JP6844880B1 - Geothermal exchanger and geothermal power generator - Google Patents
Geothermal exchanger and geothermal power generator Download PDFInfo
- Publication number
- JP6844880B1 JP6844880B1 JP2020135767A JP2020135767A JP6844880B1 JP 6844880 B1 JP6844880 B1 JP 6844880B1 JP 2020135767 A JP2020135767 A JP 2020135767A JP 2020135767 A JP2020135767 A JP 2020135767A JP 6844880 B1 JP6844880 B1 JP 6844880B1
- Authority
- JP
- Japan
- Prior art keywords
- steam
- geothermal
- water
- exchanger
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
【課題】多量の冷却水を準備することが困難な環境下においても設置することができ、タービンを出た蒸気が有する大きな潜熱を無駄なく利用することができ、取り出す地熱エネルギーの温度が安定しないという状況下であっても、生産される蒸気の温度、流量を安定させることを可能とする地熱交換器を提供する。【解決手段】 タービン12の出口を出た蒸気は、一次復水熱交換器18aに導かれ、水より沸点の低い作動流体と熱交換がなされる。一次復水熱交換器18aで熱交換されずに残った蒸気は、タービン13に送られて、蒸気の循環路が形成される。一次復水熱交換器18aを出た水と、蒸気発生器10から減圧沸騰された蒸気を除いて得られる戻水は、二次復水熱交換器18bに導かれ、水より沸点の低い作動流体と熱交換がなされて、作動流体によりバイナリ—発電がなされる。【選択図】図1PROBLEM TO BE SOLVED: To install even in an environment where it is difficult to prepare a large amount of cooling water, to utilize a large latent heat of steam emitted from a turbine without waste, and to take out the temperature of geothermal energy is not stable. Provided is a geothermal exchanger capable of stabilizing the temperature and flow rate of produced steam even under such circumstances. The steam exiting the outlet of a turbine 12 is guided to a primary condensate heat exchanger 18a and exchanges heat with a working fluid having a boiling point lower than that of water. The steam remaining without heat exchange in the primary condensate heat exchanger 18a is sent to the turbine 13 to form a steam circulation path. The water discharged from the primary condensate heat exchanger 18a and the returned water obtained by removing the steam boiled under reduced pressure from the steam generator 10 are guided to the secondary condensate heat exchanger 18b and operate at a boiling point lower than that of water. Heat exchange is performed with the fluid, and the working fluid produces binary power. [Selection diagram] Fig. 1
Description
本発明は、地熱エネルギーを効率よく取り出すことができる地熱交換器および地熱発電装置に関する。 The present invention relates to a geothermal exchanger and a geothermal power generation device capable of efficiently extracting geothermal energy.
地熱エネルギーを利用して発電する地熱発電は、高温のマグマ層を熱源とするものであり、半永久的な熱エネルギーとすることができるとともに、発電の過程において温室効果ガスを発生しないことから、化石燃料の代替手段として近年注目されている。 Geothermal power generation, which uses geothermal energy to generate electricity, uses a high-temperature magma layer as a heat source, can be used as semi-permanent thermal energy, and does not generate greenhouse gases in the process of power generation. In recent years, it has been attracting attention as an alternative means of fuel.
従来の地熱発電は、地熱帯をボーリングし、地熱帯に存在する自然の蒸気や熱水を自然の圧力を利用して取り出し発電を行っている。そのため、取り出された蒸気と熱水には、地熱帯特有の硫黄その他の不純物が多量に含まれている。この不純物はスケールとなって、熱井戸や配管類、あるいはタービン等に付着する。スケールが付着すると、経年的に発電出力が減少し長期間の使用が困難となる。 In the conventional geothermal power generation, the geothermal power is bored, and the natural steam and hot water existing in the geothermal power are extracted by using the natural pressure to generate electricity. Therefore, the extracted steam and hot water contain a large amount of sulfur and other impurities peculiar to the tropics. These impurities become scales and adhere to hot wells, pipes, turbines, and the like. If the scale adheres, the power generation output decreases over time, making it difficult to use for a long period of time.
