JP2021152515A - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
JP2021152515A
JP2021152515A JP2020071325A JP2020071325A JP2021152515A JP 2021152515 A JP2021152515 A JP 2021152515A JP 2020071325 A JP2020071325 A JP 2020071325A JP 2020071325 A JP2020071325 A JP 2020071325A JP 2021152515 A JP2021152515 A JP 2021152515A
Authority
JP
Japan
Prior art keywords
bus bar
magnetic
mounting portion
magnetic material
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020071325A
Other languages
English (en)
Inventor
哲也 前島
Tetsuya Maejima
哲也 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohshin Electric Corp
Original Assignee
Kohshin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohshin Electric Corp filed Critical Kohshin Electric Corp
Priority to JP2020071325A priority Critical patent/JP2021152515A/ja
Publication of JP2021152515A publication Critical patent/JP2021152515A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】バスバーの形状に制約がなく、感磁素子と前記バスバーと磁性体との相対位置がずれる事による測定精度の悪化を防止する電流センサを提供する。【解決手段】電流センサは、感磁素子搭載部20と磁性体搭載部30とが分離可能な構造とし、感磁素子搭載部20と磁性体搭載部30とバスバー40とはY方向から位置決め固定される。【選択図】図3

Description

本発明は、被測定電流を通電するバスバーに着脱可能な電流センサに関するものである。
従来の電流センサは、バスバーの電流を検出するために、電流により生じる磁束を間隙部に集める環状磁性コアと、前記環状磁性コアの間隙部に挿入され、磁束密度を検出する感磁素子と、それらを保持し、且つ、バスバーを通す開口部を設けたケースで構成されている。
例えば、特許文献1に示される例では、バスバーを通す電流通過孔(開口部)へバスバーを挿入する貫通穴式の構造が示されている。
また、特許文献2に示されている例では、絶縁ハウジングとされるケースへ一次導体部(バスバー)をあらかじめオーバーモールド(一体成形)した構造が示されている。
特開2013−120177号公報 特許第6526597号
特許文献1に示された形状では、バスバーを通す開口部を設けたケースに通電用のバスバーを前記開口部に挿入する必要があるため、挿入するバスバーの一端は貫通穴に通るような形状である必要があり、開口部直近で曲げ形状のあるバスバーは使えない等の問題があった。
また、特許文献2に示されたバスバーの一体成形形状では、通電用のバスバーの両端を外部一次導体へ接続する必要があり、ボルト締結またはクランプ等により、締結点の増加や締結を行うためのスペースを確保する等の課題が発生するという問題があった。
本発明は、上記のような課題を解決するためになされたもので、電流測定対象となるバスバー形状の制約が少なく、磁性体、バスバーと感磁素子との相対位置ずれによる精度悪化を低減し、高精度電流計測が可能な電流センサを提供することを目的とする。
本発明に係る電流センサは、被測定電流が流れるバスバー(幅方向をX方向、厚さ方向をY方向、長さ方向をZ方向とする)と、バスバーを流れる電流により発生した磁束を集磁する磁性体と、その集磁された磁束密度を検出する感磁素子と、感磁素子を収容する感磁素子搭載ケースと、磁性体を収容する磁性体搭載ケースから成り、磁性体は、所定の透磁率を有し、Y正(上)方向に開口した略U字型のXY断面とZ方向に所定の長さを有する凹部を有し、磁性体搭載ケースは、磁性体を位置決め固定し、バスバーをY正(上)方向から設置し位置決め固定する構造を有し、感磁素子搭載ケースは、感磁素子を位置決め固定する構造を有し、磁性体搭載ケースと感磁素子搭載ケースはY方向から位置決め固定されるものである。
