JP2021116423A - 硬化性樹脂組成物およびその硬化物 - Google Patents

硬化性樹脂組成物およびその硬化物 Download PDF

Info

Publication number
JP2021116423A
JP2021116423A JP2021006316A JP2021006316A JP2021116423A JP 2021116423 A JP2021116423 A JP 2021116423A JP 2021006316 A JP2021006316 A JP 2021006316A JP 2021006316 A JP2021006316 A JP 2021006316A JP 2021116423 A JP2021116423 A JP 2021116423A
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
resin
acid
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021006316A
Other languages
English (en)
Inventor
隆行 遠島
Takayuki Toshima
隆行 遠島
政隆 中西
Masataka Nakanishi
政隆 中西
健一 窪木
Kenichi Kuboki
健一 窪木
昌典 橋本
Masanori Hashimoto
昌典 橋本
竜太朗 田中
Ryutaro Tanaka
竜太朗 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JP2021116423A publication Critical patent/JP2021116423A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】相溶性に優れ、その硬化物が耐熱性、低誘電特性に優れる硬化性樹脂組成物を提供すること。【解決手段】(A)炭化水素のみから構成される化合物、および(B)分子中に少なくとも1つ以上のフッ素原子を含有する化合物、からなる群から選択される1種以上と、下記式(1)で表される化合物を含有する硬化性樹脂組成物。(式(1)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)【選択図】なし