このスケールによる問題を解決するために、地上から水を送り、エネルギーを採取する方式を採用した地熱交換器が、特許文献1、特許文献2に記載されている。また、地熱エネルギーを有効に取り出すことを目的として、地下においてフラッシュ率を向上させる手段を備えた地熱交換器に関する発明が、特許文献3に記載されている。
地熱発電の推進を阻害する原因の一つに、冷却水の調達の問題がある。日本国内においては、地熱資源の多くが温泉地帯に存在しており、国立公園内であることが多く、自然の景観に優れたこれらの地域においては、名水もまた観光資源であり、地域の大きな財産となっている。 One of the causes that hinders the promotion of geothermal power generation is the problem of procuring cooling water. In Japan, most of the geothermal resources exist in hot spring areas, often in national parks, and in these areas with excellent natural landscapes, famous water is also a tourism resource, and the area is large. It is a property.
地熱発電を計画できる大部分の地熱帯において、タービンから出てきた蒸気を冷却し、温水に戻す復水器の機能は、タービンの効率アップの必須条件であることから、冷却水を確保することの必要性は、発電所を計画する場所を制限することになり、地熱発電推進の妨げとなっている。 In most geothermal areas where geothermal power can be planned, the function of a condenser that cools the steam coming out of the turbine and returns it to hot water is an essential condition for improving the efficiency of the turbine, so secure cooling water. The need for power plants limits the locations where power plants are planned, which hinders the promotion of geothermal power generation.
一般的な地熱発電では、復水器を設置してタービンを出た蒸気を冷却して水に戻し、タービン出口に負圧をかけて、タービン内での入口と出口の圧力差を大きくすることで、タービンの効率をアップさせる。この場合、タービンの出口では蒸気であり、蒸気の潜熱は飽和水の約6倍以上であるため、多量の冷却水が必要であるばかりでなく、復水器において熱交換される蒸気の潜熱が無駄に捨てられることになる。 In general geothermal power generation, a condenser is installed to cool the steam discharged from the turbine and return it to water, and a negative pressure is applied to the turbine outlet to increase the pressure difference between the inlet and outlet in the turbine. Then, the efficiency of the turbine is improved. In this case, since it is steam at the outlet of the turbine and the latent heat of the steam is about 6 times or more that of saturated water, not only a large amount of cooling water is required, but also the latent heat of the steam that is heat-exchanged in the condenser is generated. It will be thrown away in vain.
また、特許文献1、2,3において開示されたいずれの方式においても、地下に埋設された2重管式の地熱交換器を使用しており、これによって生じる共通する欠点は、取り出す地熱エネルギーの温度が一定しないことにある。特に、地熱開発においては、全国に圧倒的に多く存在する、約180℃以下の中低温地帯を対象とした地熱発電システムの開発が重要であるが、このような中低温地帯を熱源として用いる場合には、地熱エネルギーの温度の不安定性に起因する問題点が顕著となる。そのため、生産される蒸気の温度、流量が安定せず、発電出力が安定しないという問題点を生じる。また、地熱帯には地熱流体が流動していることも、地熱温度が安定化しない原因となっている。
Further, in any of the methods disclosed in
本発明は、このような事情を考慮してなされたもので、多量の冷却水を準備することが困難な環境下においても設置することができ、タービンを出た蒸気が有する大きな潜熱を無駄なく利用することができ、取り出す地熱エネルギーの温度が安定しないという状況下であっても、生産される蒸気の温度、流量を安定させることを可能とする地熱交換器と、この地熱交換器を用いて効率良く大容量の発電を行い、発電地域の地熱資源を有効に利用することが可能な地熱発電装置を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and can be installed even in an environment where it is difficult to prepare a large amount of cooling water, and the large latent heat of the steam emitted from the turbine is not wasted. Using a geothermal exchanger that can be used and that can stabilize the temperature and flow rate of the steam produced even under the condition that the temperature of the geothermal energy to be extracted is not stable, and this geothermal exchanger. The purpose is to provide a geothermal power generation device that can efficiently generate a large amount of power and effectively utilize the geothermal resources in the power generation area.
