JP2021155798A - Method of producing alloy thin film, and alloy thin film - Google Patents

Method of producing alloy thin film, and alloy thin film Download PDF

Info

Publication number
JP2021155798A
JP2021155798A JP2020056203A JP2020056203A JP2021155798A JP 2021155798 A JP2021155798 A JP 2021155798A JP 2020056203 A JP2020056203 A JP 2020056203A JP 2020056203 A JP2020056203 A JP 2020056203A JP 2021155798 A JP2021155798 A JP 2021155798A
Authority
JP
Japan
Prior art keywords
thin film
alloy thin
transition metal
rare earth
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020056203A
Other languages
Japanese (ja)
Other versions
JP7233723B2 (en
Inventor
崇人 小野
Takahito Ono
崇人 小野
桂 坂本
Kei Sakamoto
桂 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Us Research Co Ltd
Original Assignee
Us Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Us Research Co Ltd filed Critical Us Research Co Ltd
Priority to JP2020056203A priority Critical patent/JP7233723B2/en
Publication of JP2021155798A publication Critical patent/JP2021155798A/en
Application granted granted Critical
Publication of JP7233723B2 publication Critical patent/JP7233723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method of producing an alloy thin film, capable of controlling a composition ratio of a rare earth element relative to transition metal and capable of producing an alloy thin film of an intended performance, and an alloy thin film.SOLUTION: An alloy thin film comprising a transition metal element and a rare earth element is produced by carrying out electrolytic plating using an aqueous solution comprising one or more species of transition metal elements, one or more species of rare earth elements, a tartaric acid compound, and a citric acid compound, as a plating solution. The tartaric acid compound preferably is tartaric acid, potassium sodium tartrate, or sodium tartrate, and the citric acid compound preferably is sodium citrate, or citric acid.SELECTED DRAWING: Figure 1

Description

本発明は、合金薄膜の製造方法および合金薄膜に関する。 The present invention relates to a method for producing an alloy thin film and an alloy thin film.

TbやDy、Smなどの希土類元素と、FeやCo、Niなどの遷移金属との合金単結晶は、磁歪材料として知られている。特に、超磁歪材料として知られている市販のTerfenol-Dは、Tb0.3Dy0.7Fe組成の合金単結晶であり、優れた磁歪性能を有している。 An alloy single crystal of a rare earth element such as Tb, Dy, or Sm and a transition metal such as Fe, Co, or Ni is known as a magnetostrictive material. In particular, commercially available Terfenol-D, which is known as a magnetostrictive material, is an alloy single crystal having a Tb 0.3 Dy 0.7 Fe 2 composition and has excellent magnetostrictive performance.

このような希土類元素と遷移金属との合金を製造する方法として、FeとTbとを有する水溶液に、酒石酸ナトリウムを加えてそれらを錯体化し、この水溶液を電解液として、室温、pH4で電解めっきにより、Fe−Tb合金を堆積させるもの(例えば、非特許文献1参照)や、Niと希土類(CeもしくはNd)とを含む水溶液に、クエン酸(C)を加えてそれらをキレート化し、この水溶液を電解液として、電解めっきによりNiと希土類との合金を堆積させるもの(例えば、非特許文献2参照)がある。 As a method for producing an alloy of such a rare earth element and a transition metal, sodium tartrate is added to an aqueous solution having Fe and Tb to complex them, and this aqueous solution is used as an electrolytic solution by electrolytic plating at room temperature and pH 4. , which deposit a Fe-Tb alloy (e.g., see non-Patent Document 1) and, in an aqueous solution containing Ni and rare earth (Ce or Nd), chelating them by adding citric acid (C 6 H 8 O 7) There is a method in which an alloy of Ni and rare earths is deposited by electrolytic plating using this aqueous solution as an electrolytic solution (see, for example, Non-Patent Document 2).

また、希土類(La,Ce,Nd)および遷移金属(Ni,Fe,Co)の塩化物塩を含む溶液に、グリシンを加えてそれらを錯体化し、この水溶液を電解液として、電解めっきにより希土類と遷移金属との合金を堆積させるもの(例えば、特許文献1参照)や、SmおよびCoの硫酸塩水溶液に、グリシンやアミノ基、アミノカルボン酸塩(EDTA)を加えてそれらを錯体化し、この水溶液を電解液として、電解めっきによりSmとCoとの合金を堆積させるもの(例えば、特許文献2参照)、FeClとCdClとを含む水溶液に、クエン酸またはクエン酸ナトリウムを加えてそれらを錯体化し、この水溶液を電解液として、電解めっきによりNdFeB合金を堆積させるもの(例えば、非特許文献3参照)もある。 In addition, glycine is added to a solution containing chloride salts of rare earths (La, Ce, Nd) and transition metals (Ni, Fe, Co) to complex them, and this aqueous solution is used as an electrolytic solution to form rare earths by electrolytic plating. A glycine, an amino group, or an aminocarboxylate (EDTA) is added to an aqueous solution of Sm and Co sulfate to deposit an alloy with a transition metal (see, for example, Patent Document 1) to complex them, and this aqueous solution is used. Is used as an electrolytic solution, and an alloy of Sm and Co is deposited by electrolytic plating (see, for example, Patent Document 2). Citrate or sodium citrate is added to an aqueous solution containing FeCl 2 and CdCl 3 to complex them. In some cases, this aqueous solution is used as an electrolytic solution to deposit an NdFeB alloy by electrolytic plating (see, for example, Non-Patent Document 3).

また、CoイオンとFeイオンとを含んだ水溶液に、ジカルボン酸やトリカルボン酸を加えてそれらをキレート化し、この水溶液を電解液として、電解めっきによりCo−Fe合金を堆積させるもの(例えば、特許文献3参照)もある。 Further, a dicarboxylic acid or a tricarboxylic acid is added to an aqueous solution containing Co ions and Fe ions to chelate them, and this aqueous solution is used as an electrolytic solution to deposit a Co—Fe alloy by electrolytic plating (for example, Patent Documents). 3) is also available.

