JP2021148442A - 測距装置、測距システム及び測距方法 - Google Patents

測距装置、測距システム及び測距方法 Download PDF

Info

Publication number
JP2021148442A
JP2021148442A JP2020045182A JP2020045182A JP2021148442A JP 2021148442 A JP2021148442 A JP 2021148442A JP 2020045182 A JP2020045182 A JP 2020045182A JP 2020045182 A JP2020045182 A JP 2020045182A JP 2021148442 A JP2021148442 A JP 2021148442A
Authority
JP
Japan
Prior art keywords
transmission
continuous
distance measuring
distance measurement
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020045182A
Other languages
English (en)
Other versions
JP7150771B2 (ja
Inventor
弘 吉田
Hiroshi Yoshida
弘 吉田
正樹 西川
Masaki Nishikawa
正樹 西川
章二 大高
Shoji Otaka
章二 大高
克也 農人
Katsuya Noujin
克也 農人
将吉 大城
Shokichi Oshiro
将吉 大城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2020045182A priority Critical patent/JP7150771B2/ja
Priority to CN202010868349.2A priority patent/CN113406559A/zh
Priority to US17/005,840 priority patent/US11860264B2/en
Publication of JP2021148442A publication Critical patent/JP2021148442A/ja
Application granted granted Critical
Publication of JP7150771B2 publication Critical patent/JP7150771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/045Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • G01S13/785Distance Measuring Equipment [DME] systems
    • G01S13/788Coders or decoders therefor; Special detection circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】測距及びデータ通信が可能な装置において送受信回路を共用化して回路規模の増大を抑制すると共に、比較的長い距離での測距を可能にする。【解決手段】実施形態の測距装置は、位相検出方式による通信型測距を採用した測距装置において、データ通信に用いる複数チャンネルでの送信が可能に構成されて、送信データを変調して得た送信信号を送信する送信回路と、前記送信回路を制御して、前記位相検出方式による測距に用いる連続波として同一チャンネル内の相互に異なる周波数を有する複数の連続波を発生させる制御部11とを具備する。【選択図】図1