Description

本発明は、特定の構成を有する硬化性樹脂組成物、及びその硬化物に関するものであり、半導体封止材、プリント配線基板、ビルドアップ積層板などの電気・電子部品、炭素繊維強化プラスチック、ガラス繊維強化プラスチックなどの軽量高強度材料、3Dプリンティング用途に好適に使用される。
近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。従来の半導体チップは金属製のリードフレームに搭載することが主流であったが、中央処理装置(以下、CPUと表す。)などの処理能力の高い半導体チップは高分子材料で作られる積層板に搭載されることが多くなってきている。
特にスマートフォンなどに使用されている半導体パッケージ(以下、PKGと表す。)では小型化、薄型化および高密度化の要求に応えるために、PKG基板の薄型化が求められているが、PKG基板が薄くなると剛性が低下するため、PKGをマザーボード(PCB)に半田実装する際の加熱によって、大きな反りが発生するなど不具合が発生する。これを低減するために半田実装温度以上の高Tg(260℃、近年では288℃)のPKG基板材料が求められている。
加えて、現在開発が加速している第5世代通信システム「5G」では、さらなる大容量化と高速通信が進むことが予想されている。低誘電正接材料のニーズがますます高まってきており、少なくとも1GHzで0.005以下の誘電正接が求められている。
更に、自動車分野においては電子化が進み、エンジン駆動部付近に精密電子機器が配置されることもあるため、より高水準での耐熱性、耐湿性が求められる。電車やエアコン等にはSiC半導体が使用され始めており、半導体素子の封止材には極めて高い耐熱性が要求される。
また、近年、三次元造形の手法として3Dプリンティングが注目されており、航空・宇宙、車、さらにそれらに使用される電子部品のコネクタといった信頼性が求められる分野において、この3Dプリンティングの手法が適用され始めている。特に、光硬化系、熱硬化系の樹脂はステレオリソグラフィ(SLA)やデジタル・ライト・プロセッシング(DLP)に代表される用途での検討が進んでいる。そのため、従来の金型から転写する方式では、形状の安定性、正確性が主に求められていたが、3Dプリンティング用途では、耐熱性、機械特性、強靭性、難燃性、吸湿性、さらには電気特性と言った様々な特性が求められ、その材料開発が進められている。
このような背景を受けて、耐熱性や低誘電正接特性等を有する高分子材料が検討されている。例えば、特許文献1ではマレイミド樹脂とプロペニル基含有フェノール樹脂を含む組成物が提案されている。しかしながら、一方で硬化反応時に反応に関与しないフェノール性水酸基が残存するため、電気特性が十分とは言えない。また特許文献2では水酸基をアリル基で置換したアリルエーテル樹脂が開示されている。しかしながら、190℃においてクライゼン転位が起こることが示されており、一般的な基板の成型温度である200℃においては、硬化反応に寄与しないフェノール性水酸基が生成することから電気特性を満足できるものではない。
特開平04−359911号公報 国際公開2016/002704号 特公平4−75222号公報 特公平6−37465号公報
本発明は、このような状況を鑑みてなされたものであり、相溶性に優れ、優れた耐熱性と低誘電特性を示す硬化性樹脂組成物及びその硬化物を提供することを目的とする。
本発明者らは上記課題を解決するために鋭意研究した結果、相溶性に優れる特定の構成を有する硬化性樹脂組成物の硬化物が耐熱性、低誘電特性に優れることを見出し、本発明を完成させるに至った。
すなわち本発明は、下記[1]〜[11]に関する。
[1]
(A)炭化水素のみから構成される化合物、および(B)分子中に少なくとも1つ以上のフッ素原子を含有する化合物、からなる群から選択される1種以上と、下記式(1)で表される化合物とを含有する硬化性樹脂組成物。
Figure 2021116423
(式(1)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)
[2]
前記式(1)中、nが、1.1≦n≦20である前項[1]に記載の硬化性樹脂組成物。
[3]
前記式(1)で表される化合物が、N,N’−(フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドを90面積%以下含有するものである前項[1]又は[2]に記載の硬化性樹脂組成物。
[4]
前記成分(A)がポリスチレン化合物又はスチレン化合物と、任意の重合性モノマーとの共重合物である前項[1]乃至[3]のいずれか一項に記載の硬化性樹脂組成物。
[5]
前記成分(A)がスチレンブタジエン共重合体である前項[4]に記載の硬化性樹脂組成物。
[6]
前記成分(B)が分子内に少なくとも1つ以上のフルオロ基又はトリフルオロメチル基を有する化合物である前項[1]乃至[5]のいずれか一項に記載の硬化性樹脂組成物。
[7]
さらに、硬化促進剤を含有する前項[1]乃至[6]のいずれか一項に記載の硬化性樹脂組成物。
[8]
さらに、難燃剤を含有する前項[1]乃至[7]のいずれか一項に記載の硬化性樹脂組成物。
[9]
さらに、重合禁止剤を含有する前項[1]乃至[8]のいずれか一項に記載の硬化性樹脂組成物。
[10]
前記式(1)で表される化合物が、下記式(2)で表されるものである前項[1]乃至[9]のいずれか一項に記載の硬化性樹脂組成物。
Figure 2021116423
(式(2)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)
[11]
前項[1]乃至[10]のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。
本発明の硬化性樹脂組成物は相溶性に優れ、その硬化物は高耐熱性、低誘電特性に優れた特性を有する。そのため、電気電子部品の封止や回路基板、炭素繊維複合材などに有用な材料である。
合成例3のGPC分析スペクトルを示す。 合成例3のHPLC分析スペクトルを示す。 合成例8のGPC分析スペクトルを示す。 合成例8のHPLC分析スペクトルを示す。
以下、本発明を詳細に説明する。先ず、本発明の硬化性樹脂組成物の必須成分である前記式(1)で表される化合物の製造方法について説明する。
[芳香族アミン樹脂の製造方法]
前記式(1)で表される化合物は、前駆体として下記式(3)で表される芳香族アミン樹脂を用いることができる。
Figure 2021116423
(式(3)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)
前記式(3)中、mは通常0〜3であり、好ましくは0〜2、さらに好ましくは0である。nは通常1≦n≦20であり、1.1≦n≦20であることが好ましく、1.1≦n≦10であることがさらに好ましく、1.1≦n≦5であることが特に好ましい。nの値はマレイミド樹脂のゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量(Mw)の値から算出することができる。
Rは通常、炭素数1〜10の炭化水素基であり、好ましくは炭素数1〜5であり、さらに好ましくは炭素数1〜3である。Rが炭素数3以下の炭化水素は高周波に晒された際に分子振動をしにくいため、電気特性に優れる。
式(3)で表される芳香族アミン樹脂は、下記式(4)で表されるときがより好ましい。式(3)においてアミノ基が結合していないベンゼン環に対するプロピル基の置換位置がパラ位のときと比べて結晶性が低下するからである。
Figure 2021116423
(式(4)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)
前記式(4)中、R、m、nの好ましい範囲は、前記式(3)と同様である。
前記式(3)または式(4)で表される芳香族アミン樹脂の製法は特に限定されない。例えば、特許文献3では、アニリンとm−ジイソプロペニルベンゼンまたはm−ジ(α−ヒドロキシイソプロピル)ベンゼンとを、酸性触媒の存在下で180〜250℃で反応させることにより前記式(4)におけるn=1体が主成分として得られるが、この中には1,3−ビス(p−アミノクミル)ベンゼン、1−(o−アミノクミル)−3−(p−アミノクミル)ベンゼン、1,3−ビス(o−アミノクミル)ベンゼンの3つの異性体が含まれている。さらに、副成分としてn=2〜5体も生成されるが、特許文献3ではこれらを晶析により精製して純度98%の1,3−ビス(p−アミノクミル)ベンゼンを得ている。また、特許文献4では1,3−ビス(p−アミノクミル)ベンゼンをマレイミド化してN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドを合成して結晶の生成物を得ているが、これを溶剤に溶解するためには加熱が必要であり、加熱後に室温で放置すると数時間で結晶が析出してしまう。そのため、樹脂組成物を調整する場合も結晶が析出する可能性があり、N,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドの濃度が高まるほど結晶化の可能性が高くなる。プリント配線板や複合材を作成するために、ガラスクロスや炭素繊維をワニスに含浸させて樹脂を付着させるが、結晶が析出してしまうと含浸作業が不可能となり、一方溶解状態を保つために温度を上げると組成物の反応が早まってしまい、ワニスの可使時間が短くなってしまう。
本発明では、特許文献3において不溶成分として除去されていた芳香族アミン樹脂中の異性体や高分子成分に着目し、これらを除去することなくマレイミド化することで溶液安定性にすぐれたマレイミド樹脂を開発するに至った。
本発明は、晶析等の精製工程が不要であるため、短時間且つ安価に製造が可能であり、産業上の利用可能性を高めるものである。
前記式(3)で表される芳香族アミン樹脂を合成する際、用いられる酸性触媒は、塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p−トルエンスルホン酸、メタンスルホン酸、活性白土、イオン交換樹脂等の酸性触媒等が挙げられる。これらは単独でも二種以上併用しても良い。触媒の使用量は、使用されるアニリンに対して、通常0.1〜50重量%、好ましくは1〜30重量%であり、多すぎると反応溶液の粘度が高すぎて攪拌が困難になり、少なすぎると反応の進行が遅くなる。
反応は必要によりトルエン、キシレンなどの有機溶剤を使用して行っても、無溶剤で行っても良い。例えば、アニリンと溶剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除くことが好ましい。しかる後にジイソプロペニルベンゼンまたはジ(α−ヒドロキシイソプロピル)ベンゼンを添加し、その後溶剤を系内から除きながら昇温して140〜220℃、好ましくは160〜200℃で5〜50時間、好ましくは5〜30時間反応を行う。ジ(α−ヒドロキシイソプロピル)ベンゼンを使用した時には水が副生されるため、昇温時に溶剤と共沸させながら系内から除去する。反応終了後、アルカリ水溶液で酸性触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返したのち、溶剤および過剰のアニリン誘導体を加熱減圧下において除去する。活性白土やイオン交換樹脂を用いた場合は、反応終了後に反応液を濾過して触媒を除去する。
また、反応温度や触媒の種類によってはジフェニルアミンが副生するため、高温・高真空下で、もしくは水蒸気蒸留等の手段を用いて、ジフェニルアミン誘導体を1重量%以下、好ましくは0.5重量%以下、より好ましくは0.2重量%以下まで除去する。
前記式(1)で表される化合物は、以上の工程により得られる前記式(3)で表される芳香族アミン樹脂と、マレイン酸または無水マレイン酸(以下、「マレイン酸無水物」ともいう。)を溶剤、触媒の存在下に付加もしくは脱水縮合反応させることで得られる。
[マレイミド樹脂の製造方法]
反応で使用する溶剤は反応中に生成する水を系内から除去する必要があるため、非水溶性の溶剤を使用する。例えばトルエン、キシレンなどの芳香族溶剤、シクロヘキサン、n−ヘキサンなどの脂肪族溶剤、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル系溶剤、メチルイソブチルケトン、シクロペンタノンなどのケトン系溶剤などが挙げられるがこれらに限定されるものではなく、2種以上を併用しても良い。
また、前記非水溶性溶剤に加えて非プロトン性極性溶剤を併用することもできる。例えば、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、N−メチル−2−ピロリドンなどが挙げられ、2種以上を併用しても良い。非プロトン性極性溶剤を使用する場合は、併用する非水溶性溶剤よりも沸点の高いものを使用することが好ましい。
また、反応で使用する触媒は酸性触媒であり、特に限定されないが、例えば、p−トルエンスルホン酸、ヒドロキシ−p−トルエンスルホン酸、メタンスルホン酸、硫酸、リン酸等が挙げられる。酸触媒の使用量は、芳香族アミン樹脂に対して通常0.1〜10重量%、好ましくは1〜5重量%である。
例えば、トルエンとN−メチル−2−ピロリドンに前記式(3)で表される芳香族アミン樹脂を溶解し、そこへマレイン酸無水物を添加してアミック酸を生成し、その後p−トルエンスルホン酸を加えて、還流条件下で生成する水を系内から除去しながら反応を行う。
