JP2021140699A - 特定領域検知装置 - Google Patents

特定領域検知装置 Download PDF

Info

Publication number
JP2021140699A
JP2021140699A JP2020040344A JP2020040344A JP2021140699A JP 2021140699 A JP2021140699 A JP 2021140699A JP 2020040344 A JP2020040344 A JP 2020040344A JP 2020040344 A JP2020040344 A JP 2020040344A JP 2021140699 A JP2021140699 A JP 2021140699A
Authority
JP
Japan
Prior art keywords
point
vector
points
unit
specific area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020040344A
Other languages
English (en)
Inventor
修作 浅田
Shusaku Asada
修作 浅田
嘉人 小久保
Yoshihito Kokubo
嘉人 小久保
恵久 末次
Shigehisa Suetsugu
恵久 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Corp filed Critical Aisin Corp
Priority to JP2020040344A priority Critical patent/JP2021140699A/ja
Priority to DE102021105073.1A priority patent/DE102021105073A1/de
Publication of JP2021140699A publication Critical patent/JP2021140699A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30264Parking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

【課題】撮影画像から駐車区画などの特定領域を高精度で検知する。【解決手段】特定領域検知装置は、学習モデルを用いて、推定用撮影画像から、複数の第1の点と、複数の第2の点と、を推定する点推定部と、前記点に関する第1のベクトルと第2のベクトルの双方向ベクトルを推定するベクトル推定部と、第1のベクトルの終点から第2の点までの距離である第1の距離と、第2のベクトルの終点から第1の点までの距離である第2の距離と、を比較し、第1の距離のほうが小さければ第1のベクトルを選択し、第2の距離のほうが小さければ第2のベクトルを選択する選択部と、選択部によって選択されたベクトルに基づいて、推定用撮影画像における特定領域ごとの第1の点と第2の点の組み合わせを決定する決定部と、決定部による点の組み合わせの決定結果に基づいて、前記特定領域を検知する検知部と、を備える。【選択図】図3

Description

本発明の実施形態は、特定領域検知装置に関する。
従来、例えば、車両において、駐車場を撮影し、その撮影画像から個別の駐車区画を検知する技術がある。その場合、例えば、深層学習を用いた手法の一例では、まず、撮影画像から四角形状の駐車区画の角の点を複数検出したのち、点に関するベクトルの情報を利用して同じ駐車区画を構成する点同士を結合させてグループ化することで駐車区画を検知する。
特開2018−41176号公報
Zhe Cao et al.、" OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields"、[online]、2019年5月30日、IEEE、[令和2年2月23日検索]、インターネット<URL:https://arxiv.org/pdf/1812.08008.pdf>
しかしながら、上述の従来技術では、ベクトルの誤差が大きいために駐車区画を正しく検知できない場合があるという問題があった。
そこで、実施形態の課題の一つは、撮影画像から駐車区画などの特定領域を高精度で検知することができる特定領域検知装置を提供することである。
本発明の実施形態にかかる特定領域検知装置は、例えば、学習用撮影画像を用いて撮影領域に存在する特定領域における所定の相対位置を示す第1の点、第2の点を含む所定数の点で定義される前記特定領域について学習することで作成された学習モデルを用いて、推定用撮影画像から、複数の前記第1の点と、複数の前記第2の点と、を推定する点推定部と、1つの前記第1の点と1つの前記第2の点の組み合わせについて、前記第1の点を始点とし、当該第1の点が属する特定領域における前記第2の点の位置として推定される位置を終点とする第1のベクトルを推定するとともに、前記第2の点を始点とし、当該第2の点が属する特定領域における前記第1の点の位置として推定される位置を終点とする第2のベクトルを推定するベクトル推定部と、前記第1のベクトルの終点から前記第2の点までの距離である第1の距離と、前記第2のベクトルの終点から前記第1の点までの距離である第2の距離と、を比較し、前記第1の距離のほうが小さければ前記第1のベクトルを選択し、前記第2の距離のほうが小さければ前記第2のベクトルを選択する選択部と、前記選択部によって選択されたベクトルに基づいて、前記推定用撮影画像における前記特定領域ごとの前記第1の点と前記第2の点の組み合わせを決定する決定部と、前記決定部による点の組み合わせの決定結果に基づいて、前記特定領域を検知する検知部と、を備える。
この構成によれば、特定領域を検知する際に、前記第1の点と前記第2の点の組み合わせについて前記第1のベクトルと前記第2のベクトルの双方向ベクトルを推定し、前記第1の距離と前記第2の距離の小さいほうのベクトルを選択して用いることで、特定領域を高精度で検知することができる。
また、前記特定領域検知装置において、例えば、前記特定領域は、前記第1の点、前記第2の点を含む4つの点で定義される駐車区画である。
この構成によれば、特定領域として第1の点、第2の点を含む4つの点で定義される四角形状の駐車区画を高精度で推定することができる。
また、前記特定領域検知装置において、例えば、前記決定部は、前記選択部によって選択されたベクトルに基づいて、前記推定用撮影画像における前記駐車区画ごとの前記第1の点と前記第2の点の組み合わせを決定する際に、複数の前記第1の点と複数の前記第2の点の2部グラフに対応するコスト行列を用いてコスト最小となる前記第1の点と前記第2の点の組み合わせを探索することで、前記第1の点と前記第2の点の組み合わせを決定し、その場合、前記第1の距離と前記第2の距離の小さいほうを前記コストとする。
この構成によれば、駐車区画を検知する場合に、上述の2部グラフとコスト行列を用いることで、容易かつ高精度に駐車区画を推定することができる。
また、前記特定領域検知装置において、例えば、前記決定部は、前記コスト行列に対してハンガリアン法を適用してコスト最小となる前記第1の点と前記第2の点の組み合わせを探索する。
この構成によれば、コスト行列に対してハンガリアン法を適用することで、簡潔なアルゴリズムで高精度に駐車区画を推定することができる。
また、前記特定領域検知装置は、例えば、前記検知部によって検知された前記駐車区画を表示部に表示させる表示制御部を、さらに備える。
この構成によれば、検知された駐車区画を表示させることで、運転者に対する駐車支援等を行うことができる。
図1は、実施形態の特定領域検知装置を搭載可能な車両の例を示す模式的な平面図である。 図2は、実施形態の特定領域検知装置を含む駐車支援システムの構成の例示的なブロック図である。 図3は、実施形態のCPUの構成の例示的なブロック図である。 図4は、実施形態において、駐車区画を定義する4つの角の点の説明図である。 図5は、実施形態における撮影画像の例を示す模式図である。 図6は、実施形態におけるベクトルに関する説明図である。 図7は、実施形態における2部グラフとコスト行列の例を示す模式図である。 図8は、実施形態における推奨駐車区画の表示例を示す模式図である。 図9は、実施形態の特定領域検知装置による学習時の処理を示すフローチャートである。 図10は、実施形態の特定領域検知装置による駐車支援時の全体処理を示すフローチャートである。 図11は、図10のステップS2の処理の詳細を示すフローチャートである。
以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用、結果、および効果は、例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能であるとともに、基本的な構成に基づく種々の効果や、派生的な効果のうち、少なくとも一つを得ることが可能である。
図1は、実施形態の特定領域検知装置を搭載可能な車両10の例を示す模式的な平面図である。車両10は、例えば、内燃機関(不図示のエンジン)を駆動源とする自動車(内燃機関自動車)であってもよいし、電動機(不図示のモータ)を駆動源とする自動車(電気自動車、燃料電池自動車等)であってもよいし、それらの双方を駆動源とする自動車(ハイブリッド自動車)であってもよい。また、車両10は、種々の変速装置を搭載することができるし、内燃機関や電動機を駆動するのに必要な種々の装置(システム、部品等)を搭載することができる。また、車両10における車輪12(前輪12F、後輪12R)の駆動に関わる装置の方式、個数、及び、レイアウト等は、種々に設定することができる。
図1に例示されるように、車両10には、複数の撮像部14として、例えば四つの撮像部14a〜14dが設けられている。撮像部14は、例えば、CCD(Charge Coupled Device)やCIS(CMOS Image Sensor)等の撮像素子を内蔵するデジタルカメラである。撮像部14は、所定のフレームレートで動画データ(撮像画像データ)を出力することができる。撮像部14は、それぞれ、広角レンズまたは魚眼レンズを有し、水平方向には例えば140°〜220°の範囲を撮影することができる。また、撮像部14の光軸は斜め下方に向けて設定されている場合もある。よって、撮像部14は、車両10が移動可能な路面や路面に付された指標(駐車区画を示す区画線、車線分離線や矢印等を含む)や物体(障害物として、例えば、歩行者、車両等)を含む車両10の外部の周辺環境を逐次撮影し、撮像画像データとして出力する。
撮像部14は、車両10の外周部に設けられている。撮像部14aは、例えば、車両10の後側、すなわち車両前後方向の後方側で車幅方向のほぼ中央の端部、例えばリヤバンパ10aの上方位置に設けられて、車両10の後端部(例えばリヤバンパ10a)を含む後方領域を撮像可能である。また、撮像部14bは、例えば、車両10の前側、すなわち車両前後方向の前方側で車幅方向のほぼ中央の端部、例えばフロントバンパ10bやフロントグリル等に設けられて、車両10の前端部(例えばフロントバンパ10b)を含む前方画像を撮像可能である。
また、撮像部14cは、例えば、車両10の右側の端部、例えば右側のドアミラー10cに設けられて、車両10の右側方を中心とする領域(例えば右前方から右後方の領域)を含む右側方画像を撮像可能である。撮像部14dは、例えば、車両10の左側の端部、例えば左側のドアミラー10dに設けられて、車両10の左側方を中心とする領域(例えば左前方から左後方の領域)を含む左側方画像を撮像可能である。
本実施形態の特定領域検知装置は、撮像部14で得られた撮像画像(以下、撮影画像ともいう。)に基づいて、演算処理を実行することで、特定領域の一例である駐車区画を検知することができる。
図2は、実施形態の特定領域検知装置を含む駐車支援システム100の構成の例示的なブロック図である。車両10の車室内には、表示装置16や、音声出力装置18が設けられている。表示装置16は、例えば、LCD(Liquid Crystal Display)や、OELD(Organic Electro-Luminescent Display)等である。音声出力装置18は、例えば、スピーカである。また、表示装置16は、例えば、タッチパネル等、透明な操作入力部20で覆われている。乗員(例えば、運転者)は、操作入力部20を介して表示装置16の表示画面に表示される画像を視認することができる。また、乗員は、表示装置16の表示画面に表示される画像に対応した位置で、手指等で操作入力部20を触れたり押したり動かしたりして操作することで、操作入力を実行することができる。これら表示装置16や、音声出力装置18、操作入力部20等は、例えば、車両10のダッシュボードの車幅方向すなわち左右方向の中央部に位置されたモニタ装置22に設けられている。モニタ装置22は、スイッチや、ダイヤル、ジョイスティック、押しボタン等の不図示の操作入力部を有することができる。モニタ装置22は、例えば、ナビゲーションシステムやオーディオシステムと兼用されうる。
また、図2に例示されるように、駐車支援システム100は、撮像部14(14a〜14d)やモニタ装置22に加え、ECU24(Electronic Control Unit)を備える。駐車支援システム100では、ECU24やモニタ装置22は、電気通信回線としての車内ネットワーク26を介して電気的に接続されている。車内ネットワーク26は、例えば、CAN(Controller Area Network)として構成されている。ECU24は、車内ネットワーク26を通じて制御信号を送ることで、各種システムの制御を実行できる。例えば、駐車支援システム100では、ECU24や、モニタ装置22等の他、操舵システム28、舵角センサ30、ブレーキシステム32、駆動システム34、アクセルセンサ36、シフトセンサ38、車輪速センサ40等が車内ネットワーク26を介して電気的に接続されている。ECU24は、車内ネットワーク26を通じて制御信号を送ることで、操舵システム28、ブレーキシステム32、駆動システム34等を制御することができる。また、ECU24は、車内ネットワーク26を介して、トルクセンサ28a、ブレーキセンサ32a、舵角センサ30、アクセルセンサ36、シフトセンサ38、車輪速センサ40等の検出結果や、操作入力部20等の操作信号等を、受け取ることができる。
ECU24は、例えば、CPU24a(Central Processing Unit)、ROM24b(Read Only Memory)、RAM24c(Random Access Memory)、表示制御部24d、音声制御部24e、SSD24f(Solid State Drive、フラッシュメモリ)等を備えている。CPU24aは、各種の演算処理や制御を実行する。
CPU24aは、ROM24b等の不揮発性の記憶装置に記憶されたプログラムを読み出し、当該プログラムにしたがって演算処理を実行する。ROM24bは、各プログラム及びプログラムの実行に必要なパラメータ等を記憶する。RAM24cは、CPU24aでの演算で用いられる各種のデータを一時的に記憶する。また、表示制御部24dは、ECU24での演算処理のうち、主として、撮像部14で得られた画像データを用いた画像処理や、表示装置16で表示される画像データの合成等を実行する。また、音声制御部24eは、ECU24での演算処理のうち、主として、音声出力装置18で出力される音声データの処理を実行する。また、SSD24fは、書き換え可能な不揮発性の記憶部であって、ECU24の電源がOFFされた場合にあってもデータを記憶することができる。なお、CPU24aや、ROM24b、RAM24c等は、同一パッケージ内に集積されうる。また、ECU24は、CPU24aに替えて、DSP(Digital Signal Processor)等の他の論理演算プロセッサや論理回路等が用いられる構成であってもよい。また、SSD24fに替えてHDD(Hard Disk Drive)が設けられてもよいし、SSD24fやHDDは、ECU24とは別に設けられてもよい。
図1に例示されるように、車両10は、例えば、四輪自動車であり、左右二つの前輪12Fと、左右二つの後輪12Rとを有する。これら四つの車輪12は、いずれも転舵可能に構成されうる。図2に例示されるように、操舵システム28は、車両10の少なくとも二つの車輪12を操舵する。操舵システム28は、トルクセンサ28aとアクチュエータ28bとを有する。操舵システム28は、ECU24等によって電気的に制御されて、アクチュエータ28bを動作させる。操舵システム28は、例えば、電動パワーステアリングシステムや、SBW(Steer By Wire)システム等である。操舵システム28は、アクチュエータ28bによって操舵部(例えば、ステアリングホイール)にトルク、すなわちアシストトルクを付加して操舵力を補ったり、アクチュエータ28bによって車輪12を転舵したりする。この場合、アクチュエータ28bは、一つの車輪12を転舵してもよいし、複数の車輪12を転舵してもよい。また、トルクセンサ28aは、例えば、運転者が操舵部に与えるトルクを検出する。
舵角センサ30は、例えば、操舵部の操舵量を検出するセンサである。舵角センサ30は、例えば、ホール素子などを用いて構成される。ECU24は、運転者による操舵部の操舵量や、自動操舵時の各車輪12の操舵量等を、舵角センサ30から取得して各種制御を実行する。なお、舵角センサ30は、操舵部に含まれる回転部分の回転角度を検出する。
ブレーキシステム32は、例えば、ブレーキのロックを抑制するABS(Anti-lock Brake System)や、コーナリング時の車両10の横滑りを抑制する横滑り防止装置(ESC:Electronic Stability Control)、ブレーキ力を増強させる(ブレーキアシストを実行する)電動ブレーキシステム、BBW(Brake By Wire)等である。ブレーキシステム32は、アクチュエータ32bを介して、車輪12ひいては車両10に制動力を与える。また、ブレーキシステム32は、左右の車輪12の回転差などからブレーキのロックや、車輪12の空回り、横滑りの兆候等を検出して、各種制御を実行することができる。ブレーキセンサ32aは、例えば、制動操作部(例えば、ブレーキペダル)の可動部の位置を検出するセンサである。
駆動システム34は、駆動源としての内燃機関(エンジン)システムやモータシステムである。駆動システム34は、アクセルセンサ36により検出された運転者(利用者)の要求操作量(例えばアクセルペダルの踏み込み量)にしたがいエンジンの燃料噴射量や吸気量の制御やモータの出力値を制御する。また、利用者の操作に拘わらず、車両10の走行状態に応じて、操舵システム28やブレーキシステム32の制御と協働してエンジンやモータの出力値を制御しうる。車両10が自動走行モードで走行している場合も同様である。
アクセルセンサ36は、例えば、加速操作部(例えば、アクセルペダル)の可動部の位置を検出するセンサである。アクセルセンサ36は、可動部としてのアクセルペダルの位置を検出することができる。
シフトセンサ38は、例えば、変速操作部(例えば、シフトレバー)の可動部の位置を検出するセンサである。シフトセンサ38は、可動部としての、レバーや、アーム、ボタン等の位置を検出することができる。シフトセンサ38は、変位センサを含んでもよいし、スイッチとして構成されてもよい。ECU24は、シフトセンサ38の検出結果に基づいて、車両10が前進走行要求を受けているか、後退走行要求を受けているかの判定を行うことができる。
車輪速センサ40は、各車輪12に設けられ各車輪12の回転量や単位時間当たりの回転数を検出するセンサであり、検出した回転数を示す車輪速パルス数を検出値として出力する。車輪速センサ40は、例えば、ホール素子などを用いて構成されうる。ECU24は、車輪速センサ40から取得した検出値に基づき、車両10の車速や移動量などを演算し、各種制御を実行する。ECU24は、各車輪12の車輪速センサ40の検出値に基づいて車両10の車速を算出する場合、四輪のうち最も小さな検出値の車輪12の速度に基づき車両10の車速を決定し、各種制御を実行する。
なお、上述した各種センサやアクチュエータの構成や、配置、電気的な接続形態等は、例であって、種々に設定(変更)することができる。
ECU24は、例えば、撮像部14から取得した撮影画像に基づいて、駐車支援処理を実行したり、撮像画像データに基づいて生成した周辺画像や音声に関するデータをモニタ装置22へ送信したりする。
図3は、実施形態のCPU24a(特定領域検知装置)の構成の例示的なブロック図である。CPU24aは、例えば、撮影画像に基づいて、撮影領域における駐車区画を検知する。具体的には、CPU24aは、各モジュールとして、取得部241、点推定部242、ベクトル推定部243、選択部244、決定部245、検知部246、表示制御部247、設定部248、算出部249および学習部250を備える。なお、各モジュールは、CPU24aがROM24b等の記憶装置に記憶されたプログラムを読み出し、それを実行することで実現される。また、以下において、CPU24aが行う処理のうち、各部241〜250以外が行う処理について説明する場合は、動作主体を「CPU24a」と表記する。
取得部241は、各構成から各種データを取得する。例えば、取得部241は、撮像部14から撮影画像を取得する。
以下、特定領域の一例として、第1の点、第2の点を含む4つの点で定義される駐車区画を例に挙げて説明する。ここで、図4は、実施形態において、駐車区画を定義する4つの角の点の説明図である。本実施形態の学習モデルにおいて、四角形状の駐車区画は、4つの角の点P1〜点P4で定義される。具体的には、駐車区画への車両進入方向を基準に、手前の左側の点が点P1で、手前の右側の点が点P2で、奥の右側の点が点P3で、奥の左側の点が点P4である。なお、図4では駐車区画の一部に白線が示されているが、白線は無くてもよい。
また、学習モデルは、例えば、深層学習(ディープラーニング)により作成することができる。深層学習では、この点P1〜点P4で駐車区画を定義した教師データ(正解データ)を用いて学習を行う。その場合、例えば、パラメータを用いて関数を構築し、正解データについて損失を定義し、この損失を最小化することで学習を行う。
以下では、点P1〜点P4のうちの任意の2点を第1の点、第2の点として説明する。
図3に戻って、点推定部242は、学習用撮影画像を用いて撮影領域に存在する特定領域における所定の相対位置を示す第1の点、第2の点を含む所定数の点で定義される特定領域について学習することで作成された学習モデルを用いて、推定用撮影画像から、複数の第1の点と、複数の第2の点と、を推定する。
その場合、点推定部242は、点を推定する際、点をガウシアン分布として推定し、NMS(Non Maximum Suppression)による後処理を行うことが好ましい。これにより、点の推定の精度を上げることができる。この理由の1つとしては、教師データにおける駐車区画の角の点の座標真値が人の手でピクセル単位で与えられるため、必ずしも厳密に正確な位置に真値が指定されているとは限らないことが挙げられる。そこで、推定する点をガウシアン分布として扱うことで、この真値の誤差を吸収して学習モデルを高精度に学習させることができる。
ベクトル推定部243は、1つの第1の点と1つの第2の点の組み合わせについて、第1の点を始点とし、当該第1の点が属する特定領域における第2の点の位置として推定される位置を終点とする第1のベクトルを推定するとともに、第2の点を始点とし、当該第2の点が属する特定領域における第1の点の位置として推定される位置を終点とする第2のベクトルを推定する。
選択部244は、第1のベクトルの終点から第2の点までの距離である第1の距離と、第2のベクトルの終点から第1の点までの距離である第2の距離と、を比較し、第1の距離のほうが小さければ第1のベクトルを選択し、第2の距離のほうが小さければ第2のベクトルを選択する。
決定部245は、選択部によって選択されたベクトルに基づいて、推定用撮影画像における特定領域ごとの第1の点と第2の点の組み合わせを決定する。例えば、決定部245は、選択部244によって選択されたベクトルに基づいて、推定用撮影画像における駐車区画ごとの第1の点と第2の点の組み合わせを決定する際に、複数の第1の点と複数の第2の点の2部グラフに対応するコスト行列を用いてコスト最小となる第1の点と第2の点の組み合わせを探索することで、第1の点と第2の点の組み合わせを決定し、その場合、第1の距離と第2の距離の小さいほうをコストとする。また、決定部245は、コスト行列に対してハンガリアン法を適用してコスト最小となる第1の点と第2の点の組み合わせを探索する。
検知部246は、決定部245による点の組み合わせの決定結果に基づいて、駐車区画を検知する。
ここで、点推定部242、ベクトル推定部243、選択部244、決定部245、検知部246の処理について、図5〜図7を参照して説明する。図5は、実施形態における撮影画像の例を示す模式図である。図6は、実施形態におけるベクトルに関する説明図である。図7は、実施形態における2部グラフとコスト行列の例を示す模式図である。
図5に示すように、点推定部242によって、撮影画像(魚眼画像)において、各駐車区画の角の点として、点P1a、P2a、点P1b、P2b、点P4b、点P1c、P2c、点P3c、点P4c、点P1d、P2d、点P3d、点P4dが推定されたものとする。なお、実際には各駐車区画の角の点として存在している部分でも、車両等で隠れて見えていないものは対象とならない。そして、ここでは、一例として、1つの駐車区画を構成する点P1〜点P4の4点のうち、すべてが見えていなくても、いずれか1点が見えている場合は、計算の対象とする。
ここで、図6に示すように、ベクトル推定部243は、所定の点P1と所定の点P4の点の組み合わせについて、点P1を始点とし、点P1が属する駐車区画における点P4の位置として推定される位置P1eを終点とする第1のベクトルV1を推定する。また、ベクトル推定部243は、それとともに、P4を始点とし、P4が属する駐車区画におけるP1の位置として推定される位置P4eを終点とする第2のベクトルV2を推定する。
そして、選択部244は、第1のベクトルV1の終点P1eからP4までの距離D1と、第2のベクトルV2の終点P4eからP1までの距離D2と、を比較し、距離D1のほうが小さければ第1のベクトルV1を選択し、距離D2のほうが小さければ第2のベクトルV2を選択する。
従来技術では、ベクトル推定の処理で片方向のベクトルだけを推定し、そのベクトルを利用して同じ駐車区画を構成する点同士を結合させていた。しかし、ベクトルの誤差が大きいために駐車区画を正しく検知できない場合があるという問題があった。
ここで、発明者らのこれまでの知見から、上述のように双方向ベクトル(V1、V2)を推定して、両者にずれがある場合、両方のベクトルの誤差がともに大きいことは稀であり、そして、上述の2つの距離(D1、D2)の短いほうに対応するベクトルは高精度である可能性が高いことがわかっている。そこで、本実施形態では、双方向ベクトルを推定し、上述の2つの距離(D1、D2)の短いほうに対応するベクトルを採用することで、駐車区画の検知精度を有意に高めることができるようになった。
決定部245は、点同士のマッチングを行って複数の点を駐車区画ごとに分類するため、点同士の対応を2部グラフとみなし、2部グラフの最適マッチング問題に帰着する。具体的には、決定部245は、点P1と点P4の組み合わせを決定する際に、複数の点P1と複数の点P4の2部グラフに対応するコスト行列を用いてコスト最小となる点P1と点P4の組み合わせを探索することで、点P1と点P4の点の組み合わせを決定する。その場合、距離D1と距離D2の小さいほうをコストとする。
また、最適マッチング問題を解くために、例えば、ハンガリアン法を活用することができる。ハンガリアン法とは、いわゆる割当問題を解くための手法であり、行列について、各行の各要素からその行の最小値を引き、その後さらに各列の各要素からその列の最小値を引く、等の操作を行う周知のアルゴリズムである。ここでのハンガリアン法では、2部グラフに対応するコスト行列を作成し、コスト最小の組み合わせを探索する。つまり、決定部245は、コスト行列に対してハンガリアン法を適用してコスト最小となる点P1と点P4の組み合わせを探索する。
図7(a)は、点P1(点P1a〜点P1d)と点P4(点P4a〜点P4d)を選択した場合の2部グラフを示す。また、図7(b)は、その場合のコスト行列を示す。コストS〜S16は、距離D1と距離D2の小さいほうである。
このようにして、点P1(点P1a〜点P1d)と点P4(点P4a〜点P4d)の組み合わせを探索すれば、適切な組み合わせを容易かつ高精度で得ることができる。なぜなら、同じ駐車区画に属する2点を選択したときに、上述のコストが最小になる確率が非常に高いからである。
また、点P1と点P4だけでなく、同様に、点P2と点P3、点P1と点P2等の組み合わせについても、上述の計算(マッチング)を行い、適切な組み合わせを得ることができる。
そして、検知部246は、点P1と点P4、点P2と点P3、点P1と点P2等の組み合わせに関する最尤推定の後、例えば、点P1と点P2の組み合わせを基準にして、マッチング結果を統合することで、複数の点を駐車区画ごとに分類する。なお、統合されなかった点の組み合わせについては、推定結果から除外する。
表示制御部247は、検知部246によって検知された駐車区画を表示装置16(表示部)に表示させる。ここで、図8は、実施形態における推奨駐車区画の表示例を示す模式図である。図8に示す推奨駐車区画PRは、例えば、駐車可能な駐車区画が複数ある場合の1つの駐車区画である。
図3に戻って、設定部248は、ユーザによって操作入力部を用いた目標駐車区画の入力操作があった場合に、その目標駐車区画を設定する。
算出部249は、設定部248によって目標駐車区画の設定が行われた場合に、周知の移動経路算出技術を用いて、車両の現在位置から目標駐車区画までの移動経路を算出する。
学習部250は、学習データを用いて学習モデルの学習を行う。ここで、図9を参照して、実施形態の特定領域検知装置による学習時の処理について説明する。図9は、実施形態の特定領域検知装置による学習時の処理を示すフローチャートである。
まず、ステップS101において、取得部241は、あらかじめ撮影された撮影画像に対して駐車区画の角の点の座標真値および正しい点の組み合わせのアノテーションが付与された学習データを取得する。
次に、ステップS102において、学習部250は、深層学習用の学習モデルに学習データを入力する。
次に、ステップS103において、学習部250は、駐車区画の角の点の座標と、それらの点を結合するための双方向ベクトルを推定する。
次に、ステップS104において、学習部250は、推定結果(推定によって得られた駐車区画の角の点の座標と双方向ベクトル)と、真値(真値座標とそれに基づいて算出される双方向ベクトル)との誤差を算出する。
次に、ステップS105において、学習部250は、学習終了条件を満たしたか否かを判定し、Yesの場合は処理を終了し、Noの場合はステップS106に進む。例えば、ステップS104で算出した誤差が所定値以下になった場合、学習部250は、学習終了条件を満たしたと判定する。
ステップS106において、学習部250は、誤差に基づいて学習モデルを更新する。ステップS106の後、ステップS101に戻る。
次に、図10を参照して、実施形態の特定領域検知装置による駐車支援時の全体処理について説明する。図10は、実施形態の特定領域検知装置による駐車支援時の全体処理を示すフローチャートである。この処理は、例えば、運転者が、ボタン、タッチパネル、音声認識装置などの操作入力部を用いて指示を与えることで開始する。
まず、ステップS1において、取得部241は、撮像部14から撮影画像を取得する。次に、ステップS2において、CPU24aは、駐車可能な駐車区画を検知する。ここで、図11は、図10のステップS2の処理の詳細を示すフローチャートである。
ステップS21において、点推定部242は、学習モデルを用いて、撮影画像(推定用撮影画像)から、駐車区画の角の点を推定する。
次に、ステップS22において、ベクトル推定部243は、上述の双方向ベクトルを推定する。なお、説明の都合上、ステップS21とステップS22を分けて説明したが、ステップS21、S22を並行して行ってもよい。
次に、ステップS23において、選択部244は、双方向ベクトルのうち、上述の第1の距離と第2の距離の小さいほうに対応するベクトルを選択する。
次に、決定部245は、ステップS24において、ステップS23で選択されたベクトルに基づいて、コスト行列、ハンガリアン法等を用いて点同士をマッチングし、ステップS25において、複数の点を駐車区画ごとに分類する。
次に、ステップS26において、検知部246は、ステップS25における分類結果に基づいて駐車区画を検知する。
図10に戻って、ステップS2の後、ステップS3において、CPU24aは、推定駐車区画を検知する。例えば、駐車可能な駐車区画が複数ある場合に、CPU24aは、所定の基準に基づいて1つの駐車区画を推定駐車区画として決定する。CPU24aは、例えば、カメラ画像に大きく映った(つまり、距離の近い)駐車区画や、目的地施設に近い駐車区画などを推定駐車区画として決定する。
次に、ステップS4において、表示制御部247は、ステップS3で決定した推定駐車区画を表示装置16に表示させる。
次に、ステップS5において、CPU24aは、ユーザによって操作入力部を用いた目標駐車区画の入力操作があったか否かを判定し、Yesの場合はステップS6に進み、Noの場合はステップS3に戻る。
ステップS6において、設定部248は目標駐車区画を設定し、表示制御部247は目標駐車区画が設定された旨を表示装置16に表示させる。
次に、ステップS7において、算出部249は、周知の移動経路算出技術を用いて、車両の現在位置から目標駐車区画までの移動経路を算出する。
次に、ステップS8において、CPU24aは、駐車支援を実行する。例えば、CPU24aは、駐車支援として「完全自動駐車支援」を実行する場合、操舵システム28、ブレーキシステム32、駆動システム34等を制御して、移動経路に沿って車両10を移動させる。また、CPU24aは、駐車支援として「半自動駐車支援」や「誘導支援」を実行する場合、音声や表示により操作内容を運転者に報知して運転者が操作の一部または全てを実行することにより駐車動作が実現される。そして、例えば、車両が安全に駐車スペースに駐車した場合等に、処理を終了する。
このようにして、本実施形態の特定領域検知装置によれば、特定領域を検知する際に、前記第1の点と前記第2の点の組み合わせについて前記第1のベクトルと前記第2のベクトルの双方向ベクトルを推定し、前記第1の距離と前記第2の距離の小さいほうのベクトルを選択して用いることで、特定領域を高精度で検知することができる。
また、特定領域として第1の点、第2の点を含む4つの点で定義される四角形状の駐車区画を高精度で推定することができる。
また、駐車区画を検知する場合に、上述の2部グラフとコスト行列を用いることで、容易かつ高精度に駐車区画を推定することができる。
また、コスト行列に対してハンガリアン法を適用することで、簡潔なアルゴリズムで高精度に駐車区画を推定することができる。
また、検知された駐車区画を表示させることで、運転者に対する駐車支援等を行うことができる。
なお、本実施形態のCPU24aで実行される駐車支援処理のためのプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。
さらに、駐車支援処理プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、本実施形態で実行される駐車支援処理プログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。
本発明の実施形態及び変形例を説明したが、これらの実施形態及び変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、撮影画像に基づいて検知する特定領域は、駐車区画に限定されず、人や車両などであってもよい。その場合、検知対象を所定数の点で定義すればよい。
また、学習や推論で使用する撮影画像は、魚眼画像に限定されず、広角画像、通常画像、あるいは、複数の撮影画像を元に合成された俯瞰画像等であってもよい。
また、コスト行列に用いるコストは、上述の例に限定されず、他の値であってもよい。
また、図9の学習時の処理について、例えば、学習終了条件が満たされた場合(ステップS105でYes)、誤差に基づいて学習モデルを更新して(ステップS106に相当する処理を行って)から処理を終了してもよい。
10…車両、14,14a,14b,14c,14d…撮像部、16…表示装置、20…操作入力部、24…ECU、24a…CPU、100…駐車支援システム、241…取得部、242…点推定部、243…ベクトル推定部、244…選択部、245…決定部、246…検知部、247…表示制御部、248…設定部、249…算出部、250…学習部。

Claims (5)

  1. 学習用撮影画像を用いて撮影領域に存在する特定領域における所定の相対位置を示す第1の点、第2の点を含む所定数の点で定義される前記特定領域について学習することで作成された学習モデルを用いて、推定用撮影画像から、複数の前記第1の点と、複数の前記第2の点と、を推定する点推定部と、
    1つの前記第1の点と1つの前記第2の点の組み合わせについて、前記第1の点を始点とし、当該第1の点が属する特定領域における前記第2の点の位置として推定される位置を終点とする第1のベクトルを推定するとともに、前記第2の点を始点とし、当該第2の点が属する特定領域における前記第1の点の位置として推定される位置を終点とする第2のベクトルを推定するベクトル推定部と、
    前記第1のベクトルの終点から前記第2の点までの距離である第1の距離と、前記第2のベクトルの終点から前記第1の点までの距離である第2の距離と、を比較し、前記第1の距離のほうが小さければ前記第1のベクトルを選択し、前記第2の距離のほうが小さければ前記第2のベクトルを選択する選択部と、
    前記選択部によって選択されたベクトルに基づいて、前記推定用撮影画像における前記特定領域ごとの前記第1の点と前記第2の点の組み合わせを決定する決定部と、
    前記決定部による点の組み合わせの決定結果に基づいて、前記特定領域を検知する検知部と、を備える特定領域検知装置。
  2. 前記特定領域は、前記第1の点、前記第2の点を含む4つの点で定義される駐車区画である、請求項1に記載の特定領域検知装置。
  3. 前記決定部は、前記選択部によって選択されたベクトルに基づいて、前記推定用撮影画像における前記駐車区画ごとの前記第1の点と前記第2の点の組み合わせを決定する際に、
    複数の前記第1の点と複数の前記第2の点の2部グラフに対応するコスト行列を用いてコスト最小となる前記第1の点と前記第2の点の組み合わせを探索することで、前記第1の点と前記第2の点の組み合わせを決定し、その場合、前記第1の距離と前記第2の距離の小さいほうを前記コストとする、請求項2に記載の特定領域検知装置。
  4. 前記決定部は、前記コスト行列に対してハンガリアン法を適用してコスト最小となる前記第1の点と前記第2の点の組み合わせを探索する、請求項3に記載の特定領域検知装置。
  5. 前記検知部によって検知された前記駐車区画を表示部に表示させる表示制御部を、さらに備える、請求項2に記載の特定領域検知装置。
JP2020040344A 2020-03-09 2020-03-09 特定領域検知装置 Pending JP2021140699A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020040344A JP2021140699A (ja) 2020-03-09 2020-03-09 特定領域検知装置
DE102021105073.1A DE102021105073A1 (de) 2020-03-09 2021-03-03 Vorrichtung zum Erfassen eines bestimmten Bereichs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040344A JP2021140699A (ja) 2020-03-09 2020-03-09 特定領域検知装置

Publications (1)

Publication Number Publication Date
JP2021140699A true JP2021140699A (ja) 2021-09-16

Family

ID=77389015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040344A Pending JP2021140699A (ja) 2020-03-09 2020-03-09 特定領域検知装置

Country Status (2)

Country Link
JP (1) JP2021140699A (ja)
DE (1) DE102021105073A1 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761708B2 (ja) 2016-09-05 2020-09-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 駐車位置特定方法、駐車位置学習方法、駐車位置特定システム、駐車位置学習装置およびプログラム

Also Published As

Publication number Publication date
DE102021105073A1 (de) 2021-09-09

Similar Documents

Publication Publication Date Title
JP6724425B2 (ja) 駐車支援装置
JP6883238B2 (ja) 駐車支援装置
CN107792061B (zh) 停车辅助装置
US11628832B2 (en) Parking assistance device
CN104015659A (zh) 停车支援装置、停车支援方法
JP2016084094A (ja) 駐車支援装置
US20220036097A1 (en) Road surface detection device and road surface detection program
EP3291545B1 (en) Display control device
JP2018133712A (ja) 周辺監視装置
US11301701B2 (en) Specific area detection device
JP7003755B2 (ja) 駐車支援装置
JP2021154969A (ja) 障害物検知装置、障害物検知方法、および、プログラム
JP2022023870A (ja) 表示制御装置
WO2023054238A1 (ja) 駐車支援装置
JP7395913B2 (ja) 物体検知装置
JP7363343B2 (ja) 駐車支援装置、駐車支援方法、および、駐車支援プログラム
JP2021062658A (ja) 駐車支援装置、駐車支援方法、および駐車支援プログラム
JP2021140699A (ja) 特定領域検知装置
JP7427907B2 (ja) 駐車支援装置
JP7415422B2 (ja) 駐車支援装置
JP7114919B2 (ja) 走行支援装置
JP2021062752A (ja) 駐車支援装置、駐車支援方法、および駐車支援プログラム
JP2021081989A (ja) カメラキャリブレーション装置
JP7434796B2 (ja) 駐車支援装置、駐車支援方法、および駐車支援プログラム
JP2021062727A (ja) 駐車支援装置、駐車支援方法及び駐車支援プログラム