本発明は、感磁素子搭載部と磁性体搭載部とが分離可能な構造になっているので、バスバーは磁性体搭載部を通る部位以外はストレートである必要がなく、電流センサの直近でX方向やY方向に曲がる形状であってもよく、バスバー形状の制約を少なくすることができる。
また、バスバーは磁性体搭載ケースにY方向から、感磁素子搭載ケースと磁性体搭載ケースはY方向から固定し、Y方向にがたつきを発生させないようにしており、バスバー、磁性体と感磁素子がY方向に位置精度よく固定することができるので高精度な電流計測が可能となる。
本発明の実施の形態1における電流センサを示した斜視図である。 本発明の実施の形態1における電流センサの第1バスバー組付状態の斜視図である。 図2のA−A断面図である。 本発明の実施の形態1における電流センサの第1バスバー組付前の状態を示した斜視図である。 本発明の実施の形態1における電流センサの第2バスバー組付前の状態を示した斜視図である。 本発明の実施の形態1における電流センサの第3バスバー組付前の状態を示した斜視図である。 本発明の実施の形態1における電流センサにおいて、感磁素子をX、Y、Z方向の3方向へ移動した際の感磁素子位置における磁束密度の変化率を示したグラフである。 図3における、感磁素子、磁性体、バスバーの寸法関係を示した図である。 本発明の実施の形態2における電流センサを示した斜視図である。 図9における、磁性体搭載部の斜視図である。 図9における、感磁素子搭載部の斜視図である。 図9のB−B断面図である。 図12における、第4バスバー組付状態の断面図である。 図12における、第5バスバー組付状態の断面図である。 図12における、第6バスバー組付状態の断面図である。 図13におけるC部拡大図であり、感磁素子、磁性体、バスバーの寸法関係を示した図である。 本発明の実施の形態2における電流センサにおいて、感磁素子とバスバー下面間距離を変化させた際の、感磁素子X方向位置ばらつきによる磁束密度の変化率を示したグラフである。 図17に加えて、バスバー幅を変更し、感磁素子とバスバー下面間距離を変化させた際の、感磁素子位置X方向位置ばらつきによる磁束密度の変化率を示したグラフである。 図18において、各バスバー幅での感磁素子位置X方向位置ばらつきによる磁束密度の変化が最小となる、感磁素子とバスバー下面間距離を示したグラフである。
実施の形態1
図1は本発明の実施の形態1における電流センサ100の斜視図、図2は第1バスバー40を組付けた状態の斜視図であり、図3は図2のA−A断面図であり、図4は電流センサ100への第1バスバー40の組付前の状態を示した図である。
図1に示すように、電流センサ100は、感磁素子搭載部20と、磁性体搭載部30から構成され、感磁素子搭載部20と磁性体搭載部30を位置決め及び、固定することで、被測定電流が流れるバスバーを通すバスバー搭載スペース50(図3記載)が構成される形状となっている。21は感磁素子により測定した電流値に対応した電気信号を外部に出力するための出力ケーブルである。
図2に示すように、磁性体搭載部30には、第1バスバー40を、バスバー固定ねじ61でねじ締め固定し、感磁素子搭載部20を、搭載部固定ねじ60でねじ締め固定する。
図3に記載のように、感磁素子23及び出力ケーブル21を含む測定用電子回路(図示せず)は、基板24へ半田付け実装されており、基板24は感磁素子搭載ケース22へY方向から例えば、ねじ締め固定(図示せず)されることで感磁素子搭載部20を構成し、Y方向上側に開口したU字形状の磁性体34は磁性体搭載ケース33へY方向から挿入され、溶着、圧入、スナップフィット、接着等の方法で固定されることで磁性体搭載部30を構成している。
磁性体搭載部30の磁性体搭載ケース33は、磁性体34に沿う形でY方向上側に開口した凹部を有し、感磁素子搭載部20の感磁素子搭載ケース22はY方向下側に凸部を有し、磁性体搭載ケース33の凹部と感磁素子搭載ケース22の凸部により、第1バスバー40を通すバスバー搭載スペース50が形成される。
前記、感磁素子23はホール素子等の磁電変換素子、第1バスバー40は銅材等で作られたプレス加工品、磁性体搭載ケース33、感磁素子搭載ケース22は絶縁部材であり、磁性体34は珪素鋼板等の磁性材である。