Description

本発明の実施形態は、測距装置、測距システム及び測距方法に関する。
従来、測距方式には時間検出方式、周波数差検出方式、位相検出方式などがあるが、実装の簡易性から、各装置間の通信によって各装置間の距離を求める通信型位相検出方式を採用した測距システムが注目されている。
このような測距システムを携帯端末等に採用されるデータ通信装置に組込むことが考えられる。しかしながら、データ通信用の回路と測距用の回路とを組み合わせた場合、回路規模が大きくなってしまう。
また、データ通信に用いるチャンネルを利用して測距用の信号を送信する場合には、一般的にデータ通信に用いられるチャンネル間隔が比較的大きいことから、測距可能な距離が短いという欠点がある。
特表2017ー513024号公報 特開2018ー155724号公報
実施形態は、測距及びデータ通信が可能な装置において送受信回路を共用化して回路規模の増大を抑制すると共に、比較的長い距離での測距を可能にすることができる測距装置、測距システム及び測距方法を提供することを目的とする。
実施形態の測距装置は、位相検出方式による通信型測距を採用した測距装置において、データ通信に用いる複数チャンネルでの送信が可能に構成されて、送信データを変調して得た送信信号を送信する送信回路と、前記送信回路を制御して、前記位相検出方式による測距に用いる連続波として同一チャンネル内の相互に異なる周波数を有する複数の連続波を発生させる制御部とを具備する。
本発明の一実施の形態に係る測距装置を示すブロック図。 通信型測距を行う測距システムの一例を説明するための説明図。 装置30,装置40の送信信号の例を示す説明図。 測距信号の周波数成分を説明するための説明図。 実施の形態の動作を説明するためのフローチャート。 変形例を説明するための説明図。
以下、図面を参照して本発明の実施の形態について詳細に説明する。
(実施の形態)
図1は本発明の一実施の形態に係る測距装置を示すブロック図である。本実施の形態における測距装置は、FSK(Frequency Shift Keying)変調を採用したデータ通信装置を兼ねており、測距用の回路部分とデータ通信用の回路部分のうち送受信回路については共用化した構成である。また、本実施の形態においては、データ通信において用いる伝送チャンネルの1チャンネル内の帯域中の複数のCW(Continuous Wave:連続波)を測距に用いることで、比較的長い距離での測距を可能にしている。
本実施の形態は無変調キャリアであるCWを用いた位相検出方式を採用し、通信によって装置間の距離を求める通信型測距を採用する例を説明する。
図2は通信型測距を行う測距システムの一例を説明するための説明図である。図2の測距システムは、測距装置30と測距装置40との間の通信によって、装置30と装置40との間の距離を測距するものである。
装置30と装置40とは相互に同一構成である。装置30は、送信部32及び受信部33を備える。送信部32は、測距に用いるCW(以下、測距信号ともいう)を発生する。送信部32からの測距信号は、スイッチ35を介してアンテナ34に供給されて、装置40に送信される。また、装置30のアンテナ34には、装置40からの測距信号が到来する。この測距信号はスイッチ35を介して受信部33に供給されて受信される。
なお、装置40の送信部42、受信部43、アンテナ44及びスイッチ45は、それぞれ装置30の送信部32、受信部33、アンテナ34及びスイッチ35と同様の構成である。これにより、装置30からの測距信号は装置40において受信され、装置40からの測距信号は装置30において受信される。
デジタル部31,41は、相互に同様の構成であり、それぞれ装置30又は装置40の各部を制御する。即ち、デジタル部31は、送信部32に装置40に送信する測距信号を発生させ、受信部33に装置40からの測距信号を受信させる。同様に、デジタル部41は、送信部42に装置30に送信する測距信号を発生させ、受信部43に装置30からの測距信号を受信させる。
(測距演算の一例)
次に、測距演算の一例について、特許文献2に記載された手法を用いて説明する。
装置30及び装置40は、周波数fの無変調キャリアである測距信号(CW)を互いに送信すると共に受信し、周波数fの無変調キャリアである測距信号(CW)を互いに送信すると共に受信する。装置30,40の図示しない発振器によって生成される発振信号の角周波数ω,ωを用いて、周波数2πf=ω−ωとし、2πf=ω+ωと表現するものとする。装置30,40の図示しない発振器の発振信号の周波数は厳密には同一とはならない。このずれを考慮して、装置30は、角周波数がωC1+ωB1の送信信号と角周波数がωC1−ωB1の送信信号との2波の送信信号を送信するものとする。同様に、装置40は、角周波数がωC2+ωB2の送信信号と角周波数がωC2−ωB2の送信信号との2波の送信信号を送信するものとする。装置30,40は互いの送信信号を受信する。
また、装置30の角周波数がωC1の発振信号の初期位相はθC1であり、周波数がωB1の発振信号の初期位相はθB1であるものとし、装置40の角周波数がωC2の発振信号の初期位相はθC2であり、周波数がωB2の発振信号の初期位相はθB2であるものとする。
装置30から装置40に送信される送信信号のうち、角周波数ωC1+ωB1の送信信号が装置40において遅延τ後に受信されるまでに生じる位相シフト量をθH1(t)とし、角周波数ωC1−ωB1の送信信号が装置40において受信されるまでに生じる位相シフト量をθL1(t)とする。
同様に、装置40から装置30に送信される送信信号のうち、角周波数ωC2+ωB2の送信信号が装置30において遅延τ後に受信されるまでに生じる位相シフト量をθH2(t)とし、角周波数ωC2−ωB2の送信信号が装置30において受信されるまでに生じる位相シフト量をθL2(t)とする。
この場合には、下記(1)式が成立することが特許文献2に示されている。
