JP3201892B2 - Soft magnetic thin film and magnetic inductive MR head using the same - Google Patents

Soft magnetic thin film and magnetic inductive MR head using the same

Info

Publication number
JP3201892B2
JP3201892B2 JP23553793A JP23553793A JP3201892B2 JP 3201892 B2 JP3201892 B2 JP 3201892B2 JP 23553793 A JP23553793 A JP 23553793A JP 23553793 A JP23553793 A JP 23553793A JP 3201892 B2 JP3201892 B2 JP 3201892B2
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
film
magnetic thin
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23553793A
Other languages
Japanese (ja)
Other versions
JPH073489A (en
Inventor
治 篠浦
聡史 上島
大助 宮内
雄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP23553793A priority Critical patent/JP3201892B2/en
Publication of JPH073489A publication Critical patent/JPH073489A/en
Application granted granted Critical
Publication of JP3201892B2 publication Critical patent/JP3201892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、軟磁性薄膜、特に電気
めっき法により作製した低保磁力、高飽和磁束密度の軟
磁性薄膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic thin film, and more particularly to a soft magnetic thin film having a low coercive force and a high saturation magnetic flux density manufactured by an electroplating method.

【0002】[0002]

【従来の技術】薄膜磁気ヘッドや薄膜トランスの磁性薄
膜には、低保磁力、高飽和磁束密度等の優れた軟磁気特
性が要求される。
2. Description of the Related Art Magnetic thin films of thin film magnetic heads and thin film transformers are required to have excellent soft magnetic properties such as low coercive force and high saturation magnetic flux density.

【0003】これらの磁性薄膜は、スパッタ法等の気相
成膜法やめっき法等の液相成膜法により形成されるのが
一般的であるが、めっき法、特に電気めっき法は、大面
積の成膜が容易で、しかも均一性の高い膜が得られ、ま
た、工程数が少なく設備が安価であるという利点があ
る。
[0003] These magnetic thin films are generally formed by a vapor phase film forming method such as a sputtering method or a liquid phase film forming method such as a plating method. There is an advantage that a film having a large area can be easily formed and a film with high uniformity can be obtained, and the number of steps is small and the equipment is inexpensive.

【0004】このようなことから電着パーマロイ(Ni
−Fe合金)膜が薄膜ヘッド磁極材料として現在広く使
用されている。
[0004] From this fact, electrodeposition permalloy (Ni
-Fe alloy) film is currently widely used as a thin film head magnetic pole material.

【0005】ところで、近年の記録密度の上昇は、記録
媒体の保磁力(Hc )の上昇による部分が大きい。保磁
力の大きな記録媒体に十分に書き込むためには、記録ヘ
ッドからより強い磁界を発生する必要がある。また、M
R(磁気抵抗)インダクティブ複合ヘッドのシールド層
の磁性材料も、高密度記録のためには、より薄い膜で所
望のシールド効果が期待できる高飽和磁束密度材料が必
要となってきている。ところが、上記のパーマロイの飽
和磁束密度(Bs )は1T以下であり、より飽和磁束密
度(Bs )の高い材料が求められている。
The recent increase in recording density is largely due to the increase in coercive force (Hc) of the recording medium. In order to write sufficiently on a recording medium having a large coercive force, it is necessary to generate a stronger magnetic field from the recording head. Also, M
As for the magnetic material of the shield layer of the R (magnetic resistance) inductive composite head, a high saturation magnetic flux density material that can be expected to have a desired shielding effect with a thinner film is required for high-density recording. However, the permalloy has a saturation magnetic flux density (Bs) of 1T or less, and a material having a higher saturation magnetic flux density (Bs) is required.

【0006】この磁気特性的な要求を満たす磁性めっき
膜の一つとしては、Co−Ni−Fe系合金が挙げられ
る。
As one of the magnetic plating films satisfying the requirements for the magnetic properties, there is a Co-Ni-Fe alloy.

【0007】このCo−Ni−Fe系合金のバルク材の
磁気特性については、R.M.Bozorth,Ferromagnetism, 19
51 (D.Van Nostrand Company, Inc.)にまとめられてい
る。このなかに記載された図5−84によれば、保磁力
(Hc )が小さくなるのはCoが少ない組成のみであ
り、特にHc <0.3Oeはわずかな組成範囲に限定され
ていることがわかる。
Regarding the magnetic properties of the bulk material of this Co—Ni—Fe alloy, see RMBozorth, Ferromagnetism, 19
51 (D. Van Nostrand Company, Inc.). According to FIG. 5-84 described therein, the coercive force (Hc) decreases only in the composition with a small amount of Co, and particularly, Hc <0.3 Oe is limited to a small composition range. Understand.

【0008】また、特公昭63−53277号には、コ
バルト−ニッケル−鉄合金の電気めっき浴組成物が開示
されており、これを用いて電気めっきを行うことによ
り、低い保磁力、高い飽和磁化(4πMs)、および0
または僅かに負の磁歪を有するコバルト−ニッケル−鉄
合金被膜が得られることが示されている。この場合保磁
力(Hc )は2Oe以下となると記載されており、実施例
に示されたCoNiFe被膜(約80:10:10)で
は4πMs=16kG、Hc =1.5Oeが得られてい
る。4πMsはパーマロイの2倍近い値となっている
が、保磁力がパーマロイに比べてかなり高く、軟磁気特
性において劣るものとなっている。
[0008] JP-B-63-53277 discloses an electroplating bath composition of a cobalt-nickel-iron alloy, which is used for electroplating to obtain a low coercive force and a high saturation magnetization. (4πMs), and 0
Alternatively, a cobalt-nickel-iron alloy coating having a slightly negative magnetostriction is shown to be obtained. In this case, it is described that the coercive force (Hc) is 2 Oe or less. In the case of the CoNiFe coating (about 80:10:10) shown in the example, 4πMs = 16 kG and Hc = 1.5 Oe are obtained. Although 4πMs is almost twice the value of Permalloy, the coercive force is considerably higher than that of Permalloy, and the soft magnetic characteristics are inferior.

【0009】また、米国特許第5011581号(対応
特開平2−138716号)には、電着法による高飽和
磁束密度合金薄膜の製造方法が開示されている。実施例
の膜サンプルが示すとおり、Bs は10500〜185
00G の範囲にあり高いものとなっているが、Hc は最
小のものでも1Oeであり軟磁気特性が十分でない。
US Pat. No. 5,011,581 (corresponding to Japanese Patent Application Laid-Open No. 2-138716) discloses a method for producing a high saturation magnetic flux density alloy thin film by an electrodeposition method. As shown in the membrane samples of the examples, Bs is 10500 to 185.
Although it is high in the range of 00G, Hc is 10 Oe at the minimum, and the soft magnetic properties are not sufficient.

