JP2021128032A - トルク測定装置及びその製造方法 - Google Patents

トルク測定装置及びその製造方法 Download PDF

Info

Publication number
JP2021128032A
JP2021128032A JP2020021930A JP2020021930A JP2021128032A JP 2021128032 A JP2021128032 A JP 2021128032A JP 2020021930 A JP2020021930 A JP 2020021930A JP 2020021930 A JP2020021930 A JP 2020021930A JP 2021128032 A JP2021128032 A JP 2021128032A
Authority
JP
Japan
Prior art keywords
torque
transmission shaft
torque transmission
sensor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020021930A
Other languages
English (en)
Other versions
JP7380289B2 (ja
Inventor
貴裕 大寺
Takahiro Odera
貴裕 大寺
潤司 小野
Junji Ono
潤司 小野
晴彦 丹野
Haruhiko Tanno
晴彦 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2020021930A priority Critical patent/JP7380289B2/ja
Publication of JP2021128032A publication Critical patent/JP2021128032A/ja
Application granted granted Critical
Publication of JP7380289B2 publication Critical patent/JP7380289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

【課題】ドリフト誤差が含まれないトルクを出力し、トルクの測定精度の向上を図れる、トルク測定装置を実現する。【解決手段】磁気特性が円周方向に関して交互に変化した1対のエンコーダの被検出面に、それぞれの検出部を対向させた1対のセンサの出力信号から、演算器は、下記式を利用して、ドリフト誤差が含まれないトルクを算出する。M=M0+k1r+k2N式中、Mは、前記演算器が算出するトルクの値であり、M0、k1及びk2は、前記トルク測定装置に固有の係数であり、rは、前記1対のセンサの出力信号同士の間の位相差比であり、Nは、前記トルク伝達軸の回転数である。【選択図】なし

Description

本発明は、トルク伝達軸に加わるトルクを測定するためのトルク測定装置及びその製造方法に関する。
図5は、特開2012−98268号公報に記載された、トルク測定装置を示している。トルク測定装置は、トルク伝達軸1と、1対のエンコーダ2a、2bと、1対のセンサ3a、3bとを備える。エンコーダ2a、2bのそれぞれは、外周面に、N極とS極とを円周方向に関して交互に、かつ、等間隔に配置してなる被検出面4a、4bを有し、トルク伝達軸1の軸方向に離隔した2箇所位置に外嵌固定されている。センサ3a、3bのそれぞれは、先端部に、被検出面4a、4bに対向する検出部5a、5bを有し、該検出部5a、5bを通過する磁束密度に応じて出力信号を変化させる。すなわち、センサ3a、3bの出力信号は、トルク伝達軸1とともにエンコーダ2a、2bが回転することに伴い、周期的に変化する。
図示のトルク測定装置は、トルク伝達軸1がトルクの伝達に伴ってねじれ方向に弾性変形し、1対のエンコーダ2a、2bが回転方向に相対変位すると、1対のセンサ3a、3bの出力信号同士の間の位相差が変化する。1対のセンサ3a、3bの出力信号同士の間の位相差は、トルク伝達軸1のねじれ方向の弾性変形量に相関を有している。また、トルク伝達軸1のねじれ方向の弾性変形量は、トルク伝達軸1が伝達するトルクの大きさと相関関係を有している。そこで、トルク測定装置は、1対のセンサ3a、3bの出力信号同士の間の位相差に基づいて、トルク伝達軸1が伝達するトルクを求めるように構成されている。
特開2012−98268号公報
特開2012−98268号公報に記載されたトルク測定装置は、1対のセンサの出力信号同士の間の位相差を利用してトルク伝達軸が伝達するトルクを求めるため、1対のセンサのクロック周波数差が大きくなると、トルクを精度良く求めることが難しくなる。この理由について、以下、図6及び図7を参照して説明する。
図6に示すように、トルク測定装置に用いられるセンサ3a(3b)は、一般的に、ホール素子などの磁気検出素子6と、磁気検出素子6の出力信号をディジタル信号に変換するためのコントローラ7及び発振器(発振回路)8などを備えている。