J. Gong and E. J. Podlaha, “Electrrodeposition of Fe-Tb Alloys from an Aqueous Electrolyte”, Electrochemical and Solid-State Letters, 2000, 3 (9), p.422-425J. Gong and E. J. Podlaha, “Electrrodeposition of Fe-Tb Alloys from an Aqueous Electrolyte”, Electrochemical and Solid-State Letters, 2000, 3 (9), p.422-425 L. Wang et el., “Preparation of amorphous rare-earth films of Ni-Re-P (Re=Ce, Nd) by electrodeposition from an aqueous bath”, Surface & Coatings Technology, 2005, 192, p.208-212L. Wang et el., “Preparation of amorphous rare-earth films of Ni-Re-P (Re = Ce, Nd) by electrodeposition from an aqueous bath”, Surface & Coatings Technology, 2005, 192, p.208-212 Z. Yang et al., “Electroplating mechanism of nanocrystalline NdFeB film”, Trans. Nonferrous Met. Sic. China 25, 2015, p.832-837Z. Yang et al., “Electroplating mechanism of nanocrystalline NdFeB film”, Trans. Nonferrous Met. Sic. China 25, 2015, p.832-837

米国特許第6306276号明細書U.S. Pat. No. 6,306,276 米国特許出願公開第2012/0049102号明細書U.S. Patent Application Publication No. 2012/0049102 特開2015−108609号公報Japanese Unexamined Patent Publication No. 2015-108609

非特許文献1乃至3、特許文献1または2に記載の合金薄膜の製造方法では、希土類元素および遷移金属のキレート化や錯体化に利用するリガンドが1種類のみであり、めっきされた合金薄膜中の希土類元素と遷移金属の組成比率は一定となるため、その組成比率を変化させることはできず、所望の性能を有する合金薄膜を製造するのは困難であるという課題があった。例えば、Tb0.3Dy0.7Fe組成のTerfenol-Dは、バルク材であれば超磁歪材料として優れた磁歪特性が得られているが、薄膜では良好な磁歪特性を得ることはできなかった。 In the method for producing an alloy thin film described in Non-Patent Documents 1 to 3 and Patent Documents 1 or 2, only one kind of ligand is used for chelating or complexing a rare earth element and a transition metal, and the alloy thin film is plated. Since the composition ratio of the rare earth element and the transition metal is constant, the composition ratio cannot be changed, and there is a problem that it is difficult to produce an alloy thin film having desired performance. For example, Terfenol-D having a composition of Tb 0.3 Dy 0.7 Fe 2 has excellent magnetostrictive properties as a super-magnetostrictive material if it is a bulk material, but can obtain good magnetostrictive properties with a thin film. There wasn't.

本発明は、このような課題に着目してなされたもので、希土類元素と遷移金属の組成比率を制御することができ、所望の性能を有する合金薄膜を製造することができる合金薄膜の製造方法および合金薄膜を提供することを目的とする。 The present invention has been made focusing on such a problem, and is a method for producing an alloy thin film capable of controlling the composition ratio of a rare earth element and a transition metal and producing an alloy thin film having desired performance. And to provide alloy thin films.

上記目的を達成するために、本発明に係る合金薄膜の製造方法は、1または複数種類の遷移金属元素と、1または複数種類の希土類元素と、酒石酸類と、クエン酸類とを含む水溶液をめっき液として電解めっきを行うことにより、前記遷移金属元素と前記希土類元素とを有する合金薄膜を製造することを特徴とする。 In order to achieve the above object, the method for producing an alloy thin film according to the present invention is to plate an aqueous solution containing one or more kinds of transition metal elements, one or more kinds of rare earth elements, tartrate acids, and citric acids. It is characterized in that an alloy thin film having the transition metal element and the rare earth element is produced by performing electrolytic plating as a liquid.

本発明に係る合金薄膜は、1または複数種類の遷移金属元素と、1または複数種類の希土類元素とを含む合金めっきから成ることを特徴とする。 The alloy thin film according to the present invention is characterized by comprising alloy plating containing one or more kinds of transition metal elements and one or more kinds of rare earth elements.

本発明に係る合金薄膜の製造方法は、本発明に係る合金薄膜を好適に製造することができる。本発明に係る合金薄膜の製造方法によれば、酒石酸類およびクエン酸類の2種類のリガンドにより、水溶液中で遷移金属元素および希土類元素のキレートを形成し、安定化させることができる。このとき、酒石酸類による遷移金属元素の錯体(錯イオン)、および、クエン酸類による遷移金属元素の錯体(錯イオン)の両方とも還元剤として働くが、クエン酸類による遷移金属元素の錯体(錯イオン)の方が、より強い還元剤として働く。このため、酒石酸類とクエン酸類の比率により、錯体化した希土類元素の還元電圧を調整することができ、例えば−0.7V〜−1.1V程度の実用的な還元電圧で、電解めっきによる合金薄膜(合金めっき)を製造することができる。また、酒石酸類とクエン酸類の比率で還元電圧を調整することにより、製造する合金薄膜中の希土類元素と遷移金属の組成比率を制御することができ、所望の性能を有する合金薄膜を製造することができる。 The method for producing an alloy thin film according to the present invention can preferably produce an alloy thin film according to the present invention. According to the method for producing an alloy thin film according to the present invention, chelates of transition metal elements and rare earth elements can be formed and stabilized in an aqueous solution by two kinds of ligands, tartaric acid and citric acid. At this time, both the complex of the transition metal element by tartrate and the complex of the transition metal element by citric acid (complex ion) act as a reducing agent, but the complex of the transition metal element by citric acid (complex ion). ) Works as a stronger reducing agent. Therefore, the reduction voltage of the complexed rare earth element can be adjusted by the ratio of tartrate acids and citric acids. For example, an alloy by electroplating at a practical reduction voltage of about -0.7V to -1.1V. A thin film (alloy plating) can be manufactured. Further, by adjusting the reduction voltage with the ratio of tartaric acids and citric acids, the composition ratio of rare earth elements and transition metals in the alloy thin film to be produced can be controlled, and an alloy thin film having desired performance can be produced. Can be done.

本発明に係る合金薄膜の製造方法で、前記水溶液は、硫酸水溶液または塩酸水溶液であることが好ましい。この場合、水溶液中で遷移金属元素および希土類元素の塩が生成されるため、遷移金属元素および希土類元素のキレートを形成しやすくすることができる。また、遷移金属元素の塩は希土類元素を還元する働きを有しているため、水溶液中に遷移金属元素の一部が塩として残ることにより、より実用的な還元電圧で合金薄膜を製造することができる。なお、原料として、遷移金属元素、希土類元素、硫酸や塩酸を別々に用意してもよいが、FeSOやFeClなどの遷移金属元素の硫化物や塩化物を用いてもよく、希土類元素の硫化物や塩化物を用いてもよい。 In the method for producing an alloy thin film according to the present invention, the aqueous solution is preferably a sulfuric acid aqueous solution or a hydrochloric acid aqueous solution. In this case, since salts of the transition metal element and the rare earth element are generated in the aqueous solution, it is possible to easily form a chelate of the transition metal element and the rare earth element. Further, since the salt of the transition metal element has a function of reducing the rare earth element, a part of the transition metal element remains as a salt in the aqueous solution, so that an alloy thin film can be produced with a more practical reduction voltage. Can be done. As raw materials, transition metal elements, rare earth elements, sulfuric acid and hydrochloric acid may be prepared separately, but sulfides and chlorides of transition metal elements such as FeSO 4 and FeCl 3 may be used, and the rare earth elements may be used. Sulfurized or chloride may be used.