{θH1(t)−θL1(t)}+{θH2(t)−θL2(t)}=(θτH1−θτL1)+(θτH2−θτL2) …(1)
但し、
θτH1=(ωC1+ωB1)τ …(2)
θτH2=(ωC2+ωB2)τ …(3)
θτL1=(ωC1−ωB1)τ …(4)
θτL2=(ωC2−ωB2)τ …(5)
である。
装置30、装置40間の電波の遅延τ,τは進行方向によらず同じなので、(1)式から下記(6)式が得られる。
{θH1(t)−θL1(t)}+{θH2(t)−θL2(t)}=(θτH1−θτL1)+(θτH2−θτL2
=2×(ωB1+ωB2)τ …(6)
電波の速度をcとし、装置30と装置40との間の距離をRとし、遅延時間をτとすると、τ=R/cである。これを(6)式に代入して、下記(7)式が得られる。
(1/2)×{(θτH1−θτL1)+(θτH2−θτL2)}=(ωB1+ωB2)×(R/c) …(7)
この(7)式から、装置30と装置40との間の距離Rは、角周波数ωB1,ωB2と、装置30が受信した2周波から求めた位相差と装置40が受信した2周波から求めた位相差との加算結果とによって算出できることが分かる。
なお、上記(7)式は、装置30,40において送受信する処理が同時に行われた場合の例である。しかしながら、国内電波法の規定から、同時送受信ができない周波数帯が存在する。そこで、特許文献2では、時系列送受信の場合に対応した例を開示している。
図3は矢印によってこの場合の装置30,装置40の送信信号の例を示す説明図である。図3に示すシーケンスでは、下記(8)式が成立する。ここで、t0、D、Tは図3に示した遅延時間を表す。
θH1(t)+θH2(t+t)+θH1(t+t+D)+θH2(t+D)
−{θL1(t+T)+θL2(t+t+T)+θL1(t+t+D+T)+θL2(t+D+T)}
=2{(θτH1−θτL1)+(θτH2−θτL2)}=4×(ωB1+ωB2)τ …(8)
即ち、図3のシーケンスにおいては、装置30は、所定タイミングで角周波数がωC1+ωB1の送信波(以下、送信波H1Aという)を送信する。装置40は、送信波H1Aの受信直後に、角周波数がωC2+ωB2の送信波(以下、送信波H2Aという)を送信する。更に、装置40は、送信波H2Aの送信後に角周波数がωC2+ωB2の送信波(以下、送信波H2Bという)を再度送信する。装置30は、2回目の送信波H2Bの受信後に、再び角周波数がωC1+ωB1の送信波(以下、送信波H1Bという)を送信する。
更に装置30は、角周波数がωC1−ωB1の送信波(以下、送信波L1Aという)を送信する。装置40は、送信波L1Aの受信直後に、角周波数がωC2−ωB2の送信波(以下、送信波L2Aという)を送信する。更に、装置40は、送信波L2Aの送信後に角周波数がωC2−ωB2の送信波(以下、送信波L2Bという)を再度送信する。装置30は、2回目の送信波L2Bの受信後に、再び角周波数がωC1−ωB1の送信波(以下、送信波L1Bという)を送信する。
こうして、図3に示すように、装置40は、所定の基準時間0から所定時間において送信波H1Aに基づく位相θH1(t)を取得し、時間t+Dから所定時間において送信波H1Bに基づく位相θH1(t+t+D)を取得し、時間Tから所定時間において送信波L1Aに基づく位相θL1(t+T)を取得し、時間t+D+Tから所定時間において送信波L1Bに基づく位相θL1(t+t+D+T)を取得する。
また、装置30は、時間tから所定時間において送信波H2Aに基づく位相θH2(t+t)を取得し、時間Dから所定時間において送信波H2Bに基づく位相θH2(t+D)を取得し、時間t+Tから所定時間において送信波L2Aに基づく位相θL2(t+t+T)を取得し、時間D+Tから所定時間において送信波L2Bに基づく位相θL2(t+D+T)を取得する。
装置30又は40の少なくとも一方は、他方に、位相情報、即ち、求めた4つの位相又は2つの位相差又は位相差の上記(8)式の演算結果を送信する。位相情報を受信した装置30又は40の制御部は、上記(8)式の演算によって、距離を算出する。
(構成)
図1は図2の装置30(又は40)の具体的な構成の一例を示している。送受信回路20は、図2の送信部32,42及び受信部33,43に対応する。また、図1では、制御部11、送信データ処理部12、測距信号送信処理部13、受信データ処理部14、測距処理部15、スイッチ16,17により、図2のデジタル部31,41を構成している。
制御部11は、図1の測距装置の各部を制御する。制御部11は、CPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)等を用いたプロセッサによって構成されていてもよく、図示しないメモリに記憶されたプログラムに従って動作して各部を制御するものであってもよいし、ハードウェアの電子回路で機能の一部又は全部を実現するものであってもよい。
送信データ処理部12及び受信データ処理部14は、データ通信のための回路であり、測距信号送信処理部13及び測距処理部15は、測距のための回路である。送受信回路20は、データ通信及び測距において共通に用いられる回路である。
送信データ処理部12の出力及び測距信号送信処理部13の出力は、スイッチ16を介して送受信回路20に供給される。スイッチ16は、制御部11に制御されて、送信データ処理部12の出力又は測距信号送信処理部13の出力を選択的に送受信回路20に与える。
送信データ処理部12は、制御部11に制御されて、送信データを発生してスイッチ16に出力する。スイッチ16は、データ通信時には送信データ処理部12の出力を選択して送受信回路20に出力する。
送受信回路20は、FSK変調により送信信号を生成すると共に、受信信号をFSK復調してベースバンド信号を生成する処理を行う。即ち、送受信回路20のデータ発生器21は、スイッチ16を介して送信データが与えられる。データ発生器21は、送信データに基づいてFSK変調のためのデータを発生して発振器22に出力する。発振器22は、入力されたデータに応じて発振周波数を変化させる。
こうして、送信データはFSK変調されて発振器22から送信信号が得られる。なお、発振器22は、複数のチャンネルに対応する複数の周波数の送信信号を発生することが可能である。制御部11は、発振器22が発生する送信信号の周波数(チャンネル)を制御することができるようになっている。
発振器22の出力はパワーアンプ23に与えられる。パワーアンプ23は、送信信号を増幅してスイッチ24を介してアンテナ25に出力する。スイッチ24は、制御部11に制御されて、送信時にはパワーアンプ23とアンテナ25とを接続し、受信時にはアンテナ25と受信信号取得部26とを接続する。こうして、送信時には、アンテナ25はパワーアンプ23からの送信信号を送信する。
アンテナ25は、受信時には、受信信号を受信して、スイッチ24を介して受信処理部26に与える。受信処理部26は受信信号に対するFSK復調処理を行い、復調信号を出力する。
送受信回路20の受信処理部26からの復調信号はスイッチ17に供給される。スイッチ17は、制御部11に制御されて、受信処理部26の出力を受信データ処理部14又は測距処理部15に選択的に与える。スイッチ17は、データ通信時には受信処理部26からの受信信号を受信データ処理部14に出力する。受信データ処理部14は、入力された受信信号から受信データを復元する。
本実施の形態においては、測距信号送信処理部13は、制御部11に制御されて、上述した2周波の測距信号を出力するための信号を発生する。本実施の形態においては、FSK変調方式での伝送を考慮して、測距信号送信処理部13は、例えば、論理値“1”に対応するハイレベル(“H”)を連続的に発生して出力する。なお、以下の説明では、連続する“1”又は“H”の連続を「連続1」というものとする。
制御部11は、測距時には、スイッチ16に測距信号送信処理部13の出力を選択させ、スイッチ17により受信処理部26の出力を測距処理部15に供給させる。測距信号送信処理部13からの連続1は、スイッチ16を介してデータ発生器21に与えられる。送受信回路20の動作は、測距時においてもデータ通信時と同様である。データ発生器21は、連続1が入力されると、発振器22から連続1に対応した周波数の発振出力を出力させる。
即ち、測距時には、発振器22の送信信号は、無変調キャリアであるCWとなる。例えば、論理値“1”に対する周波数偏位が200KHzに設定されている場合には、連続1が送受信回路20に入力されると、発振器22から所定の伝送チャンネルの中心周波数に対して+200Hzの周波数のCWが出力される。なお、発振器22からの送信信号の伝送チャンネルについては、制御部11により設定される。
ところで、第1波を連続1に対応させて発生させた手法を利用して、第2波についても、連続1に対応させて発生させることが考えられる。例えば、2つの伝送チャンネルを用いて連続1に対応した2つのCWを発生させるのである。
ところで、2波を用いた測距では、測距可能な距離は、{光速c/(f−f)}×(1/2)である。2つのチャンネルを用いて2つのCWを発生させる場合には、測距可能な距離はチャンネル間隔の制限を受ける。例えば、伝送チャンネルのチャンネル間隔が3MHzである場合には、測距結果は約50mで折り返すので、測距可能な距離は約50mとなる。
そこで、本実施の形態においては、同一チャンネルにおいて、2波の測距信号を発生させるように制御する。即ち、制御部11は、測距信号送信処理部13を制御して、連続1を発生させると共に、論理値“0”に対応するローレベル(“L”)の信号を連続的に発生して出力する。なお、連続する“0”又は“L”の連続を「連続0」と言うものとする。
データ発生器21は、連続0が入力されると、発振器22から論理値“0”に対応した周波数の発振出力を出力させる。即ち、この場合の発振器22からの送信信号も、無変調キャリアであるCWとなる。例えば、論理値“0”に対する周波数偏位が−200KHzに設定されている場合には、連続0が送受信回路20に入力されると、発振器22から所定の伝送チャンネルの中心周波数に対して−200Hzの周波数のCWが出力される。
本実施の形態においては、測距信号の2波のうち第1波としては例えば連続1に対応させて所定のチャンネルで発生したCWを用い、第2波としては例えば連続0に対応させて第1波と同一チャンネルにおいて発生したCWを用いるように制御する。
制御部11は、測距時には、スイッチ16に測距信号送信処理部13の出力を選択させ、スイッチ17により受信処理部26の出力を測距処理部15に供給させる。測距信号送信処理部13からの連続1又は連続0は、スイッチ16を介してデータ発生器21に与えられる。送受信回路20の動作は、測距時においてもデータ通信時と同様である。データ発生器21は、連続1が入力されると、発振器22から連続1に対応した周波数の発振出力を出力させ、連続0が入力されると、発振器22から連続0に対応した周波数の発振出力を出力させる。即ち、測距時には、発振器22の送信信号は、無変調キャリアであるCWとなり、2波の送信信号周波数の差は、論理値“1”,“0”に対応して設定された周波数偏位量に対応したものとなる。
例えば、論理値“1”に対する周波数偏位が200KHzに設定されている場合には、連続1が送受信回路20に入力されると、発振器22から所定の伝送チャンネルの中心周波数に対して+200Hzの周波数のCWが出力される。本実施の形態においては、この場合のCWが上述した測距信号の2波のうちの周波数fの信号として用いるようになっている。
また、本実施の形態においては、論理値“0”に対する周波数偏位を−200KHzに設定し、連続0が送受信回路20に入力されると、発振器22から周波数fを有する伝送チャンネルの中心周波数に対して−200Hzの周波数のCWを出力するように構成される。本実施の形態においては、この場合のCWを上述した測距信号の2波のうちの周波数fの信号として用いるようになっている。
次に、このように構成された実施の形態の動作について図4及び図5を参照して説明する。図4は測距信号の周波数成分を説明するための説明図であり、図5は実施の形態の動作を説明するためのフローチャートである。
図4は横軸に周波数をとり、データ通信に用いられる所定のN個のチャンネル(ch)の伝送帯域を示しており、上向きの矢印は各チャンネルの中心周波数を示している。本実施の形態においては、図4に示すN個の伝送チャンネルを用いて、データ通信及び測距を行う。図4の伝送チャンネルは、1チャンネル当たり3MHzの帯域を有する(チャンネル間隔が3MHz)例を示しているが、チャンネル間隔は特に限定されるものではない。
また、図4の例では、所定の1チャンネルの帯域を拡大して下段に示しており、上向き破線矢印は隣接する2つのチャンネルの中心周波数に対応する。発振器22は、データ“1”に対応する周波数偏位が200KHz、データ“0”に対応する周波数偏位が−200KHzとなる発振出力を発生するように構成されている例を示している。
制御部11は、図5のステップS1において、測距モードが設定されているかデータ通信モードが設定されているかを判定する。例えば、制御部11は、図示しないホストからの要求に応じて、測距モードとデータ通信モードとを設定するようになっていてもよい。例えば、ホストは、ユーザ操作に従って、測距モードとデータ通信モードとを指定してもよい。
制御部11は、測距モードが設定されていないと判定した場合には、データ通信モードに応じた処理を行う(ステップS2)。即ち、制御部11は、送信データ処理部12及び受信データ処理部14を制御して、データ通信を行う。送信データ処理部12は、送信データを発生する。この送信データは、スイッチ16を介して送受信回路20のデータ発生器21に供給される。データ発生器21は、送信データに基づいてFSK変調のためのデータを発生して発振器22の発振周波数を変化させる。これにより、発振器22から送信データに応じたFSK被変調信号が発生する。発振器22からのFSK被変調信号(送信信号)は、パワーアンプ23によって増幅された後、スイッチ24を介してアンテナ25に供給されて送信される。
アンテナ25に誘起した受信信号は、スイッチ24を介して受信処理部26に供給される。受信処理部26は、受信信号をFSK復調して、復調信号を得る。この復調信号は、データ通信モード時には、スイッチ17を介して受信データ処理部14に供給される。受信データ処理部14によって、入力された受信信号から受信データが復元される。こうして、データ通信モードにおいて、データの送受信が行われる。
制御部11は、測距モードが設定されていると判定した場合には、処理をステップS1からステップS3に移行する。例えば、ユーザは、図1の測距装置を含む端末と他機との間の距離を求めたい場合には、測距モードを指定する。測距モードが指定されると、制御部11は、ステップS3において第1波送信タイミングになったか否かを判定し、NO判定の場合にはステップS6において第2波送信タイミングになったか否かを判定し、ここでNO判定の場合にはステップS9において受信タイミングになったか否かを判定する。
例えば、制御部11は、データ通信における所定のパケットにおいて測距モードを実行して、測距信号の送信及び受信を行うように制御してもよい。制御部11は、ステップS3において、第1波の送信タイミングになったことを検出すると、測距信号送信処理部13に連続1を発生させる(ステップS4)。
測距信号送信処理部13からの連続1はスイッチ16を介してデータ発生器21に供給される。データ発生器21は、発振器22から連続1に対応した発振出力、即ち、発振周波数がチャンネルの中心周波数+200KHzの無変調キャリアであるCWを第1波出力として発生させる(ステップS5)。例えば、データ発生器21は、発振器22から図4の第nチャンネル(ch)の中心周波数+200KHzの測距信号CW1を第1波として発生させる。この第1波は、パワーアンプ23により増幅された後、スイッチ24を介してアンテナ25に供給されて送信される。
次に、制御部11は、ステップS3において、第1波の送信タイミングでないと判定した場合には、ステップS6において、第2波の送信タイミングになったか否かを判定する。制御部11は、第2波の送信タイミングになったものと判定すると、測距信号の第2波の送信を行う。
本実施の形態においては、制御部11は、第1波と同一チャンネルにおいて第2波の測距信号を発生させるために、測距信号送信処理部13に連続0を発生させる(ステップS7)。測距信号送信処理部13からの連続0はスイッチ16を介してデータ発生器21に供給される。データ発生器21は、発振器22から連続0に対応した発振出力、即ち、発振周波数が第1波を含むチャンネルの中心周波数−200KHzの無変調キャリアであるCWを第2波出力として発生させる(ステップS5)。例えば、第1波が図4の測距信号CW1である場合には、データ発生器21は、発振器22から第nチャンネル(ch)の中心周波数−200KHzの測距信号CW2を第2波として発生させる。この第2波は、パワーアンプ23により増幅された後、スイッチ24を介してアンテナ25に供給されて送信される。
こうして、送受信回路20からは、同一チャンネル内の2波の測距信号が出力される。図4の例では、これらの測距信号であるCW1,CW2の周波数間隔は400KHzである。従って、この場合には、測距結果は約375mで折り返すので、測距可能な距離を約375mまで延長できる。なお、2波の測距信号を隣接するチャンネルのCW1,CW3とした場合には、上述したように、測距可能な距離は約50mしかない。
制御部11は、ステップS6において、第2波の送信タイミングでないと判定した場合には、ステップS9において、受信タイミングになったか否かを判定する。制御部11は、受信タイミングになったものと判定すると、スイッチ24を制御して、アンテナ25に誘起した受信信号を受信処理部26に供給し、FSK復調により復調信号を得る。測距処理部15は、スイッチ17を介して復調信号を取り込んで、位相を検出する。測距処理部15は、位相の検出結果を用いて、自機と他機との間の距離を求める測距演算を行う。