【0010】また、特開平2−68906号には、F
e、Co、Niを主成分とし、Feが20〜75at% 、
Coが5〜45at% 、Niが20〜70at% であり、薄
膜面として面心立方格子構造の(220)面または(1
11)面を優先的に面配向させた高飽和磁束密度軟磁性
膜が開示されている。膜の製法として、蒸着法、電着法
が示されているが、実施例で電着法によって作製したサ
ンプルは(111)配向のFe29Co7 Ni64(数値は
at% )膜のみであり、Hc は2.5Oeとなっており、軟
磁気特性が十分とはいえない。
Japanese Patent Application Laid-Open No. 2-68906 discloses F
e, Co and Ni as main components, Fe is 20 to 75 at%,
Co is 5-45 at%, Ni is 20-70 at%, and the (220) plane or (1) of the face-centered cubic lattice structure is used as the thin film surface.
11) A high saturation magnetic flux density soft magnetic film in which the plane is preferentially plane-oriented is disclosed. As a method for producing the film, a vapor deposition method and an electrodeposition method are shown. In the examples, the sample prepared by the electrodeposition method is Fe 29 Co 7 Ni 64 of (111) orientation (the numerical value is
at%), only Hc is 2.5 Oe, and the soft magnetic properties are not sufficient.

【0011】また第16回日本応用磁気学会学術講演概
要集の7pF−15には、耐食性に優れ、かつ高い飽和
磁束密度を有するCo−Fe−Ni膜が報告されてお
り、Co=50〜60wt% 、Fe=20〜30wt% 、N
i=20〜30wt% の組成でのめっき軟磁性膜が示され
ている。このものは19kG以上の高Bs を有するもの
であるが、透磁率(μ)は600〜700程度であり、
パーマロイと比べて低く、保磁力も大きいと推定され
る。
A Co-Fe-Ni film having excellent corrosion resistance and a high saturation magnetic flux density is reported in 7pF-15 of the 16th Annual Meeting of the Japan Society of Applied Magnetics. %, Fe = 20-30 wt%, N
A plated soft magnetic film having a composition of i = 20 to 30 wt% is shown. This has a high Bs of 19 kG or more, but has a magnetic permeability (μ) of about 600 to 700,
It is estimated that the coercive force is large and lower than that of Permalloy.

【0012】以上のことから、電気めっき法により、高
Bs で低Hc のCo−Fe−Ni系の軟磁性薄膜を得る
ことが望まれている。
From the above, it is desired to obtain a Co-Fe-Ni-based soft magnetic thin film having a high Bs and a low Hc by electroplating.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、通
常、0.5Oe以下、特に0.3Oe以下、さらには0.2
Oe以下の低保磁力を有し、かつ飽和磁束密度の高い軟磁
性薄膜を提供することにある。
The object of the present invention is usually to provide a solution of not more than 0.5 Oe, especially not more than 0.3 Oe, and more preferably not more than 0.2 Oe.
An object of the present invention is to provide a soft magnetic thin film having a low coercive force of Oe or less and a high saturation magnetic flux density.

【0014】[0014]

【課題を解決するための手段】このような目的は、下記
(1)〜(5)の構成によって達成される。 (1) aCo−bNi−cFe[ここで、a、bおよ
びcは、それぞれCo、NiおよびFeの比率(wt% )
を表し、 a=28〜75wt% 、 b=16〜60wt% 、 c=9〜42wt% 、および a+b+c=100wt% の関係を満足する。]で表される組成を有し、面心立方
晶相を主とし、少なくとも電子線回折により体心立方晶
相が確認される2つの異なる結晶構造の相が混在し、め
っき法によって成膜された軟磁性薄膜。 (2) 前記成膜後熱処理された上記(1)の軟磁性薄
膜。 (3) 前記熱処理の温度が240〜370℃である上
記(2)の軟磁性薄膜。 (4) 膜中のイオウ含有量が1000ppm以下である
上記(1)〜(3)のいずれかの軟磁性薄膜。 (5) 上記(1)〜(4)のいずれかの軟磁性薄膜を
有する磁気インダクティブMRヘッド。
The above object is achieved by the following constitutions (1) to (5). (1) aCo-bNi-cFe [where a, b and c are the ratios (wt%) of Co, Ni and Fe, respectively]
Which satisfies the following relationships: a = 28 to 75 wt%, b = 16 to 60 wt%, c = 9 to 42 wt%, and a + b + c = 100 wt%. Having a composition represented by the following formula, and mainly having a face-centered cubic phase, and at least two phases having different crystal structures whose body-centered cubic phase is confirmed by electron diffraction. Soft magnetic thin film. (2) The soft magnetic thin film according to (1), which is heat-treated after the film formation. (3) The soft magnetic thin film according to (2), wherein the temperature of the heat treatment is 240 to 370 ° C. (4) The soft magnetic thin film according to any one of (1) to (3), wherein the sulfur content in the film is 1000 ppm or less. (5) A magnetic inductive MR head having the soft magnetic thin film according to any one of (1) to (4).

【0015】[0015]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
[Specific Configuration] Hereinafter, a specific configuration of the present invention will be described in detail.

【0016】本発明の軟磁性薄膜は、Co、Niおよび
Feを含有する。この軟磁性薄膜は、面心立方晶相を主
とし微量の体心立方晶(bcc)相を含む。
The soft magnetic thin film of the present invention contains Co, Ni and Fe. This soft magnetic thin film contains mainly a face-centered cubic phase and a small amount of a body-centered cubic (bcc) phase.

【0017】[0017]

【0018】本発明の軟磁性薄膜が、fcc相を主とし
微量のbcc相を含む場合には、X線回折におけるbc
c(110)面のピーク強度をI(110)としたと
き、 I(200)/I(111)≧0.1、好ましくは I(200)/I(111)≧0.15 であって、かつ I(110)/I(111)≦0.1 である。この場合、通常、 I(200)/I(111)≦1 であり、好ましくは I(200)/I(111)≦0.2 である。この場合にI(200)/I(111)>0.
2となると、保磁力が大きくなる傾向にある。
When the soft magnetic thin film of the present invention mainly contains the fcc phase and contains a small amount of the bcc phase, the bc
When the peak intensity of the c (110) plane is I (110), I (200) / I (111) ≧ 0.1, preferably I (200) / I (111) ≧ 0.15, And I (110) / I (111) ≦ 0.1. In this case, normally, I (200) / I (111) ≦ 1, preferably I (200) / I (111) ≦ 0.2. In this case, I (200) / I (111)> 0.
When it is 2, the coercive force tends to increase.

【0019】bcc相の存在は、電子線回折により確認
することができるが、電子線回折によりbcc相が確認
されている場合でも、汎用のX線回折装置を用いた場合
にはI(110)/I(111)=0となって、その存
在が確認できないこともある。これは、一般にX線回折
が電子線回折よりも感度が低いためである。本発明で
は、電子線回折によりbcc相が確認できればI(11
0)/I(111)=0であってもよい。本発明におけ
る好ましい組成範囲はbcc相が共析を開始する直前の
組成範囲なので、汎用のX線回折装置では検出不可能な
程度の極めて微量のbcc相が局部的に偏析することで
高特性が得られていると考えられる。具体的には、fc
c相からなる結晶粒の粒界にbcc相が析出することに
より粒子分離が進むため、あるいは結晶磁気異方性の和
が小さくなる方向への変化が生じるため、低保磁力が得
られるものと考えられる。一方、I(110)/I(1
11)>0.1である場合、bcc相自体が結晶成長し
ているため、あるいはbcc相の結晶磁気異方性の影響
が大きくなるため、保磁力が増大してしまうと考えられ
る。
The existence of the bcc phase can be confirmed by electron beam diffraction. Even when the bcc phase is confirmed by electron beam diffraction, when a general-purpose X-ray diffractometer is used, I (110) is used. In some cases, / I (111) = 0 and its existence cannot be confirmed. This is because X-ray diffraction is generally less sensitive than electron beam diffraction. In the present invention, if a bcc phase can be confirmed by electron beam diffraction, I (11
0) / I (111) = 0. Since the preferred composition range in the present invention is a composition range immediately before the bcc phase starts eutectoid, a very small amount of the bcc phase, which cannot be detected by a general-purpose X-ray diffractometer, is locally segregated, and high characteristics are obtained. It is thought that it has been obtained. Specifically, fc
A low coercive force should be obtained because the bcc phase precipitates at the grain boundaries of the crystal grains composed of the c phase, which promotes particle separation or changes in the direction in which the sum of crystal magnetic anisotropy decreases. Conceivable. On the other hand, I (110) / I (1
If 11)> 0.1, it is considered that the coercive force increases because the bcc phase itself is growing crystals or the influence of the crystal magnetic anisotropy of the bcc phase increases.