本発明に係る合金薄膜の製造方法および合金薄膜で、前記遷移金属元素は、クエン酸や酒石酸と錯体を形成するものが好ましく、さらに、硫酸および塩酸に可溶して塩を形成するものが好ましい。このような遷移金属元素として、例えば、Fe、Co、Ni、Zn、およびGaのうちの1種類または複数種類であることが好ましい。これらの遷移金属元素の標準電極電位は、Fe2+が−0.44V、Co2+が−0.28V、Ni2+が−0.26V、Zn2+が−0.76V、Gaが−0.53Vであり、近い値を有している。このように、これらの遷移金属元素は、標準電極電位が近いことや、化学的特性が似ていることから、本発明の遷移金属元素として適用可能である。 In the method for producing an alloy thin film and the alloy thin film according to the present invention, the transition metal element preferably forms a complex with citric acid or tartaric acid, and further preferably dissolves in sulfuric acid and hydrochloric acid to form a salt. .. As such a transition metal element, for example, one or more of Fe, Co, Ni, Zn, and Ga are preferable. The standard electrode potentials of these transition metal elements are -0.44V for Fe 2+ , -0.28V for Co 2+ , -0.26V for Ni 2+ , -0.76V for Zn 2+ , and -0.53V for Ga + . And has a close value. As described above, these transition metal elements can be applied as the transition metal elements of the present invention because they have similar standard electrode potentials and similar chemical properties.

本発明に係る合金薄膜の製造方法および合金薄膜で、前記希土類元素は、クエン酸や酒石酸と錯体を形成するものが好ましく、さらに、硫酸および塩酸に可溶して塩を形成するものが好ましい。このような希土類元素として、例えば、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、およびErのうちの1種類または複数種類であることが好ましい。これらの希土類元素の標準電極電位は、Laが−2.37V、Ceが−2.34、Ndが−2.32V、Smが−2.30V、Gdが−2.29V、Tbが−2.30V、Dyが−2.29V、Hoが−2.33V、Erが−2.33であり、近い値を有している。このように、これらの希土類元素は、標準電極電位が近いことや、化学的特性が似ていることから、本発明の希土類元素として適用可能である。 In the method for producing an alloy thin film and the alloy thin film according to the present invention, the rare earth element preferably forms a complex with citric acid or tartaric acid, and further preferably dissolves in sulfuric acid and hydrochloric acid to form a salt. As such a rare earth element, for example, one or more of La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, and Er are preferable. The standard electrode potentials of these rare earth elements are -2.37V for La, -2.34 for Ce, -2.32V for Nd, -2.30V for Sm, -2.29V for Gd, and -2 for Tb. 30V, Dy is -2.29V, Ho is -2.33V, and Er is -2.33, which are close values. As described above, these rare earth elements can be applied as the rare earth elements of the present invention because they have similar standard electrode potentials and similar chemical properties.

本発明に係る合金薄膜の製造方法は、前記水溶液中に、前記遷移金属元素および前記希土類元素を合わせて3種類以上含むことが好ましい。この場合、遷移金属元素を2種類以上含むときには、水溶液中でのそれらの遷移金属元素のイオン濃度を制御することにより、それらの遷移金属元素間の組成比率を制御することができる。また、希土類元素を2種類以上含むときには、水溶液中でのそれらの希土類元素のイオン濃度を制御することにより、それらの希土類元素間の組成比率を制御することができる。これにより、各元素の組成を制御して、遷移金属元素および希土類元素を合わせて3種類以上含む、本発明に係る合金薄膜を製造することができる。 In the method for producing an alloy thin film according to the present invention, it is preferable that the aqueous solution contains three or more kinds of the transition metal element and the rare earth element in total. In this case, when two or more kinds of transition metal elements are contained, the composition ratio between the transition metal elements can be controlled by controlling the ion concentration of those transition metal elements in the aqueous solution. When two or more kinds of rare earth elements are contained, the composition ratio between the rare earth elements can be controlled by controlling the ion concentration of the rare earth elements in the aqueous solution. Thereby, the composition of each element can be controlled to produce an alloy thin film according to the present invention, which contains three or more kinds of transition metal elements and rare earth elements in total.

本発明に係る合金薄膜の製造方法で、前記酒石酸類は、酒石酸、酒石酸カリウムナトリウム(ロッシェル塩)、または酒石酸ナトリウムであることが好ましい。また、前記クエン酸類は、クエン酸ナトリウムまたはクエン酸であることが好ましい。 In the method for producing an alloy thin film according to the present invention, the tartaric acids are preferably tartaric acid, potassium sodium tartrate (Rochelle salt), or sodium tartarate. The citric acids are preferably sodium citrate or citric acid.

本発明に係る合金薄膜の製造方法で、前記水溶液は、KClやNaClなどの支持電解質を含んでいてもよい。この場合、支持電解質により、水溶液に高い導電性を付与することができ、電解めっきの効率を高めることができる。また、水溶液は、pHが3〜5であることが好ましく、pHを3〜5に調整するために、NaOHやKOHなどのpH調整剤を含んでいてもよい。 In the method for producing an alloy thin film according to the present invention, the aqueous solution may contain a supporting electrolyte such as KCl or NaCl. In this case, the supporting electrolyte can impart high conductivity to the aqueous solution and increase the efficiency of electroplating. Further, the aqueous solution preferably has a pH of 3 to 5, and may contain a pH adjusting agent such as NaOH or KOH in order to adjust the pH to 3 to 5.

本発明によれば、希土類元素と遷移金属の組成比率を制御することができ、所望の性能を有する合金薄膜を製造することができる合金薄膜の製造方法および合金薄膜を提供することができる。 According to the present invention, it is possible to provide a method for producing an alloy thin film and an alloy thin film capable of controlling the composition ratio of a rare earth element and a transition metal and producing an alloy thin film having desired performance.

