat is supplied from the geotropic to the water in the outer pipe, a high pressure area where high pressure hot water is generated without boiling is formed, and a pressure valve is installed. The pressure valve opens when the pressure difference between the pressure of the high-pressure hot water in the high-pressure area and the decompression area in the inner pipe exceeds the set reference value, and when the pressure valve opens, the high-pressure hot water in the high-pressure area opens. It is a geothermal exchanger that flows into the inner pipe and the pressure in the decompression area in the inner pipe is reduced to near the pressure required by the turbine and converted into a gas-liquid two-phase flow, and is equipped with a second flash rate improving means. The second flash rate improving means is composed of a pressure water heater that heats the pressure water obtained by separating steam from the gas-liquid two-phase flow taken out to the ground, and the heating by the pressure water heater is ground. The pressure water produced by an external heat source other than the heat source obtained from the tropics and obtained by separating the steam from the gas-liquid two-phase flow is heated by the pressure water heater and then sent to the steam generator. It is a feature.

地上に取出された気液2相流から蒸気を分離して得られる圧力水を圧力水加熱器によって加熱し、圧力水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされるようにすることにより、取り出す地熱エネルギーの温度が安定しないという状況下であっても、地熱エネルギーの温度に応じて、圧力水加熱器による加熱の程度を設定することにより、フラッシュ率を向上することができ、蒸気発生量を増やすことができる。 The pressure water obtained by separating steam from the two-phase flow of gas and liquid taken out to the ground is heated by a pressure water heater, and the heating by the pressure water heater is performed by an external heat source other than the heat source obtained from the geotropa. By doing so, even if the temperature of the geothermal energy to be taken out is not stable, the flash rate can be improved by setting the degree of heating by the pressure water heater according to the temperature of the geothermal energy. And the amount of steam generated can be increased.

地上に取出された気液2相流は、蒸気よりも熱容量が大きいため、加熱するために必要なエネルギーは、蒸気を加熱する場合と比較して大きくなるが、気液2相流から蒸気を分離して得られる圧力水を加熱することによって、フラッシュ率は各段に向上する。また、加熱するために必要なエネルギーは、地熱帯から得られる熱源以外の外部熱源によってなされるため、地熱帯からの熱エネルギーの取得に支障を生じることがない。フラッシュ率の向上は、循環水量を削減する効果が大きく、坑井循環ポンプ容量の削減を行うことができ、発電効率が大きく向上する。また、循環水量を一定にした場合には、フラッシュ率の向上はそのまま蒸気量の増大につながり、発電出力が増大する。 Since the gas-liquid two-phase flow taken out to the ground has a larger heat capacity than the steam, the energy required for heating is larger than that in the case of heating the steam, but the steam is removed from the gas-liquid two-phase flow. By heating the pressure water obtained separately, the flash rate is improved to each stage. Further, since the energy required for heating is generated by an external heat source other than the heat source obtained from the geotropa, there is no hindrance to the acquisition of heat energy from the geotropa. The improvement of the flash rate has a great effect of reducing the amount of circulating water, the capacity of the well circulation pump can be reduced, and the power generation efficiency is greatly improved. Further, when the circulating water amount is kept constant, the improvement of the flash rate directly leads to the increase of the steam amount, and the power generation output increases.

そのため、約180℃以下の中低温の地熱帯を用いても、生産する高温の熱水の温度、流量を安定させて、効率良く熱交換を行うことができ、地熱開発の対象となる場所の数を増やして、地熱エネルギー採取量を増やすことが可能となる。 Therefore, even in the mid-low temperature geothermal area of about 180 ° C or less, the temperature and flow rate of the hot water to be produced can be stabilized and heat exchange can be performed efficiently, which is the target of geothermal development. It is possible to increase the number and increase the amount of geothermal energy collected.

本発明の地熱交換器においては、前記内管から取出される気液2相流を貯蔵する気液2相流槽と、気液2相流から蒸気を分離して得られる圧力水を、気液2相流槽から前記圧力水加熱器に送る圧力水ポンプと、気液2相流槽内の圧力水の温度を計測する気液2相流槽内圧力水温度計測部と、圧力水の流量を計測する圧力水流量計測部とを備え、圧力水ポンプの回転数の制御により圧力水の流量が制御され、気液2相流槽内の圧力水の温度が制御されることとすることができる。 In the geothermal exchanger of the present invention, the gas-liquid two-phase flow tank for storing the gas-liquid two-phase flow taken out from the inner pipe and the pressure water obtained by separating the steam from the gas-liquid two-phase flow are gas. A pressure water pump that sends from the liquid two-phase flow tank to the pressure water heater, a pressure water temperature measuring unit in the gas-liquid two-phase flow tank that measures the temperature of the pressure water in the gas-liquid two-phase flow tank, and pressure water. It is equipped with a pressure water flow rate measuring unit that measures the flow rate, and the flow rate of the pressure water is controlled by controlling the rotation speed of the pressure water pump, and the temperature of the pressure water in the gas-liquid two-phase flow tank is controlled. Can be done.

これにより、気液2相流から蒸気を分離して得られる圧力水の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 This makes it possible to control the temperature of the pressure water obtained by separating steam from the two-phase flow of gas and liquid, and even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to changes in the temperature of the geothermal heat and it is produced. The temperature and flow rate of steam can be stabilized.

本発明の地熱交換器においては、タービン出口の蒸気を冷却して得られる復水と、前記蒸気発生器から減圧沸騰された蒸気を除いた圧力水とが導かれる第一の循環水槽を備えるとともに、第四のフラッシュ率向上手段を備え、第四のフラッシュ率向上手段は、第一の循環水槽に蓄えられた水を加熱する循環水加熱器によって構成され、循環水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされるものであることとすることができる。 The geothermal exchanger of the present invention includes a first circulating water tank in which the condensate water obtained by cooling the steam at the outlet of the turbine and the pressure water obtained by removing the steam boiled under reduced pressure from the steam generator are guided. , The fourth flash rate improving means is provided, and the fourth flash rate improving means is composed of a circulating water heater that heats the water stored in the first circulating water tank, and the heating by the circulating water heater is ground. It can be assumed that it is made by an external heat source other than the heat source obtained from the tropics.

第一の循環水槽に蓄えられた水を循環水加熱器によって加熱し、循環水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされるようにすることにより、取り出す地熱エネルギーの温度が安定しないという状況下であっても、地熱エネルギーの温度に応じて、循環水加熱器による加熱の程度を設定することにより、フラッシュ率を向上することができ、蒸気発生量を増やすことができる。 The water stored in the first circulating water tank is heated by the circulating water heater, and the heating by the circulating water heater is performed by an external heat source other than the heat source obtained from the geotropa. Even under the situation where the temperature is not stable, the flash rate can be improved and the amount of steam generated can be increased by setting the degree of heating by the circulating water heater according to the temperature of the geothermal energy. can.

本発明の地熱交換器においては、前記蒸気発生器から減圧沸騰された蒸気を除いた圧力水を、移送水として前記第一の循環水槽に送る移送水ポンプと、移送水の水量を計測する移送水量計測部と、前記蒸気発生器内の圧力水の温度を計測する蒸気発生器内圧力水温度計測部と、前記第一の循環水槽内の循環水の温度を計測する第一の循環水温度計測部とを備え、移送水ポンプの回転数の制御により移送水の流量が制御され、前記蒸気発生器内の圧力水の温度と前記第一の循環水槽内の循環水の温度が制御されることとすることができる。 In the geothermal exchanger of the present invention, a transfer water pump that sends pressure water excluding steam boiled under reduced pressure from the steam generator to the first circulating water tank as transfer water, and a transfer for measuring the amount of transfer water. The water amount measuring unit, the pressure water temperature measuring unit in the steam generator that measures the temperature of the pressure water in the steam generator, and the first circulating water temperature that measures the temperature of the circulating water in the first circulating water tank. A measuring unit is provided, and the flow rate of the transferred water is controlled by controlling the rotation speed of the transferred water pump, and the temperature of the pressure water in the steam generator and the temperature of the circulating water in the first circulating water tank are controlled. Can be.

これにより、気液2相流から蒸気を分離して得られる圧力水と循環水の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 This makes it possible to control the temperature of pressure water and circulating water obtained by separating steam from the two-phase flow of gas and liquid, and even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to changes in the temperature of the geothermal heat. The temperature and flow rate of the steam produced can be stabilized.

本発明の地熱交換器においては、前記循環水加熱器によって加熱された循環水を貯蔵する第二の循環水槽と、前記第二の循環水槽内の循環水の温度を計測する第二の循環水温度計測部と、坑井循環ポンプを介して前記第二の循環水槽内から前記外管へ送られる循環水の水量を計測する循環水量計測部とを備え、坑井循環ポンプの回転数の制御により前記外管へ送られる循環水の流量が制御され、前記第二の循環水槽内の循環水の温度が制御されることとすることができる。 In the geothermal exchanger of the present invention, the second circulating water tank for storing the circulating water heated by the circulating water heater and the second circulating water for measuring the temperature of the circulating water in the second circulating water tank. It is equipped with a temperature measuring unit and a circulating water amount measuring unit that measures the amount of circulating water sent from the inside of the second circulating water tank to the outer pipe via the well circulation pump, and controls the rotation speed of the well circulation pump. The flow rate of the circulating water sent to the outer pipe is controlled, and the temperature of the circulating water in the second circulating water tank can be controlled.

これにより、循環水の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 As a result, the temperature of the circulating water can be controlled, and even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to the temperature change of the geothermal heat, and it is possible to stabilize the temperature and the flow rate of the steam produced.

本発明の地熱交換器においては、前記第二の循環水槽からの戻水を前記気液2相流槽に送る戻水ポンプと、戻水の水量を計測する戻水量計測部とを備え、戻水ポンプの回転数の制御により戻水の流量が制御され、前記気液2相流槽内の圧力水の温度と前記第二の循環水槽内の循環水の温度が制御されることとすることができる。 The geothermal exchanger of the present invention includes a return water pump that sends the return water from the second circulating water tank to the gas-liquid two-phase flow tank, and a return water amount measuring unit that measures the amount of return water. The flow rate of the return water is controlled by controlling the rotation speed of the water pump, and the temperature of the pressure water in the gas-liquid two-phase flow tank and the temperature of the circulating water in the second circulating water tank are controlled. Can be done.

これにより、圧力水と循環水の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 This makes it possible to control the temperature of pressure water and circulating water, and even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to changes in the temperature of the geothermal heat and stabilize the temperature and flow rate of the steam produced. can.

本発明の地熱交換器においては、前記蒸気発生器で生産される蒸気を加熱する蒸気加熱器と、加熱された蒸気を貯蔵する蒸気槽と、蒸気槽内の蒸気の温度を計測する蒸気温度計測部と、蒸気の流量を計測する蒸気流量計測部とを備え、蒸気加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、蒸気槽内の蒸気の温度と蒸気の流量に応じて、蒸気温度と蒸気流量が制御されることとすることができる。 In the geothermal exchanger of the present invention, a steam heater that heats the steam produced by the steam generator, a steam tank that stores the heated steam, and steam temperature measurement that measures the temperature of the steam in the steam tank. It is equipped with a unit and a steam flow rate measuring unit that measures the steam flow rate, and heating by the steam heater is performed by an external heat source other than the heat source obtained from the geotropic, depending on the temperature of the steam in the steam tank and the steam flow rate. Therefore, the steam temperature and the steam flow rate can be controlled.