または、マレイン酸無水物をトルエンに溶解し、撹拌下で前記式(3)で表される芳香族アミン樹脂のN−メチル−2−ピロリドン溶液を添加してアミック酸を生成し、その後p−トルエンスルホン酸を加えて、還流条件下で生成する水を系内から除去しながら反応を行う。
または、マレイン酸無水物をトルエンに溶解し、p−トルエンスルホン酸を加え、撹拌・還流状態において前記式(3)で表される芳香族アミン樹脂のN−メチル−2−ピロリドン溶液を滴下しながら、途中で共沸してくる水は系外へ除き、トルエンは系内へ戻しながら反応を行う(以上、第一段反応)。
いずれの方法においても、マレイン酸無水物は前記式(3)で表される芳香族アミン樹脂のアミノ基に対して、通常1〜3倍当量、好ましくは1.2〜2.0倍当量使用する。
未閉環のアミック酸を少なくするためには、上記に列記したマレイミド化反応後に反応溶液に水を加え、樹脂溶液層と水層に分離させ、過剰のマレイン酸や無水マレイン酸、非プロトン性極性溶媒、触媒などは水層側に溶解しているので、これを分液除去し、さらに同様の操作を繰り返して過剰のマレイン酸や無水マレイン酸、非プロトン性極性溶媒、触媒の除去を徹底する。過剰のマレイン酸や無水マレイン酸、非プロトン性極性溶媒、触媒が除去された有機層のマレイミド樹脂溶液に触媒を再度添加して加熱還流条件下での残存アミック酸の脱水閉環反応を再度行うことにより酸価が低いマレイミド樹脂溶液が得られる(以上、第二段反応)。
再脱水閉環反応の時間は通常1〜5時間、好ましくは1〜3時間であり、必要により前述の非プロトン性極性溶剤を添加しても良い。反応終了後、冷却して、水洗水が中性になるまで水洗を繰り返す。その後、加熱減圧下において水を共沸脱水で除いてから、溶剤を留去したり、別の溶剤を加えたりして所望の濃度の樹脂溶液に調整しても良いし、溶剤を完全に留去して固形の樹脂として取り出しても良い。
前述した製造方法により得られた化合物は下記式(1)で表される構造を有する。
Figure 2021116423
(式(1)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)
前記式(1)中、R、m、nの好ましい範囲は、前記式(3)と同様である。
式(1)中、nの値はマレイミド樹脂のゲルパーミエーションクロマトグラフィー(GPC、検出器:RI)の測定により求められた数平均分子量の値から算出することが出来るが、近似的には原料である前記式(3)で表される芳香族アミン樹脂のGPCの測定結果から算出したnの値とほぼ同等と考えることができる。
前記式(1)で表される化合物の重量平均分子量は、200以上5000未満であるときが好ましく、300以上3000未満であるときがさらに好ましく、400以上2000未満であるときが特に好ましい。重量平均分子量が5000未満であると水洗による精製が容易となり、200以上であると溶剤留去工程において目的化合物が揮発することがない。
本発明において、N,N’−(フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドの含有量は、以下の方法において求める。
まず、ゲルパーミエーションクロマトグラフィー(GPC、検出器:RI)分析により、式(1)のn=1成分の含有量(A1)を求める。つづいて、高速液体クロマトグラフィー(HPLC)分析により、n=1成分中のN,N’−(フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドの含有量(A2)を求める。
式(1)で表される化合物中のN,N’−(フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは、(A1)×(A2)の計算式により算出される。
前記式(1)で表されるマレイミド樹脂中のN,N’−(フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドの含有量は通常90面積%以下であり、好ましくは10〜80面積%、より好ましくは20〜80面積%、さらに好ましくは30〜70面積%の範囲である。N,N’−(フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドの含有量は90面積%以下であると、結晶性が低下するため溶剤溶解性が向上する。一方、N,N’−(フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドの下限値は0面積%でも構わないが、10面積%以上であると反応性の低下が抑制できる。
前記式(1)で表される化合物中のn=1体のGPC分析(RI)による含有量は98面積%以下であることが好ましく、より好ましくは20〜98面積%、さらに好ましくは30〜90面積%、特に好ましくは40〜80面積%の範囲である。n=1体の含有量が98面積%以下であると、耐熱性が良好となる。一方、n=1体の下限値は0面積%でも構わないが、20面積%以上であると樹脂溶液の粘度が低下し、含浸性が良好となる。
前記式(1)で表される化合物の軟化点は50℃〜150℃であることが好ましく、より好ましくは80℃〜120℃であり、更に好ましくは90℃〜110℃、特に好ましくは95℃〜100℃である。また、150℃での溶融粘度は0.05〜100Pa・s、好ましくは0.1〜40Pa・sである。
前記式(1)で表される化合物は、式(2)で表される構造を有するときがより好ましい。式(1)においてマレイミド基が結合していないベンゼン環に対するプロピル基の置換位置がパラ位のときと比べて結晶性が低下するからである。
Figure 2021116423
(式(1)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)
前記式(2)中、R、m、nの好ましい範囲は、前記式(3)と同様である。
本発明の硬化性樹脂組成物は、前記式(1)で表される化合物の他に、(A)炭化水素のみから構成される化合物、および(B)分子中に少なくとも1つ以上のフッ素原子を含有する化合物、からなる群から選択される1種以上を含有する。
前記成分(A)は、炭化水素のみから構成される化合物であれば限定されない。例えば、ポリプロピレン、ポリエチレンのほか、シクロオレフィンコポリマー、ポリブタジエン、ポリスチレン、ポリ−α−メチルスチレン、スチレンブタジエン共重合体等のスチレン化合物と任意の重合性モノマーとの共重合物等を挙げることができる。これらの中で硬化性・誘電特性・相溶性の観点からスチレンブタジエン共重合体を用いることが好ましい。
前記成分(B)は、分子内に少なくとも1つ以上、フルオロもしくは、トリフルオロメチル基を有する化合物であれば限定されない。例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、フッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体、フッ化ポリイミド等が挙げられ、分子内に少なくとも1つ以上のフルオロ基又はトリフルオロメチル基を有する化合物であることが好ましい。
本発明の硬化性樹脂組成物は、さらに硬化性樹脂として、公知のいかなる材料を用いることができる。具体的には、フェノール樹脂、エポキシ樹脂、アミン樹脂、活性アルケン含有樹脂、イソシアネート樹脂、ポリアミド樹脂、ポリイミド樹脂、シアネートエステル樹脂、プロペニル樹脂、メタリル樹脂、活性エステル樹脂などが挙げられ、1種類で用いても、複数併用してもよい。また、耐熱性、密着性、誘電特性のバランスから、エポキシ樹脂、活性アルケン含有樹脂、シアネートエステル樹脂を含有することが好ましい。これらの硬化性樹脂を含有することによって、硬化物の脆さの改善および金属への密着性を向上でき、はんだリフロー時や冷熱サイクルなどの信頼性試験におけるパッケージのクラックを抑制できる。
上記硬化性樹脂の使用量は、前記式(1)で表される化合物に対して、好ましくは10質量倍以下、さらに好ましくは5質量倍以下、特に好ましくは3質量倍以下の質量範囲である。また、好ましい下限値は0.5質量倍以上、更に好ましくは1質量倍以上である。10質量倍以下であれば、前記式(1)で表される化合物の耐熱性や誘電特性の効果を活かすことができる。
フェノール樹脂、エポキシ樹脂、アミン樹脂、活性アルケン含有樹脂、イソシアネート樹脂、ポリアミド樹脂、ポリイミド樹脂、シアネートエステル樹脂、活性エステル樹脂としては、以下に例示するものを使用することができる。
フェノール樹脂:フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ハイドロキノン、レゾルシン、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド、フルフラール等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノール類と置換ビフェニル類(4,4’−ビス(クロルメチル)−1,1’−ビフェニル及び4,4’−ビス(メトキシメチル)−1,1’−ビフェニル等)、若しくは置換フェニル類(1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン及び1,4−ビス(ヒドロキシメチル)ベンゼン等)等との重縮合により得られるフェノール樹脂、ビスフェノール類と各種アルデヒドの重縮合物、ポリフェニレンエーテル。
エポキシ樹脂:前記のフェノール樹脂、アルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4−ビニル−1−シクロヘキセンジエポキシドや3,4−エポキシシクロヘキシルメチル−3,4’−エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル−p−アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂。
アミン樹脂:ジアミノジフェニルメタン、ジアミノジフェニルスルホン、イソホロンジアミン、ナフタレンジアミン、アニリンノボラック、オルソエチルアニリンノボラック、アニリンとキシリレンクロライドとの反応により得られるアニリン樹脂、日本国特許第6429862号公報に記載のアニリンと置換ビフェニル類(4,4’−ビス(クロルメチル)−1,1’−ビフェニル及び4,4’−ビス(メトキシメチル)−1,1’−ビフェニル等)、若しくは置換フェニル類(1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン及び1,4−ビス(ヒドロキシメチル)ベンゼン等)。
活性アルケン含有樹脂:前記のフェノール樹脂と活性アルケン含有のハロゲン系化合物(クロロメチルスチレン、アリルクロライド、メタリルクロライド、アクリル酸クロリド、アリルクロライド等)の重縮合物、活性アルケン含有フェノール類(2−アリルフェノール、2−プロペニルフェノール、4−アリルフェノール、4−プロペニルフェノール、オイゲノール、イソオイゲノール等)とハロゲン系化合物(4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、4,4’−ジフルオロベンゾフェノン、4,4’−ジクロロベンゾフェノン、4,4’−ジブロモベンゾフェノン、塩化シアヌル等)の重縮合物、エポキシ樹脂若しくはアルコール類と置換若しくは非置換のアクリレート類(アクリレート、メタクリレート等)の重縮合物、マレイミド樹脂(4,4’−ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m−フェニレンビスマレイミド、2,2’−ビス〔4−(4−マレイミドフェノキシ)フェニル〕プロパン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、4,4’−ジフェニルエーテルビスマレイミド、4,4’−ジフェニルスルフォンビスマレイミド、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、1,3−ビス(4−マレイミドフェノキシ)ベンゼン)。
イソシアネート樹脂:p−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−キシレンジイソシアネート、m−キシレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート類;イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、水添キシレンジイソシアネート、ノルボルネンジイソシアネート、リジンジイソシアネート等の脂肪族又は脂環構造のジイソシアネート類;イソシアネートモノマーの一種類以上のビュレット体又は、上記ジイソシアネート化合物を3量化したイソシアネート体等のポリイソシアネート;上記イソシアネート化合物とポリオール化合物とのウレタン化反応によって得られるポリイソシアネート。
ポリアミド樹脂:アミノ酸(6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸等)、ラクタム(ε−カプロラクタム、ω−ウンデカンラクタム、ω−ラウロラクタム)および「ジアミン(エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2−メチル−1,5−ジアミノペンタン、2−メチル−1,8−ジアミノオクタンなどの脂肪族ジアミン;シクロヘキサンジアミン、ビス−(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタンなどの脂環式ジアミン;キシリレンジアミンなどの芳香族ジアミン等とジカルボン酸(シュウ酸、マロン酸、スクシン酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸などの脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの芳香族ジカルボン酸;シクロヘキサンジカルボン酸などの脂環族ジカルボン酸;これらジカルボン酸のジアルキルエステル、およびジクロリド)との混合物から選ばれた1種以上を主たる原料とした重合物。