本発明の実施の形態の合金薄膜の製造方法によりTbDyFeから成る合金薄膜を製造したときの、作用電極の電圧と合金薄膜の組成との関係を示すグラフである。It is a graph which shows the relationship between the voltage of a working electrode and the composition of an alloy thin film when the alloy thin film made of TbDyFe is manufactured by the method of manufacturing the alloy thin film of embodiment of this invention. 本発明の実施の形態の合金薄膜の製造方法により、−930mVの還元電圧で製造したTbDyFeから成る合金薄膜の磁化特性を示すグラフである。6 is a graph showing the magnetization characteristics of an alloy thin film made of TbDyFe produced at a reduction voltage of −930 mV by the method for producing an alloy thin film according to the embodiment of the present invention. 本発明の実施の形態の合金薄膜の製造方法によりTbDyFeから成る合金薄膜を表面に堆積したカンチレバーの製造方法を示す側面図である。It is a side view which shows the manufacturing method of the cantilever which deposited the alloy thin film made of TbDyFe on the surface by the manufacturing method of the alloy thin film of embodiment of this invention. 図3の製造方法で製造したカンチレバーを示す斜視図である。It is a perspective view which shows the cantilever manufactured by the manufacturing method of FIG. 図4に示すカンチレバーの、印加磁場(Magnetic field)と磁歪係数(Magnetostriction coefficient)との関係を示すグラフである。It is a graph which shows the relationship between the applied magnetic field (Magnetic field) and the magnetostriction coefficient (Magnetostriction coefficient) of the cantilever shown in FIG.

以下、実施例等に基づいて、本発明の実施の形態について説明する。
本発明の実施の形態の合金薄膜の製造方法は、本発明の実施の形態の合金薄膜を好適に製造することができる。
Hereinafter, embodiments of the present invention will be described based on examples and the like.
The method for producing an alloy thin film according to an embodiment of the present invention can suitably produce an alloy thin film according to an embodiment of the present invention.

本発明の実施の形態の合金薄膜の製造方法は、まず、1または複数種類の遷移金属元素と、1または複数種類の希土類元素と、酒石酸類と、クエン酸類とを含む水溶液を調製する。遷移金属元素は、Fe、Co、Ni、Zn、およびGaのうちの1種類または複数種類であることが好ましい。希土類元素は、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、およびErのうちの1種類または複数種類であることが好ましい。酒石酸類は、酒石酸、酒石酸カリウムナトリウム(ロッシェル塩)、または酒石酸ナトリウムであることが好ましい。クエン酸類は、クエン酸ナトリウムまたはクエン酸であることが好ましい。 In the method for producing an alloy thin film according to the embodiment of the present invention, first, an aqueous solution containing one or more kinds of transition metal elements, one or more kinds of rare earth elements, tartaric acids, and citric acids is prepared. The transition metal element is preferably one or more of Fe, Co, Ni, Zn, and Ga. The rare earth element is preferably one or more of La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, and Er. The tartaric acids are preferably tartaric acid, potassium sodium tartrate (Rochelle salt), or sodium tartarate. The citric acid is preferably sodium citrate or citric acid.

次に、調製した水溶液をめっき液として電解めっきを行う。これにより、遷移金属元素と希土類元素とを含む合金めっきから成る、本発明の実施の形態の合金薄膜を製造することができる。 Next, electrolytic plating is performed using the prepared aqueous solution as a plating solution. Thereby, the alloy thin film of the embodiment of the present invention can be produced, which comprises alloy plating containing a transition metal element and a rare earth element.

本発明の実施の形態の合金薄膜の製造方法によれば、酒石酸類およびクエン酸類の2種類のリガンドにより、水溶液中で遷移金属元素および希土類元素のキレートを形成し、安定化させることができる。このとき、酒石酸類による遷移金属元素の錯体(錯イオン)、および、クエン酸類による遷移金属元素の錯体(錯イオン)の両方とも還元剤として働くが、クエン酸類による遷移金属元素の錯体(錯イオン)の方が、より強い還元剤として働く。このため、酒石酸類とクエン酸類の比率により、錯体化した希土類元素の還元電圧を調整することができ、例えば−0.7V〜−1.1V程度の実用的な還元電圧で、電解めっきによる合金薄膜(合金めっき)を製造することができる。また、酒石酸類とクエン酸類の比率で還元電圧を調整することにより、製造する合金薄膜中の希土類元素と遷移金属の組成比率を制御することができ、所望の性能を有する合金薄膜を製造することができる。 According to the method for producing an alloy thin film according to the embodiment of the present invention, chelates of transition metal elements and rare earth elements can be formed and stabilized in an aqueous solution by two kinds of ligands, tartaric acid and citric acid. At this time, both the complex of the transition metal element by tartrate and the complex of the transition metal element by citric acid (complex ion) act as a reducing agent, but the complex of the transition metal element by citric acid (complex ion). ) Works as a stronger reducing agent. Therefore, the reduction voltage of the complexed rare earth element can be adjusted by the ratio of tartrate acids and citric acids. For example, an alloy by electroplating at a practical reduction voltage of about -0.7V to -1.1V. A thin film (alloy plating) can be manufactured. Further, by adjusting the reduction voltage with the ratio of tartaric acids and citric acids, the composition ratio of rare earth elements and transition metals in the alloy thin film to be produced can be controlled, and an alloy thin film having desired performance can be produced. Can be done.

本発明の実施の形態の合金薄膜の製造方法で、水溶液は、硫酸水溶液または塩酸水溶液であることが好ましい。水溶液として、硫酸水溶液または塩酸水溶液を使用することにより、水溶液中で遷移金属元素および希土類元素の塩が生成されるため、遷移金属元素および希土類元素のキレートを形成しやすくすることができる。また、遷移金属元素の塩は希土類元素を還元する働きを有しているため、水溶液中に遷移金属元素の一部が塩として残ることにより、より実用的な還元電圧で合金薄膜を製造することができる。なお、この場合、原料として、遷移金属元素、希土類元素、硫酸や塩酸を別々に用意してもよいが、FeSOやFeClなどの遷移金属元素の硫化物や塩化物を用いてもよく、希土類元素の硫化物や塩化物を用いてもよい。 In the method for producing an alloy thin film according to the embodiment of the present invention, the aqueous solution is preferably a sulfuric acid aqueous solution or a hydrochloric acid aqueous solution. By using a sulfuric acid aqueous solution or a hydrochloric acid aqueous solution as the aqueous solution, salts of the transition metal element and the rare earth element are generated in the aqueous solution, so that it is possible to easily form a chelate of the transition metal element and the rare earth element. Further, since the salt of the transition metal element has a function of reducing the rare earth element, a part of the transition metal element remains as a salt in the aqueous solution, so that an alloy thin film can be produced with a more practical reduction voltage. Can be done. In this case, transition metal elements, rare earth elements, sulfuric acid and hydrochloric acid may be prepared separately as raw materials, but sulfides and chlorides of transition metal elements such as FeSO 4 and FeCl 3 may be used. Rare earth element sulfides and chlorides may be used.