なお、特許文献2の手法を採用する場合には、自機又は他機は、位相の検出結果を相手の機器に伝送する必要がある。制御部11は、この位相情報を、例えば、送信データ処理部12を用いたデータ通信によって相手機器に伝送するようにしてもよい。またあるいは、制御部11は、相手機器からの位相情報をデータ通信によって受信するようにしてもよい。
このように本実施の形態においては、FSK変調を採用したデータ通信用の回路部分と、測距用の回路部分とのうち送受信回路については共用化した構成とすることができ、回路規模が増大することを抑制することができる。また、本実施の形態においては、データ通信において用いる伝送チャンネルの1チャンネル内の帯域中の複数のCWを測距信号に用いており、比較的長い距離での測距が可能である。
また、本実施の形態においては、1つの伝送チャンネル内で2波のCWを発生させており、連続1のみを用いて1伝送チャンネル内で1つのCWのみを発生させる場合に比べて、測距信号に利用可能なCWの数を多くすることができ、測距精度を向上させることが可能である。
なお、図1においては、測距及びデータ通信における送信装置と受信装置との両方を含む装置を示したが、送信装置と受信装置とを別体に構成してもよく、図1の制御部11、送信データ処理部12、測距信号送信処理部13、スイッチ16、データ発生器21、発振器22、パワーアンプ23及びアンテナ25によって、測距用送信装置を構成することが可能である。同様に、図1の制御部11、受信データ処理部14、測距処理部15、スイッチ17、受信処理部26及びアンテナ25によって測距用受信装置を構成することが可能である。
また、制御部11だけでなく、送信データ処理部12、測距信号送信処理部13、受信データ処理部14及び測距処理部15についても、CPUやFPGA等を用いたプロセッサによって構成されていてもよく、図示しないメモリに記憶されたプログラムに従って動作して各部を制御するものであってもよいし、ハードウェアの電子回路で機能の一部又は全部を実現するものであってもよい。
(変形例)
上記実施の形態においては、2波の測距信号を1つの伝送チャンネル内において発生させる例について説明したが、異なる伝送チャネルで発生させてもよい。例えば、図4の(n−1)チャンネル内のCW3とnチャンネル内のCW2とを2波の測距信号としてもよい。
この場合においても、測距可能な距離を多少は延長することが可能である。
(変形例)
図6は変形例を説明するための説明図である。図6は横軸に距離をとり縦軸に位相をとって、2つの測距結果を示している。
2πを超えた検出位相差を検出することはできないことから、測距結果には折り返しが生じ、算出された検出位相差に対して複数の距離の候補が存在する。上記実施の形態においては、同一チャンネル内の2波のCW(測距信号)を発生させており、折り返えされる距離を長くすることが可能である。しかし、同一チャンネル内の2波のCWを用いた測距結果は、測距精度が比較的低いことが考えられる。そこで、本変形例では、同一チャンネル内の2波のCWは、折り返しの補正のみに用い、測距結果は他のCWの組を用いて行う。
図6は実線により、同一チャンネル内の2波のCWの組(以下、折り返し補正用CWの組という)以外の2波のCWの組(以下、測距用CWの組という)による測距結果を示している。測距用CWの組は、2つのCWの周波数の差が比較的大きくなるように、伝送チャンネルが選択されている。従って、測距用CWの組を用いた測距では折り返される距離は比較的短い反面、測距精度は比較的高い。
図6は上述した(7)式の左辺をθdetとして、距離Rとθdetとの関係を示すものである。図6の実線は測距用CWの組を用いた場合の例であり、破線は折り返し補正用のCWの組を用いた例である。なお、上記(7)式で計算される検出位相差の和θdetは、−π(rad)とπ(rad)の間以外の値も取り得るが、図6に示す検出位相差の和θdetは、−π(rad)とπ(rad)の間に変換したものである。これは、一般に、位相角は範囲[−π(rad),π(rad)]内で表示されることによる。
図6の実線に示すように、測距用CWの組を用いた場合には、検出位相差の和θdetの変化に対する距離の変化が小さいことから、高い測距精度が得られることが分かる。測距用CWの組を用いた場合において検出位相差の和θdet0が得られたものとすると、図6に示すように、測距結果の距離の候補としては、R、R、Rがある。
一方、折り返し補正用CWの組を用いて得られた検出位相差の和と距離との関係を、図6の破線にて示してある。図6の破線は、折り返される距離が比較的長いことを示している。R、R、Rのうち測距結果として正しい距離を選択するには、これらの距離のうち折り返し補正用CWの組を用いて得られた検出位相差の和から得た距離近傍の距離を選べばよい。例えば、折り返し補正用CWの組を用いてθdet1が検出された場合には、測距用CWの組を用いて得られた距離Rが正しい測距結果と判断することができる。このように、同一チャンネル内の2波のCWの組は、測距結果の折り返しの補正に用いる。
なお、図6では測距用CWの組として1組のみを用いる例を示したが、複数の組を用いてもよい。また、測距用CWの組として、連続1に対応する所定チャンネルのCWと連続0に対応する他のチャンネルのCWとの組を採用してもよく、連続1同士又は連続0同士に対応する相互に異なるチャンネルのCWの組を採用してもよい。
なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
11…制御部、12…送信データ処理部、13…測距信号送信処理部、14…受信データ処理部、15…測距処理部、16,17,24…スイッチ、20…送受信回路、21…データ発生器、22…発振器、23…パワーアンプ、25…アンテナ、26…受信処理部。