これにより、蒸気の温度管理が可能となり、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、生産される蒸気の温度、流量を安定させることができる。 This makes it possible to control the temperature of steam, and even when geothermal heat is insufficient as a heat source, it is possible to quickly respond to changes in the temperature of geothermal heat, and it is possible to stabilize the temperature and flow rate of steam produced.

本発明の地熱交換器においては、前記外部熱源は、バイオマス発電の余剰熱によるものとすることができる。 In the geothermal exchanger of the present invention, the external heat source can be the surplus heat of biomass power generation.

本発明の地熱交換器においては、前記外部熱源は、LPGの燃焼ガスによるものとすることができる。 In the geothermal exchanger of the present invention, the external heat source can be from the combustion gas of LPG.

本発明の地熱発電装置は、本発明の地熱交換器を用いて発電を行うことを特徴とする。 The geothermal power generation device of the present invention is characterized in that power is generated using the geothermal power exchanger of the present invention.

本発明の地熱交換器は、フラッシュ率を向上することができるため、大容量の発電が可能となる。また、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、発電出力が安定する。 Since the geothermal exchanger of the present invention can improve the flash rate, it is possible to generate a large amount of power. Further, even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to the temperature change of the geothermal heat and the power generation output is stable.

本発明によると、取り出す地熱エネルギーの温度が安定しないという状況下であっても、坑井の温度変化の状況に対応することを可能として、生産される蒸気の温度、流量を安定させることができ、約180℃以下の中低温の地熱帯を用いても、効率良く熱交換を行うことができ、地熱開発の対象となる場所の数を増やして、地熱エネルギー採取量を増やすことを可能とする地熱交換器と、この地熱交換器を用いて効率良く大容量の発電を行い、発電地域の地熱資源を有効に利用することが可能な地熱発電装置を実現することができる。 According to the present invention, even under the condition that the temperature of the geothermal energy to be taken out is not stable, it is possible to cope with the situation of the temperature change of the well, and the temperature and the flow rate of the produced steam can be stabilized. It is possible to efficiently exchange heat even in the mid-low temperature geothermal area of about 180 ° C or less, increase the number of places targeted for geothermal development, and increase the amount of geothermal energy collected. It is possible to realize a geothermal power generation device that can efficiently generate a large amount of power by using a geothermal exchanger and this geothermal exchanger and effectively utilize the geothermal resources in the power generation area.

本発明の第一実施形態に係る地熱交換器と地熱発電装置の構成を示す図である。It is a figure which shows the structure of the geothermal exchanger and the geothermal power generation apparatus which concerns on 1st Embodiment of this invention. 本発明の第二実施形態に係る地熱交換器と地熱発電装置の構成を示す図である。It is a figure which shows the structure of the geothermal exchanger and the geothermal power generation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第三実施形態に係る地熱交換器と地熱発電装置の構成を示す図である。It is a figure which shows the structure of the geothermal exchanger and the geothermal power generation apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第四実施形態に係る地熱交換器と地熱発電装置の構成を示す図である。It is a figure which shows the structure of the geothermal exchanger and the geothermal power generation apparatus which concerns on 4th Embodiment of this invention.

以下に、本発明の地熱交換器と地熱発電装置を、その実施形態に基づいて説明する。
図1に、本発明の第一実施形態に係る地熱交換器と地熱発電装置の構成を示す。
Hereinafter, the geothermal exchanger and the geothermal power generation device of the present invention will be described based on the embodiments thereof.
FIG. 1 shows the configuration of the geothermal exchanger and the geothermal power generation device according to the first embodiment of the present invention.

地熱交換器1は、地中に設けられて坑井循環ポンプ9によって加圧された水が供給される外管2と、外管2の内側に配置されて、外管2中を地熱帯まで下降する圧力水に対して、地熱帯から熱が供給されて生成される熱水が蒸気を含まない状態で上昇する内管3を備えている。内管3から取出された圧力水は、蒸気発生器10に送られて、蒸気発生器10内で蒸気として取り出される。外管2が地表付近の低温地帯と接する場所には、断熱部20が形成されている。 The geothermal exchanger 1 is arranged in the outer pipe 2 provided in the ground and supplied with water pressurized by the well circulation pump 9, and inside the outer pipe 2, and the inside of the outer pipe 2 is extended to the geotropa. It is provided with an inner pipe 3 in which the hot water generated by supplying heat from the geotropic to the falling pressure water rises in a state where it does not contain steam. The pressure water taken out from the inner pipe 3 is sent to the steam generator 10 and taken out as steam in the steam generator 10. A heat insulating portion 20 is formed at a place where the outer pipe 2 is in contact with a low temperature zone near the ground surface.

地熱交換器1は、第一のフラッシュ率向上手段を備えている。第一のフラッシュ率向上手段は、地上に取出された圧力水を加熱する圧力水加熱器14によって構成され、圧力水加熱器14による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされる。従って、内管3から取出された圧力水は、圧力水加熱器14によって加熱された後、蒸気発生器10に送られる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。蒸気発生器10によって生成された蒸気は、セパレーター11を通ってタービン12の高圧部に導入され、タービン12を駆動させ、発電機により発電がなされる。 The geothermal exchanger 1 is provided with a first means for improving the flash rate. The first means for improving the flash rate is composed of a pressure water heater 14 for heating the pressure water taken out to the ground, and the heating by the pressure water heater 14 is performed by an external heat source other than the heat source obtained from the geotropa. .. Therefore, the pressure water taken out from the inner pipe 3 is heated by the pressure water heater 14 and then sent to the steam generator 10. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used. The steam generated by the steam generator 10 is introduced into the high-pressure portion of the turbine 12 through the separator 11 to drive the turbine 12 and generate electricity by the generator.

タービン12を出た蒸気はその後、復水器18にて冷却水により冷却されて水に戻る。タービン12の出口の蒸気を冷却して得られる復水は、第一の循環水槽16に導かれる。また、蒸気発生器10から減圧沸騰された蒸気を除いた圧力水は、セパレーター11を通って第一の循環水槽16に導かれる。 The steam leaving the turbine 12 is then cooled by the cooling water in the condenser 18 and returned to water. The condensate obtained by cooling the steam at the outlet of the turbine 12 is guided to the first circulating water tank 16. Further, the pressure water obtained by removing the steam boiled under reduced pressure from the steam generator 10 is guided to the first circulating water tank 16 through the separator 11.

地熱交換器1は、第三のフラッシュ率向上手段を備えており、第三のフラッシュ率向上手段は、第一の循環水槽16に蓄えられた水を加熱する循環水加熱器17によって構成され、循環水加熱器17による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。 The geothermal exchanger 1 is provided with a third flash rate improving means, and the third flash rate improving means is composed of a circulating water heater 17 for heating the water stored in the first circulating water tank 16. The heating by the circulating water heater 17 is performed by an external heat source other than the heat source obtained from the geothermal. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used.

循環水加熱器17によって加熱された第一の循環水槽16内の水は、坑井循環ポンプ9により加圧されて、再び外管2に供給される。この過程を繰り返すことによって、連続して地熱を取り出す。 The water in the first circulating water tank 16 heated by the circulating water heater 17 is pressurized by the well circulation pump 9 and is supplied to the outer pipe 2 again. By repeating this process, geothermal heat is continuously extracted.

図2に、本発明の第二実施形態に係る地熱交換器と地熱発電装置の構成を示す。
地熱交換器1は、地中に設けられ地上から水が供給される外管2と、外管2の内側に配置された内管3とを備えた2重管構造であり、内管3はその内部に設けられた圧力弁6を備えている。外管2内の水に対して地熱帯から熱が供給されて、沸騰せずに高圧熱水が生成される高圧エリア5が形成され、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力と内管3内の減圧エリア8との圧力差が設定基準値を超えたときに圧力弁6が開き、圧力弁6が開いたときに高圧エリア5から高圧熱水が内管3に流入し、内管3の減圧エリア8上部はタービンが必要とする圧力近くに減圧されて気液2相流に変換される。外管2に注入される水を坑井循環ポンプ9によって加圧する圧力を設定することによって、圧力弁6が開くようになっている。外管2が地表付近の低温地帯と接する場所には、断熱部20が形成されている。
FIG. 2 shows the configuration of the geothermal exchanger and the geothermal power generation device according to the second embodiment of the present invention.
The geothermal exchanger 1 has a double pipe structure including an outer pipe 2 provided in the ground and supplied with water from the ground and an inner pipe 3 arranged inside the outer pipe 2, and the inner pipe 3 is a double pipe structure. It is provided with a pressure valve 6 provided inside the pressure valve 6. A high-pressure area 5 is formed in which high-pressure hot water is generated without boiling by supplying heat to the water in the outer pipe 2 from the geotropa, and in the high-pressure area 5 at the position where the pressure valve 6 is installed. The pressure valve 6 opens when the pressure difference between the pressure of the high-pressure hot water and the pressure-reducing area 8 in the inner pipe 3 exceeds the set reference value, and when the pressure valve 6 opens, the high-pressure hot water enters from the high-pressure area 5. It flows into the pipe 3, and the upper part of the decompression area 8 of the inner pipe 3 is depressurized near the pressure required by the turbine and converted into a gas-liquid two-phase flow. The pressure valve 6 is opened by setting the pressure for pressurizing the water injected into the outer pipe 2 by the well circulation pump 9. A heat insulating portion 20 is formed at a place where the outer pipe 2 is in contact with a low temperature zone near the ground surface.

圧力弁6が開くための基準値の設定は、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、地熱帯の温度条件から定められる水の飽和温度における飽和圧力として、圧力差の設定基準値を超えて圧力弁6が開くようにすることができる。 The reference value for opening the pressure valve 6 is set by using the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the pressure valve 6 is installed as the saturation pressure at the water saturation temperature determined from the temperature conditions of the geotropical zone. , The pressure valve 6 can be opened beyond the set reference value of the pressure difference.

また、圧力弁6が開くための基準値の設定は、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、水の臨界圧力付近として、圧力差の設定基準値を超えて圧力弁6が開くようにすることもできる。 Further, for setting the reference value for opening the pressure valve 6, the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the pressure valve 6 is installed is set as the vicinity of the critical water pressure, and the setting reference value of the pressure difference is set. It is also possible to open the pressure valve 6 beyond that.

地熱交換器1は、第二のフラッシュ率向上手段を備えている。第二のフラッシュ率向上手段は、地上に取出された気液2相流から蒸気を分離して得られる圧力水を加熱する圧力水加熱器15によって構成され、圧力水加熱器15による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされる。従って、気液2相流から蒸気を分離して得られる圧力水は、圧力水加熱器15によって加熱された後、蒸気発生器10に送られる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。蒸気発生器10によって生成された蒸気は、タービン12の高圧部に導入され、タービン12を駆動させ、発電機により発電がなされる。 The geothermal exchanger 1 is provided with a second flash rate improving means. The second flash rate improving means is composed of a pressure water heater 15 for heating the pressure water obtained by separating steam from the gas-liquid two-phase flow taken out to the ground, and the heating by the pressure water heater 15 is performed. It is done by an external heat source other than the heat source obtained from the geotropa. Therefore, the pressure water obtained by separating the steam from the two-phase flow of gas and liquid is heated by the pressure water heater 15 and then sent to the steam generator 10. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used. The steam generated by the steam generator 10 is introduced into the high-pressure portion of the turbine 12, drives the turbine 12, and is generated by a generator.

