JPH04234576A - Hot dry rock heat extractor - Google Patents

Hot dry rock heat extractor

Info

Publication number
JPH04234576A
JPH04234576A JP54091A JP54091A JPH04234576A JP H04234576 A JPH04234576 A JP H04234576A JP 54091 A JP54091 A JP 54091A JP 54091 A JP54091 A JP 54091A JP H04234576 A JPH04234576 A JP H04234576A
Authority
JP
Japan
Prior art keywords
water
well
amount
wells
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP54091A
Other languages
Japanese (ja)
Inventor
Eiji Sekiya
関矢 英士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP54091A priority Critical patent/JPH04234576A/en
Publication of JPH04234576A publication Critical patent/JPH04234576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To provide a hot dry rock heat extractor which can reduce power of a sealing water pump for injecting water and hold down the quantity of filling water to the minimum in flooding an underground hot dry rock and extracting heat from the rock as hot water. CONSTITUTION:A hot dry rock heat extractor of the present invention is constructed so that the pressure temperature of a geothermal fluid of each production well outlet is detected, and control valves 21, 22 provided on each filling well 2 and each production well 3 outlet are controlled to control the quantity of filling water to each filling well 2 and the extract quatity from each production well 3 so that the condition of the geothermal fluid may become superheated steam or saturated steam.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、地下の高温岩体の熱を
抽出する高温岩体抽出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature rock extraction device for extracting heat from underground high-temperature rock.

【0002】0002

【従来の技術】従来の地熱エネルギー利用方法は、地下
に存在する高温の蒸気や地下水(地下のこのような部分
を地熱貯留層という)に坑井を掘り当てて、それらを地
熱蒸気や地熱水の形で抽出し利用するというものであっ
た。
[Prior Art] The conventional method of utilizing geothermal energy is to drill a well into high-temperature steam or groundwater that exists underground (this underground area is called a geothermal reservoir), and then use it to generate geothermal steam or geothermal energy. It was supposed to be extracted and used in the form of water.

【0003】しかし、地下には高温の岩はあるが水脈が
ない所があり、そのような所では地熱蒸気や地熱水の形
で抽熱できない。そこで、そのような地熱資源を活用す
るために、高温岩体に何本かの坑井を堀り、水圧等の手
段で坑井間にまたがる亀裂を造成した後、一方の坑井か
ら水を注入し、亀裂の中で加熱して他の坑井から抽出す
る、いわゆる人工地熱貯留層を形成するという技術が開
発されつつある。
However, there are places underground where there are hot rocks but no water veins, and in such places heat cannot be extracted in the form of geothermal steam or geothermal water. Therefore, in order to utilize such geothermal resources, several wells are drilled in the high-temperature rock body, and after creating cracks between the wells using water pressure or other means, water is drained from one well. Techniques are being developed to create so-called engineered geothermal reservoirs by injecting, heating in cracks and extracting from other wells.

【0004】この技術は未だ確立されたものではなく、
よって、決まった方式があるわけではないが、一般的な
概念は、注入井に注入した水を生産井から加圧熱水の状
態で抽出し利用するもので、用途としては、付加価値の
高い発電である。
[0004] This technology has not yet been established;
Therefore, although there is no fixed method, the general concept is that water injected into an injection well is extracted from a production well in the form of pressurized hot water and used as a high value-added It is power generation.

【0005】そのような発電システムを図2に示す。図
2に示すように地下に存在する高温岩体1に向けてそれ
ぞれ複数の注入井2a,2b、生産井3a,3bが掘ら
れており、生産井3a,3bに高い水圧をかけるなどの
手段を用いて、各坑井は多数の亀裂4で連通している。
FIG. 2 shows such a power generation system. As shown in FIG. 2, a plurality of injection wells 2a, 2b and production wells 3a, 3b are dug toward the high-temperature rock body 1 existing underground, and measures such as applying high water pressure to the production wells 3a, 3b are used. Each well is connected by a large number of cracks 4.

【0006】注水ポンプ5a,5bで注入された水は、
この亀裂4内を流れている間に高温岩体の熱で暖められ
、高温の熱水となって生産井3a,3bから出てくる。 この熱水をフラッシャ6に入れ、フラッシユさせて得ら
れた飽和蒸気7はタービン8に導かれ動力を発生させる
。タービン8には発電機9が結合されており発電が成さ
れる。
[0006] The water injected by the water injection pumps 5a and 5b is
While flowing in this crack 4, it is warmed by the heat of the high-temperature rock and comes out from the production wells 3a, 3b as high-temperature hot water. This hot water is put into a flasher 6, and the saturated steam 7 obtained by flashing is led to a turbine 8 to generate power. A generator 9 is coupled to the turbine 8 to generate electricity.

【0007】タービン8の排気は復水器10に流入し、
冷却水11で冷却され水に戻る。この復水12は復水ポ
ンプ13により注水ポンプ5a,5bに送られる。フラ
ッシャ6で蒸気にされなかった大部分の熱水は、温度が
下がって低温熱水14となり特に利用されないまま注水
ポンプ5a,5bへと循環する。
[0007] The exhaust gas of the turbine 8 flows into a condenser 10;
It is cooled by the cooling water 11 and returns to water. This condensate 12 is sent by a condensate pump 13 to water injection pumps 5a and 5b. Most of the hot water that has not been turned into steam by the flasher 6 is lowered in temperature and becomes low-temperature hot water 14, which is circulated to the water injection pumps 5a and 5b without being particularly utilized.

【0008】高温岩体1内の亀裂4は、すべてが完全に
密閉系であれば、注入した水は全量が地上に循環してく
るはずであるが、亀裂4の一部が高温岩体1の外縁に達
したりするために、通常は注入した水の一部が地下のど
こかに流れていってしまい、何パーセントかが系外へ失
われる。そこで、そのままでは系内の水が減ってしまう
ので、系外流出分に見合った量の補給水15を、補給水
ポンプ16により、図示していない水源から系内に補給
する。実際には、装置内には上述以外にも多くの機器が
あるが、本発明に直接関係のないものは、記述を省略し
ている。
If all of the cracks 4 in the high-temperature rock body 1 are completely sealed, the entire amount of injected water should circulate to the ground, but some of the cracks 4 are in the high-temperature rock body 1. Usually, some of the injected water flows somewhere underground, and some percentage is lost to the outside of the system. Therefore, since the water in the system will decrease if left as is, an amount of make-up water 15 commensurate with the amount flowing out of the system is replenished into the system from a water source (not shown) using the make-up water pump 16. Actually, there are many devices in the apparatus other than those mentioned above, but descriptions of those not directly related to the present invention are omitted.

【0009】このように、生産井から抽出した加圧熱水
を発電に使用するには、加圧熱水をフラッシャに導き、
フラッシュ(減圧沸騰)させてその一部を水蒸気に変換
し、蒸気タービンで動力を得て、発電機を駆動する。
[0009] In this way, in order to use the pressurized hot water extracted from the production well for power generation, the pressurized hot water is led to the flasher,
A portion of the water is flashed (boiled under reduced pressure) and converted into steam, which is then used to generate power in a steam turbine to drive a generator.

【0010】0010

【発明が解決しようとする課題】ところが、その場合、
抽出した加圧熱水の大部分は、温度の低下した熱水のま
ま残るので、再び注入井に注入し、フラッシャと高温岩
体の間を循環させることになる。そして、この熱水循環
のためのポンプ動力はかなり大きなものが必要となるの
で、この動力を低減させることが重要となる。
[Problem to be solved by the invention] However, in that case,
Most of the extracted pressurized hot water remains as hot water with a lower temperature, so it will be injected into the injection well again and circulated between the flasher and the high-temperature rock body. Since a considerably large amount of pump power is required for this hot water circulation, it is important to reduce this power.

【0011】また、注入井から注入した水はすべてが生
産井から回収できるわけではない。岩体の外縁に至る亀
裂が存在すれば、その亀裂に流入した水は岩体の外にし
みだして、系内の水の減少となる。そこで、この現象分
は補給する必要があるわけであるが、このような地熱地
域は必ずしも補給水の水源に恵まれているわけではない
から、水の乏しい地域の場合には補給水の調達が問題で
、補給水の目途が立たないため、高温岩体からの熱抽出
を断念する場合も起こり得る。本発明の目的は、注水ポ
ンプの動力を低減させること、および補給水の量を低減
させることができる高温岩体熱抽出装置を提供しようと
するものである。[発明の構成]
[0011] Furthermore, not all of the water injected from the injection well can be recovered from the production well. If a crack exists that reaches the outer edge of the rock, water that flows into the crack will seep out of the rock, reducing the amount of water in the system. Therefore, it is necessary to replenish the amount for this phenomenon, but geothermal areas like this are not necessarily blessed with a source of replenishment water, so in areas where water is scarce, procuring replenishment water is a problem. However, there may be cases where extraction of heat from high-temperature rock bodies is abandoned because there is no prospect of replenishment water. An object of the present invention is to provide a high-temperature rock heat extraction device that can reduce the power of a water injection pump and the amount of make-up water. [Structure of the invention]

【0012】0012

【課題を解決するための手段】本発明では、各生産井出
口の地熱流体の状態が、過熱蒸気または飽和蒸気となる
ように各注入井への注水量、および各生産井からの抽出
量を制御することにより、上記目的を達成する。
[Means for Solving the Problems] In the present invention, the amount of water injected into each injection well and the amount extracted from each production well are controlled so that the state of the geothermal fluid at the outlet of each production well becomes superheated steam or saturated steam. By controlling, the above purpose is achieved.

【0013】[0013]

【作用】各生産井出口の地熱流体の状態が、過熱蒸気ま
たは飽和蒸気となるように各注入井への注水量を制御す
れば、熱水として循環させる方式に比較して、高温岩体
への注水量は大幅に減少される。その結果注水ポンプの
所要動力は低減され、また、高温岩体からの流出量も高
温岩体内部の流量が減少するのに応じて低減される。
[Effect] If the amount of water injected into each injection well is controlled so that the state of the geothermal fluid at the outlet of each production well becomes superheated steam or saturated steam, compared to a method in which it is circulated as hot water, it is possible to The water injection amount will be significantly reduced. As a result, the power required for the water injection pump is reduced, and the flow rate from the hot rock body is also reduced in accordance with the decrease in the flow rate inside the hot rock body.

【0014】[0014]

【実施例】本発明の一実施例を示す。本発明では、生産
井3a,3bの出口に地熱流体の圧力、温度を計測する
検出器17a,17bを設け、その出力信号を演算器1
8に送る。演算器18ではそれぞれの生産井3a,3b
ごとにそこの地熱流体の状態と飽和蒸気との関係を計算
し、制御器19を用いて生産井3a,3bの出口で飽和
蒸気となるよう、各調整弁20a,20b,21a,2
1bの開度を制御する。
[Example] An example of the present invention will be shown. In the present invention, detectors 17a and 17b for measuring the pressure and temperature of the geothermal fluid are provided at the exits of the production wells 3a and 3b, and the output signals are sent to the calculator 1.
Send to 8. In the computing unit 18, each production well 3a, 3b
The relationship between the state of the geothermal fluid and saturated steam is calculated for each, and the controller 19 is used to adjust each regulating valve 20a, 20b, 21a, 2 so that saturated steam is produced at the outlet of the production wells 3a, 3b.
Controls the opening degree of 1b.

【0015】その際、演算器18は高温岩体1内におけ
る注入井2a,2b、生産井3a,3bそれぞれの位置
関係、それらの間の亀裂4の状況、高温岩体1内の温度
状況などを判断材料とする計算プログラムに基づいて演
算を実行し、制御器19への信号を出力する。
At this time, the computing unit 18 calculates the positional relationship of the injection wells 2a, 2b and the production wells 3a, 3b within the high-temperature rock body 1, the state of the cracks 4 between them, the temperature situation within the high-temperature rock body 1, etc. The calculation is executed based on a calculation program using the information as judgment material, and a signal is output to the controller 19.

【0016】このように、本発明では高温岩体1から飽
和蒸気が得られるので、この蒸気を気水分離器22に通
し、予想外の混入水分を除去してから、タービン8に流
入させる。気水分離器22で分離された水は、ドレンポ
ット23で受けた後、復水12、補給水15と合流させ
て注水ポンプ5a,5bへと循環させる。
As described above, in the present invention, since saturated steam is obtained from the high-temperature rock body 1, this steam is passed through the steam-water separator 22 to remove unexpected mixed moisture before flowing into the turbine 8. The water separated by the steam-water separator 22 is received by a drain pot 23, and then combined with condensate 12 and make-up water 15 and circulated to the water injection pumps 5a and 5b.