また、磁性体搭載部30には、図4に記載のように、被測定電流が流れる第1バスバー40を位置決めするためのバスバー位置決め突起36と第1バスバー40を磁性体搭載部30にバスバー固定ねじ61でY方向からねじ締め固定するバスバー固定用のバスバー固定ねじ穴31を設けている。なお、第1バスバー40は、位置決め突起36を挿入するバスバー位置決め穴43と、バスバー固定用のバスバー固定ねじ穴31に対応しバスバー固定ねじ61でねじ締め固定するためのバスバー固定穴44を有している。
また、図4において感磁素子搭載部20は位置決め穴25a、25bを有し、それらに挿入し位置決めするために磁性体搭載部30は、位置決め突起35a、35bを有している。
また、図4において感磁素子搭載部20は搭載部固定穴26を有し、磁性体搭載部30はそれに対応した搭載部固定ねじ穴37を有し、図2記載の搭載部固定ねじ60でY方向から感磁素子搭載部20と磁性体搭載部30とをねじ締め固定している。
ここで図4を用いて電流センサ100の第1バスバー40への組付手順について説明する。
第1バスバー40のバスバー位置決め穴43へ、磁性体搭載部30のバスバー位置決め突起36を挿入し、第1バスバー40のバスバー固定穴44と磁性体搭載部30のバスバー固定用のバスバー固定ねじ穴31をバスバー固定ねじ61(図2に記載)によりねじ締めする事により、第1バスバー40を磁性体搭載部30に組付固定する。
次に感磁素子搭載部20の感磁素子搭載ケース22の凸部を磁性体搭載部30の磁性体搭載ケース33の凹部に挿入しながら、感磁素子搭載部20の位置決め穴25a、25bに、磁性体搭載部30の位置決め突起35a、35bを挿入し、感磁素子搭載部20の搭載部固定穴26と磁性体搭載部30の搭載部固定ねじ穴37を搭載部固定ねじ60(図2に記載)によりねじ締めする事により、感磁素子搭載部20を磁性体搭載部30に組付固定する。
このように感磁素子搭載部20と磁性体搭載部30とが分割可能で、バスバーに着脱できるように構成された電流センサ100において、感磁素子搭載部20と磁性体搭載部30との間のバスバー搭載スペース50に第1バスバー40を通すことで、第1バスバー40へ電流が流れると、第1バスバー40の周囲に発生した磁束を磁性体34で集磁し、その集磁された磁束密度を感磁素子23で検出することにより、前記電流を測定している。なお、測定した電流値は、出力ケーブル21から外部に出力されている。(出力方法は、電圧信号等である。)
ここで、分割可能で着脱可能な構成での組付ばらつきによる第1バスバー40、磁性体34と感磁素子23の相対位置のX方向、Y方向、Z方向(図1に記載)の変化が電流センサ100の電流計測精度へどのように影響するかをシミュレーションにより検証する。
なお、第1バスバー40において、磁性体搭載部とX、Z方向の位置決めをするバスバー位置決め穴43及びバスバー固定穴44は、通常プレス加工により、高精度に加工ができるため、精度よく磁性体34を含んだ磁性体搭載部30との位置決めができる。よって、樹脂同士の組付けにより、位置ずれしやすい、第1バスバー40と磁性体搭載部30に対しての感磁素子搭載部20が相対位置ずれした際のシミュレーションを行う。
図7は、シミュレーションを行った結果のグラフである。
シミュレーション条件は、図3の寸法関係を示した図8により説明する。
なお、以降の説明においては、感磁素子搭載部の位置ずれを感磁素子の位置ずれとしている。
図8においてT1は第1バスバー40の高さ(例えば2mm)、W1は第1バスバー40の幅(例えば9mm)、W2はバスバー搭載スペース50の幅(例えば12mm)、W3はU字型磁性体34の開口部幅(例えば15mm)、T2はU字型磁性体34の高さ(例えば16.2mm)、T3は感磁素子23の計測中心点を基準にした第1バスバー40のY方向下面までの距離(例えば5.1mm)、T4は第1バスバー40のY方向下面とU字型磁性体34のY方向上面までの距離(例えば1.5mm)である。
シミュレーションではW1=9mm、W3=15mm、T1=2mm、とし、感磁素子23を基準位置からX方向、Y方向、Z方向(図1に記載)に最大1mm移動した場合の感磁素子計測中心点における磁束密度の変化率を試算した。
なお磁束密度の変化率の計算式は、
A=感磁素子23の移動後の検出磁束密度
B=感磁素子23が基準位置での検出磁束密度
磁束密度の変化率[%]=(A−B)/B×100
とする。なお、磁束密度の算出は、磁界解析ソフトを用いるなど、通常行われている手法で求めることができる。
図7の、シミュレーションの結果を示すグラフは、横軸が感磁素子計測中心点基準位置からのX、Y、Z方向への移動量、縦軸が中心(基準位置)からの磁束密度の変化率を示し、凡例X、Y、ZがそれぞれX方向、Y方向、Z方向に移動した場合での磁束密度の変化率を示す。