タービン12を出た蒸気はその後、復水器18にて冷却水により冷却されて水に戻る。タービン12の出口の蒸気を冷却して得られる復水は、第一の循環水槽16に導かれる。また、蒸気発生器10から減圧沸騰された蒸気を除いた圧力水は、セパレーター11を通って第一の循環水槽16に導かれる。 The steam leaving the turbine 12 is then cooled by the cooling water in the condenser 18 and returned to water. The condensate obtained by cooling the steam at the outlet of the turbine 12 is guided to the first circulating water tank 16. Further, the pressure water obtained by removing the steam boiled under reduced pressure from the steam generator 10 is guided to the first circulating water tank 16 through the separator 11.

地熱交換器1は、第四のフラッシュ率向上手段を備えており、第四のフラッシュ率向上手段は、第一の循環水槽16に蓄えられた水を加熱する循環水加熱器17によって構成され、循環水加熱器17による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。 The geothermal exchanger 1 is provided with a fourth flash rate improving means, and the fourth flash rate improving means is composed of a circulating water heater 17 for heating the water stored in the first circulating water tank 16. The heating by the circulating water heater 17 is performed by an external heat source other than the heat source obtained from the geothermal. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used.

循環水加熱器17によって加熱された第一の循環水槽16内の水は、坑井循環ポンプ9により加圧されて、再び外管2に供給される。この過程を繰り返すことによって、連続して地熱を取り出す。 The water in the first circulating water tank 16 heated by the circulating water heater 17 is pressurized by the well circulation pump 9 and is supplied to the outer pipe 2 again. By repeating this process, geothermal heat is continuously extracted.

以下に、具体的な実施例を示す。
従来技術である、特許文献1(特許第4927136号公報)における圧力水温度を160℃、生成される蒸気温度を130℃としたものを従来例とし、本発明の第一実施形態における、圧力水温度を圧力水加熱器14により加熱して180℃とし、生成される蒸気温度を130℃としたものを実施例1とし、本発明の第一実施形態における、循環水温度を循環水加熱器17により加熱して180℃とし、生成される蒸気温度を130℃としたものを実施例2として、性能比較を行った。
Specific examples are shown below.
As a conventional example, the pressure water temperature in Patent Document 1 (Japanese Patent No. 4927136), which is a prior art, is 160 ° C. and the generated steam temperature is 130 ° C., and the pressure water in the first embodiment of the present invention is used. The temperature is heated by the pressure water heater 14 to 180 ° C., and the generated steam temperature is 130 ° C. as Example 1, and the circulating water temperature in the first embodiment of the present invention is the circulating water heater 17. The performance was compared with Example 2 in which the temperature was 180 ° C. and the generated steam temperature was 130 ° C.

本発明では、蒸気生産は、減圧沸騰の物理現象を利用しているため、圧力水と蒸気との温度差を大きくして、フラッシュ率をアップさせることが重要である。
表1に、飽和蒸気表を示し、表2に、本発明における温度領域でのフラッシュ率表を示す。フラッシュ率は%で表示している。計算式は、
(高温飽和水h”−低温飽和水h”)/低温蒸発潜熱
を用いている。
In the present invention, since steam production utilizes the physical phenomenon of decompression boiling, it is important to increase the temperature difference between the pressure water and the steam to increase the flash rate.
Table 1 shows a saturated steam table, and Table 2 shows a flash rate table in the temperature range in the present invention. The flash rate is displayed in%. The formula is
(High temperature saturated water h "-low temperature saturated water h") / Low temperature evaporation latent heat is used.

Figure 2021181780
Figure 2021181780

Figure 2021181780
Figure 2021181780

水は大気圧のもとでは、100℃で蒸気に変わるが、大気圧以上に加圧された領域では、その圧力に見合う温度まで圧力水のままで存在することができる。圧力水の領域の圧力を下げてやると、圧力水はエンタルピーの一部を開放し、減圧分に見合った温度まで下げて平衡する。この物理現象を、減圧沸騰といい、減圧分に見合った蒸気を発生させるメカニズムである。地熱地帯の多くの地熱発電は、自然の圧力水を取出し、減圧沸騰させて蒸気を生産している。圧力水を減圧沸騰させると、蒸気の他に圧力熱水も同時に生産されるが、この蒸気の割合をフラッシュ率という。減圧沸騰させて蒸気を生産するには、圧力水の温度を上げるか、蒸気の温度を下げるかの方法がある。蒸気の温度を下げることは、発電に適さないため、圧力水の温度を上げてフラッシュ率をアップさせ、蒸気生産量をアップさせることが合理的である。 Under atmospheric pressure, water turns into steam at 100 ° C., but in a region pressurized above atmospheric pressure, it can exist as pressure water up to a temperature commensurate with the pressure. When the pressure in the pressure water region is lowered, the pressure water releases a part of the enthalpy and lowers to a temperature commensurate with the reduced pressure to equilibrate. This physical phenomenon is called decompression boiling, and it is a mechanism that generates steam commensurate with the amount of decompression. Many geothermal power plants in geothermal fields take out natural pressure water and boil it under reduced pressure to produce steam. When pressure water is boiled under reduced pressure, pressure hot water is produced at the same time as steam, and the ratio of this steam is called the flash rate. To produce steam by boiling under reduced pressure, there are methods of raising the temperature of pressure water or lowering the temperature of steam. Since lowering the temperature of steam is not suitable for power generation, it is rational to raise the temperature of pressure water to increase the flash rate and increase steam production.

以上の観点から、本発明においては、フラッシュ率の向上を図っている。
フラッシュ率の計算式に基づき、
(高温圧力水の潜熱−低温圧力水の潜熱)/低温圧力水の蒸発潜熱
を用いて、160℃の高温圧力水を140℃で減圧沸騰(フラッシュ)させた場合、フラッシュ率は4.0%となる。
From the above viewpoints, the present invention aims to improve the flash rate.
Based on the formula for calculating the flash rate
(Latent heat of high-temperature pressure water-Latent heat of low-temperature pressure water) / When high-temperature pressure water at 160 ° C is boiled under reduced pressure (flash) at 140 ° C using the latent heat of vaporization of low-temperature pressure water, the flash rate is 4.0%. It becomes.

フラッシュ率を高くすることができれば、タービンが必要とする蒸気量を一定にした場合には、循環水量を減少させることができ、循環水量を一定にした場合には、蒸気の生産量を増やすことができる。本発明では、地熱以外の外部熱源を利用して、圧力水または循環水の温度を上げることにより、フラッシュ率を高くすることができる。以下においては、この2つの観点から検討を行う。なお、以下の説明においては、循環水は、地熱交換器を循環する水という意味から、圧力水も含めて循環水と言う場合があり、その水量を循環水量としている。 If the flash rate can be increased, the amount of circulating water can be reduced if the amount of steam required by the turbine is constant, and the amount of steam produced can be increased if the amount of circulating water is constant. Can be done. In the present invention, the flash rate can be increased by raising the temperature of the pressure water or the circulating water by using an external heat source other than geothermal heat. In the following, we will consider from these two viewpoints. In the following description, the circulating water may be referred to as circulating water including pressure water because it means water circulating in the geothermal exchanger, and the amount of the circulating water is defined as the circulating water amount.

最初に、タービンが必要とする蒸気量を一定にした場合について説明する。
表3に、蒸気条件を示す。
First, the case where the amount of steam required by the turbine is constant will be described.
Table 3 shows the steam conditions.

Figure 2021181780
Figure 2021181780

表4に、従来例、実施例1、実施例2について、フラッシュ率、循環水量、加熱に必要な容量を示す。 Table 4 shows the flash rate, the amount of circulating water, and the capacity required for heating for the conventional example, the first embodiment, and the second embodiment.

Figure 2021181780
Figure 2021181780

表5に、160℃の圧力水を、180℃まで加熱するために必要な熱量の計算を示す。 Table 5 shows the calculation of the amount of heat required to heat 160 ° C. pressure water to 180 ° C.

Figure 2021181780
Figure 2021181780

圧力水加熱器の必要容量は、
(循環水量×((高温圧力水の潜熱) - (低温圧力氏の潜熱) )
により求めている。循環水と圧力水の温度は一定の比例関係にあるものとし、蒸気温度を一定としている。
The required capacity of the pressure water heater is
(Circulating water volume x ((Latent heat of high temperature pressure water)-(Latent heat of low temperature pressure)))
Seeking by. The temperature of circulating water and the temperature of pressure water are assumed to be in a constant proportional relationship, and the steam temperature is constant.

フラッシュ率によって、循環水量が変わることになるため、坑井循環ポンプの容量計算を行う。
表6に、使用する2重管の各数値を示す。
Since the amount of circulating water will change depending on the flash rate, the capacity of the well circulation pump will be calculated.
Table 6 shows the numerical values of the double pipes used.

Figure 2021181780
Figure 2021181780

条件として、沸騰圧分を加圧し、ポンプ効率を80%とした。坑井深度を500mとし、内管は地上部の損失水頭を10%加算している。損失水頭の数式はダルシー・ワイスバッハの式を採用した。損失水頭の計算値を、表7に示す。 As a condition, the boiling pressure was pressurized to set the pump efficiency to 80%. The depth of the well is 500 m, and the inner pipe adds 10% of the head loss above the ground. Darcy-Weisbach's formula was adopted as the formula for the head loss. The calculated values of head loss are shown in Table 7.

Figure 2021181780
Figure 2021181780

ポンプ容量の計算結果を、表8に示す。 The calculation results of the pump capacity are shown in Table 8.

Figure 2021181780
Figure 2021181780

このように、循環水量が少なくて済むため、加圧のために使用する坑井循環ポンプの容量が少なくて済む。 In this way, since the amount of circulating water is small, the capacity of the well circulation pump used for pressurization can be small.

次に、循環水量を一定にした場合について説明する。
表3に示す蒸気条件、表4、表5に示す加熱に必要な容量はここでも同様であり、表9に、発電出力の計算を示す。
Next, a case where the amount of circulating water is constant will be described.
The steam conditions shown in Table 3 and the capacities required for heating shown in Tables 4 and 5 are the same here, and Table 9 shows the calculation of the power generation output.

Figure 2021181780
Figure 2021181780

ここで、発電数値は蒸気量に比例するものとした。発電数値は加熱に必要な数値を上回っており、効果的であることが示されている。 Here, the power generation value is proportional to the amount of steam. The power generation value exceeds the value required for heating and has been shown to be effective.

表10に、本発明による効果を示すデータをまとめて示す。 Table 10 summarizes the data showing the effect of the present invention.

Figure 2021181780
Figure 2021181780

本発明によると、フラッシュ率が大きく向上するため、ポンプ容量の削減効果が大きく、加熱に必要な容量を上回る。そのため、本発明の効果は非常に大きなものと言える。500kW以上の発電に適用するのが好ましい。 According to the present invention, since the flash rate is greatly improved, the effect of reducing the pump capacity is large, which exceeds the capacity required for heating. Therefore, it can be said that the effect of the present invention is very large. It is preferable to apply it to power generation of 500 kW or more.