ポリイミド樹脂:前記のジアミンとテトラカルボン酸二無水物(4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−シクロヘキセン−1,2ジカルボン酸無水物、ピロメリット酸二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、メチレン−4,4’−ジフタル酸二無水物、1,1−エチリデン−4,4’−ジフタル酸二無水物、2,2’−プロピリデン−4,4’−ジフタル酸二無水物、1,2−エチレン−4,4’−ジフタル酸二無水物、1,3−トリメチレン−4,4’−ジフタル酸二無水物、1,4−テトラメチレン−4,4’−ジフタル酸二無水物、1,5−ペンタメチレン−4,4’−ジフタル酸二無水物、4,4’−オキシジフタル酸二無水物 、チオ−4,4’−ジフタル酸二無水物、スルホニル−4,4’−ジフタル酸二無水物、1,3−ビス(3,4−ジカルボキシフェニル)ベンゼン二無水物、1,3−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,3−ビス[2−(3,4−ジカルボキシフェニル)−2−プロピル]ベンゼン二無水物、1,4−ビス[2−(3,4−ジカルボキシフェニル)−2−プロピル]ベンゼン二無水物、ビス[3−(3,4−ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2−ビス[3−(3,4−ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4−ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシロキサン二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物、1,2,7,8−フェナントレンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物)、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン−1,2,3,4−テトラカルボン酸二無水物、シクロヘキサン−1,2,4,5−テトラカルボン酸二無水物、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸二無水物、カルボニル−4,4’−ビス(シクロヘキサン−1,2−ジカルボン酸)二無水物、メチレン−4,4’−ビス(シクロヘキサン−1,2−ジカルボン酸)二無水物、1,2−エチレン−4,4’−ビス(シクロヘキサン−1,2−ジカルボン酸)二無水物、1,1−エチリデン−4,4’−ビス(シクロヘキサン−1,2−ジカルボン酸)二無水物、2,2−プロピリデン−4,4’−ビス(シクロヘキサン−1,2−ジカルボン酸)二無水物、オキシ−4,4’−ビス(シクロヘキサン−1,2−ジカルボン酸)二無水物、チオ−4,4’−ビス(シクロヘキサン−1,2−ジカルボン酸)二無水物、スルホニル−4,4’−ビス(シクロヘキサン−1,2−ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、rel−[1S,5R,6R]−3−オキサビシクロ[3,2,1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸無水物、エチレングリコール−ビス−(3,4−ジカルボン酸無水物フェニル)エーテル、4,4’−ビフェニルビス(トリメリット酸モノエステル酸無水物)、9,9’−ビス(3,4−ジカルボキシフェニル)フルオレン二無水物)との重縮合物。
シアネートエステル樹脂:フェノール樹脂をハロゲン化シアンと反応させることにより得られるシアネートエステル化合物であり、具体例としては、ジシアナートベンゼン、トリシアナートベンゼン、ジシアナートナフタレン、ジシアンートビフェニル、2、2’−ビス(4−シアナートフェニル)プロパン、ビス(4−シアナートフェニル)メタン、ビス(3,5−ジメチル−4−シアナートフェニル)メタン、2,2’−ビス(3,5−ジメチル−4−シアナートフェニル)プロパン、2,2’−ビス(4−シアナートフェニル)エタン、2,2’−ビス(4−シアナートフェニル)ヘキサフロロプロパン、ビス(4−シアナートフェニル)スルホン、ビス(4−シアナートフェニル)チオエーテル、フェノールノボラックシアナート、フェノール・ジシクロペンタジエン共縮合物の水酸基をシアネート基に変換したもの等が挙げられるがこれらに限定されるものではない。
また、特開2005−264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
シアネート樹脂は、必要に応じてシアネート基を三量化させてsym−トリアジン環を形成するために、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸鉛、オクチル酸亜鉛、オクチル酸錫、鉛アセチルアセトナート、ジブチル錫マレエート等の触媒を含有させることもできる。触媒は、硬化性樹脂組成物の合計質量100質量部に対して通常0.0001〜0.10質量部、好ましくは0.00015〜0.0015質量部使用する。
活性エステル樹脂:エポキシ樹脂等、本発明の前記式(1)で表される化合物以外の硬化性樹脂の硬化剤として1分子中に1個以上の活性エステル基を有する化合物を必要に応じて用いることができる。活性エステル系硬化剤としては、フェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。当該活性エステル系硬化剤は、カルボン酸化合物及びチオカルボン酸化合物の少なくともいずれかの化合物と、ヒドロキシ化合物及びチオール化合物の少なくともいずれかの化合物との縮合反応によって得られるものが好ましい。特に、耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及びナフトール化合物の少なくともいずれかの化合物とから得られる活性エステル系硬化剤が好ましい。
カルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。
フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
活性エステル系硬化剤の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が挙げられる。中でも、ナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン− ジシクロペンチレン−フェニレンからなる2価の構造単位を表す。
活性エステル系硬化剤の市販品としては、例えば、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC−8000−65T」、「HPC−8000H−65TM」、「EXB−8000L−65TM」、「EXB−8150−65T」(DIC社製);ナフタレン構造を含む活性エステル化合物として「EXB9416−70BK」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」、「YLH1030」、「YLH1048」(三菱化学社製);フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱化学社製);リン原子含有活性エステル系硬化剤としてDIC社製の「EXB−9050L−62M」;等が挙げられる。
本発明の硬化性樹脂組成物は、さらに硬化促進剤を併用して硬化性を向上させることもできる。用い得る硬化促進剤の具体例として、オレフィン樹脂やマレイミド樹脂等のラジカル重合可能な硬化性樹脂の自己重合やその他の成分とのラジカル重合を促進する目的でラジカル重合開始剤を使用することが好ましい。用い得るラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド類、過酸化ベンゾイル等のジアシルパーオキサイド類、ジクミルパーオキサイド、1,3−ビス−(t−ブチルパーオキシイソプロピル)−ベンゼン等のジアルキルパーオキサイド類、t−ブチルパーオキシベンゾエート、1,1−ジ−t−ブチルパーオキシシクロヘキサン等のパーオキシケタール類、α−クミルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ブチルペルオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、t−アミルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−アミルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−アミルパーオキシベンゾエート等のアルキルパーエステル類、ジ−2−エチルヘキシルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、1,6−ビス(t−ブチルパーオキシカルボニルオキシ)ヘキサン等のパーオキシカーボネート類、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーオキシオクトエート、ラウロイルパーオキサイド等の有機過酸化物やアゾビスイソブチロニトリル、4,4’−アゾビス(4−シアノ吉草酸)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物の公知の硬化促進剤が挙げられるが、これらに特に限定されるものではない。ケトンパーオキサイド類、ジアシルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーカーボネート類等が好ましく、ジアルキルパーオキサイド類がより好ましい。ラジカル重合開始剤の添加量としては、硬化性樹脂組成物の100質量部に対して0.01〜5質量部が好ましく、0.01〜3質量部が特に好ましい。用いるラジカル重合開始剤の量が多いと重合反応時に分子量が十分に伸長しない。
また、必要に応じてラジカル重合開始剤以外の硬化促進剤を添加、または併用しても差し支えない。用い得る硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール及び2−エチル−4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノールや1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウムヒドロキシドなどの4級アンモニウム塩、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級フォスフォニウム塩(4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。)、オクチル酸スズ、カルボン酸亜鉛(2−エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミスチリン酸亜鉛)やリン酸エステル亜鉛(オクチルリン酸亜鉛、ステアリルリン酸亜鉛等)等の亜鉛化合物等の遷移金属化合物(遷移金属塩) 等が挙げられる。硬化促進剤の配合量は、エポキシ樹脂100に対して0.01〜5.0重量部が必要に応じて用いられる。
本発明の硬化性樹脂組成物は、さらに難燃剤を添加してもよい。難燃剤としてはリン含有化合物を挙げることができ、リン含有化合物は反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−ジキシリレニルホスフェート、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4’−ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4’−ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量は(リン含有化合物)/(全エポキシ樹脂)が0.1〜0.6(重量比)の範囲であることが好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
本発明の硬化性樹脂組成物は、さらに重合禁止剤を含有することができる。使用できる重合禁止剤としては、フェノール系、イオウ系、リン系、ヒンダートアミン系、ニトロソ系、ニトロキシルラジカル系等の重合禁止剤が挙げられる。重合禁止剤は、前記式(1)で表される化合物を合成するときに添加しても、合成後に添加してもよい。また、重合禁止剤は単独で又は2種以上を組み合わせて使用できる。重合禁止剤の使用量は、樹脂成分100重量部に対して、通常0.008〜1重量部、好ましくは0.01〜0.5重量部である。これら重合禁止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。本発明では、フェノール系、ヒンダートアミン系、ニトロソ系、ニトロキシルラジカル系が好ましい。