Claims (6)

  1. 位相検出方式による通信型測距を採用した測距装置において、
    データ通信に用いる複数チャンネルでの送信が可能に構成されて、送信データを変調して得た送信信号を送信する送信回路と、
    前記送信回路を制御して、前記位相検出方式による測距に用いる連続波として同一チャンネル内の相互に異なる周波数を有する複数の連続波を発生させる制御部と
    を具備する測距装置。
  2. 前記送信回路は、FSK変調により前記送信信号を得るものであり、
    前記送信データとして連続1及び連続0を発生して前記送信回路に与える測距信号送信処理部を具備し、
    前記制御部は、測距モードにおいて、前記同一チャンネル内の複数の連続波を発生させるために、前記測距信号送信処理部に連続1及び連続0を発生させて前記送信回路に供給させる
    請求項1に記載の測距装置。
  3. 前記測距信号送信処理部は、前記連続1と連続0とを時分割に前記送信回路に与え、
    前記送信回路は、同一チャンネル内において、前記連続1に基づく連続波と前記連続0に基づく連続波とを時分割に発生する
    請求項2に記載の測距装置。
  4. 請求項1に記載の測距装置と同一構成の複数の測距装置を備え、
    前記複数の測距装置同士で、前記同一チャンネル内の相互に異なる周波数を有する複数の連続波を送受信して測距結果を得る
    測距システム。
  5. 前記複数チャンネルを用いて複数の連続波を発生させて前記複数の測距装置同士で送受信して得た測距結果の折り返しを、前記同一チャンネル内の複数の連続波を前記複数の測距装置同士で送受信して得た測距結果を用いて補正する
    請求項4に記載の測距システム。
  6. 位相検出方式による通信型測距を採用した測距方法において、
    送信データとして連続1及び連続0を発生し、
    送信データをFSK変調して送信信号を送信する送信回路に対して前記連続1及び連続0を与えることで、データ通信に用いる複数チャンネルのうちの所定のチャンネル内の相互に異なる周波数を有する複数の連続波を測距のための送信信号として発生させる
    測距方法。
JP2020045182A 2020-03-16 2020-03-16 測距装置、測距システム及び測距方法 Active JP7150771B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020045182A JP7150771B2 (ja) 2020-03-16 2020-03-16 測距装置、測距システム及び測距方法
CN202010868349.2A CN113406559A (zh) 2020-03-16 2020-08-26 测距装置、测距系统以及测距方法
US17/005,840 US11860264B2 (en) 2020-03-16 2020-08-28 Ranging apparatus, ranging system and ranging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020045182A JP7150771B2 (ja) 2020-03-16 2020-03-16 測距装置、測距システム及び測距方法