【0020】本発明では、結晶相の構成および結晶面の
配向を上記のようにすることにより、低保磁力かつ高飽
和磁束密度のCo−Ni−Fe軟磁性薄膜が得られる。
特に、保磁力(Hc )は0.5Oe以下、好ましくは0.
3Oe以下、さらに好ましくは0.2Oe以下、特に好まし
くは0.1Oe以下が実現でき、極めて良好な軟磁気特性
を示す。また、飽和磁束密度(Bs )は13〜20kG程
度である。
In the present invention, a Co—Ni—Fe soft magnetic thin film having a low coercive force and a high saturation magnetic flux density can be obtained by setting the structure of the crystal phase and the orientation of the crystal plane as described above.
In particular, the coercive force (Hc) is 0.5 Oe or less, preferably 0.5 Oe.
3 Oe or less, more preferably 0.2 Oe or less, particularly preferably 0.1 Oe or less can be realized, and exhibit extremely good soft magnetic properties. The saturation magnetic flux density (Bs) is about 13 to 20 kG.

【0021】従って、本発明の軟磁性薄膜は、薄膜ヘッ
ドや薄膜トランス用の磁性薄膜として極めて有用であ
る。特に、インダクティブMRヘッドのオーバーライト
特性の向上効果や、シールド層間減少による記録密度の
向上効果が期待できる。
Therefore, the soft magnetic thin film of the present invention is extremely useful as a magnetic thin film for a thin film head or a thin film transformer. In particular, the effect of improving the overwrite characteristics of the inductive MR head and the effect of improving the recording density by reducing the shield layer can be expected.

【0022】これに対し、主相が他の晶相である場合に
はHc が高くなってしまう。また、I(110)/I
(111)>0.1となる程度にbcc相が混在する場
合や、fcc相が主相であってもI(200)/I(1
11)<0.1である場合には、Hc が高くなり良好な
軟磁気特性が得られない(図1参照)。なお、図1にf
cc+bccと表示してあるものは、I(110)/I
(111)>0.1のものである。
On the other hand, when the main phase is another crystal phase, Hc becomes high. Also, I (110) / I
When the bcc phase is mixed to the extent that (111)> 0.1 or when the fcc phase is the main phase, I (200) / I (1
11) If <0.1, Hc increases and good soft magnetic characteristics cannot be obtained (see FIG. 1). FIG. 1 shows f
What is indicated as cc + bcc is I (110) / I
(111)> 0.1.

【0023】本発明において、特に所望の構造とするた
めにはパーマロイを下地膜として用いることが好まし
い。例えば、銅を下地膜とすると同じ組成の膜でも所望
の結晶構造が得られないために軟磁気特性が悪くなる。
パーマロイの下地膜の厚さは、通常400〜1000A
程度とする。
In the present invention, in order to obtain a particularly desired structure, it is preferable to use permalloy as a base film. For example, if copper is used as a base film, a desired crystal structure cannot be obtained even with a film having the same composition, so that the soft magnetic characteristics deteriorate.
The thickness of the permalloy underlayer is usually 400 to 1000A.
Degree.

【0024】本発明の軟磁性薄膜は、低Hc を得る上
で、下記の組成を有することが好ましい。
The soft magnetic thin film of the present invention preferably has the following composition in order to obtain a low Hc.

【0025】aCo−bNi−cFe 上記において、a+b+c=100wt% であり、a=2
8〜75wt% 、さらには30〜60wt% 、特には35〜
45wt% が好ましく、b=16〜56wt% 、さらには2
0〜50wt% 、特には25〜35wt% が好ましく、c=
9〜42wt% 、さらには10〜40wt% 、特には25〜
35wt% であることが好ましい。
ACo-bNi-cFe In the above, a + b + c = 100 wt% and a = 2
8 to 75 wt%, further 30 to 60 wt%, especially 35 to
45 wt% is preferred, b = 16 to 56 wt%, and 2
0 to 50% by weight, particularly preferably 25 to 35% by weight, c =
9 to 42 wt%, furthermore 10 to 40 wt%, especially 25 to
Preferably it is 35% by weight.

【0026】なお、上記のa=28〜75wt% 、b=1
6〜56wt% 、c=9〜42wt% で表される組成範囲
は、図2に示される点A、B、C、Dを図示のように結
ぶ線で囲まれる領域であり、この領域内で0.5Oe以
下、特に0.4Oe以下のHc が得られる。
The above a = 28-75 wt%, b = 1
The composition range represented by 6 to 56 wt% and c = 9 to 42 wt% is a region surrounded by a line connecting points A, B, C, and D shown in FIG. Hc of 0.5 Oe or less, especially 0.4 Oe or less is obtained.

【0027】また、上記のa=30〜60wt% 、b=2
0〜50wt% 、c=10〜40wt%で表される組成範囲
は図2に示される点E、F、G、H、I、Jを図示のよ
うに結ぶ線で囲まれる領域であり、この領域内で0.3
Oe以下のHc が得られる。さらに、a=35〜45wt%
、b=25〜35wt% 、c=25〜35wt% で表され
る組成範囲は図3に示される点K、L、M、N、O、P
を図示のように結ぶ線で囲まれる領域であり、これらの
領域では0.2Oe以下のHc が得られる。従って、上記
組成式において、a、b、cが大きくなりすぎても小さ
くなりすぎても低Hc は得られにくくなる。
The above a = 30 to 60 wt%, b = 2
The composition range represented by 0 to 50 wt% and c = 10 to 40 wt% is a region surrounded by a line connecting points E, F, G, H, I, and J shown in FIG. 0.3 in area
Hc less than Oe is obtained. Further, a = 35 to 45 wt%
, B = 25 to 35 wt%, and c = 25 to 35 wt%, the composition ranges indicated by points K, L, M, N, O, P shown in FIG.
Are enclosed by lines connecting the lines as shown in the figure. In these regions, Hc of 0.2 Oe or less is obtained. Therefore, in the above composition formula, if a, b, and c become too large or too small, it becomes difficult to obtain a low Hc.

【0028】本発明の軟磁性薄膜は、電気めっき法によ
り作製することが好ましく、めっき浴組成やめっき条件
などを選択することによって、上記の膜特性を実現する
ことができる。また量産性に優れる。さらに、本発明に
用いるめっき浴は安定性が良好である。
The soft magnetic thin film of the present invention is preferably produced by an electroplating method, and the above film characteristics can be realized by selecting a plating bath composition, plating conditions and the like. It is also excellent in mass productivity. Furthermore, the plating bath used in the present invention has good stability.