磁気検出素子6は、センサ3a(3b)の検出部として機能し、自身を通過する磁束密度に応じて、図7の(A)に示すような、正弦波(sin波)状のアナログ信号を出力する。磁気検出素子6のアナログ信号は、コントローラ7によって、図7の(D)に示すように、Hi及びLowの2値で表されたパルス信号(矩形波信号)に変換されるが、この際、コントローラ7は、発振器8が定める時間間隔で、磁気検出素子6のアナログ信号と閾値との大小関係を判定する。
具体的には、発振器8は、図7の(B)に示すような、矩形波状のクロック信号を出力する。クロック信号の周波数は、クロック周波数と呼ばれ、各センサのクロック信号の周波数は一定である。コントローラ7は、このようなクロック信号の立ち上がりや立下りのタイミングを利用して、磁気検出素子6のアナログ信号と閾値との大小関係を判定する。このため、図7の(C)及び(D)に示すように、実際に磁気検出素子6のアナログ信号が閾値を超えたタイミングと、コントローラ7が閾値を超えたと判定するHi信号を出力するタイミングとの間に、クロック周波数に応じて変化する時間的なずれ、すなわち、遅延時間が生じることになる。
一方、クロック周波数には、発振器の製造上の歪みや製造誤差などに起因して、同じ品番のセンサであっても、ばらつきが存在することが知られている。このため、1対のセンサの出力信号同士の間では、クロック周波数差に起因する遅延時間の差が生じている。したがって、トルクを求めるのに利用する1対のセンサの出力信号同士の間の位相差には、両センサの遅延時間の差に起因した成分(誤差)が含まれることになる。出力信号同士の位相差に大きな誤差(遅延時間の差に起因した成分)が含まれると、トルクの測定精度を低下させる原因になる。
本発明は、上述のような事情に鑑み、トルクの測定精度の向上を図れる、トルク測定装置及びその製造方法を実現することを目的としている。
本発明のトルク測定装置は、トルク伝達軸と、1対のエンコーダと、1対のセンサと、演算器とを備える。
前記トルク伝達軸は、使用時にトルクを伝達する。
前記1対のエンコーダは、前記トルク伝達軸に直接又は使用時に前記トルク伝達軸と同期して回転する部材に支持されており、特性を円周方向に関して交互に変化させた被検出面を有している。
前記1対のセンサは、使用時にも回転しない部分に支持されており、前記1対のエンコーダのそれぞれの被検出面に検出部を対向させ、前記被検出面の特性変化に対応して出力信号を変化させる。
前記演算器は、前記1対のセンサの出力信号同士の間の位相差比に基づいて、前記トルク伝達軸が伝達するトルクを求める機能を有している。
前記センサの出力信号を変化させる前記被検出面の特性変化の1例としては、例えば、被検出面にN極とS極とを円周方向に関して交互に配置した場合のように、前記センサが対向する被検出面の円周方向位置に応じて該センサを通過する磁束密度が変化する、磁気特性の変化を挙げることができる。
本発明のトルク伝達装置では、前記演算器は、下記式を用いて、前記1対のセンサのクロック周波数差に基づいて生じるドリフト誤差が含まれないトルクを算出する機能を有している。
M=M+kr+k
ここで、Mは、前記演算器が算出するトルクの値であり、M、k及びkは、前記トルク測定装置に固有の係数であり、rは、前記1対のセンサの出力信号同士の間の位相差比であり、Nは、前記トルク伝達軸の回転数である。
本発明では、前記トルク伝達軸の回転数を、前記センサの出力信号を利用して、前記演算器により求めることができる。
あるいは、前記トルク伝達軸の回転数を、別途備えた回転計により求めることもできる。
本発明のトルク測定装置の製造方法では、本発明のトルク測定装置を製造する過程で、次の係数算出工程を備える。
前記トルク測定装置を組み立てた状態で、前記トルク伝達軸の回転数を測定しながら前記トルク伝達軸を回転駆動するとともに、前記トルク伝達軸に負荷されるトルクの大きさをトルク計を用いて測定しながら前記トルク伝達軸にトルクを負荷する。
そして、前記トルク伝達軸の回転数、又は/及び、前記トルク伝達軸に負荷するトルクの大きさを変えて、少なくとも3条件で、前記トルク伝達軸の回転数、前記トルク伝達軸に負荷されたトルクの大きさ、前記1対のセンサの出力信号同士の間の位相差比を取得する。
そして、3条件での取得値を前記式に代入することで得られる3元連立方程式を解くことにより、前記式中の係数M、k及びkを求める。
上述のような本発明によれば、演算器によってドリフト誤差が含まれないトルクを算出することができる。このため、トルクの測定精度の向上を図ることができる。
図1は、実施の形態の第1例にかかるトルク伝達装置を示す断面図である。 図2は、実施の形態の第1例にかかるトルク伝達装置に使用する1対のセンサ及び演算器の概念図である。 図3は、1対のセンサの出力信号を示す図であり、(A)はトルク入力前の出力信号を示しており、(B)はトルク入力後の出力信号を示している。 図4は、係数算出工程の実施状態を説明するために示す概念図である。 図5は、トルク測定装置の従来構造の1例を示す側面図である。 図6は、トルク測定装置に用いるセンサの概念図である。 図7の(A)は、磁気検出素子が出力するアナログ信号を示す図であり、図7の(B)は、発振器が出力するクロック信号を示す図であり、図7の(C)は、クロック周波数に基づき遅延時間が生じる理由を説明するために示す図であり、図7の(D)は、コントローラが出力するパルス信号を示す図である。