フェノール系重合禁止剤の具体例としては、2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−p−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、等のモノフェノール類;2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,5−ジ−t−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、3,9−ビス[1,1−ジメチル−2−{β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’−ビス−(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−S−トリアジン−2,4,6−(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。
イオウ系重合禁止剤の具体例としては、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリルル−3,3’−チオジプロピオネート等が例示される。
リン系重合禁止剤の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4−ジ−t−ブチル−4−メチルフェニル)ホスファイト、ビス[2−t−ブチル−6−メチル−4−{2−(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のオキサホスファフェナントレンオキサイド類などが例示される。
ヒンダートアミン系重合禁止剤の具体例としては、アデカスタブLA−40MP、アデカスタブLA−40Si、アデカスタブLA−402AF、アデカスタブLA−87、デカスタブLA−82、デカスタブLA−81、アデカスタブLA−77Y、アデカスタブLA−77G、アデカスタブLA−72、アデカスタブLA−68、アデカスタブLA−63P、アデカスタブLA−57、アデカスタブLA−52、Chimassorb2020FDL、Chimassorb944FDL、Chimassorb944LD、Tinuvin622SF、TinuvinPA144、Tinuvin765、Tinuvin770DF、TinuvinXT55FB、Tinuvin111FDL、Tinuvin783FDL、Tinuvin791FB等が例示されるが、これに限定されない。
ニトロソ系重合禁止剤の具体例としては、p−ニトロソフェノール、N−ニトロソジフェニルアミン、N−ニトロソフェニルヒドロキシアミンのアンモニウム塩、(クペロン)等があげられ、好ましくは、N−ニトロソフェニルヒドロキシアミンのアンモニウム塩(クペロン)である。
ニトロキシルラジカル系重合禁止剤の具体例としては、TEMPOフリーラジカル、4−ヒドロキシ−TEMPOフリーラジカル等が挙げられるが、これらに限定されない。
さらに、本発明の硬化性樹脂組成物には、必要に応じて光安定剤を添加しても構わない。光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン・1,3,5−トリアジン・N,N’―ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ〔{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)〔〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1−オクチロキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。
さらに本発明の硬化性樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ−ナイロン系樹脂、NBR−フェノール系樹脂、エポキシ−NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100質量部に対して0.05〜50質量部であることが好ましく、さらに好ましくは0.05〜20質量部が必要に応じて用いられる。
さらに、本発明の硬化性樹脂組成物には、必要に応じて溶融シリカ、結晶シリカ、多孔質シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、石英粉、炭化珪素、窒化珪素、窒化ホウ素、ジルコニア、窒化アルミニウム、グラファイト、フォルステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、酸化鉄アスベスト、ガラス粉末等の粉体、またはこれらを球形状あるいは破砕状にした無機充填材を添加することができる。また、特に半導体封止用の硬化性樹脂組成物を得る場合、上記の無機充填材の使用量は硬化性樹脂組成物中、通常80〜92質量%、好ましくは83〜90質量%の範囲である。
本発明の硬化性樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、シリコーンゲル、シリコーンオイル、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、硬化性樹脂組成物100質量部に対して好ましくは1,000質量部以下、より好ましくは700質量部以下の範囲である。
本発明の硬化性樹脂組成物は、上記各成分を所定の割合で均一に混合することにより得られ、通常130〜180℃で30〜500秒の範囲で予備硬化し、更に、150〜200℃で2〜15時間、後硬化することにより充分な硬化反応が進行し、本発明の硬化物が得られる。又、硬化性樹脂組成物の成分を溶剤等に均一に分散または溶解させ、溶媒を除去した後硬化させることもできる。
こうして得られる本発明の硬化性樹脂組成物は、耐湿性、耐熱性、高接着性を有する。従って、本発明の硬化性樹脂組成物は、耐湿性、耐熱性、高接着性の要求される広範な分野で用いることが出来る。具体的には、絶縁材料、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、封止材料、レジスト等あらゆる電気・電子部品用材料として有用である。又、成形材料、複合材料の他、塗料材料、接着剤、3Dプリンティング等の分野にも用いることが出来る。特に半導体封止においては、耐ハンダリフロー性が有益なものとなる。
半導体装置は本発明の硬化性樹脂組成物で封止されたものを有する。半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。
本発明の硬化性樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えば本発明の硬化性樹脂を触媒の存在下または非存在下、溶剤の存在下または非存在下において加熱することによりプレポリマー化する。同様に、本発明の硬化性樹脂の他、エポキシ樹脂、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物などの硬化剤及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の非存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。
均一に混合する手法としては50〜100℃の範囲内の温度でニーダ、ロール、プラネタリーミキサー等の装置を用いて練りこむように混合し、均一な樹脂組成物とする。得られた樹脂組成物は粉砕後、タブレットマシーン等の成型機で円柱のタブレット状に成型、もしくは顆粒状の紛体、もしくは粉状の成型体とする、もしくはこれら組成物を表面支持体の上で溶融し0.05mm〜10mmの厚みのシート状に成型し、硬化性樹脂組成物成型体とすることもできる。得られた成型体は0〜20℃でべたつきのない成型体となり、−25〜0℃で1週間以上保管しても流動性、硬化性をほとんど低下させない。
得られた成型体についてトランスファー成型機、コンプレッション成型機にて硬化物に成型することができる。
本発明の硬化性樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという。)とすることもできる。本発明の硬化性樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶剤に溶解させてワニスとし、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有する硬化性樹脂硬化物を得ることもできる。
また、本発明の硬化性組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB−ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明の硬化性樹脂組成物を前記硬化性樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。
本発明の硬化性樹脂組成物は、加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。その具体例としては、例えば、Eガラスクロス、Dガラスクロス、Sガラスクロス、Qガラスクロス、球状ガラスクロス、NEガラスクロス、及びTガラスクロス等のガラス繊維、更にガラス以外の無機物の繊維やポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、全芳香族ポリアミド、ポリエステル;並びに、ポリパラフェニレンベンズオキサゾール、ポリイミド及び炭素繊維などの有機繊維が挙げられるが、これらに特に限定されない。基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマットなどが挙げられる。また、織布の織り方としては、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、織布を開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さは、特に限定されないが、好ましくは0.01〜0.4mm程度である。また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
本実施形態の積層板は、上記プリプレグを1枚以上備える。積層板はプリプレグを1枚以上備えるものであれば特に限定されず、他のいかなる層を有していてもよい。積層板の製造方法としては、一般に公知の方法を適宜適用でき、特に限定されない。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができ、上記プリプレグ同士を積層し、加熱加圧成形することで積層板を得ることができる。このとき、加熱する温度は、特に限定されないが、65〜300℃が好ましく、120〜270℃がより好ましい。また、加圧する圧力は、特に限定されないが、加圧が大きすぎると積層板の樹脂の固形分調整が難しく品質が安定せず、また、圧力が小さすぎると、気泡や積層間の密着性が悪くなってしまうため2.0〜5.0MPaが好ましく、2.5〜4.0MPaがより好ましい。本実施形態の積層板は、金属箔からなる層を備えることにより、後述する金属箔張積層板として好適に用いることができる。
上記プリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
本発明の硬化物は成型材料、接着剤、複合材料、塗料など各種用途に使用できる。本発明記載の硬化性樹脂組成物の硬化物は優れた耐熱性と誘電特性を示すため、半導体素子用封止材、液晶表示素子用封止材、有機EL素子用封止材、プリント配線基板、ビルドアップ積層板等の電気・電子部品や炭素繊維強化プラスチック、ガラス繊維強化プラスチック等の軽量高強度構造材用複合材料に好適に使用される。
以下、実施例、比較例により本発明を具体的に説明する。尚、本文中「部」及び「%」は、それぞれ「重量部」及び「重量%」を表す。軟化点及び溶融粘度は下記の方法で測定した。
・ 軟化点:JIS K−7234に準じた方法で測定
・ 酸価:JIS K−0070:1992に準じた方法で測定
・GPC(ゲルパーミエーションクロマトグラフィー)分析
カラム:SHODEX GPC KF−601(2本)、KF−602、KF−602.5、KF−603
流速:0.5ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
・HPLC(高速液体クロマトグラフィー)分析
カラム:Inertsil ODS−2
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:アセトニトリル・水
検出器:フォトダイオードアレイ(200nm)
[合成例1]
温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン279部、トルエン100部、m−ジ(α−ヒドロキシイソプロピル)ベンゼン146部、活性白土50部を仕込み、水、トルエンを留去しながら系内を6時間かけて170℃まで昇温し、この温度で13時間反応をした。その後室温まで冷却し、トルエンを230部加えてろ過により活性白土を除去した。次いでロータリーエバポレーターで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂(A1)241部を得た。芳香族アミン樹脂(A1)のアミン当量は179g/eq、軟化点は46.5℃であった。GPC分析(RI)により、n=1体は73%であり、HPLC分析によるn=1体中の1,3−ビス(p−アミノクミル)ベンゼンは49%であるため、芳香族アミン樹脂中の1,3−ビス(p−アミノクミル)ベンゼンは、36%であった。
[合成例2]
温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン93部とトルエン50部、35%塩酸52.1部を仕込み、昇温をしながら水、トルエンを留去して系内を165〜170℃とし、この温度で1,3−ジイソプロペニルベンゼン20部を1.5時間かけて滴下し、同温度で30時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液87部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下でトルエン50部を加え、70℃〜80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下において過剰のアニリンとトルエンを留去した後、トルエン100部を加えて加熱溶解後、シクロヘキサンを100部加えて晶析・ろ過・乾燥を行い、GPC分析(RI)により、n=1体100%、HPLCでの純度98%の1,3−ビス(p−アミノクミル)ベンゼン(A2)35部を得た。
[合成例3]
温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部、メタンスルホン酸4部を仕込み、加熱還流状態とした。次に、芳香族アミン樹脂(A1)197部をN−メチル−2−ピロリドン95部とトルエン100部に溶解した樹脂溶液を、還流状態を保ちながら3時間かけて滴下した。この間、還流条件で共沸してくる縮合水とトルエンをディーンスターク共沸蒸留トラップ内で冷却・分液した後、有機層であるトルエンは系内に戻し、水は系外へ排出した。樹脂溶液の滴下終了後、還流状態を保ち、脱水操作をしながら6時間反応を行った。
反応終了後、水洗を4回繰り返してメタンスルホン酸及び過剰の無水マレイン酸を除去し、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去した。次いで、メタンスルホン酸2部を加え、加熱還流状態で2時間反応を行った。反応終了後、水洗水が中性になるまで4回水洗を繰り返したのち、70℃以下の加熱減圧下においてルエンと水の共沸により、水を系内から除去したのち、トルエンを加熱減圧下において完全に留去することによりマレイミド樹脂(M1)を得た。得られたマレイミド樹脂(M1)の軟化点は100℃、酸価は9mgKOH/gであった。GPC分析(RI)により、n=1体は70%であり、HPLC分析によるn=1体中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは53%であるため、マレイミド樹脂(M1)中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは37%であった。
GPC分析結果を図1に示す。保持時間22.3分のピークがn=1体のピークである。
HPLC分析の結果を図2に示す。保持時間22.1分、24.0分、25.3分のピークがn=1体のピークであり、25.3分のピークがN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドである。
[合成例4]
合成例3の芳香族アミン樹脂(A1)197部を芳香族アミン樹脂(A1)36部と(A2)140部に、N−メチル−2−ピロリドン95部とトルエン95部に溶解した樹脂溶液をN−メチル−2−ピロリドン72部とトルエン100部に溶解した樹脂溶液に変えた以外は合成例3と同様の操作を行い、マレイミド樹脂(M2)を得た。得られたマレイミド樹脂(M2)の軟化点は93℃、酸価は4mgKOH/gであった。GPC分析(RI)により、n=1体は96%であり、HPLC分析によるn=1体中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは92%であるため、マレイミド樹脂(M2)中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは88%であった。
[合成例5]
合成例3の芳香族アミン樹脂(A1)197部を芳香族アミン樹脂(A1)74部と(A2)107部に、N−メチル−2−ピロリドン95部とトルエン95部に溶解した樹脂溶液をN−メチル−2−ピロリドン78部とトルエン100部に溶解した樹脂溶液に変えた以外は合成例3と同様の操作を行い、前記式(2)で表されるマレイミド樹脂(M3)を得た。得られたマレイミド樹脂(M3)の軟化点は95℃、酸価は5mgKOH/gであった。GPC分析(RI)により、n=1体は80%であり、HPLC分析によるn=1体中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは79%であるため、マレイミド樹脂(M3)中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは63%であった。
[合成例6]
合成例3の芳香族アミン樹脂(A1)197部を芳香族アミン樹脂(A1)73部と(A2)114部に、N−メチル−2−ピロリドン95部とトルエン95部に溶解した樹脂溶液をN−メチル−2−ピロリドン84部とトルエン100部に溶解した樹脂溶液に変えた以外は合成例3と同様の操作を行い、マレイミド樹脂(M4)を得た。得られたマレイミド樹脂(M4)の軟化点は96℃、酸価は7mgKOH/gであった。GPC分析(RI)により、n=1体は78%であり、HPLC分析によるn=1体中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは76%であるため、マレイミド樹脂(M4)中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは59%であった。
[合成例7]
合成例3の芳香族アミン樹脂(A1)197部を芳香族アミン樹脂(A1)73部と(A2)114部に、N−メチル−2−ピロリドン95部とトルエン95部に溶解した樹脂溶液をN−メチル−2−ピロリドン84部とトルエン100部に溶解した樹脂溶液に変えた以外は合成例3と同様の操作を行い、マレイミド樹脂(M5)を得た。得られたマレイミド樹脂(M5)の軟化点は98℃、酸価は8mgKOH/gであった。GPC分析(RI)により、n=1体は74%であり、HPLC分析によるn=1体中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは70%であるため、マレイミド樹脂(M5)中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは52%であった。
[合成例8]
温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部、メタンスルホン酸3.3部を仕込み、加熱還流状態とした。次に、1,3−ビス(p−アミノクミル)ベンゼン(A2)172部をN−メチル−2−ピロリドン66部とトルエン100部に溶解した樹脂溶液を、還流状態を保ちながら3時間かけて滴下した。この間、還流条件で共沸してくる縮合水とトルエンをディーンスターク共沸蒸留トラップ内で冷却・分液した後、有機層であるトルエンは系内に戻し、水は系外へ排出した。樹脂溶液の滴下終了後、還流状態を保ち、脱水操作をしながら2時間反応を行った。
反応終了後、水洗を4回繰り返してメタンスルホン酸及び過剰の無水マレイン酸を除去し、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去した。次いで、メタンスルホン酸1.7部を加え、加熱還流状態で2時間反応を行った。反応終了後、水洗水が中性になるまで3回水洗を繰り返したのち、70℃以下の加熱減圧下においてルエンと水の共沸により、水を系内から除去したのち、トルエンを加熱減圧下において完全に留去することによりマレイミド樹脂(M6)237部を得た。得られたマレイミド樹脂(M6)の軟化点は91℃、酸価は3mgKOH/gであった。GPC分析(RI)により、n=1体は98%であり、HPLC分析によるn=1体中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは100%であるため、マレイミド樹脂(M6)中のN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドは98%であった。
GPC分析結果を図3に示す。保持時間22.3分のピークがn=1体のピークである。
HPLC分析の結果を図4に示す。保持時間25.4分のピークがn=1体のピークであり、25.3分のピークがN,N’−(1,3−フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドである。
[合成例9]
温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにトルエン21.1部、4,4’−(ヘキサフルオロイソプロピリデンジフタル酸無水物22.2部、2,2’−ビス(トリフルオロメチル)ベンジジン15.6部、4,4’−(ヘキサフルオロイソプロピリデン)ビス(2−アミノフェノール)1.4部、トリエチルアミン1.0部を加え、トルエンと生成水を抜き出しながら内温を165℃まで昇温し、温度を維持したまま2時間共沸脱水しながら反応を実施した。常圧下、内温180℃まで昇温し、トルエン及びトリエチルアミンを回収後、減圧下でNMPを50部回収した。その後、NMPで希釈し、固形分40%のフッ素含有ポリイミド樹脂溶液(FRS1)を得た。
[合成例10]
温度計、還流冷却器、ディーンスターク共沸蒸留トラップ、原料導入口、窒素導入装置及び撹拌装置を取り付けた300mlの反応器に、BAFL(9,9−ビス(4−アミノフェニル)フルオレン、JFEケミカル株式会社製、分子量348.45g/mol)8.23部、PRIAMINE1075(C36ダイマージアミン、クローダジャパン株式会社製、アミン当量534.38g/mol)14.63部、ODPA(オキシジフタル酸無水物、マナック株式会社製、分子量310.22g/mol)15.51部、アニソール85.41部、トリエチルアミン1.01部及びトルエン21.23部を入れて、100℃まで加熱し原料を溶解させた。アミック酸の閉環に伴い生成した水をトルエンとの共沸で除去しながら135℃で4時間反応させた。水の生成が止まった後、残留するトリエチルアミンとトルエンを引き続き140℃で除去することによりポリイミド樹脂溶液(PIS1)を得た。ポリイミド樹脂溶液の固形分濃度は、30.0%であった。ポリイミド樹脂の合成に用いたジアミン成分と酸無水物成分のモル比(ジアミン成分のモル数/酸無水物成分のモル数)は1.02であった。
[実施例1、2、比較例1]
合成例3で得られたマレイミド樹脂(M1)を樹脂分が60%になるようにトルエンに溶解し、マレイミド樹脂溶液(MS1)を調製した。これを表1に示す割合で各種材料と混合して、室温で30分溶液を攪拌後の状態を確認する相溶化試験を実施した。結果を表1に示す。
・FRS1:合成例9で合成
・BMI:4,4’−ビスマレイミドジフェニルメタン(東京化成社製)
・トルエン
・SA−9000−111:末端メタクリル変性ポリフェニレンエーテル(SABIC社製)
・Ricоn134:スチレンブタジエン共重合体(Cray Valley社製)
Figure 2021116423
表1の結果より、本発明の硬化性樹脂組成物は相溶性に優れることが確認された。
[実施例3、4、比較例2、3]
合成例3で得られたマレイミド樹脂(M1)を樹脂分が60%になるようにトルエンに溶解し、マレイミド樹脂溶液(MS1)を調製した。これを表2、表3に示す割合で各種材料と混合して、室温で30分攪拌後、アプリケータを用いて銅箔(T4X、福田金属銅箔社製)に乾燥後の塗工膜厚が200μmになるよう各樹脂溶液を塗布して、120℃で10分乾燥させた。その後、250℃で2時間の条件で硬化させることで硬化膜(樹脂フィルム)を得た。得られたフィルムはエッチング操作により取り出し、長さ4mm幅3mmにカットして誘電率試験・誘電正接試験、およびガラス転移温度の測定を行った。結果を表2に示す。
<誘電率試験・誘電正接試験>
・(株)関東電子応用開発製の1GHz空洞共振器を用いて、空洞共振器摂動法にてテストを行った。さらに、試験片を24時間水に含侵させた後の誘電率、誘電正接についても測定した。
<ガラス転移温度>
JIS K−7244に準拠して測定した。tanδのピークトップ温度をTgとした。
・動的粘弾性測定器:TA−instruments、DMA−2980
・昇温速度:2℃/分
・FRS1:合成例9で合成
・PIS1:合成例10で合成
・SA−9000−111:末端メタクリル変性ポリフェニレンエーテル(SABIC社製)
・Ricоn100:スチレンブタジエン共重合体(Cray Valley社製)
・DCP:ジクミルパーオキサイド(東京化成社製)
Figure 2021116423
表2の結果より、本発明の硬化性樹脂組成物は耐熱性に優れるとともに初期及び吸水試験後の誘電特性に優れることが確認された。一方、比較例2は吸水特性、比較例3は耐熱性に課題を有する。

Claims (11)

  1. (A)炭化水素のみから構成される化合物、および(B)分子中に少なくとも1つ以上のフッ素原子を含有する化合物、からなる群から選択される1種以上と、下記式(1)で表される化合物とを含有する硬化性樹脂組成物。
    Figure 2021116423
    (式(1)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)
  2. 前記式(1)中、nが、1.1≦n≦20である請求項1に記載の硬化性樹脂組成物。
  3. 前記式(1)で表される化合物が、N,N’−(フェニレン−ジ−(2,2−プロピリデン)−ジ−p−フェニレン)ビスマレイミドを90面積%以下含有するものである請求項1又は2に記載の硬化性樹脂組成物。
  4. 前記成分(A)がポリスチレン化合物又はスチレン化合物と、任意の重合性モノマーとの共重合物である請求項1乃至3のいずれか一項に記載の硬化性樹脂組成物。
  5. 前記成分(A)がスチレンブタジエン共重合体である請求項4に記載の硬化性樹脂組成物。
  6. 前記成分(B)が分子内に少なくとも1つ以上のフルオロ基又はトリフルオロメチル基を有する化合物である請求項1乃至5のいずれか一項に記載の硬化性樹脂組成物。
  7. さらに、硬化促進剤を含有する請求項1乃至6のいずれか一項に記載の硬化性樹脂組成物。
  8. さらに、難燃剤を含有する請求項1乃至7のいずれか一項に記載の硬化性樹脂組成物。
  9. さらに、重合禁止剤を含有する請求項1乃至8のいずれか一項に記載の硬化性樹脂組成物。
  10. 前記式(1)で表される化合物が、下記式(2)で表されるものである請求項1乃至9のいずれか一項に記載の硬化性樹脂組成物。
    Figure 2021116423
    (式(2)中、Rは炭素数1〜10の炭化水素基、またはハロゲン化アルキル基を表す。mは0〜3の整数を表し、nは、1≦n≦20を表す。)
  11. 請求項1乃至10のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。


JP2021006316A 2020-01-21 2021-01-19 硬化性樹脂組成物およびその硬化物 Pending JP2021116423A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007829 2020-01-21
JP2020007829 2020-01-21

Publications (1)

Publication Number Publication Date
JP2021116423A true JP2021116423A (ja) 2021-08-10

Family

ID=77174105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021006316A Pending JP2021116423A (ja) 2020-01-21 2021-01-19 硬化性樹脂組成物およびその硬化物

Country Status (1)

Country Link
JP (1) JP2021116423A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102756A1 (ja) * 2020-11-12 2022-05-19 味の素株式会社 樹脂組成物
WO2022181758A1 (ja) * 2021-02-25 2022-09-01 日本化薬株式会社 硬化性樹脂組成物、プリプレグおよびその硬化物
WO2022210433A1 (ja) * 2021-03-30 2022-10-06 日本化薬株式会社 マレイミド樹脂混合物、硬化性樹脂組成物、プリプレグおよびその硬化物
WO2024115722A1 (en) 2022-12-02 2024-06-06 Arxada Ag Asymmetrical phenylene bis imides and their preparation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102756A1 (ja) * 2020-11-12 2022-05-19 味の素株式会社 樹脂組成物
WO2022181758A1 (ja) * 2021-02-25 2022-09-01 日本化薬株式会社 硬化性樹脂組成物、プリプレグおよびその硬化物
WO2022210433A1 (ja) * 2021-03-30 2022-10-06 日本化薬株式会社 マレイミド樹脂混合物、硬化性樹脂組成物、プリプレグおよびその硬化物
JP7152839B1 (ja) * 2021-03-30 2022-10-13 日本化薬株式会社 マレイミド樹脂混合物、硬化性樹脂組成物、プリプレグおよびその硬化物
WO2024115722A1 (en) 2022-12-02 2024-06-06 Arxada Ag Asymmetrical phenylene bis imides and their preparation

Similar Documents

Publication Publication Date Title
JP6951829B1 (ja) 化合物、混合物、硬化性樹脂組成物およびその硬化物、並びに化合物の製造方法
JP2021116423A (ja) 硬化性樹脂組成物およびその硬化物
WO2020213640A1 (ja) 芳香族アミン樹脂、マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP2021143333A (ja) オレフィン樹脂、硬化性樹脂組成物およびその硬化物
JP7208705B1 (ja) マレイミド樹脂、硬化性樹脂組成物およびその硬化物
WO2020213639A1 (ja) マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP2024009846A (ja) オレフィン化合物、硬化性樹脂組成物およびその硬化物
JP7241246B2 (ja) 化合物、混合物、硬化性樹脂組成物およびその硬化物
JP7157277B1 (ja) 硬化性樹脂組成物、プリプレグおよびその硬化物
JP7093150B2 (ja) 硬化性樹脂組成物及びその硬化物
JP7182343B1 (ja) マレイミド樹脂、アミン樹脂、硬化性樹脂組成物およびその硬化物
JP7252301B1 (ja) 硬化性樹脂組成物、プリプレグおよびその硬化物
JP7236794B1 (ja) アミン化合物、マレイミド化合物、硬化性樹脂組成物およびその硬化物
JP7360345B2 (ja) オレフィン樹脂、硬化性樹脂組成物およびその硬化物
JP7305290B2 (ja) 共重合体、硬化性樹脂組成物およびその硬化物
JP2023015005A (ja) 硬化性樹脂組成物、プリプレグおよびその硬化物
JP2023015004A (ja) 硬化性樹脂組成物、プリプレグおよびその硬化物
JP2022189547A (ja) マレイミド樹脂を含有する硬化性樹脂組成物およびその硬化物
JP2022176111A (ja) マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP2023130778A (ja) 硬化性樹脂組成物、およびその硬化物
JP2023130777A (ja) 硬化性樹脂組成物、樹脂シート、およびその硬化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240612