【0029】なお、特開昭64−8605号公報の第3
表には、スパッタ法により形成された厚さ1.9μm の
Fe30Co40Ni30膜が記載されている。この膜はfc
c単相であるが、I(200)/I(111)は約0.
22であって、本発明範囲を外れている。同公報の第1
表には、同組成の薄膜の保磁力が0.42 Oe であるこ
とが記載されているが、この値は本発明における同様な
組成の薄膜に比べ、高い。
Incidentally, Japanese Patent Laid-Open Publication No.
The table shows an Fe 30 Co 40 Ni 30 film having a thickness of 1.9 μm formed by the sputtering method. This film is fc
c (1), but I (200) / I (111) is about 0.1
22, which is outside the scope of the present invention. No. 1 of the publication
The table describes that the coercive force of the thin film having the same composition is 0.42 Oe, which is higher than that of the thin film having the same composition in the present invention.

【0030】後述するように、本発明ではfcc単相の
膜に熱処理を施して微量のbcc相を析出させることに
より、さらに低い保磁力とすることができるが、同公報
にも350℃で1時間のアニールを施すことが記載され
ている。しかし、同公報には、アニールによりbcc相
が析出することも保磁力が低くなることも記載されてい
ない。同公報には、アニール前後の平均結晶粒径および
保磁力の変化が第4図(A)および第4図(B)に示さ
れているが、アニール前に約0.4 Oe であった保磁力
がアニール後にはかえって増加している。同公報におい
てアニールにより保磁力が低下しているのは、スパッタ
法により形成された薄膜の結晶粒径が比較的大きいため
と考えられる。
As will be described later, in the present invention, the coercive force can be further reduced by subjecting the fcc single-phase film to a heat treatment to precipitate a small amount of the bcc phase. It is described that time annealing is performed. However, the publication does not disclose that a bcc phase is precipitated by annealing and coercive force is lowered. FIG. 4 (A) and FIG. 4 (B) show changes in the average crystal grain size and the coercive force before and after annealing. The magnetic force increases after annealing. In this publication, the coercive force is decreased by annealing because the thin film formed by the sputtering method has a relatively large crystal grain size.

【0031】また、同公報第3表にはFe30Co40Ni
30膜とFe86Si14膜とを各200層積層した多層膜が
記載されている。この多層膜では、I(200)/I
(111)が約0.15となり、アニール後には約0.
12となることが開示されているが、製造の容易な単層
膜においてI(200)/I(111)≦0.2が得ら
れている例はない。
Table 3 of the publication discloses Fe 30 Co 40 Ni.
There is described a multilayer film in which 30 films and 200 Fe 86 Si 14 films are stacked in each case. In this multilayer film, I (200) / I
(111) is about 0.15, and after annealing is about 0.15.
However, there is no example in which I (200) / I (111) ≦ 0.2 is obtained in a single-layer film which is easy to manufacture.

【0032】また、特開平2−68906号公報の実施
例にはfcc構造の(111)面を優先的に面配向させ
た電着膜が開示されている。しかし、本発明のものとは
面配向において異なるため、本発明のような低保磁力は
実現できない。また、同公報には(111)面と(20
0)面とを優先的に配向させたスパッタ蒸着膜も開示さ
れているが、スパッタ蒸着法によるためか、あるいは面
配向比が本発明の範囲外であるためか、本発明と異な
り、良好な特性が得られないことが記載されている。
Further, an example of Japanese Patent Application Laid-Open No. 2-68906 discloses an electrodeposition film in which the (111) plane of the fcc structure is preferentially plane-oriented. However, since it differs from that of the present invention in plane orientation, a low coercive force as in the present invention cannot be realized. The publication also discloses that the (111) plane and (20)
Although a sputter-deposited film in which the (0) plane is preferentially oriented is also disclosed, it is different from the present invention because the sputter-deposition method or the plane orientation ratio is out of the range of the present invention. It is described that characteristics cannot be obtained.

【0033】また、米国特許第5011581号(特開
平2−138716号)では、結晶構造や面配向につい
ては何ら示唆されておらず、本発明のような低保磁力は
実現できない。
Also, US Pat. No. 5,011,581 (Japanese Patent Laid-Open No. 2-138716) does not suggest any crystal structure or plane orientation, and cannot realize a low coercive force as in the present invention.

【0034】[0034]

【0035】本発明の軟磁性薄膜は、前記のとおり、パ
ーマロイを下地膜とし、電気めっき法により作製するこ
とが好ましい。このとき用いるめっき浴にはCoイオ
ン、Feイオン、Niイオンが含有される。めっき浴中
におけるCoイオン、FeイオンおよびNiイオンの濃
度は目的とする膜組成等に応じ適宜選択すればよく、通
常、Coイオン、Feイオン、Niイオンの濃度は、い
ずれも、各々0.01モル/リットル〜溶解限度までと
することが好ましい。各金属イオンの濃度が低くなる
と、金属の析出速度が低下しやすく、実用的でない。C
o、Fe、Niの各イオンの供給源は、硫酸塩、スルフ
ァミン酸塩、酢酸塩、硝酸塩等の水溶性の塩から選択す
ることが好ましく、安価であることから特に硫酸塩を用
いることが好ましい。また、CoイオンおよびFeイオ
ンは、金属をめっき浴中に浸漬して自然溶解させたり、
電解により陽極を溶解させることにより供給することも
できる。
As described above, the soft magnetic thin film of the present invention is preferably prepared by electroplating using permalloy as a base film. The plating bath used at this time contains Co ions, Fe ions, and Ni ions. The concentrations of Co ions, Fe ions, and Ni ions in the plating bath may be appropriately selected depending on the intended film composition and the like. Usually, the concentrations of Co ions, Fe ions, and Ni ions are each 0.01%. It is preferred to be from mol / liter to the solubility limit. If the concentration of each metal ion is low, the rate of metal deposition tends to decrease, which is not practical. C
The source of each ion of o, Fe, and Ni is preferably selected from water-soluble salts such as sulfate, sulfamate, acetate, and nitrate, and sulfate is particularly preferably used because it is inexpensive. . In addition, Co ions and Fe ions can be naturally dissolved by immersing a metal in a plating bath,
It can also be supplied by dissolving the anode by electrolysis.

【0036】めっき浴のpHは2〜10、特に2.5〜
2.9とすることが好ましく、浴温度は10〜80℃、
特に35〜45℃とすることが好ましい。めっき浴のp
Hおよび温度を上記範囲とすることにより、良好なめっ
き膜を得ることができる。これに対し、pHが低くなる
と金属の析出速度が低下し、pHが高くなるとアンモニ
アガスの発生等により作業環境が悪くなる。また、浴温
度が低くなると金属の析出速度が低下し、浴温度が高く
なると浴の安定性が得られない。
The pH of the plating bath is 2 to 10, especially 2.5 to
Preferably, the bath temperature is 10 to 80 ° C,
Particularly, the temperature is preferably set to 35 to 45 ° C. P of plating bath
By setting H and the temperature in the above ranges, a good plating film can be obtained. On the other hand, when the pH decreases, the metal deposition rate decreases, and when the pH increases, the working environment deteriorates due to the generation of ammonia gas and the like. Further, when the bath temperature is lowered, the deposition rate of the metal is lowered, and when the bath temperature is raised, the stability of the bath cannot be obtained.