[実施の形態の第1例]
実施の形態の第1例について、図1〜図4を用いて説明する。
以下、本例のトルク測定装置の構造を説明した後、トルク測定装置の製造工程の1工程である係数算出工程について説明する。
本例のトルク測定装置は、自動車用の自動変速機に組み込んで使用するもので、ハウジング(ミッションケース)9と、カウンタ軸として機能するトルク伝達軸1aと、それぞれがカウンタギヤとして機能する入力歯車10及び出力歯車11と、1対の転がり軸受12a、12bと、第一エンコーダ13及び第二エンコーダ14と、1対のセンサユニット15a、15bと、演算器16とを備えている。
なお、以下の説明中、軸方向に関して一方側とは、図1の右側をいい、軸方向に関して他方側とは、図1の左側をいう。
トルク伝達軸1aは、炭素鋼のごとき合金鋼により中空円筒状に造られたもので、焼き入れ、焼き戻し処理などの熱処理が施されている。また、本例では、トルク伝達軸1aにトルクを入力するための入力歯車10が、トルク伝達軸1aの軸方向他方側部分(図1の左寄り部分)に外嵌固定されており、トルクを出力するための出力歯車11が、トルク伝達軸1aの軸方向一方側部分(図1の右寄り部分)に外嵌固定されている。また、トルク伝達軸1aのうち、入力歯車10及び出力歯車11が外嵌された部分を挟んだ両側部分(一方側端部及び他方側端部)を、1対の転がり軸受12a、12bにより、ハウジング9に対し回転自在に支持している。
入力歯車10及び出力歯車11は、炭素鋼のごとき合金鋼製のはすば歯車又は平歯車であり、トルク伝達軸1aとは別体に構成されている。入力歯車10及び出力歯車11とトルク伝達軸1aとの嵌合部には、同心性(同軸度)を確保するための円筒面嵌合部と、相対回転を防止するためのインボリュートスプライン係合部とを、軸方向に隣接配置した構成が採用されている。
1対の転がり軸受12a、12bは、例えば深溝型、アンギュラ型などの玉軸受、円すいころ軸受、円筒ころ軸受、ラジアルニードル軸受、自動調心ころ軸受など(図示の例は玉軸受)であり、それぞれが円環状の外輪17a、17b及び内輪18a、18bと、複数個の転動体19とから構成されている。外輪17a、17bは、使用時にも回転しない静止輪であり、ハウジング9に内嵌固定されている。内輪18a、18bは、使用時に回転する回転輪であり、トルク伝達軸1aに外嵌固定されている。転動体19は、外輪17a、17bの内周面に形成された外輪軌道と、内輪18a、18bの外周面に形成された内輪軌道との間に、保持器により保持された状態で、転動自在に配置されている。また、転がり軸受12a、12bとして、アンギュラ玉軸受や円すいころ軸受を使用する場合には、互いの接触角を逆向きとすることができる。
第一エンコーダ13は、トルク伝達軸1aの軸方向一方側の端部に支持固定されている。このため、第一エンコーダ13は、トルク伝達軸1aの軸方向一方側の端部とともに(同期して)回転可能である。これに対し、第二エンコーダ14は、トルク伝達軸1aの軸方向他方側の端部に外嵌固定されている。このため、第二エンコーダ14は、トルク伝達軸1aの軸方向他方側の端部とともに(同期して)回転可能である。
第一エンコーダ13は、トルク伝達軸1aの軸方向一方側の端部に螺合固定されるナットのごとき円環状のねじ環20と、ねじ環20の外周面に固定された、ゴム、合成樹脂などの高分子材料中に磁性粉を分散させて全体を円筒状とした、ゴム磁石、プラスチック磁石などの永久磁石製のエンコーダ本体21とから構成されている。これに対し、第二エンコーダ14は、トルク伝達軸1aの軸方向他方側の端部に螺合固定されるナットのごときねじ環22と、ねじ環22の外周面に固定された永久磁石製のエンコーダ本体23とから構成されている。
エンコーダ本体21、23中に含有する磁性粉としては、例えば、ストロンチウムフェライト、バリウムフェライトなどのフェライト系の磁性粉や、サマリウム−鉄、サマリウム−コバルト、ネオジウム−鉄−ボロンなどの希土類元素の磁性粉を採用できる。それぞれが被検出面である、エンコーダ本体21、23の外周面は、互いの直径が等しく、互いに同軸に配置されている。また、エンコーダ本体21、23の外周面には、それぞれS極とN極とが、円周方向に関して交互にかつ等ピッチで配置されており、磁気特性を円周方向に関して交互にかつ等ピッチで変化させている。エンコーダ本体21、23の外周面の磁極(S極、N極)の総数は、互いに一致している。
センサユニット15aは、転がり軸受12aを構成する外輪17aに支持固定されており、第一センサ24と、該第一センサ24を支持した合成樹脂製のセンサブロック25と、該センサブロック25を内側に保持した金属製のセンサキャップ26とを備えている。これに対し、センサユニット15bは、転がり軸受12bを構成する外輪17bに支持固定されており、第二センサ27と、該第二センサ27を支持した合成樹脂製のセンサブロック28と、該センサブロック28を内側に保持した金属製のセンサキャップ29とを備えている。