このように、フラッシュ率のアップは、循環水量を削減する効果が大きく、坑井循環ポンプ容量の削減が顕著であり、発電効率が大きく向上する。また、循環水量を一定にした場合には、フラッシュ率のアップはそのまま蒸気量のアップにつながり、発電出力がアップする。循環水または圧力水の温度をアップする手段としては、外部からの熱源利用が効果的であり、その最も顕著な例は、バイオマス発電の余剰熱を利用することである。 In this way, increasing the flash rate has a large effect of reducing the amount of circulating water, the capacity of the well circulation pump is significantly reduced, and the power generation efficiency is greatly improved. In addition, when the amount of circulating water is constant, an increase in the flash rate directly leads to an increase in the amount of steam, and the power generation output increases. Utilization of a heat source from the outside is effective as a means for raising the temperature of circulating water or pressure water, and the most prominent example thereof is utilization of surplus heat of biomass power generation.

以上の説明では、圧力水を加熱する場合について検討を行っているが、気液2相流を加熱する場合にも、同様の原理によってフラッシュ率の向上が可能であり、同様の効果を得ることができる。 In the above explanation, the case of heating the pressure water is examined, but when the gas-liquid two-phase flow is heated, the flash rate can be improved by the same principle, and the same effect can be obtained. Can be done.

以下に、本発明の地熱交換器と地熱発電装置について、温度制御手段を備えた第三実施形態と、第四実施形態について説明する。
図3に、本発明の第三実施形態に係る地熱交換器と地熱発電装置の構成を示す。
地熱交換器1は、地中に設けられて坑井循環ポンプ9によって加圧された水が供給される外管2と、外管2の内側に配置されて、外管2中を地熱帯まで下降する圧力水に対して、地熱帯から熱が供給されて生成される熱水が蒸気を含まない状態で上昇する内管3を備えている。内管3から取出された圧力水は、蒸気発生器10に送られて、蒸気発生器10内で蒸気として取り出される。外管2が地表付近の低温地帯と接する場所には、断熱部20が形成されている。
Hereinafter, the third embodiment and the fourth embodiment provided with the temperature control means will be described with respect to the geothermal exchanger and the geothermal power generation device of the present invention.
FIG. 3 shows the configuration of the geothermal exchanger and the geothermal power generation device according to the third embodiment of the present invention.
The geothermal exchanger 1 is arranged in the outer pipe 2 provided in the ground and supplied with water pressurized by the well circulation pump 9, and inside the outer pipe 2, and the inside of the outer pipe 2 is extended to the geotropa. It is provided with an inner pipe 3 in which the hot water generated by supplying heat from the geotropic to the falling pressure water rises in a state where it does not contain steam. The pressure water taken out from the inner pipe 3 is sent to the steam generator 10 and taken out as steam in the steam generator 10. A heat insulating portion 20 is formed at a place where the outer pipe 2 is in contact with a low temperature zone near the ground surface.

増圧ポンプ45を介して内管3から取出される圧力水は、圧力水槽22に貯蔵され、圧力水ポンプ21によって圧力水加熱器14に送られる。圧力水槽22内の圧力水の温度を計測する圧力水槽内圧力水温度計測部32と、圧力水の流量を計測する圧力水流量計測部31とを備えており、圧力水槽22内の圧力水の温度に応じて、増圧ポンプ45の回転数の制御と圧力水ポンプ21の回転数の制御により圧力水の流量が制御され、圧力水温度が設定値となるように、圧力水槽22内の圧力水の温度が制御される。 The pressure water taken out from the inner pipe 3 via the pressure boosting pump 45 is stored in the pressure water tank 22 and sent to the pressure water heater 14 by the pressure water pump 21. A pressure water temperature measuring unit 32 for measuring the temperature of the pressure water in the pressure water tank 22 and a pressure water flow rate measuring unit 31 for measuring the flow rate of the pressure water are provided, and the pressure water in the pressure water tank 22 is provided. The pressure in the pressure water tank 22 is controlled so that the flow rate of pressure water is controlled by controlling the rotation speed of the booster pump 45 and the rotation speed of the pressure water pump 21 according to the temperature, and the pressure water temperature becomes a set value. The temperature of the water is controlled.

圧力水槽22内に十分な量を貯留し、坑井の温度変化に対応できるようにする。圧力水槽22に貯留された圧力水は、蒸気流量・蒸気温度・蒸気圧に基づいて計算されたフラッシュ率により定められる量が圧力水ポンプ21により取出される。 A sufficient amount is stored in the pressure water tank 22 so as to be able to cope with the temperature change of the well. The pressure water stored in the pressure water tank 22 is taken out by the pressure water pump 21 in an amount determined by the flash rate calculated based on the steam flow rate, the steam temperature, and the steam pressure.

地熱交換器1は、第一のフラッシュ率向上手段を備えている。第一のフラッシュ率向上手段は、地上に取出された圧力水を加熱する圧力水加熱器14によって構成され、圧力水加熱器14による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、燃焼炉30から得られる燃焼ガス流によってなされる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。従って、内管3から取出された圧力水は、圧力水加熱器14によって加熱された後、蒸気発生器10に送られる。蒸気発生器10によって生成された蒸気は、セパレーター11を通ってタービン12の高圧部に導入され、タービン12を駆動させ、発電機13により発電がなされる。発電機13には、発電機出力計測部35が取り付けられており、発電機13の電圧、電流、力率等が計測され、監視、記録される。 The geothermal exchanger 1 is provided with a first means for improving the flash rate. The first means for improving the flash rate is composed of a pressure water heater 14 for heating the pressure water taken out to the ground, and the heating by the pressure water heater 14 is performed by an external heat source other than the heat source obtained from the geotropa. It is done by the combustion gas flow obtained from the combustion furnace 30. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used. Therefore, the pressure water taken out from the inner pipe 3 is heated by the pressure water heater 14 and then sent to the steam generator 10. The steam generated by the steam generator 10 is introduced into the high-pressure portion of the turbine 12 through the separator 11 to drive the turbine 12, and the generator 13 generates electricity. A generator output measuring unit 35 is attached to the generator 13, and the voltage, current, power factor, etc. of the generator 13 are measured, monitored, and recorded.

セパレーター11を通った蒸気は、蒸気加熱器23によって、蒸気を飽和蒸気から過熱蒸気に変えることができ、これにより、タービン12の効率を向上させることができる。過熱蒸気は、蒸気圧を臨界圧力より低く設定し、これにより、従来型の地熱発電では該当しない高温度のタービンを採用することができる。 The steam that has passed through the separator 11 can be converted from saturated steam to superheated steam by the steam heater 23, whereby the efficiency of the turbine 12 can be improved. The superheated steam sets the vapor pressure below the critical pressure, which allows the adoption of high temperature turbines not applicable to conventional geothermal power generation.

蒸気加熱器23による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、燃焼炉30から得られる燃焼ガス流によってなされる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。過熱蒸気は、蒸気槽24と蒸気弁26を経てタービン12に導入されて、タービン12を駆動させ、発電機13によって発電がなされる。蒸気の流路には、蒸気流量を計測する蒸気流量計測部25が取り付けられ、蒸気槽24には、蒸気槽24内の蒸気の温度を計測する蒸気温度計測部34が取り付けられている。蒸気槽24内の蒸気の温度と蒸気の流量に応じて、蒸気温度と蒸気流量が制御される。 The heating by the steam heater 23 is performed by an external heat source other than the heat source obtained from the geotropics, and is performed by the combustion gas flow obtained from the combustion furnace 30. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used. The superheated steam is introduced into the turbine 12 via the steam tank 24 and the steam valve 26 to drive the turbine 12, and the generator 13 generates electricity. A steam flow rate measuring unit 25 for measuring the steam flow rate is attached to the steam flow path, and a steam temperature measuring unit 34 for measuring the temperature of the steam in the steam tank 24 is attached to the steam tank 24. The steam temperature and steam flow rate are controlled according to the steam temperature and steam flow rate in the steam tank 24.

タービン12を出た蒸気はその後、復水器18にて冷却水により冷却されて水に戻る。復水器18に補給水槽29が接続され、補給水槽29には、水処理装置から処理水が供給される。復水の温度を計測する復水温度計測部40と復水の流量を計測する復水流量計測部41が取り付けられている。タービン12の出口の蒸気を冷却して得られる復水は、第一の循環水槽16に導かれる。また、蒸気発生器10から減圧沸騰された蒸気を除いた圧力水は、セパレーター11を通って第一の循環水槽16に導かれる。 The steam leaving the turbine 12 is then cooled by the cooling water in the condenser 18 and returned to water. A make-up water tank 29 is connected to the condenser 18, and treated water is supplied to the make-up water tank 29 from a water treatment device. A condensate temperature measuring unit 40 for measuring the condensate temperature and a condensate flow rate measuring unit 41 for measuring the condensate flow rate are attached. The condensate obtained by cooling the steam at the outlet of the turbine 12 is guided to the first circulating water tank 16. Further, the pressure water obtained by removing the steam boiled under reduced pressure from the steam generator 10 is guided to the first circulating water tank 16 through the separator 11.

地熱交換器1は、第三のフラッシュ率向上手段を備えており、第三のフラッシュ率向上手段は、第一の循環水槽16に蓄えられた水を加熱する循環水加熱器17によって構成され、循環水加熱器17による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、燃焼炉30から得られる燃焼ガス流によってなされる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。 The geoheat exchanger 1 is provided with a third flash rate improving means, and the third flash rate improving means is composed of a circulating water heater 17 for heating the water stored in the first circulating water tank 16. The heating by the circulating water heater 17 is performed by an external heat source other than the heat source obtained from the geotropa, and is performed by the combustion gas flow obtained from the combustion furnace 30. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used.

蒸気発生器10から減圧沸騰された蒸気を除いた圧力水は、移送水ポンプ27によって移送水として第一の循環水槽16に送られる。移送水の水量を計測する移送水量計測部37と、蒸気発生器10内の圧力水の温度を計測する蒸気発生器内圧力水温度計測部33と、第一の循環水槽16内の循環水の温度を計測する第一の循環水温度計測部36とを備えており、蒸気発生器10内の圧力水の温度と、第一の循環水槽16内の循環水の温度に応じて、移送水ポンプ27の回転数の制御により移送水の流量が制御され、これにより、蒸気発生器10内の圧力水の温度と第一の循環水槽16内の循環水の温度が設定値となるように、蒸気発生器10内の圧力水の温度と第一の循環水槽16内の循環水の温度が制御される。 The pressure water obtained by removing the steam boiled under reduced pressure from the steam generator 10 is sent to the first circulating water tank 16 as transfer water by the transfer water pump 27. The transfer water amount measuring unit 37 that measures the amount of transferred water, the pressure water temperature measuring unit 33 in the steam generator that measures the temperature of the pressure water in the steam generator 10, and the circulating water in the first circulating water tank 16. A first circulating water temperature measuring unit 36 for measuring the temperature is provided, and a transfer water pump is provided according to the temperature of the pressure water in the steam generator 10 and the temperature of the circulating water in the first circulating water tank 16. The flow rate of the transferred water is controlled by controlling the number of rotations of 27, so that the temperature of the pressure water in the steam generator 10 and the temperature of the circulating water in the first circulating water tank 16 become set values. The temperature of the pressure water in the generator 10 and the temperature of the circulating water in the first circulating water tank 16 are controlled.