また、本発明の実施の形態の合金薄膜の製造方法は、水溶液中に、遷移金属元素および希土類元素を合わせて3種類以上含むことが好ましい。遷移金属元素を2種類以上含むときには、水溶液中でのそれらの遷移金属元素のイオン濃度を制御することにより、それらの遷移金属元素間の組成比率を制御することができる。また、希土類元素を2種類以上含むときには、水溶液中でのそれらの希土類元素のイオン濃度を制御することにより、それらの希土類元素間の組成比率を制御することができる。 Further, in the method for producing an alloy thin film according to the embodiment of the present invention, it is preferable that three or more kinds of transition metal elements and rare earth elements are contained in the aqueous solution. When two or more kinds of transition metal elements are contained, the composition ratio between the transition metal elements can be controlled by controlling the ion concentration of those transition metal elements in the aqueous solution. When two or more kinds of rare earth elements are contained, the composition ratio between the rare earth elements can be controlled by controlling the ion concentration of the rare earth elements in the aqueous solution.

本発明の実施の形態の合金薄膜の製造方法により、超磁歪材料のTbDyFeから成る合金薄膜を製造した。まず、150 ccの純水中に以下の材料を入れて、水溶液を調製した。
・FeCl3・6H2O(粉末) 0.5 g
・FeSO4・7H2O(粉末) 1.8 g
・Tb2(SO4)3・8H2O(粉末) 0.3 g
・Dy2(SO4)3・8H2O(粉末) 0.7 g
・酒石酸カリウムナトリウム(KNaC4H4O6・4H2O) 1.1 g
・クエン酸ナトリウム(Na2H(C3H5O(COO)3)・1.5H2O) 0.5 g
・KCl(粉末) 33 g
・NaOH 1.1 g
An alloy thin film made of TbDyFe, which is a magnetostrictive material, was produced by the method for producing an alloy thin film according to the embodiment of the present invention. First, the following materials were put in 150 cc of pure water to prepare an aqueous solution.
・ FeCl 3・ 6H 2 O (powder) 0.5 g
・ FeSO 4・ 7H 2 O (powder) 1.8 g
・ Tb 2 (SO 4 ) 3・ 8H 2 O (powder) 0.3 g
・ Dy 2 (SO 4 ) 3・ 8H 2 O (powder) 0.7 g
・ Potassium sodium tartrate (KNaC 4 H 4 O 6・ 4H 2 O) 1.1 g
・ Sodium citrate (Na 2 H (C 3 H 5 O (COO) 3 ) ・ 1.5 H 2 O) 0.5 g
・ KCl (powder) 33 g
・ NaOH 1.1 g

遷移金属元素はFeの1種類、希土類元素はTbおよびDyの2種類である。KClは、支持電解質であり、NaOHは、pH調整剤である。また、調製された水溶液は、硫酸水溶液となる。水溶液の調製は、N2雰囲気中で行った。なお、遷移金属元素や希土類元素の錯体化の反応を早めたいときには、水溶液を60℃程度まで加熱すればよい。 The transition metal element is one type of Fe, and the rare earth element is two types, Tb and Dy. KCl is a supporting electrolyte and NaOH is a pH regulator. Further, the prepared aqueous solution becomes a sulfuric acid aqueous solution. The aqueous solution was prepared in an N 2 atmosphere. If you want to accelerate the complexing reaction of transition metal elements and rare earth elements, you can heat the aqueous solution to about 60 ° C.

次に、調製した水溶液をめっき液として電解めっきを行った。電解めっきには、3つの電極を有する電解めっき装置を使用し、電圧を制御しながら電解めっきを行った。電解めっき装置の参照電極はAg/AgCl、対極(アノード)はPt、作用電極(カソード)はCuである。電解めっきによる合金薄膜の堆積は、室温で行った。また、堆積中は、めっき液(電解液)にN2を流し、酸素の混入を防いだ。電解めっきによる合金薄膜の堆積速度は、約100〜200 nm/h程度であった。 Next, electrolytic plating was performed using the prepared aqueous solution as a plating solution. For electrolytic plating, an electrolytic plating apparatus having three electrodes was used, and electrolytic plating was performed while controlling the voltage. The reference electrode of the electroplating apparatus is Ag / AgCl, the counter electrode (anode) is Pt, and the working electrode (cathode) is Cu. The alloy thin film was deposited by electroplating at room temperature. In addition, during deposition, N 2 was passed through the plating solution (electrolyte solution) to prevent oxygen from entering. The deposition rate of the alloy thin film by electroplating was about 100 to 200 nm / h.

作用電極の電圧(還元電圧;Potential)を変えて、TbDyFeから成る合金薄膜を堆積させたときの、作用電極の電圧と合金薄膜の組成との関係を求め、図1に示す。なお、合金薄膜の組成は、エネルギー分散型X線分析(EDX)を用いて測定している。図1に示すように、作用電極の電圧により、遷移金属元素と希土類元素との組成比率を制御可能であることが確認された。また、−0.9V〜−1V程度の還元電圧で、合金薄膜を製造できることが確認された。 The relationship between the voltage of the working electrode and the composition of the alloy thin film when the alloy thin film made of TbDyFe is deposited by changing the voltage (reduction voltage; Potential) of the working electrode is shown in FIG. The composition of the alloy thin film is measured using energy dispersive X-ray analysis (EDX). As shown in FIG. 1, it was confirmed that the composition ratio of the transition metal element and the rare earth element can be controlled by the voltage of the working electrode. It was also confirmed that an alloy thin film can be produced with a reduction voltage of about −0.9V to -1V.

なお、クエン酸ナトリウムを 0.1 g増やし、酒石酸カリウムナトリウムを 0.22 g減らして合金薄膜を堆積させると、還元電圧が−935mVのときで、Feの組成比率(at%)が20〜30%増加し、DyおよびTbの組成比率(at%)がそれぞれ10〜15%減少した。逆に、クエン酸ナトリウムを 0.1 g減らし、酒石酸カリウムナトリウムを 0.22 g増やすと、合金薄膜の組成比率の増減が逆になった。 When sodium citrate was increased by 0.1 g and potassium sodium tartrate was decreased by 0.22 g to deposit an alloy thin film, the composition ratio (at%) of Fe increased by 20 to 30% when the reduction voltage was -935 mV. The composition ratios (at%) of Dy and Tb decreased by 10 to 15%, respectively. Conversely, when sodium citrate was reduced by 0.1 g and sodium potassium tartrate was increased by 0.22 g, the increase / decrease in the composition ratio of the alloy thin film was reversed.