第一センサ24は、図2に示すように、ホール素子、ホールIC、MR素子(GMR素子、TMR素子、AMR素子を含む)などの磁気検出素子30aと、磁気検出素子30aの出力信号をディジタル信号に変換するためのコントローラ31a及び発振器(発振回路)32aなどを備えている。磁気検出素子30aは、第一センサ24の検出部に配置され、自身を通過する磁束密度に応じて、正弦波状のアナログ信号を出力する。磁気検出素子30aのアナログ信号は、コントローラ31aによって、Hi及びLowの2値で表されたパルス信号に変換される。コントローラ31aは、発振器32aが出力するクロック信号のクロック周波数の時間間隔で、磁気検出素子30aのアナログ信号と閾値との大小関係を判定する。発振器32aのクロック周波数fは、個体差があり、分解能、トルク伝達軸1aの軸剛性、回転数などに応じて決定することができる。
第二センサ27は、図2に示すように、第一センサ24と同種の磁気検出素子30bと、磁気検出素子30bの出力信号をディジタル信号に変換するためのコントローラ31b及び発振器(発振回路)32bなどを備えている。磁気検出素子30bは、第二センサ27の検出部に配置され、自身を通過する磁束密度に応じて、正弦波状のアナログ信号を出力する。磁気検出素子30bのアナログ信号は、コントローラ31bによって、Hi及びLowの2値で表されたパルス信号に変換される。コントローラ31bは、発振器32bが出力するクロック信号のクロック周波数の時間間隔で、磁気検出素子30bのアナログ信号と閾値との大小関係を判定する。なお、発振器32bのクロック周波数fは、個体差があり、分解能、トルク伝達軸1aの軸剛性、回転数などに応じて決定することができる。
センサユニット15a、15bを、それぞれ外輪17a、17bに支持した状態で、第一センサ24の検出部(磁気検出素子30a)を、第一エンコーダ13の被検出面(エンコーダ本体21の外周面)に近接対向させるとともに、第二センサ27の検出部(磁気検出素子30b)を、第二エンコーダ14の被検出面(エンコーダ本体23の外周面)に近接対向させている。これにより、第一センサ24は、自身の検出部を通過する磁束密度(検出面を通過する磁束/検出面の面積)に応じて出力信号を変化させ、また、第二センサ27は、自身の検出部を通過する磁束密度に応じて出力信号を変化させる。本例では、第一センサ24及び第二センサ27の出力信号を、それぞれハーネス33a、33bを通じて、演算器16に送信可能としている。
演算器16は、第一センサ24及び第二センサ27の出力信号を利用して、トルク伝達軸1aの回転速度を求めるとともに、トルク伝達軸1aが伝達するトルクを求める機能を有している。
第一センサ24の出力信号及び第二センサ27の出力信号は、トルク伝達軸1aとともに第一エンコーダ13及び第二エンコーダ14が回転することに伴い、それぞれ周期的に変化する。ここで、変化の周波数(及び周期)は、トルク伝達軸1aの回転速度とエンコーダの極数との積であるため、予め第一エンコーダ13及び第二エンコーダ14の極数を確認しておけば、周波数(又は周期)に基づいて、トルク伝達軸1aの回転速度を求められる。
また、トルク伝達軸1aによりトルクを伝達する際には、トルク伝達軸1aのうち、入力歯車10と出力歯車11との間部分が弾性的にねじれ変形する。これにより、トルク伝達軸1aの軸方向両側の端部同士が回転方向に相対変位する。この結果、第一エンコーダ13と第二エンコーダ14とが回転方向に相対変位するため、トルク伝達軸1aのねじれ角に相当する、第一センサ24と第二センサ27の出力信号同士の間の位相差(及び位相差比)が変化する。位相差は、トルク伝達軸1aのねじれ方向の弾性変形量に相関を有している。このため、トルク伝達軸1aのねじれ剛性をもとに予め求めておいた、トルクと位相差との関係を表す表やマップなどデータを利用すれば、トルク伝達軸1aが伝達するトルクを求めることができる。
ただし、前述したように、センサのクロック周波数は、発振器の製造上の歪みや製造誤差などに起因して、同じ品番のセンサであっても、ばらつきが存在する。このため、第一センサ24と第二センサ27の組み合わせによっては、第一センサ24のクロック周波数fと第二センサ27のクロック周波数fとの差である、クロック周波数差(f−f)が過大になり、第一センサ24と第二センサ27の出力信号同士の間に大きな遅延時間の差を生じる可能性がある。その結果、得られるトルクの値に大きなドリフト誤差(詳細は後述する)が含まれることになり、トルクの測定精度が低下する可能性がある。
以下、第一センサ24と第二センサ27の出力信号同士の間の位相差から、トルク伝達軸1aが伝達するトルクを求める過程を説明しつつ、第一センサ24と第二センサ27との間のクロック周波数差(f−f)とドリフト誤差との関係について説明する。なお、第一センサ24と第二センサ27との間のクロック周波数差(f−f)は、センサの組み合わせを変更しない限り一定である。
トルク伝達軸1aにトルクが加わり、トルク伝達軸1aに弾性的なねじれ変形が生じることで、第一センサ24の出力信号Aと第二センサ27の出力信号Bとが、トルクの入力前の状態を表した図3の(A)から、トルクの入力後の状態を表した図3の(B)に示すように変化した場合を考える。ここで、第一センサ24の出力信号Aと第二センサ27の出力信号Bとの間のトルク入力後の位相差(測定値)をt[s]とし、第一センサ24と第二センサ27の出力信号A、Bの周期(測定値)をT[s]とする。また、第一センサ24の出力信号Aと第二センサ27の出力信号Bとの間のトルク入力前の位相差(初期位相差)は、tx[s]とする。