循環水加熱器17によって加熱された循環水は、第二の循環水槽19に貯蔵され、第二の循環水槽19からの戻水は、戻水ポンプ28によって圧力水槽22に送られる。戻水の水量を計測する戻水量計測部38と、第二の循環水槽19内の循環水の温度を計測する第二の循環水温度計測部39とを備えており、圧力水槽22内の圧力水の温度と、第二の循環水槽19内の循環水の温度に応じて、戻水ポンプ28の回転数の制御により、戻水の流量が制御され、圧力水槽22内の圧力水の温度と、第二の循環水槽19内の循環水の温度が設定値となるように、圧力水槽22内の圧力水の温度と、第二の循環水槽19内の循環水の温度が制御される。戻水ポンプ28によって、圧力水槽22へバイパスする閉回路が形成されることになり、坑井の能力が下がった場合に、これに対応する手段として有効である。 The circulating water heated by the circulating water heater 17 is stored in the second circulating water tank 19, and the return water from the second circulating water tank 19 is sent to the pressure water tank 22 by the return water pump 28. A return water amount measuring unit 38 for measuring the amount of return water and a second circulating water temperature measuring unit 39 for measuring the temperature of the circulating water in the second circulating water tank 19 are provided, and the pressure in the pressure water tank 22 is provided. The flow rate of the return water is controlled by controlling the rotation speed of the return water pump 28 according to the temperature of the water and the temperature of the circulating water in the second circulating water tank 19, and the temperature of the pressure water in the pressure water tank 22 The temperature of the pressure water in the pressure water tank 22 and the temperature of the circulating water in the second circulation water tank 19 are controlled so that the temperature of the circulating water in the second circulating water tank 19 becomes a set value. The return water pump 28 forms a closed circuit that bypasses the pressure water tank 22, which is effective as a means for dealing with the decrease in the capacity of the well.

第二の循環水槽19内の循環水は、坑井循環ポンプ9によって外管2へ送られる。この過程を繰り返すことによって、連続して地熱を取り出す。坑井循環ポンプ9と外管2との間には、吐出弁46が取り付けられている。外管2へ送られる循環水の水量を計測する循環水量計測部43を備えており、第二の循環水槽19内の循環水の温度に応じて、坑井循環ポンプ9の回転数の制御により外管2へ送られる循環水の流量が制御され、第二の循環水槽19内の循環水の温度が設定値となるように、第二の循環水槽19内の循環水の温度が制御される。 The circulating water in the second circulating water tank 19 is sent to the outer pipe 2 by the well circulation pump 9. By repeating this process, geothermal heat is continuously extracted. A discharge valve 46 is attached between the well circulation pump 9 and the outer pipe 2. A circulating water amount measuring unit 43 for measuring the amount of circulating water sent to the outer pipe 2 is provided, and the rotation speed of the well circulation pump 9 is controlled according to the temperature of the circulating water in the second circulating water tank 19. The temperature of the circulating water in the second circulating water tank 19 is controlled so that the flow rate of the circulating water sent to the outer pipe 2 is controlled and the temperature of the circulating water in the second circulating water tank 19 becomes a set value. ..

坑井循環ポンプ9は、2重管の損失水頭と地上部分の配管の損失水頭を受け持つ。坑井循環ポンプ9は、計測システムに組み入れられたPID(Proportional Integral Control)制御と、インバーターによる回転数制御を組み合わせることにより、制御の時間的遅れを保証することができる。本発明において用いている他のポンプについても、同様の制御が可能である。 The well circulation pump 9 is responsible for the head loss of the double pipe and the head of the pipe above the ground. The well circulation pump 9 can guarantee a time delay in control by combining PID (Proportional Integral Control) control incorporated in the measurement system and rotation speed control by an inverter. Similar control is possible for the other pumps used in the present invention.

内管3から取出される圧力水を増圧する増圧ポンプ45は、2重管から取り出された圧力水の沸騰圧分を受け持つことで、坑井循環ポンプ45のキャビテーションを防止する。2重管に対する水の圧入と取出の役割を、坑井循環ポンプ9と増圧ポンプ45の2つのポンプでそれぞれ分担することにより、なめらかな制御が可能となる。 The pressure boosting pump 45 that boosts the pressure water taken out from the inner pipe 3 is in charge of the boiling pressure of the pressure water taken out from the double pipe, thereby preventing cavitation of the well circulation pump 45. Smooth control is possible by sharing the roles of injecting and taking out water into the double pipe by the two pumps, the well circulation pump 9 and the booster pump 45, respectively.

上述した温度制御により、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、発電出力が安定する。また、ポンプの運転が安定し、長期間の運転が可能となる。そのため、蒸気温度、圧力ともに大容量の機器を選定することができ、大容量で安定した発電を行うことができる。 With the above-mentioned temperature control, even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to the temperature change of the geothermal heat and the power generation output is stabilized. In addition, the operation of the pump is stable and long-term operation is possible. Therefore, it is possible to select a device having a large capacity in both steam temperature and pressure, and it is possible to perform stable power generation with a large capacity.

図4に、本発明の第四実施形態に係る地熱交換器と地熱発電装置の構成を示す。
地熱交換器1は、地中に設けられ地上から水が供給される外管2と、外管2の内側に配置された内管3とを備えた2重管構造であり、内管3はその内部に設けられた圧力弁6を備えている。外管2内の水に対して地熱帯から熱が供給されて、沸騰せずに高圧熱水が生成される高圧エリア5が形成され、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力と内管3内の減圧エリア8との圧力差が設定基準値を超えたときに圧力弁6が開き、圧力弁6が開いたときに高圧エリア5から高圧熱水が内管3に流入し、内管3の減圧エリア8上部はタービンが必要とする圧力近くに減圧されて気液2相流に変換される。外管2に注入される水を坑井循環ポンプ9によって加圧する圧力を設定することによって、圧力弁6が開くようになっている。外管2が地表付近の低温地帯と接する場所には、断熱部20が形成されている。
FIG. 4 shows the configuration of the geothermal exchanger and the geothermal power generation device according to the fourth embodiment of the present invention.
The geothermal exchanger 1 has a double pipe structure including an outer pipe 2 provided in the ground and supplied with water from the ground and an inner pipe 3 arranged inside the outer pipe 2, and the inner pipe 3 is a double pipe structure. It is provided with a pressure valve 6 provided inside the pressure valve 6. A high-pressure area 5 is formed in which high-pressure hot water is generated without boiling by supplying heat to the water in the outer pipe 2 from the geotropa, and in the high-pressure area 5 at the position where the pressure valve 6 is installed. The pressure valve 6 opens when the pressure difference between the pressure of the high-pressure hot water and the pressure-reducing area 8 in the inner pipe 3 exceeds the set reference value, and when the pressure valve 6 opens, the high-pressure hot water enters from the high-pressure area 5. It flows into the pipe 3, and the upper part of the decompression area 8 of the inner pipe 3 is depressurized near the pressure required by the turbine and converted into a gas-liquid two-phase flow. The pressure valve 6 is opened by setting the pressure for pressurizing the water injected into the outer pipe 2 by the well circulation pump 9. A heat insulating portion 20 is formed at a place where the outer pipe 2 is in contact with a low temperature zone near the ground surface.

圧力弁6が開くための基準値の設定は、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、地熱帯の温度条件から定められる水の飽和温度における飽和圧力として、圧力差の設定基準値を超えて圧力弁6が開くようにすることができる。 The reference value for opening the pressure valve 6 is set by using the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the pressure valve 6 is installed as the saturation pressure at the water saturation temperature determined from the temperature conditions of the geotropical zone. , The pressure valve 6 can be opened beyond the set reference value of the pressure difference.

また、圧力弁6が開くための基準値の設定は、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、水の臨界圧力付近として、圧力差の設定基準値を超えて圧力弁6が開くようにすることもできる。 Further, for setting the reference value for opening the pressure valve 6, the pressure of the high-pressure hot water in the high-pressure area 5 at the position where the pressure valve 6 is installed is set as the vicinity of the critical water pressure, and the setting reference value of the pressure difference is set. It is also possible to open the pressure valve 6 beyond that.

内管3から取出される気液2相流は、気液2相流槽50に貯蔵されて、気液2相流から蒸気を分離して得られる圧力水は、圧力水ポンプ52によって、圧力水加熱器15に送られる。気液2相流槽50内の圧力水の温度を計測する気液2相流槽内圧力水温度計測部51と、圧力水の流量を計測する圧力水流量計測部53とを備えており、気液2相流槽50内の圧力水の温度に応じて、圧力水ポンプ52の回転数の制御により圧力水の流量が制御され、圧力水温度が設定値となるように、気液2相流槽50内の圧力水の温度が制御される。気液2相流から分離された蒸気は、蒸気加熱器23に送られる。 The gas-liquid two-phase flow taken out from the inner pipe 3 is stored in the gas-liquid two-phase flow tank 50, and the pressure water obtained by separating steam from the gas-liquid two-phase flow is pressured by the pressure water pump 52. It is sent to the water heater 15. It is provided with a pressure water temperature measuring unit 51 for measuring the temperature of the pressure water in the gas-liquid two-phase flow tank 50 and a pressure water flow rate measuring unit 53 for measuring the flow rate of the pressure water. Two-phase gas-liquid phase Two-phase gas-liquid phase so that the flow rate of pressure water is controlled by controlling the rotation speed of the pressure water pump 52 according to the temperature of the pressure water in the flow tank 50, and the pressure water temperature becomes a set value. The temperature of the pressure water in the flow tank 50 is controlled. The steam separated from the gas-liquid two-phase flow is sent to the steam heater 23.

地熱交換器1は、第二のフラッシュ率向上手段を備えている。第二のフラッシュ率向上手段は、地上に取出された気液2相流から蒸気を分離して得られる圧力水を加熱する圧力水加熱器15によって構成され、圧力水加熱器15による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、燃焼炉30から得られる燃焼ガス流によってなされる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。従って、気液2相流から蒸気を分離して得られる圧力水は圧力水加熱器15によって加熱された後、蒸気発生器10に送られる。蒸気発生器10によって生成された蒸気は、セパレーター11を通ってタービン12の高圧部に導入され、タービン12を駆動させ、発電機13により発電がなされる。発電機13には、発電機出力計測部35が取り付けられている。 The geothermal exchanger 1 is provided with a second flash rate improving means. The second flash rate improving means is composed of a pressure water heater 15 for heating the pressure water obtained by separating steam from the gas-liquid two-phase flow taken out to the ground, and the heating by the pressure water heater 15 is performed. It is done by an external heat source other than the heat source obtained from the geotropa, and by the combustion gas flow obtained from the combustion furnace 30. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used. Therefore, the pressure water obtained by separating the steam from the two-phase flow of gas and liquid is heated by the pressure water heater 15 and then sent to the steam generator 10. The steam generated by the steam generator 10 is introduced into the high-pressure portion of the turbine 12 through the separator 11 to drive the turbine 12, and the generator 13 generates electricity. A generator output measuring unit 35 is attached to the generator 13.