以上の課題を解決するために、本発明の地熱交換器は、地上から地下に注入された水が地熱帯により加熱されることによって得られる圧力水が蒸気発生器に送られて、蒸気発生器内で蒸気として取り出され、この蒸気がタービンに送られる地熱交換器であって、タービン出口を出た蒸気が導かれて、水より沸点の低い作動流体と熱交換がなされる一次復水熱交換器を備えるとともに、一次復水熱交換器を出た水と、蒸気発生器から減圧沸騰された蒸気を除いて得られる戻水とが導かれて、水より沸点の低い作動流体と熱交換がなされる二次復水熱交換器を備え、作動流体によりバイナリ―発電がなされることを特徴とする。 In order to solve the above problems, the geoheat exchanger of the present invention is a steam generator in which pressure water obtained by heating water injected from the ground to the ground by the geotropa is sent to a steam generator. A geothermal exchanger that is taken out as steam inside and sent to the turbine, where the steam exiting the turbine outlet is guided to exchange heat with the working fluid, which has a lower boiling point than water. In addition to being equipped with a vessel, the water that has left the primary condensate heat exchanger and the return water that is obtained by removing the steam that has been boiled under reduced pressure from the steam generator are guided to exchange heat with the working fluid that has a lower boiling point than water. It is equipped with a secondary condensate heat exchanger to be performed, and is characterized in that binary power generation is performed by a working fluid.
一般的な地熱発電の系統では、復水器を設置して、タービンを出た蒸気を冷却して水に戻し、タービン出口に負圧をかけることによりタービンの効率をアップさせている。しかし、この場合には、タービンの出口では蒸気であり、蒸気の潜熱は飽和水の約6倍以上であるため、多量の冷却水が必要となる。さらに、復水器において熱交換された蒸気には多量の潜熱が残っており、これが無駄に捨てられることになる。 In a general geothermal power generation system, a condenser is installed to cool the steam discharged from the turbine and return it to water, and apply negative pressure to the turbine outlet to improve the efficiency of the turbine. However, in this case, since it is steam at the outlet of the turbine and the latent heat of the steam is about 6 times or more that of saturated water, a large amount of cooling water is required. Furthermore, a large amount of latent heat remains in the steam that has been heat-exchanged in the condenser, and this is wasted.
本発明では、復水器の代わりに、バイナリ―発電に使用できる復水熱交換器を2段に設置して、バイナリ―発電で潜熱を熱交換することにより、復水器の代わりとしている。これにより、冷却水を必要としないため、多量の水を準備することが困難な場合が多い山中に設置することができる。また、復水器において熱交換された蒸気のエネルギーが無駄に捨てられることが無く、エネルギーの有効利用が可能となる。 In the present invention, instead of the condenser, a condenser heat exchanger that can be used for binary power generation is installed in two stages, and latent heat is exchanged by binary power generation to replace the condenser. As a result, since cooling water is not required, it can be installed in the mountains where it is often difficult to prepare a large amount of water. In addition, the energy of the steam exchanged for heat in the condenser is not wasted, and the energy can be effectively used.
本発明の地熱交換器においては、前記一次復水熱交換器で熱交換されずに残った蒸気は、蒸気加熱器と蒸気槽を経てタービンに送られて、蒸気の循環路が形成されていることとすることができる。 In the geothermal exchanger of the present invention, the steam remaining without heat exchange in the primary condensate heat exchanger is sent to the turbine via the steam heater and the steam tank to form a steam circulation path. Can be.
このように蒸気の循環路が形成されて再加熱ラインを構成することにより、システム全体のフラッシュ率は大きく向上するため、地熱交換器を経由する循環水ラインの流量を大きく減少させることができる。そのため、坑井循環ポンプの容量を大きく減少させ、圧力水槽における圧力水の加熱、循環水槽における循環水の加熱に必要な熱量を大きく減少させることができるため、システム全体の効率を大きく向上させることができる。また、比熱の大きな水を加熱するよりも、蒸気を加熱する方が外部熱源の熱量が少なくて済む。 By forming the steam circulation path and forming the reheating line in this way, the flush rate of the entire system is greatly improved, so that the flow rate of the circulating water line via the geothermal exchanger can be greatly reduced. Therefore, the capacity of the well circulation pump can be greatly reduced, and the amount of heat required for heating the pressure water in the pressure water tank and the circulation water in the circulation water tank can be greatly reduced, so that the efficiency of the entire system can be greatly improved. Can be done. Further, heating steam requires less heat from an external heat source than heating water having a large specific heat.