図7に示すように、例えば感磁素子23を1mm移動した場合、X方向では約0.2%、Y方向では約6%、Z方向ではほぼ影響なしの磁束密度変化となり、特にY方向への移動に対して磁束密度が大きく変動していることがわかる。よって、組付け時のばらつきは、Y方向が他方向に比べ電流計測への影響が最も大きいと言える。
このY方向の位置ずれを低減するために、第1バスバー40は磁性体搭載部30の磁性体搭載ケース33にY方向からねじ締め固定し、磁性体34は磁性体搭載部30の磁性体搭載ケース33にY方向から位置決め固定し、感磁素子23を含んだ基板24は感磁素子搭載部20の感磁素子搭載ケース22にY方向から位置決め固定し、感磁素子搭載ケース22と磁性体搭載ケース33はY方向から搭載部固定ねじ60でねじ締め固定し、Y方向にがたつきを発生させないように、Y方向にお互いを押さえつけて組付けられる形状としている。
以上より、電流センサ100では、第1バスバー40、磁性体34と感磁素子23がX方向、Y方向、Z方向ともに位置精度よく固定することができ、特にY方向に位置精度よく固定することができるので高精度な電流計測が可能となる。
また、感磁素子搭載部20と磁性体搭載部30とは、分離可能な構造になっているので、バスバーは磁性体搭載部30を通る部位以外はストレートである必要がなく、図5に記載の第2バスバー41のような電流センサ100の直近でX方向に曲がる形状であってもよく、図6に記載の第3バスバー42のような電流センサ100の直近でY方向に曲がる形状であってもよく、バスバー形状の制約を少なくすることができる。
実施の形態2
図9は本発明の実施の形態2における電流センサ101の斜視図、図10は磁性体搭載部80の斜視図、図11は感磁素子搭載部70の斜視図、図12は図9のB−B断面図であり、図13、図14、図15はそれぞれ幅の異なるバスバー(第4バスバー45a、第5バスバー45b、第6バスバー45c)を組付けた状態を示した図であり、図16は図13のC部拡大図である。
本実施の形態では、実施の形態1と異なる部分について説明する。
図10及び図12に記載しているように、磁性体搭載部80には、幅W1a、W1b、W1c、高さT1a、T1b、T1cを持つ第4から第6バスバー45a(例えば幅W1aが7mm、高さT1aが1mm)、45b(例えば幅W1bが9mm、高さT1bが1mm)、45c(例えば幅W1cが11mm、高さT1cが1mm)の中のいずれか一つを設置するために、磁性体搭載部80の凹形状底面81a(第4バスバー45a設置面)を基準に所定の高さの複数段(例えば3段)の階段形状を形成し、第5バスバー45b設置用の階段面81b(例えば高さ1mm)、第6バスバー46c設置用の階段面81c(例えば高さ2.5mm)及び階段面81d(例えば高さ3.5mm)が設けられ、磁性体搭載部80の凹形状底面81aから、Y方向上側に向かって左右階段のX方向幅が、第4から第6バスバー45a、45b、45cの幅W1a、W1b、W1cに対応して徐々に広がるような形状(例えば左右階段のX方向幅7mm、9mm、11mm)となっており、バスバーと磁性体搭載部80のX方向の位置は、底面81a及び階段面81b、81cそれぞれの左右階段のX方向両端にあるY方向の壁で位置決めがなされている。
また、磁性体搭載部80は、位置決め突起85a、85b、搭載部固定ねじ穴86を有する。
また、83は磁性体搭載ケース、84は磁性体を示している。
図11及び図12に記載しているように感磁素子搭載部70において、第4から第6バスバー45a、45b、45cの中のいずれか一つを設置し、Y方向及びZ方向の位置決めをするために、複数(例えば3段)の円柱形状(長円柱、四角柱等でもよい)が同心円上に連なった階段形状であるバスバー固定ボスが設けられている。
前記バスバー固定ボスは、第6バスバー45cをY方向から位置決めする天面71dを有し、その高さは 階段面81cの高さに第6バスバー45cの高さT1cを加えた高さ(例えば底面81a基準で3.5mm)となる。
また所定の高さの階段面71c、71b、71aを有し、階段面71cは第5バスバー45b位置決め用の高さを有し、その高さは 階段面81bの高さに第5バスバー45bの高さT1bを加えた高さ(例えば底面81a基準で2mm、天面71d基準ではY下方向に1.5mm)となる。
階段面71bは第4バスバー45a位置決め用の高さを有し、その高さは底面81aの高さに第4バスバー45aの高さT1aを加えた高さ(例えば底面81a基準で1mm、天面71d基準ではY下方向に2.5mm)となる。
階段面71aは第4バスバー45aをZ方向に位置決め可能な高さ(例えば底面81aと同一高さ、天面71d基準ではY下方向に3.5mm)を有する。