セパレーター11を通った蒸気は、蒸気加熱器23によって、蒸気を飽和蒸気から過熱蒸気に変えることができ、これにより、タービン12の効率を向上させることができる。蒸気加熱器23による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、燃焼炉30から得られる燃焼ガス流によってなされる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。 The steam that has passed through the separator 11 can be converted from saturated steam to superheated steam by the steam heater 23, whereby the efficiency of the turbine 12 can be improved. The heating by the steam heater 23 is performed by an external heat source other than the heat source obtained from the geotropics, and is performed by the combustion gas flow obtained from the combustion furnace 30. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used.

過熱蒸気は、蒸気槽24と蒸気弁26を経てタービン12に導入されて、タービン12を駆動させ、発電機13によって発電がなされる。蒸気の流路には、蒸気流量を計測する蒸気流量計測部25が取り付けられ、蒸気槽24には、蒸気槽24内の蒸気の温度を計測する蒸気温度計測部34が取り付けられている。蒸気槽24内の蒸気の温度と蒸気の流量に応じて、蒸気温度と蒸気流量が制御される。 The superheated steam is introduced into the turbine 12 via the steam tank 24 and the steam valve 26 to drive the turbine 12, and the generator 13 generates electricity. A steam flow rate measuring unit 25 for measuring the steam flow rate is attached to the steam flow path, and a steam temperature measuring unit 34 for measuring the temperature of the steam in the steam tank 24 is attached to the steam tank 24. The steam temperature and steam flow rate are controlled according to the steam temperature and steam flow rate in the steam tank 24.

タービン12を出た蒸気はその後、復水器18にて冷却水により冷却されて水に戻る。復水器18に補給水槽29が接続され、補給水槽29には、水処理装置から処理水が供給される。復水の温度を計測する復水温度計測部40と復水の流量を計測する復水流量計測部41が取り付けられている。タービン12の出口の蒸気を冷却して得られる復水は、第一の循環水槽16に導かれる。また、蒸気発生器10から減圧沸騰された蒸気を除いた圧力水は、セパレーター11を通って第一の循環水槽16に導かれる。 The steam leaving the turbine 12 is then cooled by the cooling water in the condenser 18 and returned to water. A make-up water tank 29 is connected to the condenser 18, and treated water is supplied to the make-up water tank 29 from a water treatment device. A condensate temperature measuring unit 40 for measuring the condensate temperature and a condensate flow rate measuring unit 41 for measuring the condensate flow rate are attached. The condensate obtained by cooling the steam at the outlet of the turbine 12 is guided to the first circulating water tank 16. Further, the pressure water obtained by removing the steam boiled under reduced pressure from the steam generator 10 is guided to the first circulating water tank 16 through the separator 11.

地熱交換器1は、第四のフラッシュ率向上手段を備えており、第四のフラッシュ率向上手段は、第一の循環水槽16に蓄えられた水を加熱する循環水加熱器17によって構成され、循環水加熱器17による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、燃焼炉30から得られる燃焼ガス流によってなされる。外部熱源として、バイオマス発電の余剰熱を用いることができ、これに加えてLPGによる燃焼ガス流を用いることができる。 The geoheat exchanger 1 is provided with a fourth flash rate improving means, and the fourth flash rate improving means is composed of a circulating water heater 17 for heating the water stored in the first circulating water tank 16. The heating by the circulating water heater 17 is performed by an external heat source other than the heat source obtained from the geotropa, and is performed by the combustion gas flow obtained from the combustion furnace 30. As the external heat source, the surplus heat of biomass power generation can be used, and in addition, the combustion gas flow by LPG can be used.

蒸気発生器10から減圧沸騰された蒸気を除いた圧力水は、移送水ポンプ27によって移送水として第一の循環水槽16に送られる。移送水の水量を計測する移送水量計測部37と、蒸気発生器10内の圧力水の温度を計測する蒸気発生器内圧力水温度計測部54と、第一の循環水槽16内の循環水の温度を計測する第一の循環水温度計測部36とを備えており、蒸気発生器10内の圧力水の温度と、第一の循環水槽16内の循環水の温度に応じて、移送水ポンプ27の回転数の制御により移送水の流量が制御され、これにより、蒸気発生器10内の圧力水の温度と第一の循環水槽16内の循環水の温度が設定値となるように、蒸気発生器10内の圧力水の温度と第一の循環水槽16内の循環水の温度が制御される。 The pressure water obtained by removing the steam boiled under reduced pressure from the steam generator 10 is sent to the first circulating water tank 16 as transfer water by the transfer water pump 27. The transfer water amount measuring unit 37 that measures the amount of transferred water, the pressure water temperature measuring unit 54 in the steam generator that measures the temperature of the pressure water in the steam generator 10, and the circulating water in the first circulating water tank 16. A first circulating water temperature measuring unit 36 for measuring the temperature is provided, and a transfer water pump is provided according to the temperature of the pressure water in the steam generator 10 and the temperature of the circulating water in the first circulating water tank 16. The flow rate of the transferred water is controlled by controlling the number of rotations of 27, so that the temperature of the pressure water in the steam generator 10 and the temperature of the circulating water in the first circulating water tank 16 become set values. The temperature of the pressure water in the generator 10 and the temperature of the circulating water in the first circulating water tank 16 are controlled.

循環水加熱器17によって加熱された循環水は、第二の循環水槽19に貯蔵され、第二の循環水槽19からの戻水は、戻水ポンプ28によって気液2相流槽50に送られる。戻水の水量を計測する戻水量計測部38と、第二の循環水槽19内の循環水の温度を計測する第二の循環水温度計測部39とを備えており、気液2相流槽50内の圧力水の温度と、第二の循環水槽19内の循環水の温度に応じて、戻水ポンプ28の回転数の制御により、戻水の流量が制御され、気液2相流槽50内の圧力水の温度と、第二の循環水槽19内の循環水の温度が設定値となるように、気液2相流槽50内の圧力水の温度と、第二の循環水槽19内の循環水の温度が制御される。戻水ポンプ28によって、気液2相流槽50へバイパスする閉回路が形成されることになり、坑井の能力が下がった場合に、これに対応する手段として有効である。 The circulating water heated by the circulating water heater 17 is stored in the second circulating water tank 19, and the return water from the second circulating water tank 19 is sent to the gas-liquid two-phase flow tank 50 by the return water pump 28. .. It is equipped with a return water amount measuring unit 38 for measuring the amount of return water and a second circulating water temperature measuring unit 39 for measuring the temperature of the circulating water in the second circulating water tank 19. The flow rate of the return water is controlled by controlling the rotation speed of the return water pump 28 according to the temperature of the pressure water in the 50 and the temperature of the circulating water in the second circulating water tank 19, and the gas-liquid two-phase flow tank. The temperature of the pressure water in the gas-liquid two-phase flow tank 50 and the temperature of the second circulating water tank 19 so that the temperature of the pressure water in the 50 and the temperature of the circulating water in the second circulating water tank 19 become set values. The temperature of the circulating water inside is controlled. The return water pump 28 forms a closed circuit that bypasses the gas-liquid two-phase flow tank 50, which is effective as a means for dealing with the decrease in the capacity of the well.

第二の循環水槽19内の循環水は、坑井循環ポンプ9によって外管2へ送られる。この過程を繰り返すことによって、連続して地熱を取り出す。坑井循環ポンプ9と外管2との間には、吐出弁46が取り付けられている。外管2へ送られる循環水の水量を計測する循環水量計測部43を備えており、第二の循環水槽19内の循環水の温度に応じて、坑井循環ポンプ9の回転数の制御により外管2へ送られる循環水の流量が制御され、第二の循環水槽19内の循環水の温度が設定値となるように、第二の循環水槽19内の循環水の温度が制御される。吐出弁46は、運転初期に閉じ、運転中は全開となるよう制御することにより、坑井循環ポンプ9のキャビテーションを防止する。 The circulating water in the second circulating water tank 19 is sent to the outer pipe 2 by the well circulation pump 9. By repeating this process, geothermal heat is continuously extracted. A discharge valve 46 is attached between the well circulation pump 9 and the outer pipe 2. A circulating water amount measuring unit 43 for measuring the amount of circulating water sent to the outer pipe 2 is provided, and the rotation speed of the well circulation pump 9 is controlled according to the temperature of the circulating water in the second circulating water tank 19. The temperature of the circulating water in the second circulating water tank 19 is controlled so that the flow rate of the circulating water sent to the outer pipe 2 is controlled and the temperature of the circulating water in the second circulating water tank 19 becomes a set value. .. The discharge valve 46 is controlled to be closed at the initial stage of operation and fully opened during operation to prevent cavitation of the well circulation pump 9.

この実施形態においても、上述した温度制御により、地熱が熱源として不足する場合であっても、地熱の温度変化にすばやく対応することができ、発電出力が安定する。また、ポンプの運転が安定し、長期間の運転が可能となる。そのため、蒸気温度、圧力ともに大容量の機器を選定することができ、大容量で安定した発電を行うことができる。 Also in this embodiment, by the above-mentioned temperature control, even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to the temperature change of the geothermal heat and the power generation output is stabilized. In addition, the operation of the pump is stable and long-term operation is possible. Therefore, it is possible to select a device having a large capacity in both steam temperature and pressure, and it is possible to perform stable power generation with a large capacity.

上述した第三実施形態と第四実施形態において使用される各種の温度計測部と流量計測部と発電機出力計測部で採取された情報は、コントロールセンターの制御部にネットワークを介して送信され、温度と流量の制御、管理がなされる。このような温度と流量の制御、管理により、坑井の温度が安定しないという状況下であっても、坑井の温度変化の状況に対応して、フラッシュ率を向上することができる。 The information collected by the various temperature measuring units, the flow rate measuring unit, and the generator output measuring unit used in the third and fourth embodiments described above is transmitted to the control unit of the control center via the network. The temperature and flow rate are controlled and controlled. By controlling and controlling the temperature and the flow rate in this way, the flash rate can be improved in response to the situation of the temperature change of the well even in the situation where the temperature of the well is not stable.

本発明は、取り出す地熱エネルギーの温度が安定しないという状況下であっても、坑井の温度変化の状況に対応することを可能として、生産される蒸気の温度、流量を安定させることができ、約180℃以下の中低温の地熱帯を用いても、効率良く熱交換を行うことができ、地熱開発の対象となる場所の数を増やして、地熱エネルギー採取量を増やすことを可能とする地熱交換器と、この地熱交換器を用いて効率良く大容量の発電を行い、発電地域の地熱資源を有効に利用することが可能な地熱発電装置として広く用いることができる。 INDUSTRIAL APPLICABILITY The present invention can stabilize the temperature and flow rate of the produced steam by making it possible to respond to the situation of temperature change in the well even under the situation where the temperature of the geothermal energy to be taken out is not stable. Geothermal energy can be efficiently exchanged even in the mid-low temperature geothermal field of about 180 ° C or less, increasing the number of sites targeted for geothermal development and increasing the amount of geothermal energy collected. It can be widely used as a geothermal power generation device that can efficiently generate a large amount of power using a switch and this geothermal exchanger and effectively utilize the geothermal resources in the power generation area.