【0037】めっき浴中には、有機光沢剤を含有させて
もよい。有機光沢剤としてはサッカリンが好ましい。添
加量は0.5グラム/リットル以上とすれば十分である
が、使用中の消耗等を考慮して1〜6グラム/リットル
とすることが好ましい。めっき浴中には、この他、ラウ
リル硫酸ナトリウム等の界面活性剤、ホウ酸、塩化アン
モニウム等の通常の電気めっき浴に添加する成分を適宜
含有させてもよい。また、適宜、安定化剤として有機酸
イオン、還元剤、キレート剤等を添加してもよい。な
お、一般の条件では3価のFeイオンは沈澱を生じ好ま
しくないが、クエン酸、酒石酸等の安定剤ないしキレー
ト剤(錯体形成剤)を添加した場合は沈澱を生じないば
かりでなく、Hc 低下に効果があるため、むしろ3価の
Feイオンを浴中に存在させる方が好ましい。
The plating bath may contain an organic brightener. Saccharin is preferred as the organic brightener. It is sufficient if the addition amount is 0.5 g / L or more, but it is preferably 1 to 6 g / L in consideration of consumption during use. In addition, the plating bath may appropriately contain a surfactant such as sodium lauryl sulfate, a component added to a normal electroplating bath such as boric acid, and ammonium chloride. Further, an organic acid ion, a reducing agent, a chelating agent and the like may be appropriately added as a stabilizer. Under general conditions, trivalent Fe ions precipitate, which is not preferable. However, when a stabilizer such as citric acid or tartaric acid or a chelating agent (complex forming agent) is added, not only precipitation does not occur, but also Hc decreases. Therefore, it is preferable that trivalent Fe ions be present in the bath.

【0038】なお、連続フィルタリングによりめっき浴
中の微粒子や水酸化物を取り除いてもよい。
Incidentally, fine particles and hydroxide in the plating bath may be removed by continuous filtering.

【0039】陽極は、微粒子除去の観点からは不溶性の
TiPt、フェライト電極が好ましい。しかし、陽極に
おいて酸化反応が起こるので、例えばイオン交換膜によ
り陰極部と分離することが望ましい。
The anode is preferably an insoluble TiPt or ferrite electrode from the viewpoint of removing fine particles. However, since an oxidation reaction occurs at the anode, it is desirable to separate the cathode from the cathode by, for example, an ion exchange membrane.

【0040】成膜時の電流密度は、0.5〜4.0A/dm
2 とすることが好ましく、さらには0.5〜2A/dm2
することが好ましい。電流密度を上記範囲とすることに
よって、良好なめっき膜を得ることができる。これに対
し、電流密度が小さくなると金属の析出速度が低下し、
電流密度が大きくなると膜中の金属粒子の粒子サイズが
増大しHc が低下する。直流以外にもパルス電解や陰極
溶解まで行なう交流併用型も可能である。
The current density during film formation is 0.5 to 4.0 A / dm.
2, and more preferably 0.5 to 2 A / dm 2 . By setting the current density within the above range, a good plating film can be obtained. In contrast, when the current density decreases, the metal deposition rate decreases,
When the current density increases, the particle size of the metal particles in the film increases and Hc decreases. In addition to the direct current, an alternating current combined type that performs pulse electrolysis and cathode dissolution is also possible.

【0041】めっき浴の溶媒としては、通常の水の他に
非水系溶媒、例えばメチルアルコール、ジメチルホルム
アミド、エチルアルコール、プロピレンカーバイド、溶
融塩等も使用可能である。
As a solvent for the plating bath, non-aqueous solvents such as methyl alcohol, dimethylformamide, ethyl alcohol, propylene carbide, and molten salts can be used in addition to ordinary water.

【0042】本発明の軟磁性薄膜では、Co、Fe、N
iの一部を置換する形で、Cu、Cr、Sn、Rh、P
d、Mn、P、B、Zn、Sn、Pt等から選択された
1種以上の元素を含有させてもよい。含有量は全体の3
wt% 以下とすることが好ましい。
In the soft magnetic thin film of the present invention, Co, Fe, N
Cu, Cr, Sn, Rh, P
One or more elements selected from d, Mn, P, B, Zn, Sn, Pt and the like may be contained. Content is 3
It is preferable to be not more than wt%.

【0043】なお、膜中にはC、Sが微量含有されるこ
とがあるが、これらのものは磁気特性に大きな影響を与
えるので注意が必要となる。具体的には共に1000pp
m 以下であることが望ましい。
It should be noted that the film may contain trace amounts of C and S, but these materials have a great influence on the magnetic properties, and thus care must be taken. Specifically, both are 1000pp
m or less.

【0044】本発明の軟磁性薄膜には、目的とする方向
に一軸異方性を付与することが好ましい。一軸異方性付
与の方法としては、磁界中成膜や成膜後の磁界中アニー
ルを用いることができる。磁界中成膜としては、一定の
直流磁界中で成膜する方法が一般的である。しかし、本
発明の軟磁性薄膜では異方性磁界Hkが大きくなりすぎ
ることが多く、高透磁率を得るためにはHkの適正化が
要求される場合も多い。Hkの適正化方法としては直交
磁界中成膜や回転磁界中アニール、あるいは直流磁界中
成膜時と直流磁界中アニール時の磁界方向を面内直交さ
せる等の方法が有効である。直交磁界中成膜は、磁場を
コイルで発生させ交互に電流を印加することで可能であ
る。また、永久磁石を用いる場合には陰極を90°回転
させることで可能となる。アニールの際には飽和磁歪値
が正の方向に増加することが多いので、アニール後の飽
和磁歪値が所望の値となるように成膜を行なうことが好
ましい。薄膜磁気ヘッドのバルクハウゼンノイズを低減
するためには、軟磁性薄膜の飽和磁歪値を小さな負の値
に保つ必要があるとされている。この目的のためには、
成膜時にはやや大きな負の磁歪とし、アニール後に小さ
な負の値となるように設計を行なう。また、複数回の面
内直交方向磁界印加熱処理を行ない、異方性制御を行な
うことも透磁率の向上や磁区構造制御等に有効である。
磁区構造の適性化によりデバイス化した場合のバルクハ
ウセンノイズの低減が可能となる。
The soft magnetic thin film of the present invention is preferably provided with uniaxial anisotropy in a target direction. As a method for imparting uniaxial anisotropy, film formation in a magnetic field or annealing in a magnetic field after the film formation can be used. As the film formation in a magnetic field, a method of forming a film in a constant DC magnetic field is generally used. However, in the soft magnetic thin film of the present invention, the anisotropic magnetic field Hk is often too large, and in order to obtain high magnetic permeability, it is often required to optimize Hk. As a method of optimizing Hk, a method of forming a film in an orthogonal magnetic field, annealing in a rotating magnetic field, or making the magnetic field directions in film formation in a DC magnetic field and annealing in a DC magnetic field in-plane orthogonal is effective. Film formation in an orthogonal magnetic field can be performed by generating a magnetic field with a coil and applying a current alternately. Further, when a permanent magnet is used, it becomes possible by rotating the cathode by 90 °. Since the saturation magnetostriction value often increases in the positive direction during annealing, it is preferable to form a film so that the saturation magnetostriction value after annealing becomes a desired value. In order to reduce Barkhausen noise of the thin film magnetic head, it is necessary to keep the saturation magnetostriction value of the soft magnetic thin film at a small negative value. For this purpose,
The film is designed to have a slightly large negative magnetostriction during film formation and a small negative value after annealing. It is also effective to perform the in-plane orthogonal magnetic field application heat treatment a plurality of times to control the anisotropy to improve the magnetic permeability and control the magnetic domain structure.
By making the magnetic domain structure suitable, it is possible to reduce Barkhausen noise when a device is formed.