また前記バスバー固定ボスは、第4から第6バスバー45a、45b、45cをZ方向に位置決めするために、所定の円柱直径を有し、階段面71cは第6バスバー45c固定用の直径(例えば6mm)、階段面71bは第5バスバー45b固定用の直径(例えば4mm)、階段面71aは第4バスバー45a固定用の直径(例えば2mm)を有する。なお、これら円柱の中心は磁性体搭載部80の底面81aの中央に対応する所に位置している。
また、第4から第6バスバー45a、45b、45cは階段面71aから71cの円柱直径に対応した所定の直径の固定穴(例えば第4バスバー45aは直径2mm、第5バスバー45bは直径4mm、第6バスバー45cは直径6mm)(図示せず)を有する。
また、感磁素子搭載部70は位置決め穴75a、75b、搭載部固定穴76を有する。
また、72は感磁素子搭載ケース、73は感磁素子、74は基板、51はバスバー搭載スペースを示している。
ここで、電流センサ101へのバスバーの組付手順を説明する。
第4バスバー45aの場合は図13に示すように、第4バスバー45aを磁性体搭載部80の底面81aに設置しX方向を位置決めする。Z方向は、第4バスバー45aの固定穴が底面81aの中央あたりになるように仮置きする。
次に感磁素子搭載部70の位置決め穴75a、75bに、磁性体搭載部80の位置決め突起85a、85bを挿入しながら、第4バスバー45aのZ方向位置を調整し、感磁素子搭載部70のバスバー固定ボスの階段面71aを第4バスバー45aの固定穴に挿入し、搭載部固定ねじ60(図9に記載)を感磁素子搭載部70の搭載部固定穴76(図11に記載)に通し、それに対応した磁性体搭載部80の搭載部固定ねじ穴86(図10に記載)でねじ締め固定する。
感磁素子搭載部70のバスバー固定ボスの階段面71bで押さえることで、第4バスバー45aのY方向を位置決めする。
第5バスバー45bの場合は図14に示すように、第5バスバー45bを磁性体搭載部80の階段面81bに設置しX方向を位置決めする。Z方向は、第5バスバー45bの固定穴が底面81aの中央あたりになるように仮置きし、感磁素子搭載部70の位置決め穴75a、75bを、磁性体搭載部80の位置決め突起85a、85bに挿入しながら、第5バスバー45bのZ方向位置を調整し、感磁素子搭載部70のバスバー固定ボスの階段面71bを第5バスバー45bの固定穴に挿入し、搭載部固定ねじ60(図9に記載)を感磁素子搭載部70の搭載部固定穴76(図11に記載)に通し、それに対応した磁性体搭載部80の搭載部固定ねじ穴86(図10に記載)でねじ締め固定する。感磁素子搭載部70のバスバー固定ボスの階段面71cで押さえることで、第5バスバー45bのY方向を位置決めする。
第6バスバー45cの場合は図15に示すように、第6バスバー45cを磁性体搭載部80の階段面81cに設置しX方向を位置決めする。Z方向は、第6バスバー45cの固定穴が底面81aの中央あたりになるように仮置きし、感磁素子搭載部70の位置決め穴75a、75bを、磁性体搭載部80の位置決め突起85a、85bに挿入しながら、第6バスバー45cのZ方向位置を調整し、感磁素子搭載部70のバスバー固定ボスの階段面71cを第6バスバー45cの固定穴に挿入し、搭載部固定ねじ60(図9に記載)を感磁素子搭載部70の搭載部固定穴76(図11に記載)に通し、それに対応した磁性体搭載部80の搭載部固定ねじ穴86(図10に記載)でねじ締め固定する。感磁素子搭載部70のバスバー固定ボスの天面71dで押さえることで、第6バスバー45cのY方向を位置決めする。
図16は図13においての寸法関係を示すC部拡大図であり、T1aは第4バスバー45aの高さ(例えば1mm)、W1aは第4バスバー45aの幅(例えば7mm)、W3は磁性体開口部幅(例えば15mm)、W4aは第4バスバー搭載スペースの幅(例えば7mm)、W4bは第5バスバー搭載スペースの幅(例えば9mm)、W4cは第6バスバー搭載スペースの幅(例えば11mm)、T5aは磁性体84のY方向上面から磁性体搭載部80の凹形状底面81a(第4バスバー搭載スペースY方向下面)までの高さ(例えば1.5mm)、T5bは磁性体84のY方向上面から階段面81b(第5バスバー搭載スペースY方向下面)までの高さ(例えば2.5mm)、T5cは磁性体84のY方向上面から階段面81c(第6バスバー搭載スペースY方向下面)までの高さ(例えば4mm)、T5dは磁性体84のY方向上面と階段面81dまでの距離(例えば5mm)、T6は感磁素子73の感磁素子中心を基準にした第4バスバーY方向下面までの距離(例えば6.6mm)である。