【0017】本発明では、生産井3a,3bから得られ
る地熱流体は、飽和蒸気7であるから、得られたものの
ほぼ全量がタービン8に回り、利用されずに注入井2a
,2bに循環する分はほとんどない。この関係は温度条
件によって様々であるが、典型的な例として、生産井3
a,3bから240℃の地熱流体を圧力35ataの状
態で1000t/h得、フラッシャ6で温度150℃、
圧力4.9ataの飽和蒸気7を発生させるものとすれ
ば、発生する飽和蒸気7はたった192t/hであり、
残りの808t/h、実に80.8%が利用されないま
ま注入井2a,2bへと循環する。
In the present invention, since the geothermal fluid obtained from the production wells 3a and 3b is saturated steam 7, almost the entire amount of the obtained fluid is passed to the turbine 8 and is not used, but is sent to the injection well 2a.
, 2b. This relationship varies depending on temperature conditions, but as a typical example, production well 3
1000 t/h of geothermal fluid at 240°C was obtained from a and 3b at a pressure of 35ata, and the temperature was 150°C with flasher 6.
If saturated steam 7 with a pressure of 4.9 ata is generated, the amount of saturated steam 7 generated is only 192 t/h,
The remaining 808 t/h, in fact 80.8%, circulates to the injection wells 2a and 2b without being utilized.

【0018】また、高温岩体1での水の漏洩損失である
が、その量は高温岩体1内を流れる水の量に関係し、も
しそれが注入井2a,2bへ注入量に比例して注入量の
20%だというような場合には、上記のように1000
t/hを得ようとするならば、注入井2a,2bへの注
水量は1250t/hであり、補給水15の量は250
t/hにも上がる。
Furthermore, the leakage loss of water in the high-temperature rock body 1 is related to the amount of water flowing inside the high-temperature rock body 1, and if it is proportional to the amount of water injected into the injection wells 2a and 2b. If it is 20% of the injection volume, use 1000 as above.
t/h, the amount of water injected into the injection wells 2a and 2b is 1250 t/h, and the amount of makeup water 15 is 250 t/h.
It also goes up to t/h.

【0019】一方、同一条件で比較すると、本発明では
192t/hの飽和蒸気がそのまま生産井3a,3bか
ら得られるので、注入井2a,2bへの注水量は240
t/h、補給水15の量は48t/hですむ。
On the other hand, when compared under the same conditions, in the present invention, 192 t/h of saturated steam can be obtained directly from the production wells 3a and 3b, so the amount of water injected into the injection wells 2a and 2b is 240 t/h.
t/h, and the amount of makeup water 15 is only 48 t/h.

【0020】注水ポンプ5a,5bの所要動力は吐出量
にほぼ比例するから、蒸気の計算例であると1250対
240、すなわち5.2分の1に低減可能となる。また
、補給水15の量は250対48で、これまた5.2分
の1に低減可能となる。
Since the required power of the water injection pumps 5a and 5b is approximately proportional to the discharge amount, it can be reduced to 1250:240, ie, 1/5.2 in the calculation example of steam. Further, the amount of make-up water 15 is 250:48, which can also be reduced to 1/5.2.

【0021】従来、生産井3a,3bから蒸気混じりの
状態で、熱水を抽出した実験例はあり、そのような状態
であれば蒸気の分だけ上述の低減可能の割合は減少する
が、それらの実験例では行き掛かり上蒸気混じりの状態
になったというだけで、本発明のように積極的に制御し
ているわけではない。図1、図2のものでは注入井2a
,2b、生産井3a,3bとも2本づつの場合となっい
るが、何本づつでも良く同数でなくても良い。発電プラ
ントはフラッシュが1台のシングルフラッシュ方式の例
で説明したが、フラッシュが2台のダブルフラッシュ方
式の場合も同様である。
[0021] Conventionally, there have been experimental examples in which hot water was extracted from the production wells 3a and 3b in a state where it was mixed with steam, and in such a state, the above-mentioned reduction rate would decrease by the amount of steam; In the experimental example shown in FIG. 2, the situation was just that the steam was mixed in at the end, but it was not actively controlled as in the present invention. Injection well 2a in Figures 1 and 2
, 2b, and two production wells 3a and 3b, but any number of wells may be used and the number does not have to be the same. Although the power generation plant has been described using an example of a single flash type with one flash, the same applies to a case of a double flash type with two flashes.

【0022】生産井3a,3bから出てくる地熱流体の
状態は、飽和蒸気でなく過熱蒸気であっても良い。また
、飽和蒸気を生産する坑井と過熱蒸気を生産する坑井と
が混在していても良く、場合によっては高温岩体1の熱
を効率よく抽出するために、故意にそのような運転状態
を作り出すことも考えられる。さらに、各注入井2a,
2bへの注水量の制御は、必ずしも注水弁20a,20
bの開度制御による必要はなく、注水ポンプの回転数制
御等を用いても良い。
The state of the geothermal fluid coming out of the production wells 3a and 3b may be superheated steam instead of saturated steam. In addition, wells that produce saturated steam and wells that produce superheated steam may coexist, and in some cases, such operating conditions may be intentionally set in order to efficiently extract heat from the high-temperature rock body 1. It is also possible to create Furthermore, each injection well 2a,
The amount of water injected into 2b is not necessarily controlled by the water inlet valves 20a and 20.
It is not necessary to control the opening degree of b, and it is also possible to use the rotation speed control of the water injection pump or the like.

【0023】[0023]

【発明の効果】本発明によれば、各生産井出口からの抽
出量を制御することにより、熱水として循環させる方式
に比較して、高温岩体への注入量は大幅に減少される。 その結果注水ポンプの所要動力は低減され、また高温岩
体からの漏洩量、すなわち系統内への補給水も低減され
る。
According to the present invention, by controlling the amount extracted from each production well outlet, the amount injected into a hot rock body can be significantly reduced compared to a method in which hot water is circulated. As a result, the power required for the water injection pump is reduced, and the amount of leakage from the hot rock body, ie, the amount of make-up water into the system, is also reduced.

【0024】この効果は、注水系統および補給水系統設
備の規模の低減という二次的な効果も生みだし、高温岩
体発電の建設可能地点の増加や、システムの経済性の向
上にも寄与する。
[0024] This effect also produces the secondary effect of reducing the scale of the water injection system and make-up water system equipment, and also contributes to increasing the number of locations where high-temperature rock power generation can be constructed and improving the economic efficiency of the system.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を用いた高温岩体熱抽出装置の一実施例
を示すブロック図
[Fig. 1] A block diagram showing an embodiment of a high-temperature rock heat extraction device using the present invention.

【図2】従来の高温岩体熱抽出装置の一例を示すブロッ
ク図
[Figure 2] Block diagram showing an example of a conventional high-temperature rock heat extraction device

【符号の説明】[Explanation of symbols]

1…高温岩体        2…注入井      
  3…生産井        4…亀裂 5…注水ポンプ      6…フラッシャ    7
…飽和蒸気      8…タービン 9…発電機        10…復水器      
11…冷却水      12…復水 13…復水ポンプ  14…低温熱水    15…補
給水    16…補給水ポンプ 17…圧力温度検出器  18…演算器  19…制御
器  20,21…調整弁
1...High-temperature rock body 2...Injection well
3...Production well 4...Crack 5...Water injection pump 6...Flasher 7
...Saturated steam 8...Turbine 9...Generator 10...Condenser
11...Cooling water 12...Condensate water 13...Condensate pump 14...Low temperature hot water 15...Makeup water 16...Makeup water pump 17...Pressure temperature detector 18...Calculator 19...Controller 20, 21...Adjustment valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】地下の高温岩体に通じる複数の注入井、生
産井、および高温岩体内で坑井間を接続する亀裂からな
る人工地熱貯留層において、各生産井出口の地熱流体の
状態が過熱蒸気または飽和蒸気となるように、各注入井
への注水量および各生産井からの抽出量を制御すること
を特徴とする高温岩体熱抽出装置。
Claim 1: In an artificial geothermal reservoir consisting of a plurality of injection wells, production wells, and cracks connecting the wells in the hot rock body underground, the state of geothermal fluid at the outlet of each production well. A high-temperature rock heat extraction device characterized by controlling the amount of water injected into each injection well and the amount extracted from each production well so that the water becomes superheated steam or saturated steam.
JP54091A 1991-01-08 1991-01-08 Hot dry rock heat extractor Pending JPH04234576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54091A JPH04234576A (en) 1991-01-08 1991-01-08 Hot dry rock heat extractor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54091A JPH04234576A (en) 1991-01-08 1991-01-08 Hot dry rock heat extractor

Publications (1)

Publication Number Publication Date
JPH04234576A true JPH04234576A (en) 1992-08-24

Family

ID=11476579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54091A Pending JPH04234576A (en) 1991-01-08 1991-01-08 Hot dry rock heat extractor

Country Status (1)

Country Link
JP (1) JPH04234576A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044352A1 (en) * 2005-09-16 2007-03-22 Diehl Stiftung & Co.Kg Method for producing an HDR heat exchanger
JP2007285199A (en) * 2006-04-17 2007-11-01 Toshiba Corp Geothermal electric power generating equipment, geothermal electric power generation monitor and control device, and geothermal electric power generation monitor control method
JP2008248837A (en) * 2007-03-30 2008-10-16 Central Res Inst Of Electric Power Ind Geothermal power generation method and system
JP5010754B2 (en) * 2009-02-23 2012-08-29 三菱重工業株式会社 High temperature rock power generation system
JP5989885B1 (en) * 2015-10-30 2016-09-07 市野 文明 Underground heat exchange system and water channel formation method thereof
JP2017025730A (en) * 2015-07-17 2017-02-02 株式会社大林組 Geothermal heat extraction method and geothermal heat extraction system
JP2020176591A (en) * 2019-04-22 2020-10-29 三菱日立パワーシステムズ株式会社 Well control system for geothermal power plant, well control method and well control program therefor, and geothermal power plant
JP2022001764A (en) * 2017-05-26 2022-01-06 ジャパン・ニュー・エナジー株式会社 Geothermal power generation system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044352A1 (en) * 2005-09-16 2007-03-22 Diehl Stiftung & Co.Kg Method for producing an HDR heat exchanger
DE102005044352B4 (en) * 2005-09-16 2007-10-31 Rudolf, Karl, Dipl.-Ing. Method for producing a hot dry rock (HDR) heat exchanger
JP2007285199A (en) * 2006-04-17 2007-11-01 Toshiba Corp Geothermal electric power generating equipment, geothermal electric power generation monitor and control device, and geothermal electric power generation monitor control method
JP2008248837A (en) * 2007-03-30 2008-10-16 Central Res Inst Of Electric Power Ind Geothermal power generation method and system
JP5010754B2 (en) * 2009-02-23 2012-08-29 三菱重工業株式会社 High temperature rock power generation system
US8661818B2 (en) 2009-02-23 2014-03-04 Mitsubishi Heavy Industries, Ltd. Hot dry rock generation system
JP2017025730A (en) * 2015-07-17 2017-02-02 株式会社大林組 Geothermal heat extraction method and geothermal heat extraction system
JP5989885B1 (en) * 2015-10-30 2016-09-07 市野 文明 Underground heat exchange system and water channel formation method thereof
JP2022001764A (en) * 2017-05-26 2022-01-06 ジャパン・ニュー・エナジー株式会社 Geothermal power generation system
JP2020176591A (en) * 2019-04-22 2020-10-29 三菱日立パワーシステムズ株式会社 Well control system for geothermal power plant, well control method and well control program therefor, and geothermal power plant

Similar Documents

Publication Publication Date Title
US3908381A (en) Geothermal energy conversion system for maximum energy extraction
US5515679A (en) Geothermal heat mining and utilization
US20070245729A1 (en) Directional geothermal energy system and method
US8430166B2 (en) Geothermal energy extraction system and method
US9714643B2 (en) Boiling-water geothermal heat exchanger and boiling-water geothermal power generation equipment
US20120018120A1 (en) Geothermal energy extraction system and method
CN105674608A (en) Device and method for extracting and utilizing geothermal energy
JPH04234576A (en) Hot dry rock heat extractor
CN103743580A (en) Enhanced geothermal system development test device
CN113236189B (en) Efficient lossless heat-taking geothermal exploitation system and method
CN203658074U (en) Enhancement-mode geothermal system exploitation test apparatus
US4102133A (en) Multiple well dual fluid geothermal power cycle
US4866939A (en) Method and apparatus for extracting geothermal fluid
CN206037003U (en) Secondary reheating unit EC BEST steam turbine steam exhaust heating deoxidization boiler feed water's thermodynamic system
CN112665126B (en) Control method and device of humidification system and humidification system
CN201706526U (en) Steam supply system of air heater of power station boiler
CN104100309B (en) Single reheat steam turbine high-temperature steam-extracting cooling system
CN208635363U (en) A kind of novel terrestrial hot dry rock heat-exchanger rig
CN203978523U (en) The high temperature steam-extracting cooling system of Double reheat steam turbine thermodynamic system
CN210033509U (en) Underground local cooling device based on heat pipe heat exchange principle
Lewis et al. Kizildere II multiple-flash combined cycle: a novel approach for a Turkish resource
GB1457489A (en) Geothermal deep well pump apparatus
GB1324929A (en) Geothermal energy system
JP7320271B2 (en) Geothermal heat exchangers and geothermal generators
TW201721019A (en) Device and method of heat retrieval under geothermal well in which hot water is caused to accelerate and circulate around an underground terminal of a heat retrieval tube