【0045】本発明では、成膜時にfcc相と微量のb
cc相とを共析させてもよいが、上記した組成範囲にお
いて微量のbcc相を共析させることは困難なので、通
常、fcc単相の薄膜を形成した後、熱処理により微量
のbcc相を析出させることが好ましい。この熱処理に
は、上記した磁界中アニールを利用することができる。
熱処理の際の保持温度は、好ましくは240〜370
℃、より好ましくは280〜350℃である。熱処理温
度が低すぎるとbcc相が析出せず、高すぎるとbcc
相の析出量が多くなりすぎて保磁力が高くなってしま
う。熱処理時間は、0.1〜10時間とすることが好ま
しい。
In the present invention, the fcc phase and a small amount of b
The cc phase may be co-deposited, but it is difficult to co-deposit a small amount of bcc phase in the above composition range. Therefore, usually, after forming an fcc single phase thin film, a small amount of bcc phase is deposited by heat treatment. Preferably. The annealing in a magnetic field described above can be used for this heat treatment.
The holding temperature during the heat treatment is preferably from 240 to 370.
° C, more preferably 280-350 ° C. If the heat treatment temperature is too low, the bcc phase does not precipitate.
The amount of phase precipitation becomes too large, and the coercive force increases. The heat treatment time is preferably from 0.1 to 10 hours.

【0046】本発明の軟磁性薄膜の厚さは、目的に応じ
て適宜決定すればよく、特に制限はないが、低い保磁力
を得るためには、通常、0.5〜10μm 程度とするこ
とが好ましく、また、薄膜磁気ヘッドに適用する場合は
0.5〜4.5μm 程度、薄膜トランスに適用する場合
は3〜7μm 程度とすることが好ましい。
The thickness of the soft magnetic thin film of the present invention may be appropriately determined according to the purpose, and is not particularly limited. To obtain a low coercive force, the thickness is usually about 0.5 to 10 μm. The thickness is preferably about 0.5 to 4.5 μm when applied to a thin film magnetic head, and about 3 to 7 μm when applied to a thin film transformer.

【0047】本発明の軟磁性薄膜は、薄膜磁気ヘッドや
薄膜トランスのほか、各種磁気デバイスへの適用が可能
である。また、低保磁力で磁歪(λs)が大きいことを
利用した用途が期待される。
The soft magnetic thin film of the present invention can be applied to various magnetic devices in addition to a thin film magnetic head and a thin film transformer. Further, applications utilizing low coercive force and large magnetostriction (λs) are expected.

【0048】[0048]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention.

【0049】<実施例1>10mm×10mm×0.7mm厚
のコーニング7059ガラス上に、スパッタ法によりチ
タンを50A 、さらにパーマロイを500A 成膜した基
板を使用した。めっき前処理として1N−塩酸(常温)
に30秒浸漬し、水洗した後、以下のめっき条件にて軟
磁性薄膜サンプルを成膜した。なお、飽和磁歪値測定用
の試料には、別途0.1mm厚のガラス板に上記基板と同
様の処理を施した基板を使用した。
Example 1 A substrate having a thickness of 50 A made of titanium and 500 A made of permalloy by sputtering was used on a Corning 7059 glass having a thickness of 10 mm × 10 mm × 0.7 mm. 1N-hydrochloric acid (normal temperature) as plating pretreatment
After immersion for 30 seconds and washing with water, a soft magnetic thin film sample was formed under the following plating conditions. As a sample for measuring a saturated magnetostriction value, a substrate obtained by separately treating a glass plate having a thickness of 0.1 mm and performing the same treatment as the above substrate was used.

【0050】めっき浴中の基板の周囲には銅板で補助カ
ソードを設けた。陰極全体の形状は3インチの円盤状で
あり、陽極には4インチ径のTiPt板を使用した。攪
拌には断面が三角形のパドルを用い、60回/分間の周
期で陰極から2mmの場所でパドル攪拌を行なった。めっ
き液は下記組成とし、その総量は約7リットルとした。
An auxiliary cathode made of a copper plate was provided around the substrate in the plating bath. The overall shape of the cathode was a 3 inch disk, and a 4 inch diameter TiPt plate was used for the anode. A paddle having a triangular cross section was used for stirring, and paddle stirring was performed at a position 2 mm from the cathode at a cycle of 60 times / minute. The plating solution had the following composition, and the total amount was about 7 liters.

【0051】めっき浴組成(1リットル中) 硫酸コバルト・7水塩 0〜20g 硫酸ニッケル・6水塩 0〜50g 硫酸第一鉄・7水塩 0〜20g ホウ酸 25g 塩化アンモニウム 15g サッカリン 2g 界面活性剤 微量 Plating bath composition (per liter) Cobalt sulfate heptahydrate 0-20 g Nickel sulfate hexahydrate 0-50 g Ferrous sulfate heptahydrate 0-20 g Boric acid 25 g Ammonium chloride 15 g Saccharin 2 g Surface activity Agent trace

【0052】めっき浴温度は40℃、めっき浴のpHは
2.8、電流密度は1.5A/dm2 、めっき時間は5分間
とし、300Oeの直流磁界を印加しながら電気めっきを
行ない、厚さ1.2μm の軟磁性薄膜サンプルを得た。
この場合、浴中の金属イオンの濃度比を変化させること
により種々の組成のものを得た。また一部のサンプルに
ついては、異方性磁界制御を目的に、膜面内でかつ成膜
時の磁界印加方向と直交する方向に2kOe の磁場を印加
しながら、真空熱処理炉にて300℃で30分間のアニ
ールを行なった。
The plating bath temperature was 40 ° C., the plating bath pH was 2.8, the current density was 1.5 A / dm 2 , the plating time was 5 minutes, and electroplating was performed while applying a DC magnetic field of 300 Oe. A soft magnetic thin film sample having a thickness of 1.2 μm was obtained.
In this case, various compositions were obtained by changing the concentration ratio of metal ions in the bath. In addition, for some samples, a 2 kOe magnetic field was applied in the film plane and in a direction perpendicular to the magnetic field application direction during film formation at a temperature of 300 ° C. in a vacuum heat treatment furnace for the purpose of anisotropic magnetic field control. Annealing was performed for 30 minutes.

【0053】得られた各サンプルについて、下記の測定
を行った。
The following measurement was performed for each of the obtained samples.

【0054】(組成)蛍光X線分析装置、ICPを用い
て測定した。
(Composition) The composition was measured using a fluorescent X-ray analyzer and ICP.

【0055】(保磁力Hc )交流B−Hトレーサーによ
り60Hzにて測定した。
(Coercive force Hc) Measured at 60 Hz with an AC BH tracer.