1 地熱交換器
2 外管
3 内管
5 高圧エリア
6 圧力弁
8 減圧エリア
9 坑井循環ポンプ
10 蒸気発生器
11 セパレーター
12 タービン
13 発電機
14 圧力水加熱器
15 圧力水加熱器
16 第一の循環水槽
17 循環水加熱器
18 復水器
19 第二の循環水槽
20 断熱部
21 圧力水ポンプ
22 圧力水槽
23 蒸気加熱器
24 蒸気槽
25 蒸気流量計測部
26 蒸気弁
27 移送水ポンプ
28 戻水ポンプ
29 補給水槽
30 燃焼炉
31 圧力水流量計測部
32 圧力水槽内圧力水温度計測部
33 蒸気発生器内圧力水温度計測部
34 蒸気槽内蒸気温度計測部
35 発電機出力計測部
36 第一の循環水温度計測部
37 移送水量計測部
38 戻水量計測部
39 第二の循環水温度計測部
40 復水温度計測部
41 復水流量計測部
43 循環水量計測部
45 増圧ポンプ
46 吐出弁
50 気液2相流槽
51 気液2相流槽内圧力水温度計測部
52 圧力水ポンプ
53 圧力水流量計測部
54 蒸気発生器内圧力水温度計測部
1 Geothermal exchanger 2 Outer pipe 3 Inner pipe 5 High pressure area 6 Pressure valve 8 Decompression area 9 Well circulation pump 10 Steam generator 11 Separator 12 Turbine 13 Generator 14 Pressure water heater 15 Pressure water heater 16 First circulation Water tank 17 Circulating water heater 18 Returning water tank 19 Second circulating water tank 20 Insulation part 21 Pressure water pump 22 Pressure water tank 23 Steam heater 24 Steam tank 25 Steam flow measurement unit 26 Steam valve 27 Transfer water pump 28 Return water pump 29 Replenishment water tank 30 Combustion furnace 31 Pressure water flow rate measurement unit 32 Pressure water temperature measurement unit 33 Steam generator pressure water temperature measurement unit 34 Steam temperature measurement unit in steam tank 35 Generator output measurement unit 36 First circulating water Temperature measurement unit 37 Transfer water amount measurement unit 38 Return water amount measurement unit 39 Second circulating water temperature measurement unit 40 Return water temperature measurement unit 41 Return water flow rate measurement unit 43 Circulating water amount measurement unit 45 Pressure booster pump 46 Discharge valve 50 Gas / liquid 2 Phase flow tank 51 Gas-liquid 2-phase flow tank pressure water temperature measurement unit 52 Pressure water pump 53 Pressure water flow rate measurement unit 54 Steam generator internal pressure water temperature measurement unit

Claims (17)

地中に設けられ地上から加圧された水が供給される外管と、前記外管の内側に配置されて、前記外管中を地熱帯まで下降する圧力水に対して、地熱帯から熱が供給されて生成される熱水が蒸気を含まない状態で上昇する内管とを備え、前記内管から取出された圧力水が蒸気発生器に送られて、蒸気発生器内で蒸気として取り出される地熱交換器であって、第一のフラッシュ率向上手段を備え、第一のフラッシュ率向上手段は、地上に取出された圧力水を加熱する圧力水加熱器によって構成され、圧力水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、前記内管から取出された圧力水は、圧力水加熱器によって加熱された後、蒸気発生器に送られるものであることを特徴とする地熱交換器。 Heat from the geotropic to the outer pipe provided in the ground to which pressurized water is supplied from the ground and the pressure water arranged inside the outer pipe and descending to the geotropa in the outer pipe. Equipped with an inner pipe in which the hot water generated by being supplied with rises without containing steam, the pressure water taken out from the inner pipe is sent to the steam generator and taken out as steam in the steam generator. The first flash rate improving means is provided, and the first flash rate improving means is composed of a pressure water heater for heating the pressure water taken out to the ground, and is operated by the pressure water heater. The heating is performed by an external heat source other than the heat source obtained from the geotropa, and the pressure water taken out from the inner pipe is heated by the pressure water heater and then sent to the steam generator. Geothermal exchanger. 前記内管から取出される圧力水を地上に上昇させて増圧する増圧ポンプと、前記外管に循環水を注入する坑井循環ポンプとを備えていることを特徴とする請求項1記載の地熱交換器。 The first aspect of claim 1, further comprising a pressure boosting pump that raises the pressure water taken out from the inner pipe to the ground to increase the pressure, and a well circulation pump that injects circulating water into the outer pipe. Geothermal exchanger. 前記内管から取出される圧力水を貯蔵する圧力水槽と、圧力水槽から圧力水を前記圧力水加熱器に送る圧力水ポンプと、圧力水槽内の圧力水の温度を計測する圧力水槽内圧力水温度計測部と、圧力水の流量を計測する圧力水流量計測部とを備え、増圧ポンプの回転数の制御と圧力水ポンプの回転数の制御により圧力水の流量が制御され、圧力水槽内の圧力水の温度が制御されることを特徴とする請求項2記載の地熱交換器。 A pressure water tank that stores the pressure water taken out from the inner pipe, a pressure water pump that sends the pressure water from the pressure water tank to the pressure water heater, and a pressure water tank that measures the temperature of the pressure water in the pressure water tank. It is equipped with a temperature measuring unit and a pressure water flow rate measuring unit that measures the flow rate of pressure water, and the flow rate of pressure water is controlled by controlling the rotation speed of the booster pump and the rotation speed of the pressure water pump. The geothermal exchanger according to claim 2, wherein the temperature of the pressure water is controlled. タービン出口の蒸気を冷却して得られる復水と、前記蒸気発生器から減圧沸騰された蒸気を除いた圧力水とが導かれる第一の循環水槽を備えるとともに、第三のフラッシュ率向上手段を備え、第三のフラッシュ率向上手段は、第一の循環水槽に蓄えられた水を加熱する循環水加熱器によって構成され、循環水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされるものであることを特徴とする請求項1から3のいずれかに記載の地熱交換器。 It is equipped with a first circulating water tank in which the condensate water obtained by cooling the steam at the outlet of the turbine and the pressure water obtained by removing the steam boiled under reduced pressure from the steam generator are guided, and a third means for improving the flash rate is provided. The third means for improving the flash rate is composed of a circulating water heater that heats the water stored in the first circulating water tank, and the heating by the circulating water heater is an external heat source other than the heat source obtained from the geotropic. The geothermal exchanger according to any one of claims 1 to 3, wherein the geothermal exchanger is made by. 前記蒸気発生器から減圧沸騰された蒸気を除いた圧力水を、移送水として前記第一の循環水槽に送る移送水ポンプと、移送水の水量を計測する移送水量計測部と、前記蒸気発生器内の圧力水の温度を計測する蒸気発生器内圧力水温度計測部と、前記第一の循環水槽内の循環水の温度を計測する第一の循環水温度計測部とを備え、移送水ポンプの回転数の制御により移送水の流量が制御され、前記蒸気発生器内の圧力水の温度と前記第一の循環水槽内の循環水の温度が制御されることを特徴とする請求項4記載の地熱交換器。 A transfer water pump that sends pressure water obtained by removing steam boiled under reduced pressure from the steam generator to the first circulating water tank as transfer water, a transfer water amount measuring unit that measures the amount of transfer water, and the steam generator. A transfer water pump equipped with a steam generator internal pressure water temperature measuring unit that measures the temperature of the pressure water inside and a first circulating water temperature measuring unit that measures the temperature of the circulating water in the first circulating water tank. 4. The fourth aspect of claim 4, wherein the flow rate of the transferred water is controlled by controlling the number of rotations of the steam generator, and the temperature of the pressure water in the steam generator and the temperature of the circulating water in the first circulating water tank are controlled. Geothermal exchanger. 前記循環水加熱器によって加熱された循環水を貯蔵する第二の循環水槽と、前記第二の循環水槽内の循環水の温度を計測する第二の循環水温度計測部と、坑井循環ポンプを介して第二の循環水槽から前記外管へ送られる循環水の水量を計測する循環水量計測部とを備え、坑井循環ポンプの回転数の制御により前記外管へ送られる循環水の流量が制御され、前記第二の循環水槽内の循環水の温度が制御されることを特徴とする請求項4または5記載の地熱交換器。 A second circulating water tank that stores the circulating water heated by the circulating water heater, a second circulating water temperature measuring unit that measures the temperature of the circulating water in the second circulating water tank, and a well circulation pump. It is equipped with a circulating water amount measuring unit that measures the amount of circulating water sent from the second circulating water tank to the outer pipe, and the flow rate of the circulating water sent to the outer pipe by controlling the rotation speed of the well circulation pump. The geothermal exchanger according to claim 4 or 5, wherein the temperature of the circulating water in the second circulating water tank is controlled. 前記第二の循環水槽からの戻水を前記圧力水槽に送る戻水ポンプと、戻水の水量を計測する戻水量計測部とを備え、戻水ポンプの回転数の制御により戻水の流量が制御され、前記圧力水槽内の圧力水の温度と前記第二の循環水槽内の循環水の温度が制御されることを特徴とする請求項6記載の地熱交換器。 It is equipped with a return water pump that sends the return water from the second circulating water tank to the pressure water tank and a return water amount measuring unit that measures the amount of return water, and the flow rate of the return water is controlled by controlling the rotation speed of the return water pump. The geothermal exchanger according to claim 6, wherein the temperature of the pressure water in the pressure water tank and the temperature of the circulating water in the second circulating water tank are controlled and controlled. 地中に設けられ地上から水が供給される外管と、前記外管の内側に配置された内管とを備えた2重管構造であり、内管はその内部に設けられた圧力弁を備え、外管内の水に対して地熱帯から熱が供給されて、沸騰せずに高圧熱水が生成される高圧エリアが形成され、圧力弁が設置された位置における高圧エリア内の高圧熱水の圧力と内管内の減圧エリアとの圧力差が設定基準値を超えたときに圧力弁が開き、圧力弁が開いたときに高圧エリアの高圧熱水が内管内に流入し、内管内の減圧エリアにおける圧力はタービンが必要とする圧力近くに減圧されて気液2相流に変換される地熱交換器であって、第二のフラッシュ率向上手段を備え、第二のフラッシュ率向上手段は、地上に取出された気液2相流から蒸気を分離して得られる圧力水を加熱する圧力水加熱器によって構成され、圧力水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、気液2相流から蒸気を分離して得られる圧力水は、圧力水加熱器によって加熱された後、蒸気発生器に送られるものであることを特徴とする地熱交換器。 It is a double pipe structure including an outer pipe provided in the ground and supplied with water from the ground and an inner pipe arranged inside the outer pipe, and the inner pipe has a pressure valve provided inside the outer pipe. In preparation, heat is supplied from the geotropics to the water in the outer pipe to form a high-pressure area where high-pressure hot water is generated without boiling, and high-pressure hot water in the high-pressure area at the position where the pressure valve is installed. When the pressure difference between the pressure and the decompression area in the inner pipe exceeds the set reference value, the pressure valve opens, and when the pressure valve opens, the high-pressure hot water in the high-pressure area flows into the inner pipe and depressurizes in the inner pipe. A geothermal exchanger in which the pressure in the area is reduced to near the pressure required by the turbine and converted into a gas-liquid two-phase flow, provided with a second flush rate improving means, the second flash rate improving means. It is composed of a pressure water heater that heats the pressure water obtained by separating steam from the two-phase flow of gas and liquid taken out to the ground, and the heating by the pressure water heater is performed by an external heat source other than the heat source obtained from the geotropic. A geothermal exchanger characterized in that the pressure water obtained by separating steam from a two-phase flow of gas and liquid is heated by a pressure water heater and then sent to a steam generator. 前記内管から取出される気液2相流を貯蔵する気液2相流槽と、気液2相流から蒸気を分離して得られる圧力水を、気液2相流槽から前記圧力水加熱器に送る圧力水ポンプと、気液2相流槽内の圧力水の温度を計測する気液2相流槽内圧力水温度計測部と、圧力水の流量を計測する圧力水流量計測部とを備え、圧力水ポンプの回転数の制御により圧力水の流量が制御され、気液2相流槽内の圧力水の温度が制御されることを特徴とする請求項8記載の地熱交換器。 The pressure water from the gas-liquid two-phase flow tank is the pressure water obtained by separating the steam from the gas-liquid two-phase flow and the gas-liquid two-phase flow tank that stores the gas-liquid two-phase flow taken out from the inner pipe. A pressure water pump that sends to a heater, a pressure water temperature measurement unit that measures the temperature of pressure water in a gas-liquid two-phase flow tank, and a pressure water flow rate measurement unit that measures the flow rate of pressure water. The geothermal exchanger according to claim 8, wherein the flow rate of the pressure water is controlled by controlling the rotation speed of the pressure water pump, and the temperature of the pressure water in the gas-liquid two-phase flow tank is controlled. .. タービン出口の蒸気を冷却して得られる復水と、前記蒸気発生器から減圧沸騰された蒸気を除いた圧力水とが導かれる第一の循環水槽を備えるとともに、第四のフラッシュ率向上手段を備え、第四のフラッシュ率向上手段は、第一の循環水槽に蓄えられた水を加熱する循環水加熱器によって構成され、循環水加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされるものであることを特徴とする請求項8または9記載の地熱交換器。 It is equipped with a first circulating water tank in which the condensate water obtained by cooling the steam at the outlet of the turbine and the pressure water obtained by removing the steam boiled under reduced pressure from the steam generator are guided, and a fourth means for improving the flash rate is provided. The fourth means for improving the flash rate is composed of a circulating water heater that heats the water stored in the first circulating water tank, and the heating by the circulating water heater is an external heat source other than the heat source obtained from the geotropa. The geothermal exchanger according to claim 8 or 9, characterized in that it is made by. 前記蒸気発生器から減圧沸騰された蒸気を除いた圧力水を、移送水として前記第一の循環水槽に送る移送水ポンプと、移送水の水量を計測する移送水量計測部と、前記蒸気発生器内の圧力水の温度を計測する蒸気発生器内圧力水温度計測部と、前記第一の循環水槽内の循環水の温度を計測する第一の循環水温度計測部とを備え、移送水ポンプの回転数の制御により移送水の流量が制御され、前記蒸気発生器内の圧力水の温度と前記第一の循環水槽内の循環水の温度が制御されることを特徴とする請求項10記載の地熱交換器。 A transfer water pump that sends pressure water obtained by removing steam boiled under reduced pressure from the steam generator to the first circulating water tank as transfer water, a transfer water amount measuring unit that measures the amount of transfer water, and the steam generator. A transfer water pump equipped with a steam generator internal pressure water temperature measuring unit that measures the temperature of the pressure water inside and a first circulating water temperature measuring unit that measures the temperature of the circulating water in the first circulating water tank. 10. The method 10. Geothermal exchanger. 前記循環水加熱器によって加熱された循環水を貯蔵する第二の循環水槽と、前記第二の循環水槽内の循環水の温度を計測する第二の循環水温度計測部と、坑井循環ポンプを介して前記第二の循環水槽内から前記外管へ送られる循環水の水量を計測する循環水量計測部とを備え、坑井循環ポンプの回転数の制御により前記外管へ送られる循環水の流量が制御され、前記第二の循環水槽内の循環水の温度が制御されることを特徴とする請求項10または11記載の地熱交換器。 A second circulating water tank that stores the circulating water heated by the circulating water heater, a second circulating water temperature measuring unit that measures the temperature of the circulating water in the second circulating water tank, and a well circulation pump. A circulating water amount measuring unit for measuring the amount of circulating water sent from the inside of the second circulating water tank to the outer pipe is provided, and the circulating water sent to the outer pipe is controlled by controlling the rotation speed of the well circulation pump. 10. The geothermal exchanger according to claim 10 or 11, wherein the flow rate of the water is controlled and the temperature of the circulating water in the second circulating water tank is controlled. 前記第二の循環水槽からの戻水を前記気液2相流槽に送る戻水ポンプと、戻水の水量を計測する戻水量計測部とを備え、戻水ポンプの回転数の制御により戻水の流量が制御され、前記気液2相流槽内の圧力水の温度と前記第二の循環水槽内の循環水の温度が制御されることを特徴とする請求項12記載の地熱交換器。 It is equipped with a return water pump that sends the return water from the second circulating water tank to the gas-liquid two-phase flow tank, and a return water amount measuring unit that measures the amount of return water, and returns by controlling the rotation speed of the return water pump. The geothermal exchanger according to claim 12, wherein the flow rate of water is controlled, and the temperature of the pressure water in the gas-liquid two-phase flow tank and the temperature of the circulating water in the second circulating water tank are controlled. .. 前記蒸気発生器で生産される蒸気を加熱する蒸気加熱器と、加熱された蒸気を貯蔵する蒸気槽と、蒸気槽内の蒸気の温度を計測する蒸気温度計測部と、蒸気の流量を計測する蒸気流量計測部とを備え、蒸気加熱器による加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、蒸気槽内の蒸気の温度と蒸気の流量に応じて、蒸気温度と蒸気流量が制御されることを特徴とする請求項1から13のいずれかに記載の地熱交換器。 A steam heater that heats the steam produced by the steam generator, a steam tank that stores the heated steam, a steam temperature measuring unit that measures the temperature of the steam in the steam tank, and a steam flow rate are measured. Equipped with a steam flow rate measuring unit, heating by a steam heater is performed by an external heat source other than the heat source obtained from the geotropa, and the steam temperature and steam flow rate are controlled according to the steam temperature and steam flow rate in the steam tank. The geothermal steamer according to any one of claims 1 to 13, characterized in that. 前記外部熱源は、バイオマス発電の余剰熱によるものであることを特徴とする請求項1から14のいずれかに記載の地熱交換器。 The geothermal exchanger according to any one of claims 1 to 14, wherein the external heat source is due to surplus heat of biomass power generation. 前記外部熱源は、LPGの燃焼ガスによるものであることを特徴とする請求項1から15のいずれかに記載の地熱交換器。 The geothermal exchanger according to any one of claims 1 to 15, wherein the external heat source is due to the combustion gas of LPG. 請求項1から16のいずれかに記載の地熱交換器を用いて発電を行うことを特徴とする地熱発電装置。 A geothermal power generation device characterized in that power is generated using the geothermal exchanger according to any one of claims 1 to 16.
JP2020111284A 2020-05-16 2020-06-29 Geothermal heat exchangers and geothermal generators Active JP7320271B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020086368 2020-05-16
JP2020086368 2020-05-16