−930mVの還元電圧で堆積させた合金薄膜(Tb0.36Dy0.64Fe1.9)の磁化特性を求め、図2に示す。なお、磁化特性は、振動試料型磁力計(VSM)により測定している。図2に示すように、得られた合金薄膜は、保持力が 285 Oe、飽和磁化が 7900 Oeであった。 The magnetization characteristics of the alloy thin film (Tb 0.36 Dy 0.64 Fe 1.9 ) deposited at a reduction voltage of −930 mV were obtained and shown in FIG. The magnetization characteristics are measured by a vibrating sample magnetometer (VSM). As shown in FIG. 2, the obtained alloy thin film had a holding force of 285 Oe and a saturation magnetization of 7900 Oe.

次に、超磁歪材料のTbDyFeから成る合金薄膜を表面に堆積したカンチレバーを製造し、磁歪係数の測定を行った。カンチレバーは、以下のようにして製造された。すなわち、まず、図3(a)に示すように、ハンドル層(Si)11の厚みが 550μm、BOX層(SiO2)12の厚みが 3μm、デバイス層(Si)13の厚みが 1.5μmのSOIウエハの、デバイス層13側の表面に、スパッタにより、Cuから成るシード層(seed layer)14を形成した。次に、図3(b)に示すように、そのシード層14の表面に、電解めっきにより、TbDyFeから成る合金薄膜15を堆積した。 Next, a cantilever in which an alloy thin film made of a super-magnetostrictive material TbDyFe was deposited on the surface was manufactured, and the magnetostrictive coefficient was measured. The cantilever was manufactured as follows. That is, first, as shown in FIG. 3A, the SOI of the handle layer (Si) 11 has a thickness of 550 μm, the BOX layer (SiO 2 ) 12 has a thickness of 3 μm, and the device layer (Si) 13 has a thickness of 1.5 μm. A seed layer 14 made of Cu was formed on the surface of the wafer on the device layer 13 side by sputtering. Next, as shown in FIG. 3B, an alloy thin film 15 made of TbDyFe was deposited on the surface of the seed layer 14 by electroplating.

図3(c)に示すように、合金薄膜15の表面にフォトレジスト16を塗布し、イオンミリングおよび反応性イオンエッチング(RIE)により、合金薄膜15、シード層14およびデバイス層13を、所望のパターンにエッチングした。図3(d)に示すように、合金薄膜15の表面のフォトレジスト16を取り除いた後、同様にして、ハンドル層11側の表面にフォトレジスト17を塗布し、深掘りRIEにより、ハンドル層11を所望のパターンにエッチングした。図3(e)に示すように、Vapor HF エッチング装置により、SiO2から成るBOX層12の露出した部分をエッチングして取り除いた。こうして、図4に示すように、デバイス層13の表面に、シード層14を介してTbDyFeから成る合金薄膜15が形成されたカンチレバーを製造した。なお、ハンドル層11を残した部分は、カンチレバーの固定部である。 As shown in FIG. 3C, the photoresist 16 is applied to the surface of the alloy thin film 15, and the alloy thin film 15, the seed layer 14 and the device layer 13 are obtained by ion milling and reactive ion etching (RIE). Etched on the pattern. As shown in FIG. 3D, after removing the photoresist 16 on the surface of the alloy thin film 15, the photoresist 17 is applied to the surface on the handle layer 11 side in the same manner, and the handle layer 11 is subjected to deep digging RIE. Was etched into the desired pattern. As shown in FIG. 3 (e), the exposed portion of the BOX layer 12 made of SiO 2 was removed by etching with a Vapor HF etching apparatus. In this way, as shown in FIG. 4, a cantilever in which an alloy thin film 15 made of TbDyFe was formed on the surface of the device layer 13 via a seed layer 14 was manufactured. The portion where the handle layer 11 is left is a fixed portion of the cantilever.

カンチレバーは、長さの異なる3種類を製造した。それぞれの長さは、700μm、1000μm、および1100μmである。また、幅は、100μmである。なお、各カンチレバーは、シード層14の厚みが300 nm、合金薄膜15の厚みが250 nmである。 Three types of cantilever with different lengths were manufactured. The lengths are 700 μm, 1000 μm, and 1100 μm, respectively. The width is 100 μm. In each cantilever, the thickness of the seed layer 14 is 300 nm, and the thickness of the alloy thin film 15 is 250 nm.

各カンチレバーに対して様々な磁場を印加し、各印加磁場での各カンチレバーの反りから、合金薄膜15の面内方向の磁気歪(磁歪係数)を求めた。各カンチレバーの印加磁場(Magnetic field)と磁歪係数(Magnetostriction coefficient)との関係を、図5に示す。また、各カンチレバーの、各印加磁場での磁歪係数の平均値を求め、図5中に示す。図5に示すように、いずれのカンチレバーでも、1200 ppm以上の非常に大きな磁歪係数が得られており、薄膜であっても良好な磁歪特性を有していることが確認された。 Various magnetic fields were applied to each cantilever, and the in-plane magnetostriction (magnetostriction coefficient) of the alloy thin film 15 was obtained from the warp of each cantilever at each applied magnetic field. The relationship between the applied magnetic field of each cantilever and the magnetostriction coefficient is shown in FIG. Further, the average value of the magnetostrictive coefficient of each cantilever at each applied magnetic field is obtained and shown in FIG. As shown in FIG. 5, it was confirmed that any cantilever had a very large magnetostrictive coefficient of 1200 ppm or more, and that even a thin film had good magnetostrictive characteristics.