【0056】(飽和磁束密度Bs )VSMにより測定し
た。
(Saturation magnetic flux density Bs) Measured by VSM.

【0057】(飽和磁歪値)光てこ法により3Hz、10
0Oeの磁界中で測定した。
(Saturation magnetostriction value)
It was measured in a magnetic field of 0 Oe.

【0058】(透磁率)8の字コイル法により5MHz 、
3mOe にて測定した。
(Permeability) 5 MHz by the figure 8 coil method,
It was measured at 3 mOe.

【0059】(X線回折)Cu−Kα線(50kV,40
mA)を用い、各面のピークの強度を求めた。
(X-ray diffraction) Cu-Kα ray (50 kV, 40
mA) was used to determine the peak intensity of each surface.

【0060】晶相および面配向比とHc との関係を説明
するために選択したサンプルを、図1に示す。図1か
ら、fcc単相で、かつI(200)/I(111)が
0.1〜0.2では、すべて0.5Oe以下のHc を示
し、0.15以上ではほとんどが0.3Oe以下のHc を
示すことがわかる。これに対し、bcc相が混在してい
るものや、I(200)/I(111)が0.1未満の
サンプルではHc が高くなっている。なお、図1におい
てI(200)/I(111)が0.1〜0.2のサン
プルは、すべて図2の領域ABCD内の組成を有する。
これらのサンプルにおいて、bcc相は、(110)
面、(211)面および(220)面の回折ピークの出
現により確認した。図1にfcc+bccと表示してあ
るものは、I(110)/I(111)>0.1であ
る。また、図1にfccと表示してあるものは、I(1
10)/I(111)=0である。
FIG. 1 shows a sample selected to explain the relationship between the crystal phase and the plane orientation ratio and Hc. From FIG. 1, it can be seen that when fcc is single-phase and I (200) / I (111) is 0.1 to 0.2, Hc is 0.5 Oe or less in all cases, and almost 0.1 Oe or less in 0.15 or more. It can be seen that Hc of On the other hand, the sample in which the bcc phase is mixed and the sample in which I (200) / I (111) is less than 0.1 have a high Hc. Note that, in FIG. 1, all the samples having I (200) / I (111) of 0.1 to 0.2 have the composition in the area ABCD in FIG.
In these samples, the bcc phase is (110)
This was confirmed by the appearance of diffraction peaks on the (211) plane, the (211) plane, and the (211) plane. In FIG. 1, what is indicated as fcc + bcc is I (110) / I (111)> 0.1. In FIG. 1, what is indicated as fcc is I (1
10) / I (111) = 0.

【0061】また、組成とHc との関係を説明するため
に選択したサンプルを、図2および図3に示す。図2の
三元組成図には、Hc が0.3 Oe 以下のサンプルをプ
ロットし、図2にプロットしたサンプルのうちHc が
0.2 Oe 以下のものを、図3の三元組成図にプロット
した。図2および図3にはCo=0のサンプルもプロッ
トされているが、これらはパーマロイ組成であり、Bs
が10kG未満と低かった。一方、3成分系である本発明
のサンプルは、Bs が13〜20kGと極めて高かった。
FIGS. 2 and 3 show samples selected for explaining the relationship between the composition and Hc. In the ternary composition diagram of FIG. 2, samples having Hc of 0.3 Oe or less are plotted, and among the samples plotted in FIG. Plotted. FIGS. 2 and 3 also plot samples of Co = 0, which are permalloy compositions and Bs
Was as low as less than 10 kG. On the other hand, the sample of the present invention, which is a three-component system, had an extremely high Bs of 13 to 20 kG.

【0062】図3にプロットした本発明のサンプルの一
例について、詳しい特性を以下に示す。
Detailed characteristics of an example of the sample of the present invention plotted in FIG. 3 are shown below.

【0063】膜組成 Co=40wt% 、Fe=28wt%
、Ni=32wt%結晶相 fcc相+微量のbcc相面配向比 I(200)/I(111)=0.19、I
(110)/I(111)=0アニール後の磁気特性 Hc =0.05Oe、Bs =17
kG、Hk=5Oe、μ=3500 なお、bcc相は、加速電圧200kV、制限視野5μm
の電子線回折により確認した。
Film composition Co = 40 wt%, Fe = 28 wt%
, Ni = 32 wt% crystalline phase fcc phase + bcc phase plane orientation ratio I (200) of the trace / I (111) = 0.19, I
(110) / I (111) = 0 Magnetic properties after annealing Hc = 0.05 Oe, Bs = 17
kG, Hk = 5 Oe, μ = 3500 The bcc phase has an accelerating voltage of 200 kV and a limited visual field of 5 μm
Was confirmed by electron diffraction.

【0064】上記サンプル中のC含有量は850ppm 、
S含有量は550ppm であった。
The C content in the above sample was 850 ppm,
The S content was 550 ppm.

【0065】<実施例2>Co=38wt% 、Fe=28
wt% 、Ni=34wt% を含む薄膜サンプルを実施例1と
同様にして形成した。次いで、表1に示す保持温度でア
ニールを施した。保持温度以外のアニール条件は、実施
例1と同様とした。アニール後の各サンプルについてX
線回折を行ない、I(200)/I(111)およびI
(110)/I(111)を求め、また、電子線回折を
行なって、bcc相の有無を調べた。X線回折および電
子線回折の条件は、実施例1と同様とした。さらに、こ
れらのサンプルのHc を測定した。なお、比較のため
に、アニールを施さなかったサンプルについても同様な
測定を行なった。結果を表1に示す。
<Example 2> Co = 38 wt%, Fe = 28
A thin film sample containing wt% and Ni = 34 wt% was formed in the same manner as in Example 1. Next, annealing was performed at the holding temperature shown in Table 1. The annealing conditions other than the holding temperature were the same as in Example 1. X for each sample after annealing
Line diffraction was performed, and I (200) / I (111) and I (200)
(110) / I (111) was determined, and electron beam diffraction was performed to examine the presence or absence of the bcc phase. The conditions for X-ray diffraction and electron beam diffraction were the same as in Example 1. Further, the Hc of these samples was measured. For comparison, the same measurement was performed on a sample that was not subjected to annealing. Table 1 shows the results.

【0066】[0066]

【表1】 [Table 1]

【0067】表1から、X線回折においてI(110)
/I(111)=0となりfcc単相と判断されるもの
でも、電子線回折によりfcc+bccであることが確
認できることがわかる。そして、bcc相が存在し、か
つI(110)/I(111)≦0.1である場合、極
めて低いHc が得られることがわかる。
From Table 1, it can be seen from the X-ray diffraction that I (110)
/ I (111) = 0, and it is determined that the phase is fcc single phase, it can be seen from electron beam diffraction that fcc + bcc can be confirmed. It can be seen that when the bcc phase exists and I (110) / I (111) ≦ 0.1, an extremely low Hc can be obtained.

【0068】[0068]

【発明の効果】本発明によれば、低Hc で高Bs の軟磁
性薄膜が得られる。
According to the present invention, a soft magnetic thin film having a low Hc and a high Bs can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】結晶相および面配向比に対するHc の依存性を
示すグラフである。
FIG. 1 is a graph showing the dependence of Hc on the crystal phase and the plane orientation ratio.