ここではまず図16において、磁性体搭載部80の凹形状底面81a、その階段形状と感磁素子搭載部70のバスバー固定ボスの階段面71aを有する円柱部により、第4バスバー45aが組付けされることで、電流センサ101の電流計測精度へどのように影響するかをシミュレーションにより検証する。
シミュレーションではW1a=7mm、W3=15mm、T1a=1mm、T6はY方向に感磁素子(計測中心点)を3.6mmから10.6mmまで0.5mm刻みで変化させた場合に、組立位置ずれとして、感磁素子73の計測中心点を基準位置からX方向に±0.5mm移動した場合の感磁素子73(計測中心点)位置における磁束密度の変化率を試算した。
図17は、シミュレーションの結果を示すグラフであり、横軸がT6(感磁素子・バスバー下面間距離)、縦軸が感磁素子中心(基準位置)に対しての磁束密度の変化率を示している。
図17に示すように、T6の違いにより本電流センサ101の組付ばらつきの電流計測値への影響が変わり、T6=6.6mm付近で変化率が最小となる。
バスバー幅W1aが7mmでは、T6が6.6mm付近の時が最適位置(変化率が最小となる位置)と言える。
次にバスバー幅W1(以降W1と記す)を変化させた場合に、T6の最適位置(変化率が最小となる位置)がどのように変化するかをシミュレーションにより検証する。
本シミュレーションでは、バスバー幅はW1=6mmから12mmまで1mm刻みで変更し、W3=15mm、T1a=1mm、T6はY方向に感磁素子(計測中心点)を3.6mmから10.6mmまで0.5mm刻みで変化させた場合に、組立位置ずれとして、感磁素子73の計測中心点を基準位置からX方向に±0.5mm移動した場合の感磁素子73(計測中心点)位置における磁束密度の変化率を試算した。
図18は、シミュレーション結果を示すグラフであり、横軸がT6(感磁素子・バスバー下面間距離)、縦軸が感磁素子中心(基準位置)からの磁束密度の変化率を示しており、凡例には、シミュレーションした際の各バスバー幅W1を示している。
図18よりバスバー幅W1毎にT6の最適位置(変化率が最小となる位置)が変わることがわかり、例えば、W1=9mmの時には、T6=5.6mm付近の位置が最適位置(変化率が最小となる位置)となる。
図19にバスバー幅W1を変えた場合のT6の最適位置(変化率が最小となる位置)の変化を示した。
図19の横軸は、各バスバー幅W1であり、縦軸はX方向ずれによる磁束密度変化率が最小となるT6の位置(最適位置)である。
図19から、バスバー幅W1が小さい場合は、T6は大きく、W1が大きい場合は、T6は小さくすることが望ましいことがわかる。
以上より第4バスバー搭載スペース(幅W4aが7mm)の底面81aの高さT5aが1.5mmの場合、バスバー幅7mmの場合のT6の最適位置6.6mmを基準にすると、バスバー幅9mmの場合のT6の最適位置は5.6mmと1mm小さいので、第5バスバー搭載スペース(幅W4bが9mm)の階段面81bの高さT5bはT5aに1mm加えた2.5mmが望ましく、バスバー幅11mmの場合のT6の最適位置は4.1mmと2.5mm小さいので第6バスバー搭載スペース(幅W4cが11mm)の階段面81cの高さT5cはT5aに2.5mm加えた4mmが望ましく、この寸法構成を取り入れた本実施の形態において組付ばらつきの電流計測値への影響が最小となり高精度の電流測定が可能となる。
なお、本実施の形態においてバスバー形状の制約を少なくすることができる点は実施の形態1と同様である。
なお、本実施の形態ではバスバーのX方向の位置は、磁性体搭載部80の底面81a及び階段面81b、81cそれぞれの左右階段のX方向両端にあるY方向の壁で位置決めがなされているが、感磁素子搭載部70によって位置決めしてもよい。つまり感磁素子搭載部70のバスバー固定ボスに、バスバーのZ方向だけでなくX方向の位置決めも行えるように、例えばバスバー固定ボスのXZ断面をZ方向に直線部分のある長方形や長円にしてバスバーとX方向を線あたりにしたり、円柱階段形状のバスバー固定ボスを複数設けてバスバーとX方向を2点以上の点あたりにし、バスバーにはそれに対応した固定穴を設けてもよい。
なお、本実施の形態では、3種類のバスバーのY方向を位置決めするために、磁性体搭載部80に底面81aと3つの階段面81b、81c、81dを設け、感磁素子搭載部70に3つのバスバー固定ボス階段面71a、71b、71c及び、バスバー固定ボス天面71dを設けたが、バスバー種類数に制限はなく、例えばバスバーが1種類の場合は、Y方向位置決めのために、磁性体搭載部80の階段面及び、感磁素子搭載部70のバスバー固定ボス階段面は1つとなる。
なお、本発明は、上述した実施形態に限定されるものでなく、適宜、変形、改良、等可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
100、101 電流センサ
20、70 感磁素子搭載部
21 出力ケーブル
22、72 感磁素子搭載ケース
23、73 感磁素子
24、74 基板
25a、25b、75a、75b 位置決め穴
26、76 搭載部固定穴
30、80 磁性体搭載部
31 バスバー固定ねじ穴
33、83 磁性体搭載ケース
34、84 磁性体
35a、35b、85a、85b 位置決め突起
36 バスバー位置決め突起
37、86 搭載部固定ねじ穴
40 第1バスバー
41 第2バスバー
42 第3バスバー
43 バスバー位置決め穴
44 バスバー固定穴
45a 第4バスバー
45b 第5バスバー
45c 第6バスバー
50、51 バスバー搭載スペース
60 搭載部固定ねじ
61 バスバー固定ねじ
71a、71b、71c バスバー固定ボス階段面
71d バスバー固定ボス天面
81a 凹形状底面
81b、81c、81d 階段面
W1 バスバー幅
W1a 第4バスバー幅
W2 バスバー搭載スペース幅
W3 磁性体開口部幅
W4a 第4バスバー搭載スペース幅
W4b 第5バスバー搭載スペース幅
W4c 第6バスバー搭載スペース幅
T1 バスバー高さ
T1a 第4バスバー高さ
T2 磁性体高さ
T3、T6 感磁素子中心とバスバー下面間距離
T4 バスバー下面と磁性体上面の距離
T5a 磁性体Y方向上面と凹形状底面までの高さ
T5b 磁性体Y方向上面と階段面81bまでの高さ
T5c 磁性体Y方向上面と階段面81cまでの高さ
T5d 磁性体Y方向上面と階段面81dまでの高さ

Claims (4)

  1. 被測定電流が流れるバスバー(幅方向をX方向、厚さ方向をY方向、長さ方向をZ方向とする)と、前記バスバーを流れる電流により発生した磁束を集磁する磁性体と、前記集磁された磁束密度を検出する感磁素子と、前記感磁素子を収容する感磁素子搭載ケースと、前記磁性体を収容する磁性体搭載ケースから成る電流センサであって、前記磁性体は、所定の透磁率を有し、Y正(上)方向に開口した略U字型のXY断面とZ方向に所定の長さを有する凹部を有し、前記磁性体搭載ケースは、前記磁性体を位置決め固定し、前記バスバーをY正(上)方向から設置し位置決め固定する構造を有し、前記感磁素子搭載ケースは、前記感磁素子を位置決め固定し、前記磁性体搭載ケースと前記感磁素子搭載ケースはY方向から位置決め固定されることを特徴とする電流センサ
  2. 前記バスバーはその幅が長いほど、前記磁性体の凹部底面からY正(上)方向に離れた位置に位置決め固定されることを特徴とする請求項1記載の電流センサ
  3. 前記磁性体搭載ケースは、前記磁性体の凹部底面からY正(上)方向に所定距離離れた位置で前記バスバーをY正(上)方向に支える支持面と幅方向をX方向から挟み込む挟み込み面を有し、前記感磁素子搭載ケースは、前記バスバーをY負(下)方向に押え込む押え込み面と、前記バスバーに挿入されZ方向を位置決めする突起面を有し、前記支持面、挟み込み面、押え込み面及び突起面は前記バスバー1種類に対し1組合わせ存在し、前記組合せは1種類以上あることを特徴とする請求項2記載の電流センサ
  4. 前記磁性体搭載ケースは、前記磁性体の凹部底面からY正(上)方向に所定距離離れた位置で前記バスバーをY正(上)方向に支える支持面を有し、前記感磁素子搭載ケースは、前記バスバーをY負(下)方向に押え込む押え込み面と、前記バスバーに挿入されZ方向を位置決めする第1の突起面とX方向を線又は2点以上の点で位置決めする第2の突起面を有し、前記支持面、押え込み面、第1の突起面及び第2の突起面は前記バスバー1種類に対し1組合わせ存在し、前記組合せは1種類以上あることを特徴とする請求項2記載の電流センサ
JP2020071325A 2020-03-24 2020-03-24 電流センサ Pending JP2021152515A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020071325A JP2021152515A (ja) 2020-03-24 2020-03-24 電流センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071325A JP2021152515A (ja) 2020-03-24 2020-03-24 電流センサ

Publications (1)

Publication Number Publication Date