Publications (2)

Publication Number Publication Date
JP2021148442A true JP2021148442A (ja) 2021-09-27
JP7150771B2 JP7150771B2 (ja) 2022-10-11

Family

ID=77663723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020045182A Active JP7150771B2 (ja) 2020-03-16 2020-03-16 測距装置、測距システム及び測距方法

Country Status (3)

Country Link
US (1) US11860264B2 (ja)
JP (1) JP7150771B2 (ja)
CN (1) CN113406559A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180246199A1 (en) * 2015-08-31 2018-08-30 Valeo Comfort And Driving Assistance Method for determining a distance between a vehicle and a vehicle access and starter identifier
JP2018155725A (ja) * 2017-03-17 2018-10-04 株式会社東芝 測距装置及び測距方法
JP2019128341A (ja) * 2018-01-25 2019-08-01 株式会社東芝 測距装置及び測距方法
JP2019174417A (ja) * 2018-03-29 2019-10-10 株式会社東海理化電機製作所 測距システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299044A (en) * 1992-08-24 1994-03-29 At&T Bell Laboratories Ranging method for use in TDMA systems on tree-and-branch optical networks
AU3833500A (en) * 1999-03-30 2000-10-16 Nexus Telocation Systems, Ltd. Phase modulation technique for pulsed frequency shift keying circuits
EP1217781B1 (en) * 2000-12-20 2005-04-27 Agilent Technologies, Inc. (a Delaware corporation) Detecting preambles of data packets
US6731908B2 (en) * 2001-01-16 2004-05-04 Bluesoft, Inc. Distance measurement using half-duplex RF techniques
JP3988520B2 (ja) * 2002-04-25 2007-10-10 株式会社デンソー ホログラフィックレーダ
JP2004241886A (ja) * 2003-02-04 2004-08-26 Nec Mobiling Ltd 周波数制御回路、及びそれを用いた無線送受信装置とその周波数制御方法
KR101008573B1 (ko) * 2010-06-18 2011-01-17 삼성탈레스 주식회사 전파간섭계를 이용한 fmcw 레이더 및 위상 정렬 방법
DE102014104273A1 (de) 2014-03-26 2015-10-01 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren in einem Radarsystem, Radarsystem bzw. Vorrichtung eines Radarsystems
JP6323298B2 (ja) 2014-10-30 2018-05-16 株式会社デンソー 電子キーシステム及び携帯機
JP6716984B2 (ja) 2016-03-16 2020-07-01 株式会社デンソー 物標検出装置
JP6912301B2 (ja) 2017-03-17 2021-08-04 株式会社東芝 測距装置
US10976419B2 (en) 2017-03-17 2021-04-13 Kabushiki Kaisha Toshiba Distance measuring device and distance measuring method
JP6701124B2 (ja) 2017-06-07 2020-05-27 三菱電機株式会社 レーダ装置
CN110082746B (zh) * 2018-01-25 2023-06-09 株式会社东芝 测距装置以及测距方法
CN109375167B (zh) * 2018-07-12 2023-09-01 中国矿业大学 井下无源动目标定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180246199A1 (en) * 2015-08-31 2018-08-30 Valeo Comfort And Driving Assistance Method for determining a distance between a vehicle and a vehicle access and starter identifier
JP2018155725A (ja) * 2017-03-17 2018-10-04 株式会社東芝 測距装置及び測距方法
JP2019128341A (ja) * 2018-01-25 2019-08-01 株式会社東芝 測距装置及び測距方法
JP2019174417A (ja) * 2018-03-29 2019-10-10 株式会社東海理化電機製作所 測距システム

Also Published As

Publication number Publication date
US20210286065A1 (en) 2021-09-16
JP7150771B2 (ja) 2022-10-11
CN113406559A (zh) 2021-09-17
US11860264B2 (en) 2024-01-02

Similar Documents

Publication Publication Date Title
JPS5815341A (ja) 送信ダイバーシティ信号の送信方法および装置
JP2008199411A (ja) 周波数切替装置装置及びこれを利用したrfidシステム、距離測定装置
JPS6044628B2 (ja) 測距援助方法
US4121159A (en) Method for the synchronization of a transmission path
KR100446405B1 (ko) 국부 발진 신호 공급 방법 및 그 회로
JPS5899773A (ja) デフアレンシヤル・オメガシステムの位相補正値受信装置
JP2021148442A (ja) 測距装置、測距システム及び測距方法
JP2004356927A (ja) 無線通信装置
JP2013205101A (ja) 無線端末距離測定システム、距離測定装置
JP4126043B2 (ja) 位相復調器および携帯電話装置
JP2820143B2 (ja) 自動周波数制御方式
JP2007329573A (ja) 短距離無線伝送用送受信機
KR100565786B1 (ko) 협대역 장치만을 이용한 광대역 직교 변조 신호 발생 장치및 방법
JP2014115225A (ja) 比較的に狭帯域の無線信号を用いた相互間距離測定装置
JPH01199185A (ja) マイクロ波通信装置
JP2919204B2 (ja) 送受信装置
JP3180403B2 (ja) 送受信装置
JP3387112B2 (ja) 送信装置
JP2800545B2 (ja) 送信周波数制御装置
RU2219660C2 (ru) Линия радиосвязи
JPH03243033A (ja) 送受信クロック発生回路
JPH09326752A (ja) 移動体通信端末装置
JP3018453B2 (ja) 通信方式
JP2694762B2 (ja) 両側帯波振幅変調位相2重伝送方式
JP4485039B2 (ja) 無線装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R150 Certificate of patent or registration of utility model

Ref document number: 7150771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150