【図2】低Hc が得られる膜組成の範囲を示す三元組成
図である。
FIG. 2 is a ternary composition diagram showing a range of a film composition from which low Hc can be obtained.

【図3】低Hc が得られる膜組成の範囲を示す三元組成
図である。
FIG. 3 is a ternary composition diagram showing a range of a film composition from which a low Hc can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 雄一 東京都中央区日本橋一丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 平1−8605(JP,A) 特開 平2−68906(JP,A) 特開 昭62−160708(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 3/00 - 7/12 G11B 5/31 - 5/325 H01F 10/00 - 10/30 H01F 41/14 - 41/28 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yuichi Sato 1-13-1 Nihonbashi, Chuo-ku, Tokyo Inside TDK Corporation (56) References JP-A-1-8605 (JP, A) JP-A-2 -68906 (JP, A) JP-A-62-160708 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25D 3/00-7/12 G11B 5/31-5/325 H01F 10/00-10/30 H01F 41/14-41/28

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 aCo−bNi−cFe[ここで、a、
bおよびcは、それぞれCo、NiおよびFeの比率
(wt% )を表し、 a=28〜75wt% 、 b=16〜60wt% 、 c=9〜42wt% 、および a+b+c=100wt% の関係を満足する。]で表される組成を有し、 面心立方晶相を主とし、少なくとも電子線回折により体
心立方晶相が確認される2つの異なる結晶構造の相が混
在し、 めっき法によって成膜された軟磁性薄膜。
1. aCo-bNi-cFe [where a,
b and c represent the ratios (wt%) of Co, Ni and Fe, respectively, satisfying the following relationships: a = 28 to 75 wt%, b = 16 to 60 wt%, c = 9 to 42 wt%, and a + b + c = 100 wt% I do. Having a composition represented by the following formula, and mainly having a face-centered cubic phase, and at least two phases having different crystal structures in which a body-centered cubic phase is confirmed by electron diffraction. Soft magnetic thin film.
【請求項2】 前記成膜後熱処理された請求項1の軟磁
性薄膜。
2. The soft magnetic thin film according to claim 1, wherein said soft magnetic thin film is heat-treated after said film formation.
【請求項3】 前記熱処理の温度が240〜370℃で
ある請求項2の軟磁性薄膜。
3. The soft magnetic thin film according to claim 2, wherein the temperature of the heat treatment is 240 to 370 ° C.
【請求項4】 膜中のイオウ含有量が1000ppm以下
である請求項1〜3のいずれかの軟磁性薄膜。
4. The soft magnetic thin film according to claim 1, wherein the sulfur content in the film is 1000 ppm or less.
【請求項5】 請求項1〜4のいずれかの軟磁性薄膜を
有する磁気インダクティブMRヘッド。
5. A magnetic inductive MR head having the soft magnetic thin film according to claim 1.
JP23553793A 1993-04-23 1993-08-27 Soft magnetic thin film and magnetic inductive MR head using the same Expired - Fee Related JP3201892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23553793A JP3201892B2 (en) 1993-04-23 1993-08-27 Soft magnetic thin film and magnetic inductive MR head using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12084793 1993-04-23
JP5-120847 1993-04-23
JP23553793A JP3201892B2 (en) 1993-04-23 1993-08-27 Soft magnetic thin film and magnetic inductive MR head using the same

Publications (2)

Publication Number Publication Date
JPH073489A JPH073489A (en) 1995-01-06
JP3201892B2 true JP3201892B2 (en) 2001-08-27

Family

ID=26458353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23553793A Expired - Fee Related JP3201892B2 (en) 1993-04-23 1993-08-27 Soft magnetic thin film and magnetic inductive MR head using the same

Country Status (1)

Country Link
JP (1) JP3201892B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212512A (en) 1995-02-03 1996-08-20 Hitachi Ltd Magnetic storage device and thin-film magnetic head used for the same and its production
JP3473684B2 (en) 1999-11-08 2003-12-08 日本電気株式会社 Magnetic head, method of manufacturing the same, and magnetic recording / reproducing apparatus using the same
US6791794B2 (en) 2000-09-28 2004-09-14 Nec Corporation Magnetic head having an antistripping layer for preventing a magnetic layer from stripping
JP2001195706A (en) 2000-01-05 2001-07-19 Nec Corp Recording head, method for manufacturing recording head and composite head as well as magnetic recording and reproducing device
JP2002093620A (en) * 2000-09-19 2002-03-29 Nec Corp Magnetic thin film, its manufacturing method, magnetic head using the same, and electroplating apparatus
JP2002183909A (en) 2000-12-07 2002-06-28 Hitachi Ltd Method for manufacturing thin film magnetic head, thin film magnetic head and magnetic disk device with the same
US6776891B2 (en) * 2001-05-18 2004-08-17 Headway Technologies, Inc. Method of manufacturing an ultra high saturation moment soft magnetic thin film
JP2004152454A (en) 2002-11-01 2004-05-27 Hitachi Ltd Magnetic head and its manufacturing method
JP4635626B2 (en) * 2005-01-31 2011-02-23 Tdk株式会社 Method for manufacturing soft magnetic film and method for manufacturing magnetic head
JP4523460B2 (en) 2005-03-09 2010-08-11 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Magnetic film, manufacturing method thereof, thin film magnetic head and magnetic disk apparatus using the same
WO2019092829A1 (en) * 2017-11-09 2019-05-16 シャープ株式会社 Method for manufacturing mask
JP7022266B2 (en) * 2018-02-14 2022-02-18 株式会社野村鍍金 Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it

Also Published As

Publication number Publication date
JPH073489A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
US7192662B2 (en) Ultra high saturation moment soft magnetic thin film
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
US4780781A (en) Thin film magnetic head having magnetic film of Co-Ni-Fe alloy
EP0243627B1 (en) Electro-deposited conife alloy for thin film heads
JP3201892B2 (en) Soft magnetic thin film and magnetic inductive MR head using the same
JPH1174122A (en) Cobalt-iron-nickel magnetic thin film and manufacture thereof, and composite thin-film magnetic head and magnetic storage device using the cobalt-iron-nickel magnetic thin film
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
JP3211815B2 (en) Soft magnetic thin film and method for manufacturing the same
JP3298930B2 (en) Manufacturing method of magnetic thin film
JP3201763B2 (en) Soft magnetic thin film
US7001499B2 (en) Method for electroplating a body-centered cubic nickel-iron alloy thin film with a high saturation flux density
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JP3233963B2 (en) Magnetic thin film and method of manufacturing the same
JPH04229607A (en) Magnetically soft thin film and its manufacture
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPH06251978A (en) Soft magnetic thin film and manufacture thereof
JP3432667B2 (en) Soft magnetic thin film for high density magnetic recording head
JP2003059717A (en) Soft magnetic film, thin film magnetic head, and method of manufacturing them
JP2003022909A (en) Magnetic thin film, its manufacturing method and magnetic head using the same
JPH08236349A (en) Soft magnetic thin film and thin film magnetic device formed thereof
JPH0269906A (en) Ferromagnetic film
JP2633326B2 (en) Manufacturing method of high saturation magnetic flux density alloy thin film
JPH0372611A (en) Electroless plated soft magnetic thin film
Ramasubramanian et al. Electrodeposition and performance evaluation of high moment nickel-iron films
JP2007158091A (en) Method for producing soft magnetic thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees