JP2007158091A - Method for producing soft magnetic thin film - Google Patents

Method for producing soft magnetic thin film Download PDF

Info

Publication number
JP2007158091A
JP2007158091A JP2005352193A JP2005352193A JP2007158091A JP 2007158091 A JP2007158091 A JP 2007158091A JP 2005352193 A JP2005352193 A JP 2005352193A JP 2005352193 A JP2005352193 A JP 2005352193A JP 2007158091 A JP2007158091 A JP 2007158091A
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
pulse
magnetic thin
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005352193A
Other languages
Japanese (ja)
Inventor
Tetsuya Aisaka
哲彌 逢坂
Atsushi Sugiyama
敦史 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2005352193A priority Critical patent/JP2007158091A/en
Publication of JP2007158091A publication Critical patent/JP2007158091A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a soft magnetic thin film with which a soft magnetic thin film comprised of an alloy containing Co and Fe as the main components and having a high saturated magnetic flux density and a low coercive force can be obtained without thermal treatment. <P>SOLUTION: When producing a soft magnetic thin film comprised of an alloy containing Co and Fe as the main components, by performing electric plating using an electric plating solution containing Co ions and divalent Fe ions; electric plating is performed with a pulse reverse electrolytic technique alternately giving a pulse current with an object to be plated as a cathode for causing this object to deposit the alloy, and a pulse reverse current with the object to be plated as an anode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主成分としてCoとFeとを含有する軟磁性薄膜の製造方法に関する。   The present invention relates to a method for producing a soft magnetic thin film containing Co and Fe as main components.

軟磁性薄膜は、薄膜磁気ヘッドや薄膜インダクタ、薄膜トランスなどの電子工業分野で用いられる電子部品に幅広く用いられている。特に、薄膜磁気ヘッドにより高密度磁気記録を行うためには、記録ビットの縮小化が必要となり、そのためには薄膜磁気ヘッドが強い書き込み磁界を発生するものであることが必要であるため、薄膜磁気ヘッドに用いられる軟磁性薄膜は高い飽和磁束密度(Bs)を有する軟磁性材料を用いて形成する必要がある。また、薄膜インダクタ、薄膜トランスにおいても、小型化及び薄膜化を実現するために、薄膜磁気ヘッド同様高い飽和磁束密度を有する軟磁性材料が求められている。   Soft magnetic thin films are widely used in electronic parts used in the electronic industry such as thin film magnetic heads, thin film inductors, and thin film transformers. In particular, in order to perform high-density magnetic recording with a thin film magnetic head, it is necessary to reduce the recording bits, and for this purpose, the thin film magnetic head must generate a strong write magnetic field. The soft magnetic thin film used for the head needs to be formed using a soft magnetic material having a high saturation magnetic flux density (Bs). In addition, in thin film inductors and thin film transformers, a soft magnetic material having a high saturation magnetic flux density as well as a thin film magnetic head is required in order to realize miniaturization and thinning.

高飽和磁束密度を有する磁性薄膜としては、例えば、下記特許文献1には、電気めっき法により飽和磁束密度が1.7〜2.1TであるCoNiFe軟磁性薄膜を製造する方法が、下記特許文献2には、電気めっき法により飽和磁束密度が2〜2.3TであるCoFeNi軟磁性膜を製造する方法が示されている。   As a magnetic thin film having a high saturation magnetic flux density, for example, the following Patent Document 1 discloses a method for producing a CoNiFe soft magnetic thin film having a saturation magnetic flux density of 1.7 to 2.1 T by electroplating. 2 shows a method for producing a CoFeNi soft magnetic film having a saturation magnetic flux density of 2 to 2.3 T by electroplating.

近年、磁気記録の高密度化などを目的として、軟磁性薄膜として従来使用されてきたNiFeを主成分とする合金又はCoNiFeを主成分とする合金に比べて高い飽和磁束密度を有するCoFeを主成分とする合金を用いることが検討されている。   In recent years, for the purpose of increasing the density of magnetic recording and the like, the main component is CoFe having a higher saturation magnetic flux density than the NiFe-based alloy or the CoNiFe-based alloy conventionally used as a soft magnetic thin film. It has been studied to use an alloy.

CoFe合金の飽和磁束密度に関しては、下記非特許文献1に詳細に示されており、理論的には、その組成が、ほぼ5at%≦Co≦70at%、30at%≦Fe≦95at%のときに、飽和磁束密度が2.2T以上となり、特に、Coが約35at%、Feが約65at%のときに、最も飽和磁束密度が高く、約2.4Tとなることが示されている。また、下記非特許文献2には、電気めっき法によって形成されたCoが約90at%、Feが約10at%のCoFe合金膜の飽和磁束密度が、ほぼ1.9Tであることが記載されている。   The saturation magnetic flux density of the CoFe alloy is described in detail in the following Non-Patent Document 1, and theoretically when the composition is approximately 5 at% ≦ Co ≦ 70 at% and 30 at% ≦ Fe ≦ 95 at%. It is shown that the saturation magnetic flux density is 2.2 T or more, and especially when Co is about 35 at% and Fe is about 65 at%, the saturation magnetic flux density is the highest, about 2.4 T. Non-Patent Document 2 described below describes that the saturation magnetic flux density of a CoFe alloy film of approximately 90 at% Co and approximately 10 at% Fe formed by electroplating is approximately 1.9 T. .

一方、下記非特許文献3には、Coが約35at%、Feが約65at%のCoFe合金膜が示されている。しかしながら、この膜は、最も高い飽和磁束密度を示すとされる組成を有するにもかかわらず、その飽和磁束密度は約2.0Tであり、期待される高い飽和磁束密度が達成できていない。   On the other hand, Non-Patent Document 3 below shows a CoFe alloy film in which Co is about 35 at% and Fe is about 65 at%. However, although this film has a composition that exhibits the highest saturation magnetic flux density, the saturation magnetic flux density is about 2.0 T, and the expected high saturation magnetic flux density cannot be achieved.

このような点に鑑み、本出願人は、先に
「主成分としてCoとFeとを含有する合金からなる軟磁性薄膜を製造する方法であって、陰極室と、隔膜又は塩橋によってこの陰極室と電荷移動可能に但しFeイオンの透過を阻止するように隔離された陽極室とを有するめっき槽を使用し、上記陰極室にCoイオンと2価のFeイオンとを含むめっき液を収容し、このめっき液に被めっき物を浸漬すると共に、上記陽極室に電解液を収容し、この電解液にアノードを浸漬して電気めっきすることを特徴とする軟磁性薄膜の製造方法。」
について提案した(特開2004−218068号公報)。
In view of such a point, the present applicant has previously described "a method for producing a soft magnetic thin film made of an alloy containing Co and Fe as main components, and comprising a cathode chamber and a diaphragm or a salt bridge. A plating tank having a chamber and an anode chamber that is capable of charge transfer but is isolated so as to prevent permeation of Fe ions, and the cathode chamber contains a plating solution containing Co ions and divalent Fe ions. A method for producing a soft magnetic thin film characterized in that an object to be plated is immersed in the plating solution, an electrolytic solution is accommodated in the anode chamber, and the anode is immersed in the electrolytic solution for electroplating.
Was proposed (Japanese Patent Laid-Open No. 2004-21068).

この方法によれば、Bsが2.4Tの軟磁性薄膜を容易に得ることができ、この場合、パルス電流を用いて電気めっきすることで、結晶性のよい薄膜が得られる。また、上記方法によって得られたままの薄膜は、保磁力(Hc)が約15Oeであり、軟磁性特性の点で劣るが、この薄膜を400℃で熱処理することにより、Hcが10Oe以下となり、このように熱処理を行うことで高い飽和磁束密度を維持したまま低保磁力化が可能である。   According to this method, a soft magnetic thin film having a Bs of 2.4 T can be easily obtained. In this case, a thin film with good crystallinity can be obtained by electroplating using a pulse current. Further, the thin film as obtained by the above method has a coercive force (Hc) of about 15 Oe, which is inferior in terms of soft magnetic properties, but by heat-treating this thin film at 400 ° C., Hc becomes 10 Oe or less, By performing the heat treatment in this way, it is possible to reduce the coercive force while maintaining a high saturation magnetic flux density.

しかし、400℃というような熱処理温度は、磁気記録ヘッドの製造プロセスなどにおいて、他の部品に悪影響を及ぼすおそれがあり、このため、熱処理なしでも高Bs,低Hcを有する軟磁性薄膜を得る方法が望まれた。   However, a heat treatment temperature such as 400 ° C. may adversely affect other components in the magnetic recording head manufacturing process and the like, and therefore, a method of obtaining a soft magnetic thin film having high Bs and low Hc without heat treatment. Was desired.