本発明の地熱交換器においては、前記蒸気加熱器による加熱は、地熱以外の外部熱源によってなされることとすることができる。外部熱源の一例として、バイオマス発電の余剰熱、再生可能燃料のいずれかまたはこれらの組み合わせによるものとすることができる。 In the geothermal exchanger of the present invention, heating by the steam heater can be performed by an external heat source other than geothermal heat. As an example of the external heat source, it can be based on the surplus heat of biomass power generation, any of renewable fuels, or a combination thereof.
本発明においては、蒸気の循環路が形成されて再加熱ラインが構成されており、蒸気加熱器によって再加熱がなされる。この再加熱は、地熱以外の外部熱源によってなされるため、取り出す地熱エネルギーの温度が安定しないという状況下であっても、生産される蒸気の温度、流量を安定させることができる。 In the present invention, a steam circulation path is formed to form a reheating line, which is reheated by a steam heater. Since this reheating is performed by an external heat source other than geothermal heat, the temperature and flow rate of the steam produced can be stabilized even in a situation where the temperature of the geothermal energy to be taken out is not stable.
本発明の地熱交換器においては、前記圧力水は、地熱帯から熱が供給されて生成される熱水が蒸気を含まない状態で地上まで上昇したものであることとすることができる。
また、本発明の地熱交換器においては、前記圧力水は、地上に取出された気液2相流から蒸気を分離して得られるものであることとすることができる。
In the geothermal exchanger of the present invention, the pressure water can be assumed to be hot water generated by supplying heat from the geotropics and rising to the ground without containing steam.
Further, in the geothermal exchanger of the present invention, the pressure water can be obtained by separating steam from a gas-liquid two-phase flow taken out to the ground.
本発明の地熱発電装置は、本発明の地熱交換器を用いて発電を行うことを特徴とする。 The geothermal power generation device of the present invention is characterized in that power is generated using the geothermal power exchanger of the present invention.
本発明の地熱交換器は、フラッシュ率を向上することができるため、大容量の発電が可能となる。また、地熱が熱源として不足する場合においても、地熱の温度変化にすばやく対応することができ、発電出力が安定する。 Since the geothermal exchanger of the present invention can improve the flash rate, it is possible to generate a large amount of power. Further, even when the geothermal heat is insufficient as a heat source, it is possible to quickly respond to the temperature change of the geothermal heat and the power generation output is stable.
本発明によると、多量の冷却水を準備することが困難な環境下においても設置することができ、タービンを出た蒸気が有する大きな潜熱を無駄なく利用することができ、取り出す地熱エネルギーの温度が安定しないという状況下であっても、生産される蒸気の温度、流量を安定させることを可能とする地熱交換器と、この地熱交換器を用いて効率良く大容量の発電を行い、発電地域の地熱資源を有効に利用することが可能な地熱発電装置を実現することができる。 According to the present invention, it can be installed even in an environment where it is difficult to prepare a large amount of cooling water, the large latent heat of the steam emitted from the turbine can be utilized without waste, and the temperature of the geothermal energy to be extracted can be increased. A geothermal exchanger that makes it possible to stabilize the temperature and flow rate of the steam produced even under unstable conditions, and this geothermal exchanger can be used to efficiently generate a large amount of power in the power generation area. It is possible to realize a geothermal power generation device that can effectively utilize geothermal resources.
以下に、本発明の地熱交換器と地熱発電装置を、その実施形態に基づいて説明する。
図1に、本発明の地熱交換器と地熱発電装置の地上設備の構成を示す。
Hereinafter, the geothermal exchanger and the geothermal power generation device of the present invention will be described based on the embodiment thereof.
FIG. 1 shows the configuration of the ground equipment of the geothermal exchanger and the geothermal power generation device of the present invention.
地熱交換器1では、地上から地下に注入された水が地熱帯により加熱されることによって得られる圧力水が蒸気発生器10に送られて、蒸気発生器10内で蒸気として取り出され、この蒸気がタービン12に送られる。タービン12の出口を出た蒸気は、一次復水熱交換器18aに導かれ、水より沸点の低い作動流体と熱交換がなされて、作動流体によりバイナリ―発電がなされる。
In the
一次復水熱交換器18aで熱交換されずに残った蒸気は、蒸気加熱器23と蒸気槽24を経てタービン13に送られて、蒸気の循環路が形成される。蒸気加熱器23による加熱は地熱以外の外部熱源によってなされ、外部熱源は、バイオマス発電の余剰熱、再生可能燃料のいずれかまたはこれらの組み合わせによるものである。
The steam remaining without heat exchange in the primary
一次復水熱交換器18aを出た水と、蒸気発生器10から減圧沸騰された蒸気を除いて得られる戻水は、二次復水熱交換器18bに導かれ、水より沸点の低い作動流体と熱交換がなされて、作動流体によりバイナリ―発電がなされる。戻水ポンプ27の回転数を制御することにより、循環水を大きくかき回して熱交換比率をアップさせることができる。
The water discharged from the primary
地下から取出される圧力水は、圧力水槽22に貯蔵され、圧力水ポンプ21によって蒸気発生器10に送られる。圧力水槽22内に十分な量を貯留し、坑井の温度変化に対応できるようにする。圧力水槽22に貯留された圧力水は、蒸気流量・蒸気温度・蒸気圧に基づいて計算されたフラッシュ率により定められる量が圧力水ポンプ21により取出される。圧力水は圧力水槽22内で加熱され、この加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、外部熱源として、バイオマス発電の余剰熱または再生可能燃料を用いることができる。
The pressure water taken out from the underground is stored in the
蒸気発生器10によって生成された蒸気は、蒸気加熱器23によって、蒸気を飽和蒸気から過熱蒸気に変えることができ、これにより、タービン12の効率を向上させることができる。過熱蒸気は、蒸気圧を臨界圧力より低く設定し、これにより、従来型の地熱発電では該当しない高温度のタービンを採用することができる。過熱蒸気は、蒸気槽24と蒸気弁26を経てタービン12に導入されて、タービン12を駆動させ、発電機によって発電がなされる。
The steam generated by the
二次復水熱交換器18bを出た水は、循環水槽16に導かれる。循環水槽16内に蓄えられた水は加熱され、この加熱は、地熱帯から得られる熱源以外の外部熱源によってなされ、外部熱源として、バイオマス発電の余剰熱または再生可能燃料を用いることができる。
The water discharged from the secondary
循環水槽16内の循環水は、坑井循環ポンプ9により加圧されて、再び地下の坑井に供給される。この過程を繰り返すことによって、連続して地熱を取り出す。
The circulating water in the circulating
図2に、地下設備に関する第一実施形態を示す。
地熱交換器1は、地中に設けられて坑井循環ポンプ9によって加圧された水が供給される外管2と、外管2の内側に配置されて、外管2中を地熱帯まで下降する圧力水に対して、地熱帯から熱が供給されて生成される熱水が蒸気を含まない状態で上昇する内管3を備えている。内管3から取出された圧力水は、圧力水槽22に貯蔵され、蒸気発生器10に送られて、蒸気発生器10内で蒸気として取り出される。外管2が地表付近の低温地帯と接する場所には、断熱部20が形成されている。
FIG. 2 shows a first embodiment relating to underground equipment.
The
図3に、地下設備に関する第二実施形態を示す。
地熱交換器1は、地中に設けられ地上から水が供給される外管2と、外管2の内側に配置された内管3とを備えた2重管構造であり、内管3はその内部に設けられた圧力弁6を備えている。外管2内の水に対して地熱帯から熱が供給されて、沸騰せずに高圧熱水が生成される高圧エリア5が形成され、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力と内管3内の減圧エリア8との圧力差が設定基準値を超えたときに圧力弁6が開き、圧力弁6が開いたときに高圧エリア5から高圧熱水が内管3に流入し、内管3の減圧エリア8上部はタービンが必要とする圧力近くに減圧されて気液2相流に変換される。外管2に注入される水を坑井循環ポンプ9によって加圧する圧力を設定することによって、圧力弁6が開くようになっている。外管2が地表付近の低温地帯と接する場所には、断熱部20が形成されている。
FIG. 3 shows a second embodiment relating to underground equipment.