位相差tは、トルク伝達軸1aの回転数(回転速度)に応じて変化するため、トルク伝達軸1aの回転数が既知の一定値の場合でなければ、位相差tのみからトルクを求めることができない。そこで、トルク伝達軸1aの回転数の影響を取り除くために、位相差tを周期Tで除することにより、位相差比rを求める。位相差比rは、次の(1)式で表すことができる。
Figure 2021128032
前述したように、第一センサ24の出力信号Aは、第一センサ24のクロック周波数fに応じた遅延時間を生じるのに対し、第二センサ27の出力信号Bは、第二センサ27のクロック周波数fに応じた遅延時間を生じる。このため、第一センサ24のクロック周波数fと第二センサ27のクロック周波数fとが異なる場合、第一センサ24の出力信号Aと第二センサ27の出力信号Bとの間には遅延時間の差を生じる。したがって、上記(1)式中の位相差tは、トルク伝達軸1aのねじれ角を反映した本来の(正しい)位相差t[s]と、第一センサ24の出力信号Aと第二センサ27の出力信号Bとの間の遅延時間の差△t[s]とに分けることができる。このため、上記(1)式は、次の(2)式で表すことができる。遅延時間の差△t[s]を含む項が、トルク算出における誤差成分となる。なお、位相差tには、初期位相差txが含まれる。
Figure 2021128032
ここで、ホールICなどの磁気検出素子30a、30bが応答に要する時間である、遅延時間(τ)は、応答クロック数(c)と駆動周期(τ)とを用いて、次の(3)式で表すことができる。
Figure 2021128032
また、ホールICなどの磁気検出素子30a、30bは、固有の駆動周期及びクロック周波数を有するため、遅延時間(τ)は固有の値になる。なお、応答クロック数(c)は、第一センサ24と第二センサ27とでプログラムが共通であるため一定になる。このため、磁気検出素子30a、30bの駆動周期差を△τとし、駆動周期をそれぞれτ、τ+△τと置くと、応答には、次の式(4)で表される遅延時間の差(△t)を生じる。
Figure 2021128032
一方、上記(2)式の右辺は、t/Tで表される第1項と、△t/Tで表される第2項とに分けることができる。さらに、第1項に含まれる位相差tは、トルク伝達軸1aが伝達するトルクに比例する成分と、それ以外の成分(無負荷・無回転時における成分である初期位相差tx)とに分けることができる。
したがって、上記(2)式の右辺は、取付誤差などの、無負荷・無回転時における第一エンコーダ13と第二エンコーダ14との幾何学的な位置関係により定まる位相差比(初期位相差比)r(第1項)と、トルク伝達軸1aが伝達するトルクに比例して増加する位相差比r(第2項)と、トルク伝達軸1aの回転数に依存する遅延時間の差に起因した位相差比△t/T(第3項)との3つの項に分けられ、次の(5)式が得られる。このため、このうちの第3項(△t/T)が、位相差比rのドリフト誤差の成分になる。
Figure 2021128032
ここで、トルクと位相差比とが比例関係を有していること、及び、周期と回転数とが反比例関係を有していることを考慮すると、トルクの出力値に含まれるドリフト誤差は、遅延時間の差△tと、トルク伝達軸1aの回転数に比例する(周期Tに反比例する)ことが分かる。このため、トルクの出力値に含まれるドリフト誤差は、遅延時間の差△tが大きくなるほど大きくなり、トルク伝達軸1aの回転数が速くなるほど大きくなる。
また、上記(5)式を、トルクに比例して増加する位相差比rについての式に変形すると、次の(6)式が得られる。
Figure 2021128032
上記(6)式を、トルクと位相差比との比例関係、及び、周期と回転数との反比例関係を用いると、次の(7)式で示すような、関係式(トルク計算式)に変形することができる。なお、(7)式中、M[Nm]は、ドリフト誤差の成分を含まない真のトルクの大きさを表しており、M、k及びkは、第一センサ24と第二センサ27とのクロック周波数差やトルク伝達軸1aのねじれ剛性などによって変化する、トルク測定装置に固有の係数を表しており、N[rpm]はトルク伝達軸1aの回転数を表している。なお、周期Tは、第一エンコーダ13及び第二エンコーダ14の極対数をPとした場合に、T=60/PNで表される。
Figure 2021128032
そこで本例では、上記(7)式を利用することで、演算器16によって、ドリフト誤差が含まれないトルクMを算出するようにしている。具体的には、演算器16中のメモリなどに上記(7)式を記憶しておき、第一センサ24と第二センサ27の出力信号同士の間の位相差比r、及び、トルク伝達軸1aの回転数Nを、上記(7)式に入力することで、ドリフト誤差が含まれないトルクMを算出する。つまり、上記(7)式に、ドリフト誤差が含まれる位相差比rと、トルク伝達軸1aの回転数Nを代入するだけで、第一センサ24と第二センサ27とのクロック周波数差に基づいて生じるドリフト誤差が取り除かれ、真のトルクMが算出されることになる。