Publications (2)

Publication Number Publication Date
JP2021181780A true JP2021181780A (en) 2021-11-25
JP7320271B2 JP7320271B2 (en) 2023-08-03

Family

ID=78606219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111284A Active JP7320271B2 (en) 2020-05-16 2020-06-29 Geothermal heat exchangers and geothermal generators

Country Status (1)

Country Link
JP (1) JP7320271B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543209A (en) * 1978-09-18 1980-03-27 Chinetsu Gijutsu Kaihatsu Kk Geothermal and solar heat composite power plant
JP2013164062A (en) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk Geothermal heat exchanger and geothermal power generation device
JP6067173B1 (en) * 2016-09-30 2017-01-25 俊一 田原 Geothermal exchanger and geothermal power generator
JP2017106430A (en) * 2015-12-08 2017-06-15 株式会社エスト Geothermal heat exchanger and geothermal power generation device
JP6176890B1 (en) * 2017-05-26 2017-08-09 千年生 田原 Geothermal exchanger and geothermal power generator
JP2018017173A (en) * 2016-07-27 2018-02-01 一般財団法人電力中央研究所 Geothermal power generation facility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013200620A1 (en) 2013-02-03 2014-08-21 Ignatious Isaakidis Isaakidis thermal engineered systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543209A (en) * 1978-09-18 1980-03-27 Chinetsu Gijutsu Kaihatsu Kk Geothermal and solar heat composite power plant
JP2013164062A (en) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk Geothermal heat exchanger and geothermal power generation device
JP2017106430A (en) * 2015-12-08 2017-06-15 株式会社エスト Geothermal heat exchanger and geothermal power generation device
JP2018017173A (en) * 2016-07-27 2018-02-01 一般財団法人電力中央研究所 Geothermal power generation facility
JP6067173B1 (en) * 2016-09-30 2017-01-25 俊一 田原 Geothermal exchanger and geothermal power generator
JP6176890B1 (en) * 2017-05-26 2017-08-09 千年生 田原 Geothermal exchanger and geothermal power generator

Also Published As

Publication number Publication date
JP7320271B2 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US3757516A (en) Geothermal energy system
Zhang et al. Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes
CN103993922B (en) A kind of low temperature exhaust heat CO 2rankine cycle system
CN106089337A (en) Supercritical CO for waste heat recovery2with organic Rankine association circulating power generation system
Zhang et al. Thermo-economic optimization of the thermal energy storage system extracting heat from the reheat steam for coal-fired power plants
CN109723510A (en) The Organic Rankine Cycle electricity-generating method and device of non-pump type firm power output
JP2015052427A (en) Steam turbine plant
CN110284933A (en) A method of improving small steam turbine electricity generation system efficiency
US4102133A (en) Multiple well dual fluid geothermal power cycle
CN206037003U (en) Secondary reheating unit EC BEST steam turbine steam exhaust heating deoxidization boiler feed water's thermodynamic system
JP6896137B1 (en) Heat exchanger used for geothermal power generation and geothermal power generation system using this
Nezhad et al. Analysis of a novel concentrated solar power and magnetohydrodynamic liquid metal units integrated system with hydrogen production
CN110118147A (en) A method of converting liquid position for expansion work can export technique function
JP2021181780A (en) Geothermal exchanger and geothermal power generating set
Dambly et al. The Organic Rankine Cycle for Geothermal Power Generation
US20230194127A1 (en) Geothermal heat extractor
JP6844880B1 (en) Geothermal exchanger and geothermal power generator
CN104100309B (en) Single reheat steam turbine high-temperature steam-extracting cooling system
CN200999631Y (en) High efficiency steam power cycle device used for electric
JPH04234576A (en) Hot dry rock heat extractor
CN107060915A (en) Heat pump cycle water backheat Rankine cycle system
CN101397983A (en) Working fluid phase changing enthalpy difference sea water temperature difference power machine
Başoğul et al. Binary geothermal power plant
CN203452859U (en) Single-screw expander medium and low temperature geothermal power generation system based on lubricating oil cycle loop
CN102213118A (en) Steam turbine plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R150 Certificate of patent or registration of utility model

Ref document number: 7320271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150