The
圧力弁6が開くための基準値の設定は、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、地熱帯の温度条件から定められる水の飽和温度における飽和圧力として、圧力差の設定基準値を超えて圧力弁6が開くようにすることができる。
To set the reference value for opening the
また、圧力弁6が開くための基準値の設定は、圧力弁6が設置された位置における高圧エリア5内の高圧熱水の圧力を、水の臨界圧力付近として、圧力差の設定基準値を超えて圧力弁6が開くようにすることもできる。
Further, for setting the reference value for opening the
地上に取出された気液2相流から蒸気を分離して得られる圧力水は、圧力水槽22に貯蔵される。分離された蒸気は、蒸気加熱器23に送られる。
The pressure water obtained by separating steam from the gas-liquid two-phase flow taken out to the ground is stored in the
本発明のように、圧力水を減圧して蒸気を生産するシステムは、圧力水の温度差による圧力差を利用するシステムであり、
フラッシュ率(%)=(高温飽和水潜熱−低温飽和水潜熱)/低温蒸発潜熱
で計算されるが、この式は次の計算式に置き換えることができる。
フラッシュ率(%)=蒸気発生量/循環水量
A system that produces steam by reducing the pressure of pressure water as in the present invention is a system that utilizes the pressure difference due to the temperature difference of the pressure water.
It is calculated by flash rate (%) = (latent heat of high temperature saturated water-latent heat of low temperature saturated water) / latent heat of vaporization at low temperature, but this formula can be replaced with the following formula.
Flash rate (%) = steam generation amount / circulating water amount
本発明の地熱交換器においては、減圧沸騰による蒸気発生量は、循環蒸気量分を差し引くことができるため、システム全体のフラッシュ率は40%を越えることが可能となる。この数値は、超臨界に近い温度領域の圧力水を減圧することに等しく、国の施策である次世代エネルギーに貢献することができる。 In the geothermal exchanger of the present invention, the amount of steam generated by boiling under reduced pressure can be subtracted from the amount of circulating steam, so that the flash rate of the entire system can exceed 40%. This value is equivalent to decompressing pressure water in a temperature range close to supercritical, and can contribute to next-generation energy, which is a national policy.
本発明は、多量の冷却水を準備することが困難な環境下においても設置することができ、タービンを出た蒸気が有する大きな潜熱を無駄なく利用することができ、取り出す地熱エネルギーの温度が安定しないという状況下であっても、生産される蒸気の温度、流量を安定させることを可能とする地熱交換器と、この地熱交換器を用いて効率良く大容量の発電を行い、発電地域の地熱資源を有効に利用することが可能な地熱発電装置として、広く利用することができる。 The present invention can be installed even in an environment where it is difficult to prepare a large amount of cooling water, the large latent heat of the steam emitted from the turbine can be utilized without waste, and the temperature of the geothermal energy to be taken out is stable. A geothermal exchanger that makes it possible to stabilize the temperature and flow rate of the steam produced even under such circumstances, and this geothermal exchanger can be used to efficiently generate a large amount of power and generate geothermal heat in the power generation area. It can be widely used as a geothermal power generation device that can effectively use resources.
1 地熱交換器
2 外管
3 内管
5 高圧エリア
6 圧力弁
8 減圧エリア
9 坑井循環ポンプ
10 蒸気発生器
12 タービン
16 循環水槽
18a 一次復水熱交換器
18b 二次復水熱交換器
20 断熱部
21 圧力水ポンプ
22 圧力水槽
23 蒸気加熱器
24 蒸気槽
26 蒸気弁
27 戻水ポンプ
1
Claims (5)
前記一次復水熱交換器で熱交換されずに残った蒸気は、蒸気加熱器と蒸気槽を経てタービンに送られて、蒸気の循環路が形成されていることを特徴とする地熱交換器。 A geoheat exchanger in which pressure water obtained by heating water injected from the ground to the ground by the geotropa is sent to a steam generator, taken out as steam in the steam generator, and this steam is sent to a turbine. It is equipped with a primary condensate heat exchanger in which steam exiting the turbine outlet is guided to exchange heat with a working fluid having a boiling point lower than that of water, and water exiting the primary condensate heat exchanger. guided and the Modomizu from steam generator obtained by removing the flash boiling vapor, a secondary condensate heat exchanger lower than that of water boiling the working fluid and heat exchange is performed by the working fluid Binary-a geothermal exchanger that produces power
A geothermal exchanger characterized in that steam remaining without heat exchange in the primary condensate heat exchanger is sent to a turbine via a steam heater and a steam tank to form a steam circulation path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020135767A JP6844880B1 (en) | 2020-08-11 | 2020-08-11 | Geothermal exchanger and geothermal power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020135767A JP6844880B1 (en) | 2020-08-11 | 2020-08-11 | Geothermal exchanger and geothermal power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6844880B1 true JP6844880B1 (en) | 2021-03-17 |
JP2022032208A JP2022032208A (en) | 2022-02-25 |
Family