ただし、係数M、k及びkは、トルク測定装置に固有の係数であるため、使用する第一センサ24及び第二センサ27の組み合わせが決まり、トルク測定装置の組み立てが完了した後に、これらの係数M、k及びkを求め、演算器16に記憶する必要がある。以下、係数M、k及びkを求めるための係数算出工程について説明する。なお、本例の係数算出工程は、トルク測定装置を機械的に組み立てた後、トルク測定装置の出荷前までの間に行う。
上記(7)式中に含まれる係数M、k及びkの数は3つであることから、上記(7)式を満たす、トルク伝達軸1aの回転数N、トルク伝達軸1aが伝達するトルクM及び位相差比rを、少なくとも3組以上求められれば、3元連立方程式を解くことで、係数M、k及びkの値を求められることになる。
そこで本例では、図4に示すように、組立状態のトルク伝達装置に、回転駆動源である駆動モータ34と、トルク負荷装置である負荷モータ35と、トルク計36と、回転計37とを組み合わせて、係数算出システムを構成する。
駆動モータ34は、入力歯車10を介してトルク伝達軸1aを回転駆動する。また、負荷モータ35は、出力歯車11を介してトルク伝達軸1aにトルクを負荷する。トルク計36は、トルク伝達軸1aに負荷されたトルクを測定するためのもので、ひずみゲージなどを利用することができる。トルク計36は、トルクを精度良く測定できるものであればその種類は問わないが、クロック周波数差に起因したドリフト誤差が含まれることを防止するために、1対のセンサの出力信号同士の間の位相差を利用してトルクを求めるパルス位相差式のもの以外であることが好ましい。ただし、1対のセンサのクロック周波数が高精度で一致していれば、パルス位相差式のものを使用することもできる。回転計37は、トルク伝達軸1aの回転数(回転速度)を測定するためのもので、その種類は問わない。なお、トルク伝達軸1aの回転数を、第一センサ24又は第二センサ27の出力信号を利用し、演算器16により求める場合には、回転計37は省略することができる。
上記(7)式を満たす、トルク伝達軸1aの回転数N、トルクM、及び、位相差比rを求めるために、駆動モータ34によりトルク伝達軸1aを回転駆動するとともに、負荷モータ35によりトルク伝達軸1aにトルクを負荷する。この際、回転計37によりトルク伝達軸1aの回転数を測定するとともに、トルク計36によりトルク伝達軸1aに負荷されたトルクの大きさを測定し、演算器16により位相差比rを測定する。本例では、回転計37の測定値が、トルク伝達軸1aの回転数Nになり、トルク計36の測定値が、トルク伝達軸1aが伝達するトルクMになり、演算器16の測定値が位相差比rになる。
そして、駆動モータ34及び負荷モータ35の運転状態を適宜変更することで、トルク伝達軸1aの回転数、又は/及び、トルク伝達軸1aに負荷するトルクの大きさを変えて、少なくとも3条件で、回転計37により測定される回転数N、トルク計36により測定されるトルクM、及び、演算器16により算出される位相差比rを取得する。具体的には、例えば、回転数がNの状態でトルクM及び位相差比rを求め、次に、回転数がNの状態でトルクM及び位相差比rを求め、最後に、回転数がNの状態でトルクM及び位相差比rを求める。
そして、3条件での取得値{(N、M、r)、(N、M、r)、(N、M、r)}を、上記(7)式にそれぞれ代入して、係数M、k及びkのみが変数になった3元連立方程式を得る。具体的には、次のような3元連立方程式が得られる。
=M+k+k
=M+k+k
=M+k+k
そこで、3元連立方程式を解くことにより、M、k及びkの値を求める。得られたM、k及びkの値は、上記(7)式に代入して、演算器16中のメモリなどに記憶しておく。
以上のような本例のトルク伝達装置によれば、第一センサ24と第二センサ27の出力信号同士の間の位相差比r、及び、トルク伝達軸1aの回転数Nを、上記(7)式に入力することで、演算器16によって、第一センサ24と第二センサ27のクロック周波数差に基づいて生じるドリフト誤差が含まれない、真のトルクMを算出することができる。この結果、トルクの測定精度の向上を図ることができる。また、位相差比r及び回転数Nは、第一センサ24及び第二センサ27の出力信号を利用して演算器16によって算出することができるため、上記(7)式に入力する位相差比rと回転数Nに時間的なずれが生じることを有効に防止できる。
本発明のトルク測定装置を構成するトルク伝達軸は、自動車のパワートレインを構成する回転軸に限らず、例えば、風車の回転軸(主軸、増速器の回転軸)、圧延機のロールネック、鉄道車両の回転軸(車軸、減速機の回転軸)、工作機械の回転軸(主軸、送り系の回転軸)、建設機械・農業機械・家庭用電気器具・モータの回転軸等、各種機械装置の回転軸を対象にすることができる。また、自動車のパワートレインを構成する場合には、例えば、トルクコンバータからトルクが入力されるインプットシャフト(タービンシャフト)や、カウンタシャフトを対象とすることができる。
また、本発明のトルク測定装置を組み込んで変速機を構成する場合、変速機の形式は、特に限定されず、オートマチックトランスミッション(AT)、ベルト式やトロイダル式等の各種無段変速機(CVT)、オートメーテッドマニュアルトランスミッション(AMT)、デュアルクラッチトランスミッション(DCT)、トランスファーなど、車側の制御により変速を行う変速機を採用できる。また、変速機の設置位置と駆動輪との関係は特に限定されず、前置エンジン前輪駆動車(FF車)、前置エンジン後輪駆動車(FR車)、及び、四輪駆動車等が対象となる。
また、測定した回転速度及びトルクは、変速制御やエンジンの出力制御以外の車両制御を行うために利用しても良い。また、変速機の上流側に置かれる動力源は、必ずしもガソリンエンジンやディーゼルエンジンなどの内燃機関である必要はなく、例えばハイブリッド車や電気自動車に用いられる電動モータであっても良い。
さらに、実施の形態では、第一エンコーダ及び第二エンコーダを、それぞれ永久磁石製とし、これら第一、第二両エンコーダの被検出面に、N極とS極とを円周方向に関して交互に配置する構成を採用した例を説明した。ただし、本発明を実施する場合には、第一、第二両エンコーダを単なる磁性材製とし、これら第一、第二両エンコーダの被検出面に、凸部、舌片又は柱部などの充実部と、凹部、切り欠き又は透孔などの除肉部とを、円周方向に関して交互に配置する構成を採用することができる。このような構成を採用する場合には、第一、第二両センサ側に永久磁石を組み込む。
1、1a トルク伝達軸
2a、2b エンコーダ
3a、3b センサ
4a、4b 被検出面
5a、5b 検出部
6 磁気検出素子
7 コントローラ
8 発振器
9 ハウジング
10 入力歯車
11 出力歯車
12a、12b 転がり軸受
13 第一エンコーダ
14 第二エンコーダ
15a、15b センサユニット
16 演算器
17a、17b 外輪
18a、18b 内輪
19 転動体
20 ねじ環
21 エンコーダ本体
22 ねじ環
23 エンコーダ本体
24 第一センサ
25 センサブロック
26 センサキャップ
27 第二センサ
28 センサブロック
29 センサキャップ
30a、30b 磁気検出素子
31a、31b コントローラ
32a、32b 発振器
33a、33b ハーネス
34 駆動モータ
35 負荷モータ
36 トルク計
37 回転計

Claims (4)

  1. 使用時にトルクを伝達するトルク伝達軸と、
    特性を円周方向に関して交互に変化させた被検出面を有し、前記トルク伝達軸に直接又は使用時に前記トルク伝達軸と同期して回転する部材に支持された1対のエンコーダと、
    前記1対のエンコーダのそれぞれの被検出面に検出部を対向させ、前記被検出面の特性変化に対応して出力信号を変化させる、使用時にも回転しない部分に支持された1対のセンサと、
    前記1対のセンサの出力信号同士の間の位相差比に基づいて、前記トルク伝達軸が伝達するトルクを求める機能を有する演算器と、を備え、
    前記演算器は、下記式を用いて、前記1対のセンサのクロック周波数差に基づいて生じるドリフト誤差が含まれないトルクを算出する機能を有する、トルク測定装置。
    M=M+kr+k
    ここで、Mは、前記演算器が算出するトルクの値であり、M、k及びkは、前記トルク測定装置に固有の係数であり、rは、前記1対のセンサの出力信号同士の間の位相差比であり、Nは、前記トルク伝達軸の回転数である。
  2. 前記トルク伝達軸の回転数は、前記センサの出力信号を利用して、前記演算器が求める、請求項1に記載したトルク測定装置。
  3. 前記被検出面の特性変化は、磁気特性の変化である、請求項1〜2のうちのいずれか1項に記載したトルク測定装置。
  4. 請求項1〜3のうちのいずれか1項に記載したトルク測定装置の製造方法であって、
    前記トルク測定装置を組み立てた状態で、前記トルク伝達軸の回転数を測定しながら前記トルク伝達軸を回転駆動するとともに、前記トルク伝達軸に負荷されるトルクの大きさをトルク計を用いて測定しながら前記トルク伝達軸にトルクを負荷し、
    前記トルク伝達軸の回転数、又は/及び、前記トルク伝達軸に負荷するトルクの大きさを変えて、少なくとも3条件で、前記トルク伝達軸の回転数、前記トルク伝達軸に負荷されたトルクの大きさ、及び、前記1対のセンサの出力信号同士の間の位相差比を取得し、3条件での取得値を前記式に代入することで得られる3元連立方程式を解くことにより、前記式中の係数M、k及びkを求める、係数算出工程を備える、
    トルク測定装置の製造方法。
JP2020021930A 2020-02-12 2020-02-12 トルク測定装置及びその製造方法 Active JP7380289B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021930A JP7380289B2 (ja) 2020-02-12 2020-02-12 トルク測定装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021930A JP7380289B2 (ja) 2020-02-12 2020-02-12 トルク測定装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2021128032A true JP2021128032A (ja) 2021-09-02
JP7380289B2 JP7380289B2 (ja) 2023-11-15

Family

ID=77488414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021930A Active JP7380289B2 (ja) 2020-02-12 2020-02-12 トルク測定装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP7380289B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022081389A (ja) * 2020-11-19 2022-05-31 台達電子工業股▲ふん▼有限公司 回転機械装置及び直線型機械装置
KR20230071988A (ko) * 2021-11-17 2023-05-24 국방과학연구소 기어축 토크 측정장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375630A (ja) * 1986-09-19 1988-04-06 Hitachi Ltd 自動車用位相差式トルク検出装置
JP2016038304A (ja) * 2014-08-08 2016-03-22 日本精工株式会社 トルク測定装置付回転伝達装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375630A (ja) * 1986-09-19 1988-04-06 Hitachi Ltd 自動車用位相差式トルク検出装置
JP2016038304A (ja) * 2014-08-08 2016-03-22 日本精工株式会社 トルク測定装置付回転伝達装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022081389A (ja) * 2020-11-19 2022-05-31 台達電子工業股▲ふん▼有限公司 回転機械装置及び直線型機械装置
JP7121833B2 (ja) 2020-11-19 2022-08-18 台達電子工業股▲ふん▼有限公司 回転機械装置及び直線型機械装置
US11606055B2 (en) 2020-11-19 2023-03-14 Delta Electronics, Inc. Rotary machine device and linear machine device
KR20230071988A (ko) * 2021-11-17 2023-05-24 국방과학연구소 기어축 토크 측정장치
KR102588310B1 (ko) 2021-11-17 2023-10-13 국방과학연구소 기어축 토크 측정장치

Also Published As

Publication number Publication date
JP7380289B2 (ja) 2023-11-15

Similar Documents

Publication Publication Date Title
US10480635B2 (en) Rotation transmission device
JP7380289B2 (ja) トルク測定装置及びその製造方法
JP6361316B2 (ja) トルク測定装置付回転伝達装置
JP6375767B2 (ja) トルク測定装置付回転伝達装置
US9038485B2 (en) Torque sensor bearing arrangement and method
JP6500649B2 (ja) トルク測定装置付回転伝達装置
EP2981784B1 (en) Torque sensor
JP2015533204A (ja) 軸受け、特に転がり軸受け又は滑り軸受け用の軸受け軌道輪
JP6550965B2 (ja) トルク測定装置付回転伝達装置
JP6554938B2 (ja) トルク測定装置付回転伝達装置
JP6658147B2 (ja) トルク測定装置付回転伝達装置
JP7380288B2 (ja) トルク測定装置及びその組立方法
JP6682931B2 (ja) トルク測定装置付回転伝達装置
JP7067297B2 (ja) トルク測定装置
JP6557961B2 (ja) 回転装置
JP2012098268A (ja) 歯車伝達装置用物理量測定装置
JP2012098268A5 (ja)
JP6241290B2 (ja) トルク測定装置付回転伝達装置
KR20120109367A (ko) 회전 상태 검출 장치
JP6520059B2 (ja) トルク測定装置付回転伝達装置
JP2017156214A (ja) トルク測定装置付回転伝達装置及びその製造方法
JP6372231B2 (ja) 回転部材のトルク測定方法
JP2019032227A (ja) トルク測定装置付回転伝達装置および回転軸のトルク測定方法
JP6561598B2 (ja) トルク測定装置付回転伝達装置
JP2015090313A (ja) トルク測定装置付回転伝達装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7380289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150