特許第2821456号公報Japanese Patent No. 2821456 特開2000−322707号公報JP 2000-322707 A 特開2004−218068号公報JP 2004-216808 A R.M.Bozorth著,“Ferromagnetism”,D. Van Nostrand Co. Inc., N.Y.,1951年R. M.M. Bozorth, “Ferromagnetism”, D.C. Van Nostrand Co. Inc. , N.M. Y. , 1951 IEEE. Trans. Magn.,1987年,第23巻,p.2981IEEE. Trans. Magn. 1987, Vol. 23, p. 2981 IEEE. Trans. Magn.,2000年,第36巻,p.3479IEEE. Trans. Magn. 2000, 36, p. 3479

本発明は、上記要望に応えたもので、主成分としてCoとFeとを含有する合金からなり、高い飽和磁束密度と低い保磁力を有する軟磁性薄膜を熱処理なしで得ることができる軟磁性薄膜の製造方法を提供することを目的とする。   The present invention has been made in response to the above-mentioned demand, and is made of an alloy containing Co and Fe as main components, and a soft magnetic thin film having a high saturation magnetic flux density and a low coercive force can be obtained without heat treatment. It aims at providing the manufacturing method of.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、Coイオンと2価のFeイオンとを含む電気めっき液を用いて軟磁性薄膜を製造するに際し、パルス電気めっきを行うこと、この場合、パルス電流の付与が休止されているいわゆる休止時間において、電流値を0にするのではなく、逆パルス電流(パルスリバース電流)を与えること、即ちカソード電流を慣例に従ってプラス、アノード電流をマイナスで示すと、パルス電流(プラスの電流)が付与されていない休止時間にマイナスの電流を付与することが有効であり、このような休止時間にパルスリバース電流を与えるパルスリバース電析法を採用することにより、析出したままの状態で熱処理を行わなくとも2.2〜2.4T程度の高い飽和磁束密度Bsを有すると共に、10Oe以下の低い保磁力Hcを有するCoFe合金からなる軟磁性薄膜が得られることを見出し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors have performed pulse electroplating when producing a soft magnetic thin film using an electroplating solution containing Co ions and divalent Fe ions. In this case, in the so-called pause time in which the application of the pulse current is stopped, the current value is not set to 0, but a reverse pulse current (pulse reverse current) is given, that is, the cathode current is added in accordance with the convention, the anode current Is negative, it is effective to apply a negative current during the downtime when the pulse current (positive current) is not applied, and the pulse reverse electrodeposition method that gives a pulse reverse current during such a downtime By adopting it, it has a high saturation magnetic flux density Bs of about 2.2 to 2.4 T without performing heat treatment in the state of being deposited, It found that the soft magnetic thin film made of a CoFe alloy having the following low coercive force Hc 0 Oe is obtained, in which the present invention has been accomplished.

従って、本発明は、Coイオンと2価のFeイオンとを含む電気めっき液を用いて電気めっきを行い、主成分としてCoとFeとを含有する合金からなる軟磁性薄膜を製造するに際し、被めっき物を陰極としてこれに上記合金を析出させるパルス電流と被めっき物を陽極とするパルスリバース電流とを交互に与えるパルスリバース電析法にて電気めっきを行うことを特徴とする軟磁性薄膜の製造方法を提供する。   Therefore, the present invention provides an electroplating solution containing an electroplating solution containing Co ions and divalent Fe ions to produce a soft magnetic thin film made of an alloy containing Co and Fe as main components. A soft magnetic thin film characterized in that electroplating is carried out by a pulse reverse electrodeposition method in which a plated object is used as a cathode and a pulse current for precipitating the above alloy and a pulse reverse current using the object to be plated as an anode are alternately applied. A manufacturing method is provided.

この場合、パルス電流密度ipに対するパルスリバース電流密度iprの割合の絶対値|ipr/ip|が0.05〜0.3であり、パルス電流付与時間tonとパルスリバース電流付与時間toffとの合計時間Tが0.002〜0.1秒であり、上記合計時間Tに対するパルス電流付与時間tonの割合ton/Tが0.1〜0.8であることが好ましく、また、パルス電流密度ipが10〜100mA/cm2であり、パルスリバース電流密度iprが−5〜−20mA/cm2であることが好ましい。なお、本発明においては、溶解電流をマイナス、析出電流をプラスで示す。 In this case, the absolute value of the ratio of the pulse reverse current density i pr to the pulse current density i p | i pr / i p | is 0.05 to 0.3, the pulse current applied time t on the pulse reverse current attachment time The total time T with t off is preferably 0.002 to 0.1 seconds, and the ratio t on / T of the pulse current application time t on to the total time T is preferably 0.1 to 0.8, the pulse current density i p is 10 to 100 / cm 2, it is preferable pulse reverse current density i pr is -5~-20mA / cm 2. In the present invention, the dissolution current is indicated by minus and the deposition current is indicated by plus.

本発明によれば、高飽和磁束密度で低保磁力の軟磁性薄膜を熱処理なしで容易に製造することができる。   According to the present invention, a soft magnetic thin film having a high saturation magnetic flux density and a low coercive force can be easily produced without heat treatment.

本発明に係る軟磁性薄膜の製造方法は、Coイオンと2価のFeイオンとを含む電気めっき液を用いてパルスリバース電析法によって電気めっきを行うものである。   The method for producing a soft magnetic thin film according to the present invention performs electroplating by pulse reverse electrodeposition using an electroplating solution containing Co ions and divalent Fe ions.

ここで、本発明の方法に用いるめっき液としては、Coイオンと2価のFeイオンとを含むものを用いる。これらの金属イオンの供給源としては、水溶性コバルト塩、水溶性鉄(II)塩を用いることが好ましく、Co又はFe(2価)の硫酸塩、塩化物、スルファミン酸塩、酢酸塩、硝酸塩などの水溶性塩を用いることができる。めっき液中の金属イオン濃度は、所用の磁気特性が得られるように選択すればよく、特に限定されないが、各々の金属塩濃度を0.01〜1.5mol/dm3、特に0.01〜0.3mol/dm3、とりわけ0.01〜0.1mol/dm3とすることが好ましく、また、総金属イオン濃度としては0.02〜3.0mol/dm3、特に0.02〜0.6mol/dm3、とりわけ0.02〜0.2mol/dm3とすることが好ましい。 Here, as the plating solution used in the method of the present invention, a solution containing Co ions and divalent Fe ions is used. As a source of these metal ions, water-soluble cobalt salts and water-soluble iron (II) salts are preferably used. Co or Fe (divalent) sulfate, chloride, sulfamate, acetate, nitrate A water-soluble salt such as can be used. The metal ion concentration in the plating solution may be selected so as to obtain a desired magnetic property, and is not particularly limited, but each metal salt concentration is 0.01 to 1.5 mol / dm 3 , particularly 0.01 to It is preferably 0.3 mol / dm 3 , especially 0.01 to 0.1 mol / dm 3, and the total metal ion concentration is 0.02 to 3.0 mol / dm 3 , particularly 0.02 to 0.0. 6 mol / dm 3, particularly it is preferable that the 0.02~0.2mol / dm 3.

また、上記めっき液には、塩化アンモニウム等の導電性塩、ホウ酸等の緩衝剤、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の界面活性剤を常用量で添加することができる。   In addition, a conductive salt such as ammonium chloride, a buffering agent such as boric acid, and a surfactant such as sodium dodecyl sulfate and sodium dodecylbenzene sulfonate can be added to the plating solution at a normal dose.

一方、応力緩和剤、光沢剤として用いられるサッカリン等のイオウを含有する化合物は添加しないことが望ましい。これらを用いると膜中にイオウの共析が起き、耐食性の劣化が懸念されるためである。   On the other hand, it is desirable not to add a sulfur-containing compound such as saccharin used as a stress relaxation agent or brightening agent. This is because when these are used, sulfur eutectoids occur in the film, and the corrosion resistance may be deteriorated.

なお、上記めっき液は、空気中に曝されることにより溶液に溶け込んだ酸素により、わずかながら酸化する可能性があるが、これを抑制する目的で、軟磁性薄膜の飽和磁束密度等の磁気特性に影響を与えない程度に、アスコルビン酸、次亜リン酸、トリメチルアミンボラン、ジメチルアミンボラン、チオ尿素、あるいはそれらの塩、誘導体などの還元剤を添加することができる。この場合、上記還元剤の添加量は、還元剤の種類により適宜決定されるが、0.01mol/dm3以下とすることが好ましい。 The plating solution may be slightly oxidized by oxygen dissolved in the solution when exposed to air, but for the purpose of suppressing this, magnetic properties such as the saturation magnetic flux density of the soft magnetic thin film. Reducing agents such as ascorbic acid, hypophosphorous acid, trimethylamine borane, dimethylamine borane, thiourea, or salts and derivatives thereof can be added to the extent that they do not affect the above. In this case, the amount of the reducing agent added is appropriately determined depending on the type of the reducing agent, but is preferably 0.01 mol / dm 3 or less.

本発明のめっき液のpHは酸性から弱酸性であることが好ましく、pH=1〜6、特にpH=1.8〜4とすることが好ましい。また、めっき浴の温度は、5〜30℃が望ましい。   The pH of the plating solution of the present invention is preferably acidic to weakly acidic, preferably pH = 1 to 6, particularly preferably pH = 1.8 to 4. Moreover, as for the temperature of a plating bath, 5-30 degreeC is desirable.

本発明の方法において、被めっき物としては、薄膜磁気ヘッド、薄膜インダクタ、薄膜トランスなどの電子部品において、軟磁性薄膜を形成する公知の素地基板を用いることができ、素地基板が金属の場合はそのままで、ガラス基板等の非導電材料の場合は、予めスパッタリングや無電解めっき等により被めっき面に導電膜等を設けて用いることができる。   In the method of the present invention, as an object to be plated, a known base substrate for forming a soft magnetic thin film can be used in electronic parts such as a thin film magnetic head, a thin film inductor, and a thin film transformer. As such, in the case of a non-conductive material such as a glass substrate, a conductive film or the like can be provided on the surface to be plated by sputtering or electroless plating in advance.

また、本発明の方法においては、回転ディスク電極(RDE)やパドル装置等を用いて定量的に撹拌しながらめっきすることが望ましい。また、被めっき物を回転又は揺動させてめっきすることもできる。但し、エアバブリングによる撹拌はめっき液の酸化を引き起こすおそれがあるため避けた方がよい。なお、めっきにより製造する軟磁性薄膜の膜厚は、0.01〜10μm、特に0.1〜1μmとすることが好ましい。   In the method of the present invention, it is desirable to perform plating while quantitatively stirring using a rotating disk electrode (RDE), a paddle device or the like. It is also possible to perform plating by rotating or swinging an object to be plated. However, stirring by air bubbling should be avoided because it may cause oxidation of the plating solution. The thickness of the soft magnetic thin film produced by plating is preferably 0.01 to 10 μm, particularly preferably 0.1 to 1 μm.

更に、本発明の方法として、めっき槽にめっき液を収容し、このめっき液に被めっき物とアノードとを各々浸漬し、被めっき物とアノードとの間に電流を流して被めっき物に軟磁性薄膜を形成する方法を採用し得る。この場合、アノードとしては白金、チタン、カーボン等の不溶性アノードであってもよいが、溶解性アノードを用いることが好ましい。   Further, as a method of the present invention, a plating solution is accommodated in a plating tank, the object to be plated and the anode are respectively immersed in this plating solution, and a current is passed between the object to be plated and the anode to soften the object to be plated. A method of forming a magnetic thin film can be employed. In this case, the anode may be an insoluble anode such as platinum, titanium, or carbon, but a soluble anode is preferably used.

このように、溶解性アノードを用いることにより、めっき中にアノードが溶解し、これによりアノードがめっき液と接していてもアノードによりめっき液中の2価のFeイオンが酸化されることがない。従って、製造される軟磁性薄膜には2価のFeイオンが酸化されることにより生成した3価のFeイオンに由来する水酸化物等が取り込まれることがなく、理論値に極めて近い飽和磁束密度を有する軟磁性薄膜を製造することができる。
この場合、溶解性アノードとしては、コバルト、鉄又はこれらの合金が好ましい。
As described above, by using the soluble anode, the anode is dissolved during plating, so that even if the anode is in contact with the plating solution, the divalent Fe ions in the plating solution are not oxidized by the anode. Accordingly, the produced soft magnetic thin film does not incorporate hydroxides derived from trivalent Fe ions generated by oxidation of divalent Fe ions, and the saturation magnetic flux density is very close to the theoretical value. Can be produced.
In this case, the soluble anode is preferably cobalt, iron or an alloy thereof.

あるいは、陰極室と、隔膜又は塩橋によってこの陰極室と電荷移動可能に但しFeイオンの透過を阻止するように隔離された陽極室とを有するめっき槽を使用し、上記陰極室にCoイオンと2価のFeイオンとを含むめっき液を収容し、このめっき液に被めっき物を浸漬すると共に、上記陽極室に電解液を収容し、この電解液にアノードを浸漬して電気めっきを行うようにしてもよい。   Alternatively, a plating chamber having a cathode chamber and an anode chamber separated from the cathode chamber by a diaphragm or a salt bridge so as to be able to transfer charges but to prevent permeation of Fe ions is used. A plating solution containing divalent Fe ions is accommodated, an object to be plated is immersed in the plating solution, an electrolytic solution is accommodated in the anode chamber, and an anode is immersed in the electrolytic solution to perform electroplating. It may be.

本発明においては、上記のめっき浴組成、めっき条件において、パルスリバース電析法を採用して電気めっきを行うものである。このパルスリバース電析法は、図1に示したように、まず被めっき物を陰極としてCoFe合金を析出させるパルス電流(プラスの電流)と被めっき物を陽極とするパルスリバース電流(マイナスの電流)を交互に与えるもので、パルスリバース電流が与えられた場合は、電析したCoFe合金が溶解するように作用するものである。   In the present invention, the electroplating is performed using the pulse reverse electrodeposition method in the above-described plating bath composition and plating conditions. In this pulse reverse electrodeposition method, as shown in FIG. 1, first, a pulse current (positive current) for depositing a CoFe alloy with the object to be plated as a cathode and a pulse reverse current (negative current) with the object to be plated as an anode. ) Alternately, and when a pulse reverse current is applied, the deposited CoFe alloy acts to dissolve.

この場合、パルス電流密度をip、パルスリバース電流密度をiprとすると、それらの割合の絶対値|ipr/ip|は0.05〜0.3、特に0.1〜0.2であることが本発明の目的を達成する上で好ましく、また、パルス電流付与時間をton、パルスリバース電流付与時間をtoff、tonとtoffとの合計時間をT(=ton+toff)とすると、Tを0.002〜0.1秒、特に0.005〜0.02秒とし、ton/Tを(デューティー比γ)を0.1〜0.8、特に0.2〜0.4とすることが、同様に本発明の目的を達成する上で好ましい。 In this case, when the pulse current density is i p and the pulse reverse current density is i pr , the absolute value | i pr / i p | of the ratio is 0.05 to 0.3, particularly 0.1 to 0.2. In order to achieve the object of the present invention, the pulse current application time is t on , the pulse reverse current application time is t off , and the total time of t on and t off is T (= t on + t off ), T is set to 0.002 to 0.1 seconds, particularly 0.005 to 0.02 seconds, and t on / T is set to (duty ratio γ) of 0.1 to 0.8, particularly 0.2. In order to achieve the object of the present invention, it is preferably set to ˜0.4.

更に、ipは10〜100mA/cm2、特に50〜90mA/cm2、とりわけ60〜80mA/cm2、iprが−5〜−20mA/cm2、特に−8〜−18mA/cm2、とりわけ−15〜−18mA/cm2であることが好ましい。 Furthermore, i p is 10 to 100 / cm 2, particularly 50~90mA / cm 2, especially 60~80mA / cm 2, i pr is -5~-20mA / cm 2, particularly -8~-18mA / cm 2, In particular, it is preferably −15 to −18 mA / cm 2 .

本発明の軟磁性薄膜は、CoとFeとを主成分として含有する合金からなるものであるが、特に、CoとFe以外の成分を実質的に含まないものであることが好ましい。しかしこれに限定されるものではなく、その他の金属成分を含有するものでもよい。例えば、保磁力を小さくする目的でNiを添加したり、軟磁性薄膜の耐食性を向上したり、硬度を変化させたりする目的で、W、Mo、Cr等の非磁性金属元素を共析させて含有させることもできる。この場合は、前述のめっき液中に所望の金属元素を含むイオン、又は金属元素を含むオキソ酸もしくはオキソ酸塩を添加してめっきすればよい。   The soft magnetic thin film of the present invention is made of an alloy containing Co and Fe as main components, but it is particularly preferable that the soft magnetic thin film is substantially free of components other than Co and Fe. However, it is not limited to this and may contain other metal components. For example, by adding Ni for the purpose of reducing the coercive force, improving the corrosion resistance of the soft magnetic thin film, or changing the hardness, it is possible to co-deposit nonmagnetic metal elements such as W, Mo, and Cr. It can also be contained. In this case, plating may be performed by adding ions containing a desired metal element or an oxo acid or oxo acid salt containing a metal element to the plating solution.

ここで、本発明の方法によれば、CoとFeとを主成分とする合金からなる軟磁性薄膜を効率よく製造し得るものであるが、特に、Co及びFeの含有量が5at%≦Co≦70at%、30at%≦Fe≦95at%の範囲である軟磁性薄膜を製造する場合に好適であり、この場合、飽和磁束密度が2.0T以上、特に2.1T以上、とりわけ2.2T以上の軟磁性薄膜を製造することができる。   Here, according to the method of the present invention, a soft magnetic thin film made of an alloy containing Co and Fe as main components can be efficiently manufactured. In particular, the content of Co and Fe is 5 at% ≦ Co ≦ 70 at%, 30 at% ≦ Fe ≦ 95 at% Suitable for producing a soft magnetic thin film. In this case, the saturation magnetic flux density is 2.0 T or more, particularly 2.1 T or more, especially 2.2 T or more. The soft magnetic thin film can be manufactured.

また、本発明の方法は、Co及びFeの含有量が30at%≦Co≦50at%、50at%≦Fe≦70at%の範囲である軟磁性薄膜を製造する場合に更に好適であり、この場合、飽和磁束密度が2.3T以上、特に2.35T以上、とりわけ2.4T程度の軟磁性薄膜を製造することができる。   Further, the method of the present invention is more suitable for producing a soft magnetic thin film in which the contents of Co and Fe are in the range of 30 at% ≦ Co ≦ 50 at% and 50 at% ≦ Fe ≦ 70 at%. A soft magnetic thin film having a saturation magnetic flux density of 2.3 T or more, particularly 2.35 T or more, particularly about 2.4 T can be produced.

更にこの場合、本発明によれば、熱処理なしで保磁力Hcが10Oe以下、特に8Oe以下、とりわけ6Oe以下で、1Oe前後の保磁力を、達成し得るものである。   Furthermore, in this case, according to the present invention, a coercive force of about 1 Oe can be achieved without heat treatment when the coercive force Hc is 10 Oe or less, particularly 8 Oe or less, especially 6 Oe or less.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例、比較例]
下記に示す浴組成、めっき条件にてコバルト・鉄めっきを行った。この場合、軟磁性薄膜を成膜する基板として、銅箔、及びガラス板上にパーマロイ(100nm)/Ti(10nm)をスパッタしたものを用いた。また、成膜にはパドル装置を用い、パルスリバース電析法によって行った。なお、下記において、カソード電流を慣例に従ってプラス、アノード電流をマイナスで示す。
[Examples and Comparative Examples]
Cobalt / iron plating was performed under the bath composition and plating conditions shown below. In this case, the substrate on which the soft magnetic thin film was formed was a copper foil and a glass plate sputtered with permalloy (100 nm) / Ti (10 nm). The film formation was performed by a pulse reverse electrodeposition method using a paddle apparatus. In the following, the cathode current is indicated by plus according to the convention, and the anode current is indicated by minus.

浴組成
3BO3 0.40mol/dm3
NH4Cl 0.40mol/dm3
CoSO4・7H2O 0.05mol/dm3
FeSO4・7H2O 0.05mol/dm3
トリメチルアミンボラン 0.0005mol/dm3
ラウリル硫酸ナトリウム 0.01g/dm3
成膜条件
浴pH 2.3
浴温 室温
撹拌(回転速度) 150rpm
アノード Co
電流 図1に示すパルスリバース条件
パルスリバース条件(図1参照)
時間T 0.01秒
パルス電流密度ip 75mA/cm2
パルスリバース電流密度ipr 0〜−20mA/cm2
デューティー比γ 0.3
Bath composition H 3 BO 3 0.40 mol / dm 3
NH 4 Cl 0.40 mol / dm 3
CoSO 4 .7H 2 O 0.05 mol / dm 3
FeSO 4 .7H 2 O 0.05 mol / dm 3
Trimethylamine borane 0.0005 mol / dm 3
Sodium lauryl sulfate 0.01 g / dm 3
Film formation conditions Bath pH 2.3
Bath temperature Room temperature stirring (rotation speed) 150rpm
Anode Co
Current Pulse reverse condition shown in Fig. 1
Pulse reverse condition (see Fig. 1)
Time T 0.01 seconds Pulse current density i p 75 mA / cm 2
Pulse reverse current density i pr 0 to −20 mA / cm 2
Duty ratio γ 0.3

上記の方法、条件で得られたCoFe合金について、飽和磁束密度Bs(T)及び保磁力Hc(Oe)を測定した。結果を図2,3に示す。なお、Bs,Hcは振動試料型磁力計(VSM)を用いて測定した。   About the CoFe alloy obtained by said method and conditions, saturation magnetic flux density Bs (T) and coercive force Hc (Oe) were measured. The results are shown in FIGS. Bs and Hc were measured using a vibrating sample magnetometer (VSM).

パルス電流波形を示す。The pulse current waveform is shown. Bs値とiprとの関係を示すグラフである。It is a graph which shows the relationship between Bs value and i pr . Hc値とiprとの関係を示すグラフである。It is a graph which shows the relationship between Hc value and ipr .

Claims (3)

Coイオンと2価のFeイオンとを含む電気めっき液を用いて電気めっきを行い、主成分としてCoとFeとを含有する合金からなる軟磁性薄膜を製造するに際し、被めっき物を陰極としてこれに上記合金を析出させるパルス電流と被めっき物を陽極とするパルスリバース電流とを交互に与えるパルスリバース電析法にて電気めっきを行うことを特徴とする軟磁性薄膜の製造方法。   When electroplating is performed using an electroplating solution containing Co ions and divalent Fe ions to produce a soft magnetic thin film made of an alloy containing Co and Fe as main components, the object to be plated is used as a cathode. A method for producing a soft magnetic thin film, wherein electroplating is performed by a pulse reverse electrodeposition method in which a pulse current for precipitating the alloy and a pulse reverse current having an object to be plated as an anode are alternately applied. パルス電流密度ipに対するパルスリバース電流密度iprの割合の絶対値|ipr/ip|が0.05〜0.3であり、パルス電流付与時間tonとパルスリバース電流付与時間toffとの合計時間Tが0.002〜0.1秒であり、上記合計時間Tに対するパルス電流付与時間tonの割合ton/Tが0.1〜0.8である請求項1記載の軟磁性薄膜の製造方法。 The absolute value of the ratio of the pulse reverse current density i pr to the pulse current density i p | i pr / i p | is 0.05 to 0.3, and the pulse current application time t on and the pulse reverse current application time t off are 2. The soft magnetism according to claim 1, wherein the total time T is 0.002 to 0.1 seconds, and the ratio t on / T of the pulse current application time t on to the total time T is 0.1 to 0.8. Thin film manufacturing method. パルス電流密度ipが10〜100mA/cm2であり、パルスリバース電流密度iprが−5〜−20mA/cm2である請求項1又は2記載の軟磁性薄膜の製造方法。 Pulse current density i p is 10 to 100 / cm 2, a pulse reverse current density i pr is -5 to-20 mA / cm 2 in a claim 1 or 2 method for producing a soft magnetic thin film according.
JP2005352193A 2005-12-06 2005-12-06 Method for producing soft magnetic thin film Pending JP2007158091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005352193A JP2007158091A (en) 2005-12-06 2005-12-06 Method for producing soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005352193A JP2007158091A (en) 2005-12-06 2005-12-06 Method for producing soft magnetic thin film

Publications (1)

Publication Number Publication Date
JP2007158091A true JP2007158091A (en) 2007-06-21

Family

ID=38242043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005352193A Pending JP2007158091A (en) 2005-12-06 2005-12-06 Method for producing soft magnetic thin film

Country Status (1)

Country Link
JP (1) JP2007158091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217563B2 (en) 2013-08-02 2019-02-26 Cyntec Co., Ltd. Method of manufacturing multi-layer coil and multi-layer coil device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217563B2 (en) 2013-08-02 2019-02-26 Cyntec Co., Ltd. Method of manufacturing multi-layer coil and multi-layer coil device

Similar Documents

Publication Publication Date Title
JP4732668B2 (en) Method for producing cobalt iron molybdenum alloy and cobalt iron molybdenum alloy plated magnetic thin film
CN1838244A (en) Soft magnetic thin film and magnetic recording head
Takata et al. Electrodeposition of magnetic CoPd thin films: Influence of plating condition
JP3201892B2 (en) Soft magnetic thin film and magnetic inductive MR head using the same
JP2007302998A (en) Method of controlling magnetic property of electroplated layer, electroplating method of magnetic layer, manufacturing method of magnetic layer, manufacturing method of magnetic head and plating bath used therefor
JP2005086012A (en) Magnetic thin film, manufacturing method thereof, and magnetic head using the magnetic thin film
US20080197021A1 (en) Method to make superior soft (low Hk), high moment magnetic film and its application in writer heads
Liu et al. High moment FeCoNi alloy thin films fabricated by pulsed-current electrodeposition
US20060222871A1 (en) Method for lowering deposition stress, improving ductility, and enhancing lateral growth in electrodeposited iron-containing alloys
JP3211815B2 (en) Soft magnetic thin film and method for manufacturing the same
US7135103B2 (en) Preparation of soft magnetic thin film
JP2007158091A (en) Method for producing soft magnetic thin film
JP4423377B2 (en) Method for producing soft magnetic thin film and soft magnetic thin film
JP2007220777A (en) Soft magnetic thin film, its manufacturing method, and magnetic head
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JP3201763B2 (en) Soft magnetic thin film
JP3298930B2 (en) Manufacturing method of magnetic thin film
JP5435669B2 (en) Nickel iron alloy plating solution
JP3233963B2 (en) Magnetic thin film and method of manufacturing the same
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPH04229607A (en) Magnetically soft thin film and its manufacture
JP4041948B2 (en) Soft magnetic thin film, manufacturing method thereof, and thin film magnetic head using the thin film
JP2003347120A (en) Magnetic film and its formation method
JPH07122426A (en) Soft magnetic plated thin film and manufacture thereof
JPH06251978A (en) Soft magnetic thin film and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070314

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A02 Decision of refusal

Effective date: 20100106

Free format text: JAPANESE INTERMEDIATE CODE: A02