本発明の実施の形態の合金薄膜の製造方法により、超磁歪材料のTb-Fe-Coから成る合金薄膜を製造した。まず、150 ccの純水中に以下の材料を入れて、水溶液を調製した。
・CoSO4・7H2O 2.1 g
・FeCl3・6H2O 0.2 g
・Tb2(SO4)3・8H2O 1 g
・酒石酸カリウムナトリウム(KNaC4H4O6・4H2O) 1.8 g
・クエン酸ナトリウム(Na2H(C3H5O(COO)3)・1.5H2O) 1.4 g
・KCl(粉末) 33 g
・NaOH 1.1 g
An alloy thin film made of Tb-Fe-Co, which is a super-magnetostrictive material, was produced by the method for producing an alloy thin film according to the embodiment of the present invention. First, the following materials were put in 150 cc of pure water to prepare an aqueous solution.
・ CoSO 4・ 7H 2 O 2.1 g
・ FeCl 3・ 6H 2 O 0.2 g
・ Tb 2 (SO 4 ) 3・ 8H 2 O 1 g
・ Potassium sodium tartrate (KNaC 4 H 4 O 6・ 4H 2 O) 1.8 g
・ Sodium citrate (Na 2 H (C 3 H 5 O (COO) 3 ) ・ 1.5 H 2 O) 1.4 g
・ KCl (powder) 33 g
・ NaOH 1.1 g

遷移金属元素はFeおよびCoの2種類、希土類元素はTbの1種類である。KClは、支持電解質であり、NaOHは、pH調整剤である。また、調製された水溶液は、硫酸水溶液となる。水溶液の調製は、N2雰囲気中で行った。なお、遷移金属元素や希土類元素の錯体化の反応を早めたいときには、水溶液を50〜85℃程度まで加熱してもよい。 There are two types of transition metal elements, Fe and Co, and one type of rare earth element, Tb. KCl is a supporting electrolyte and NaOH is a pH regulator. Further, the prepared aqueous solution becomes a sulfuric acid aqueous solution. The aqueous solution was prepared in an N 2 atmosphere. When it is desired to accelerate the complexing reaction of the transition metal element or the rare earth element, the aqueous solution may be heated to about 50 to 85 ° C.

次に、調製した水溶液をめっき液として、実施例1と同じ装置を用いて、電解めっきを行った。電解めっきによる合金薄膜の堆積は、作用電極に -880 mVの電圧を印加し、室温で行った。また、堆積中は、めっき液(電解液)にN2を流し、酸素の混入を防いだ。電解めっきによる合金薄膜の堆積速度は、約100〜200 nm/h程度であった。 Next, electrolytic plating was performed using the prepared aqueous solution as a plating solution using the same apparatus as in Example 1. The alloy thin film was deposited by electroplating at room temperature by applying a voltage of -880 mV to the working electrode. In addition, during deposition, N 2 was passed through the plating solution (electrolyte solution) to prevent oxygen from entering. The deposition rate of the alloy thin film by electroplating was about 100 to 200 nm / h.

堆積した合金薄膜の組成を、EDXを用いて測定したところ、Tbが 36 at%、Feが 9 at%、Coが 55 at%であった。なお、作用電極に印加する電圧(還元電圧)を、-5 mV変化させると、希土類元素(Tb)の比率が10%増加し、遷移金属元素(Fe、Co)の比率は減少した。また、遷移金属元素間の比率は、電解液中のFeとCoの濃度で調整できる。 When the composition of the deposited alloy thin film was measured using EDX, Tb was 36 at%, Fe was 9 at%, and Co was 55 at%. When the voltage (reduction voltage) applied to the working electrode was changed by -5 mV, the ratio of rare earth elements (Tb) increased by 10% and the ratio of transition metal elements (Fe, Co) decreased. Further, the ratio between the transition metal elements can be adjusted by adjusting the concentration of Fe and Co in the electrolytic solution.

また、クエン酸ナトリウムを 0.14 g増やし、酒石酸カリウムナトリウムを 0.18 g減らして合金薄膜を堆積させると、還元電圧が−880mVのときで、Tbの組成比率(at%)が10%減少し、FeおよびCoの組成比率(at%)がそれぞれ5%増加した。逆に、クエン酸ナトリウムを 0.14 g減らし、酒石酸カリウムナトリウムを 0.18 g増やすと、合金薄膜の組成比率の増減が逆になった。 In addition, when sodium citrate was increased by 0.14 g and potassium sodium tartrate was decreased by 0.18 g to deposit an alloy thin film, the composition ratio (at%) of Tb decreased by 10% when the reduction voltage was -880 mV, and Fe and Fe and The composition ratio (at%) of Co increased by 5%, respectively. Conversely, when sodium citrate was reduced by 0.14 g and sodium potassium tartrate was increased by 0.18 g, the increase / decrease in the composition ratio of the alloy thin film was reversed.

11 ハンドル層
12 BOX層
13 デバイス層
14 シード層
15 合金薄膜
16、17 フォトレジスト
11 Handle layer 12 BOX layer 13 Device layer 14 Seed layer 15 Alloy thin film 16, 17 photoresist

Claims (12)

1または複数種類の遷移金属元素と、1または複数種類の希土類元素と、酒石酸類と、クエン酸類とを含む水溶液をめっき液として電解めっきを行うことにより、前記遷移金属元素と前記希土類元素とを有する合金薄膜を製造することを特徴とする合金薄膜の製造方法。 The transition metal element and the rare earth element are obtained by performing electrolytic plating using an aqueous solution containing one or more kinds of transition metal elements, one or more kinds of rare earth elements, tartrate acids, and citric acids as a plating solution. A method for producing an alloy thin film, which comprises producing an alloy thin film having. 前記水溶液は、硫酸水溶液または塩酸水溶液であることを特徴とする請求項1記載の合金薄膜の製造方法。 The method for producing an alloy thin film according to claim 1, wherein the aqueous solution is a sulfuric acid aqueous solution or a hydrochloric acid aqueous solution. 前記遷移金属元素は、Fe、Co、Ni、Zn、およびGaのうちの1種類または複数種類であることを特徴とする請求項1または2記載の合金薄膜の製造方法。 The method for producing an alloy thin film according to claim 1 or 2, wherein the transition metal element is one or more of Fe, Co, Ni, Zn, and Ga. 前記希土類元素は、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、およびErのうちの1種類または複数種類であることを特徴とする請求項1乃至3のいずれか1項に記載の合金薄膜の製造方法。 The method according to any one of claims 1 to 3, wherein the rare earth element is one or more of La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, and Er. Method for manufacturing alloy thin films. 前記水溶液中に、前記遷移金属元素および前記希土類元素を合わせて3種類以上含むことを特徴とする請求項1乃至4のいずれか1項に記載の合金薄膜の製造方法。 The method for producing an alloy thin film according to any one of claims 1 to 4, wherein the aqueous solution contains three or more kinds of the transition metal element and the rare earth element in total. 前記酒石酸類は、酒石酸、酒石酸カリウムナトリウム、または酒石酸ナトリウムであることを特徴とする請求項1乃至5のいずれか1項に記載の合金薄膜の製造方法。 The method for producing an alloy thin film according to any one of claims 1 to 5, wherein the tartaric acid is tartaric acid, sodium potassium tartrate, or sodium tartarate. 前記クエン酸類は、クエン酸ナトリウムまたはクエン酸であることを特徴とする請求項1乃至6のいずれか1項に記載の合金薄膜の製造方法。 The method for producing an alloy thin film according to any one of claims 1 to 6, wherein the citric acid is sodium citrate or citric acid. 前記水溶液は、支持電解質を含むことを特徴とする請求項1乃至7のいずれか1項に記載の合金薄膜の製造方法。 The method for producing an alloy thin film according to any one of claims 1 to 7, wherein the aqueous solution contains a supporting electrolyte. 1または複数種類の遷移金属元素と、1または複数種類の希土類元素とを含む合金めっきから成ることを特徴とする合金薄膜。 An alloy thin film comprising an alloy plating containing one or more kinds of transition metal elements and one or more kinds of rare earth elements. 前記遷移金属元素は、Fe、Co、Ni、Zn、およびGaのうちの1種類または複数種類であることを特徴とする請求項9記載の合金薄膜。 The alloy thin film according to claim 9, wherein the transition metal element is one or more of Fe, Co, Ni, Zn, and Ga. 前記希土類元素は、La、Ce、Nd、Sm、Gd、Tb、Dy、Ho、およびErのうちの1種類または複数種類であることを特徴とする請求項9または10記載の合金薄膜。 The alloy thin film according to claim 9 or 10, wherein the rare earth element is one or more of La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, and Er. 前記遷移金属元素および前記希土類元素を合わせて3種類以上含むことを特徴とする請求項9乃至11のいずれか1項に記載の合金薄膜。
The alloy thin film according to any one of claims 9 to 11, wherein the transition metal element and the rare earth element are contained in a total of three or more kinds.
JP2020056203A 2020-03-26 2020-03-26 Manufacturing method of alloy thin film Active JP7233723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020056203A JP7233723B2 (en) 2020-03-26 2020-03-26 Manufacturing method of alloy thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056203A JP7233723B2 (en) 2020-03-26 2020-03-26 Manufacturing method of alloy thin film

Publications (2)

Publication Number Publication Date
JP2021155798A true JP2021155798A (en) 2021-10-07
JP7233723B2 JP7233723B2 (en) 2023-03-07

Family

ID=77919502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056203A Active JP7233723B2 (en) 2020-03-26 2020-03-26 Manufacturing method of alloy thin film

Country Status (1)

Country Link
JP (1) JP7233723B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269228A (en) * 1990-03-19 1991-11-29 Aisin Seiki Co Ltd Magnetostriction detector
CN1480564A (en) * 2003-07-18 2004-03-10 中山大学 Method for preparing rare earth alloy through sweeping electric potential sedimentation
CN1580332A (en) * 2004-05-20 2005-02-16 昆明理工大学 Zn-Ni-RE electroplating layer and its electroplating method and electrolytic liquor
CN101182645A (en) * 2007-08-02 2008-05-21 江西理工大学 Tungsten-cobalt-rare-earth alloy plating solution
US20080236441A1 (en) * 2006-10-13 2008-10-02 Ken Nobe Aqueous eletrodeposition of magnetic cobalt-samarium alloys
CN102433577A (en) * 2011-12-26 2012-05-02 无锡海普斯新材料科技有限公司 Rare earth-nickel-cobalt-boron multi-element alloy anticorrosion and wear-resistant plating, electroplating liquid and preparation method of electroplating liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269228A (en) * 1990-03-19 1991-11-29 Aisin Seiki Co Ltd Magnetostriction detector
CN1480564A (en) * 2003-07-18 2004-03-10 中山大学 Method for preparing rare earth alloy through sweeping electric potential sedimentation
CN1580332A (en) * 2004-05-20 2005-02-16 昆明理工大学 Zn-Ni-RE electroplating layer and its electroplating method and electrolytic liquor
US20080236441A1 (en) * 2006-10-13 2008-10-02 Ken Nobe Aqueous eletrodeposition of magnetic cobalt-samarium alloys
CN101182645A (en) * 2007-08-02 2008-05-21 江西理工大学 Tungsten-cobalt-rare-earth alloy plating solution
CN102433577A (en) * 2011-12-26 2012-05-02 无锡海普斯新材料科技有限公司 Rare earth-nickel-cobalt-boron multi-element alloy anticorrosion and wear-resistant plating, electroplating liquid and preparation method of electroplating liquid

Also Published As

Publication number Publication date
JP7233723B2 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
US20090301890A1 (en) Formation of nanostructures comprising compositionally modulated ferromagnetic layers by pulsed ecd
US20080236441A1 (en) Aqueous eletrodeposition of magnetic cobalt-samarium alloys
US10344391B2 (en) Fe-Ni-P-RE multicomponent alloy plating layer, and electrodeposition preparation method and application thereof
US10002919B2 (en) High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
Panzeri et al. Electrodeposition of magnetic SmCo films from deep eutectic solvents and choline chloride-ethylene glycol mixtures
Cavallotti et al. Microelectrodeposition of Co–Pt alloys for micromagnetic applications
Barbano et al. Electrochemical synthesis of Fe-W and Fe-WP magnetic amorphous films and Fe-W nanowires
Chen et al. Electroplating hard magnetic SmCo for magnetic microactuator applications
JP3201892B2 (en) Soft magnetic thin film and magnetic inductive MR head using the same
JP2021155798A (en) Method of producing alloy thin film, and alloy thin film
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
Franz et al. Electrodeposition of micromagnets of CoPtW (P) alloys
JP3201763B2 (en) Soft magnetic thin film
JP4423377B2 (en) Method for producing soft magnetic thin film and soft magnetic thin film
JP3431238B2 (en) Soft magnetic plating thin film and manufacturing method thereof
CN112962122B (en) Preparation method of high-coercivity B-doped FePt film
Hayashi et al. Growth of Co/Cu multilayered thin films by electro‐deposition
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPH05190327A (en) Magnetic thin film and manufacture thereof
JP2007158091A (en) Method for producing soft magnetic thin film
Rheem Electrodeposition of GMR Ni/Cu multilayers in a recirculating electrochemical flow reactor
JPH06251978A (en) Soft magnetic thin film and manufacture thereof
Sun et al. Electrodeposition of NiP Film used as a Nonmagnetic Spacer in Laminated (CoFe/NiP) n Writer Pole
Khoperia Investigation of the Mechanism and Kinetics of Activation for Electroless Plating and Competitive Submicron and LIGATechnologies

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200327

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230215

R150 Certificate of patent or registration of utility model

Ref document number: 7233723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150