JP2021152515A true JP2021152515A (ja) 2021-09-30

Family

ID=77887356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071325A Pending JP2021152515A (ja) 2020-03-24 2020-03-24 電流センサ

Country Status (1)

Country Link
JP (1) JP2021152515A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007641T5 (de) 2019-08-20 2022-05-05 Gs Yuasa International Ltd. Positives aktivmaterial, positive elektrode, nichtwässriger-elektrolyt-energiespeicher vorrichtung, verfahren zum herstellen eines positiven aktivmaterials, verfahren zum herstellen einer positiven elektrode, und verfahren zum herstellen einer nichtwässriger-elektrolyt-energiespeichervorrichtung
WO2023090226A1 (ja) * 2021-11-16 2023-05-25 株式会社デンソー 電流センサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007641T5 (de) 2019-08-20 2022-05-05 Gs Yuasa International Ltd. Positives aktivmaterial, positive elektrode, nichtwässriger-elektrolyt-energiespeicher vorrichtung, verfahren zum herstellen eines positiven aktivmaterials, verfahren zum herstellen einer positiven elektrode, und verfahren zum herstellen einer nichtwässriger-elektrolyt-energiespeichervorrichtung
WO2023090226A1 (ja) * 2021-11-16 2023-05-25 株式会社デンソー 電流センサ

Similar Documents

Publication Publication Date Title
EP2835655B1 (en) Current sensor
US9086440B2 (en) Current sensor
US10126327B2 (en) Current transducer
US6876189B2 (en) Current sensor
JP2021152515A (ja) 電流センサ
JP4839393B2 (ja) 電流検出装置
US9557352B2 (en) Current detection structure
WO2019117171A1 (ja) 電流センサ及び電流センサのケースの製造方法
JP2005321206A (ja) 電流検出装置
WO2019117169A1 (ja) 電流センサ
JP2013120177A (ja) 電流検出装置
JP2010078537A (ja) 電流センサ
JP2009168790A (ja) 電流センサ
JP2014010012A (ja) 電流センサ
JP2018081024A (ja) 電流センサ
JP5704352B2 (ja) 電流センサ
CN210894464U (zh) 电流变换器装置
JP6691264B2 (ja) 電流センサ
JP2018048840A (ja) 電流測定装置
JP5700745B2 (ja) 電流検出装置の組付け構造
WO2022204936A1 (zh) 电流传感器及车辆用电流感测系统
JP2008196950A (ja) 三相用電機部品
CN116359582A (zh) 具有定位稳定性的电流感测
JP2016148621A (ja) 電流センサ
JP2024037680A (ja) 電流測定モジュール、電流測定用導体、および、電流測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305