ID=74860765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020135767A Active JP6844880B1 (en) | 2020-08-11 | 2020-08-11 | Geothermal exchanger and geothermal power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6844880B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240114147A (en) | 2023-01-16 | 2024-07-23 | 전남대학교산학협력단 | Horizontal ground heat exchanger and heat exchanging structure using the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5440882A (en) * | 1993-11-03 | 1995-08-15 | Exergy, Inc. | Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power |
RS52092B (en) * | 2003-02-03 | 2012-06-30 | Kalex Llc. | Process and device for implementing thermodynamic cycle for utilizing moderate and low temperature heat sources |
US8661818B2 (en) * | 2009-02-23 | 2014-03-04 | Mitsubishi Heavy Industries, Ltd. | Hot dry rock generation system |
JP4927136B2 (en) * | 2009-09-03 | 2012-05-09 | 株式会社九州パワーサービス | Geothermal power generation equipment |
JP5763495B2 (en) * | 2011-10-03 | 2015-08-12 | 株式会社東芝 | Binary power generation system |
JP5829120B2 (en) * | 2011-12-23 | 2015-12-09 | 株式会社ターボブレード | Thermal steam generator |
JP5917352B2 (en) * | 2012-01-10 | 2016-05-11 | ジャパン・ニュー・エナジー株式会社 | Steam generation system, geothermal power generation system, steam generation method, and geothermal power generation method |
JP5839531B1 (en) * | 2015-05-12 | 2016-01-06 | 株式会社エスト | Geothermal exchanger and geothermal power generator |
-
2020
- 2020-08-11 JP JP2020135767A patent/JP6844880B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240114147A (en) | 2023-01-16 | 2024-07-23 | 전남대학교산학협력단 | Horizontal ground heat exchanger and heat exchanging structure using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2022032208A (en) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wei et al. | Research on influence of steam extraction parameters and operation load on operational flexibility of coal-fired power plant | |
US5671601A (en) | Geothermal power plant operating on high pressure geothermal fluid | |
US20120001436A1 (en) | Power generator using a wind turbine, a hydrodynamic retarder and an organic rankine cycle drive | |
KR101660923B1 (en) | Steam turbine plant | |
US20110100003A1 (en) | System and method to reduce the temperature of geothermal water to increase the capacity and efficiency while decreasing the costs associated with a geothermal power plant construction | |
JPH0758043B2 (en) | Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator | |
CN110207092A (en) | A kind of fired power generating unit power generation peak adjusting system and method based on the full heat heating fused salt accumulation of heat of steam | |
CN103089356A (en) | Flash evaporation-double work medium combined power generation device | |
CN104061027B (en) | The high temperature steam-extracting cooling system of Double reheat steam turbine thermodynamic system | |
JP6844880B1 (en) | Geothermal exchanger and geothermal power generator | |
WO2009045117A2 (en) | A method of utilising low- and medium-temperature heat sources and media and a system for utilising low- and medium-temperature heat sources and media | |
CN114607481A (en) | Flexible peak regulation system of bypass and heat storage coupled combined cycle unit and operation method | |
JP6153165B2 (en) | Geothermal power generation equipment | |
US20150027121A1 (en) | Method to integrate regenerative rankine cycle into combined cycle applications | |
Tahmasebipour et al. | Conceptual design of a super-critical CO2 brayton cycle based on stack waste heat recovery for shazand power plant in Iran | |
JP6445494B2 (en) | Geothermal power generation equipment | |
Kaplan | Organic rankine cycle configurations | |
CN104100309B (en) | Single reheat steam turbine high-temperature steam-extracting cooling system | |
CN107060915A (en) | Heat pump cycle water backheat Rankine cycle system | |
Lewis et al. | Kizildere II multiple-flash combined cycle: a novel approach for a Turkish resource | |
Li et al. | High temperature direct vapor generation organic Rankine cycle in the concentrated solar power application | |
JP7320271B2 (en) | Geothermal heat exchangers and geothermal generators | |
CN207934942U (en) | The novel complementary energy exhaust heat recovery power generation reconstruction structure of steel plant | |
CN102213118A (en) | Steam turbine plant | |
CN204060826U (en) | Single reheat steam turbine high-temperature steam-extracting cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201127 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20201127 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6844880 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |