JP2021116236A - Production method for low-water-content quaternary ammonium hydroxide solution - Google Patents

Production method for low-water-content quaternary ammonium hydroxide solution Download PDF

Info

Publication number
JP2021116236A
JP2021116236A JP2020008414A JP2020008414A JP2021116236A JP 2021116236 A JP2021116236 A JP 2021116236A JP 2020008414 A JP2020008414 A JP 2020008414A JP 2020008414 A JP2020008414 A JP 2020008414A JP 2021116236 A JP2021116236 A JP 2021116236A
Authority
JP
Japan
Prior art keywords
quaternary ammonium
ammonium hydroxide
water
low
hydroxide solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020008414A
Other languages
Japanese (ja)
Other versions
JP7426836B2 (en
Inventor
俊男 有冨
Toshio Aritomi
俊男 有冨
秀成 石丸
Hidenari Ishimaru
秀成 石丸
裕史 井上
Yasushi Inoue
裕史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2020008414A priority Critical patent/JP7426836B2/en
Publication of JP2021116236A publication Critical patent/JP2021116236A/en
Application granted granted Critical
Publication of JP7426836B2 publication Critical patent/JP7426836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a novel production method for a low-water-content quaternary ammonium hydroxide solution using low-boiling organic matter as solvent.SOLUTION: A high-water-content quaternary ammonium hydroxide solution, which includes low-boiling organic matter as solvent, quaternary ammonium hydroxide as solute, and water of 2.0 mass% or more, is dehydrated by pervaporation using a water-selection permeable pervaporation membrane, to obtain a low-water-content quaternary ammonium hydroxide solution which includes quaternary ammonium hydroxide in a concentration of 1-30 mass% and has a water content of less than 2.0 mass%.SELECTED DRAWING: None

Description

本発明は、低沸点有機物を溶媒とした低含水量の水酸化第4級アンモニウム溶液の新規な製造方法に関し、不純物金属の含量をも低減することが可能な、低含水水酸化第4級アンモニウム溶液の製造方法に関する。 The present invention relates to a novel method for producing a low water content quaternary ammonium hydroxide solution using a low boiling organic substance as a solvent, and the present invention relates to a method for producing a low water content quaternary ammonium hydroxide solution, which can also reduce the content of impurity metals. Regarding the method for producing a solution.

水酸化第4級アンモニウムは、相関移動触媒をはじめとして、非水溶媒滴定における塩基の標準液、有機系アルカリ剤等の有機の強塩基として有用であるとともに、LSIの製造における半導体基板の洗浄、食刻、ポジ型レジストの現像液に利用されている。かかる半導体関係の処理剤としての用途においては、半導体装置の集積化が進むにつれ、金属イオン、有機物などの不純物を含まない高純度品質が求められている。 Tertiary ammonium hydroxide is useful as a standard solution for bases in non-aqueous solvent titration, strong organic bases such as organic alkaline agents, including phase transfer catalysts, and for cleaning semiconductor substrates in LSI manufacturing. It is used as a developing solution for food engraving and positive resist. In such applications as semiconductor-related processing agents, as the integration of semiconductor devices progresses, high-purity quality that does not contain impurities such as metal ions and organic substances is required.

一方で、非水溶媒を用いた低含水の水酸化第4級アンモニウム溶液は、腐食防止やレジスト等への浸み込みによる膨潤を抑える効果が期待でき、液晶、半導体デバイス製造におけるレジスト剥離、特に金属配線等を含む処理において有用である。更に、無水のアルカリ源として添加剤に用いられる。 On the other hand, a low water content quaternary ammonium hydroxide solution using a non-aqueous solvent can be expected to have the effect of preventing corrosion and suppressing swelling due to penetration into resists, etc. It is useful in processing including metal wiring and the like. Furthermore, it is used as an additive as an anhydrous alkali source.

従来、低含水の水酸化第4級アンモニウム溶液の製造方法としては、例えば、水酸化テトラメチルアンモニウム水和物をアルコールに溶解して減圧蒸留により脱水を行う方法や同溶液をモレキュラシーブなどの吸水剤で脱水する方法が知られている。しかし、両手法ともに、水酸化テトラメチルアンモニウム水和物の固形物を得るまでの工程が煩雑であるうえに、減圧蒸留は水より沸点の低いアルコールの場合、水は蒸発しにくいため低含水のアルコール溶液を得ることはできず、かつ、共沸組成以上の低含水物は得られないという欠点があった。また、吸水剤による脱水方法は不純物が混入し易い欠点があった。 Conventionally, as a method for producing a quaternary ammonium hydroxide solution having a low water content, for example, a method in which tetramethylammonium hydroxide hydrate is dissolved in alcohol and dehydrated by vacuum distillation, or the solution is used as a water absorbing agent such as molecular sieve. A method of dehydration is known. However, in both methods, the process of obtaining a solid of tetramethylammonium hydroxide hydrate is complicated, and in the case of alcohol having a boiling point lower than that of water in vacuum distillation, water is difficult to evaporate, so that the water content is low. There is a drawback that an alcohol solution cannot be obtained and a low water content having an azeotropic composition or higher cannot be obtained. Further, the dehydration method using a water absorbing agent has a drawback that impurities are easily mixed.

上記減圧蒸留を改善した手法として、水酸化第4級アンモニウム水溶液をグリコールエーテル類、グリコール類、およびトリオール類からなる群から選択される水溶性有機溶剤と混合し、その混合液を減圧下で薄膜蒸留する方法が提案されているが、この方法では溶媒が高沸点溶媒に限定され、低沸点溶媒の溶液を得ることはできない(特許文献1)。 As a method for improving the vacuum distillation, a quaternary ammonium hydroxide aqueous solution is mixed with a water-soluble organic solvent selected from the group consisting of glycol ethers, glycols, and triols, and the mixed solution is thinned under reduced pressure. A method of distillation has been proposed, but in this method, the solvent is limited to a high boiling solvent, and a solution of a low boiling solvent cannot be obtained (Patent Document 1).

一方で、簡便に低含水の水酸化テトラメチルアンモニウム溶液を製造する方法として、テトラメチルアンモニウム塩のアルカリ分解法が知られている。例えば、トリメチルアミンとメチルクロライドを反応させて得られたテトラメチルアンモニウムクロライドをメタノールに溶解させた水酸化カリウムで分解し、析出した塩化カリウムを除去することにより水酸化テトラメチルアンモニウムメタノール溶液を得ることができる。しかし、塩化カリウムの溶解度分は除去できないため、金属イオン濃度の低い高純度な水酸化テトラメチルアンモニウム溶液を得ることができない。 On the other hand, an alkaline decomposition method of tetramethylammonium salt is known as a method for easily producing a low water content tetramethylammonium hydroxide solution. For example, a tetramethylammonium methanol solution can be obtained by decomposing tetramethylammonium chloride obtained by reacting trimethylamine with methyl chloride with potassium hydroxide dissolved in methanol and removing the precipitated potassium chloride. can. However, since the solubility of potassium chloride cannot be removed, a high-purity tetramethylammonium hydroxide solution having a low metal ion concentration cannot be obtained.

一方で、第4級アンモニウム塩をアルコール溶媒に溶解させイオン交換樹脂でイオン成分を除去することにより効率的に高濃度かつ高純度の水酸化第4級アンモニウム溶液を製造する方法が提案されているが、十分な低含水物は得られず、また、不純物イオン濃度もまだ高いという問題があった(特許文献2)。 On the other hand, a method has been proposed in which a quaternary ammonium salt is dissolved in an alcohol solvent and an ion component is removed with an ion exchange resin to efficiently produce a high-concentration and high-purity quaternary ammonium hydroxide solution. However, there is a problem that a sufficiently low water content cannot be obtained and the impurity ion concentration is still high (Patent Document 2).

WO2010/073430公報WO2010 / 073430 Gazette 特開2004−315375公報JP-A-2004-315375

本発明の目的は、低沸点有機物を溶媒とする水酸化第4級アンモニウム溶液であって、低含水で、特に、金属イオン濃度が極めて低い高純度な水酸化第4級アンモニウム溶液を製造することが可能な方法を提供することにある。 An object of the present invention is to produce a quaternary ammonium hydroxide solution using a low boiling point organic substance as a solvent, which has a low water content and particularly a high purity quaternary ammonium hydroxide solution having an extremely low metal ion concentration. Is to provide a possible method.

本発明者らは、かかる目的を達成すべく鋭意研究を重ねた結果、水酸化第4級アンモニウム水溶液に低沸点有機物を添加した混合溶液を、水選択透過性浸透気化膜を用いた浸透気化法で処理することにより、効率的に低含水溶液を得ることができることを見出した。更に、イオン交換基を有する浸透気化膜を用いることにより、不純物イオン成分が高度に除去された、低沸点有機物を溶媒とする低含水かつ高純度な水酸化第4級アンモニウム溶液が得られることを見出し、本発明を完成するに至った。 As a result of diligent research to achieve this object, the present inventors have applied a mixed solution of a low boiling point organic substance to a quaternary ammonium hydroxide aqueous solution by an osmotic vaporization method using a water selective permeable osmotic vaporization film. It has been found that a low aqueous solution can be efficiently obtained by treating with. Furthermore, by using an osmotic vaporization film having an ion exchange group, it is possible to obtain a quaternary ammonium hydroxide solution having a low water content and a high purity using a low boiling point organic substance as a solvent in which impurity ion components are highly removed. We have found and completed the present invention.

すなわち、本発明によれば、低沸点有機物を溶媒とし、溶質として水酸化第4級アンモニウムを含み、且つ、水を2.0質量%以上含む高含水水酸化第4級アンモニウム溶液を、水選択透過性浸透気化膜を用いて浸透気化法により脱水することを特徴とする低含水水酸化第4級アンモニウム溶液の製造方法が提供される。 That is, according to the present invention, a highly hydrated quaternary ammonium hydroxide solution containing a low boiling point organic substance as a solvent, containing quaternary ammonium hydroxide as a solute, and containing 2.0% by mass or more of water is selected as water. Provided is a method for producing a low water-containing quaternary ammonium hydroxide solution, which comprises dehydrating by a osmotic vaporization method using a permeable osmotic vaporization film.

上記方法において、上記低沸点有機物は、アルコールであることが好ましい。 In the above method, the low boiling point organic substance is preferably alcohol.

また、上記方法において、水選択透過性浸透気化膜がイオン交換基を有する高分子膜であることが、イオン性成分がより低減された低含水水酸化第4級アンモニウム溶液を得ることができ好ましい。 Further, in the above method, it is preferable that the water-selective permeable osmotic vaporization membrane is a polymer membrane having an ion exchange group, because a low hydration quaternary ammonium hydroxide solution having a further reduced ionic component can be obtained. ..

また、本発明によれば、上記製造方法により得ることができる、低沸点有機物を溶媒とし、溶質として水酸化第4級アンモニウムを1〜30質量%の濃度で含み、且つ、水含量が2.0質量%未満であることを特徴とする低含水水酸化第4級アンモニウム溶液をも提供される。 Further, according to the present invention, a low boiling point organic substance, which can be obtained by the above production method, is used as a solvent, quaternary ammonium hydroxide is contained as a solute at a concentration of 1 to 30% by mass, and the water content is 2. Also provided is a low hydration quaternary ammonium hydroxide solution characterized by less than 0% by weight.

上記低沸点有機物が、アルコールであることが好ましい。 The low boiling point organic substance is preferably alcohol.

また、前記イオン交換基を有する高分子膜を水選択透過性浸透気化膜として使用することにより、上記低水含量に加え、ハロゲン含量が、100ppb以下であり、かつ、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの不純物金属の総量が50ppb以下、個々の不純物金属の含量が5ppb以下である低含水水酸化第4級アンモニウム溶液を得ることができる。 Further, by using the polymer film having an ion exchange group as a water selective permeable osmotic vaporization film, in addition to the above low water content, the halogen content is 100 ppb or less, and Na, Mg, Al, K. , Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn can obtain a low water-containing quaternary ammonium hydroxide solution in which the total amount of impurity metals is 50 ppb or less and the content of individual impurity metals is 5 ppb or less. can.

本発明の製造方法によれば、従来から製造が困難であった、低沸点有機物を溶媒とし、溶質として水酸化第4級アンモニウムを含む水酸化第4級アンモニウム溶液において、水含量を著しく低下させた低含水水酸化第4級アンモニウム溶液を得ることが可能である。 According to the production method of the present invention, the water content is significantly reduced in a quaternary ammonium hydroxide solution containing a low boiling point organic substance as a solvent and a quaternary ammonium hydroxide as a solute, which has been difficult to produce in the past. It is possible to obtain a low hydration quaternary ammonium hydroxide solution.

更には、ハロゲンの含量、金属不純物含量も高度に抑制された上記低含水水酸化第4級アンモニウム溶液を得ることもできる。 Furthermore, it is also possible to obtain the above-mentioned low water content quaternary ammonium hydroxide solution in which the halogen content and the metal impurity content are highly suppressed.

本発明において、低含水水酸化第4級アンモニウム溶液の製造方法は、低沸点有機物を溶媒とし、溶質として水酸化第4級アンモニウムを含み、且つ、水を2.0質量%以上含む高含水水酸化第4級アンモニウム溶液を、水選択透過性浸透気化膜を用いて浸透気化法により脱水することを最大の特徴とする。 In the present invention, the method for producing a low hydrated quaternary ammonium hydroxide solution is a highly hydrated water containing a low boiling point organic substance as a solvent, containing quaternary ammonium hydroxide as a solute, and containing 2.0% by mass or more of water. The most characteristic feature is that the quaternary ammonium oxide solution is dehydrated by the osmotic vaporization method using a water selective permeable osmotic vaporization film.

本発明において、溶媒として使用する低沸点有機物としては、水より沸点が低く、水酸化第4級アンモニウムが溶解する有機物であれば特に制限されないが、低沸点のアルコールであるメタノール、エタノール、n−プロパノール、イソプロパノール、2−メチル−2−プロパノールなどが好適に用いられる。また、低沸点有機溶媒は単体でもよく、複数種類の混合体でもかまわない。 In the present invention, the low-boiling organic substance used as the solvent is not particularly limited as long as it has a lower boiling point than water and dissolves quaternary ammonium hydroxide, but is not particularly limited as long as it is a low-boiling alcohol such as methanol, ethanol, or n-. Propanol, isopropanol, 2-methyl-2-propanol and the like are preferably used. Further, the low boiling point organic solvent may be a simple substance or a mixture of a plurality of types.

本発明において使用される水酸化第4級アンモニウムとしては、有機物に溶解すれば特に制限されない。例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化エチルトリメチルアンモニウム、水酸化ヒドロキシエチルトリメチルアンモニウム、水酸化ベンジルトリメチルアンモニウムなどが挙げられ、特に水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウムが好適に用いられる。また、水酸化第4級アンモニウムは1種でもよく、複数種類の混合体でもかまわない。 The quaternary ammonium hydroxide used in the present invention is not particularly limited as long as it is dissolved in an organic substance. For example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, ethyltrimethylammonium hydroxide, hydroxyethyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide and the like can be mentioned, and in particular, water. Tetramethylammonium oxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide are preferably used. Further, the quaternary ammonium hydroxide may be one kind or a mixture of a plurality of kinds.

本発明において、高含水水酸化第4級アンモニウム溶液は、水含量が2.0質量%以上のものであれば特に制限されないが、後で詳述する水選択透過性浸透気化膜を使用して得られる低含水水酸化第4級アンモニウム溶液の純度をより向上させるためには、ある程度の水を含有していることが好ましく、前記水含量は、10質量%以上、特に、20〜50質量%、更には、25〜40質量%であることが好ましい。 In the present invention, the highly hydrous quaternary ammonium hydroxide solution is not particularly limited as long as it has a water content of 2.0% by mass or more, but a water-selective permeable osmotic vaporization film described in detail later is used. In order to further improve the purity of the obtained low water content quaternary ammonium hydroxide solution, it is preferable to contain a certain amount of water, and the water content is 10% by mass or more, particularly 20 to 50% by mass. Further, it is preferably 25 to 40% by mass.

本発明において、上記高含水水酸化第4級アンモニウム溶液は、従来の方法により得られ、水含量が十分低減されていない水酸化第4級アンモニウム溶液を対象とすることもできるが、好ましい調製方法を例示すれば、水酸化第4級アンモニウム水溶液と低沸点有機物とを混合する方法が挙げられる。 In the present invention, the highly hydrous quaternary ammonium hydroxide solution can be obtained by a conventional method, and a quaternary ammonium hydroxide solution whose water content is not sufficiently reduced can be targeted, but a preferable preparation method. For example, a method of mixing a quaternary ammonium hydroxide aqueous solution and a low boiling point organic substance can be mentioned.

上記混合に使用される水酸化テトラ第4級アンモニウム水溶液は、高純度かつ高濃度のものが好ましく、例えば、WO98−003466公報などに示されるようなイオン交換膜を用いた電解透析法や有機酸第4級アンモニウム塩水溶液の電気分解法で製造された水酸化第4級アンモニウム水溶液を使うことが好ましい。上記方法においては、一般的に、水酸化第4級アンモニウム濃度10〜30質量%、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの不純物金属の総量金属イオン濃度100ppb以下、ハロゲン含量10ppm以下の水溶液を得ることが可能であり、かかる水酸化第4級アンモニウム水溶液は、本発明において好適に使用することができる。 The tetra quaternary ammonium hydroxide aqueous solution used for the above mixing is preferably of high purity and high concentration. For example, an electrolytic dialysis method using an ion exchange membrane or an organic acid as shown in WO98-0034666 It is preferable to use a quaternary ammonium hydroxide aqueous solution produced by an electrolysis method of a quaternary ammonium salt aqueous solution. In the above method, generally, the quaternary ammonium hydroxide concentration is 10 to 30% by mass, and the impurity metals of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn are used. It is possible to obtain an aqueous solution having a total metal ion concentration of 100 ppb or less and a halogen content of 10 ppm or less, and such a quaternary ammonium hydroxide aqueous solution can be suitably used in the present invention.

また、低沸点有機物も、蒸留等により不純物金属が十分除去され、精製されたものを使用することが好ましい。 Further, it is preferable to use a low boiling point organic substance that has been purified by sufficiently removing impurity metals by distillation or the like.

本発明において、前記方法により得られた高含水水酸化第4級アンモニウム溶液を浸透気化法に供して脱水することにより本発明の低含水水酸化第4級アンモニウム溶液が得られる。 In the present invention, the low hydrated quaternary ammonium hydroxide solution of the present invention can be obtained by subjecting the highly hydrated quaternary ammonium hydroxide solution obtained by the above method to an osmotic vaporization method and dehydrating the solution.

本発明において、浸透気化法は、分離膜として水選択透過性浸透気化膜を使用し、上記水選択透過性浸透気化膜によって仕切られた少なくとも一対の室を構成し、かかる室の一方(処理液室)に高含水水酸化第4級アンモニウム溶液を供給し、他方の室(透過室)を真空又は減圧にして、選択的に水を膜透過させて脱水する方法が一般的である。透過した水は気化した状態で回収してもよいが、通常冷却装置で、冷却凝縮され液体として回収される。 In the present invention, the osmotic vaporization method uses a water selective permeable osmotic vaporization membrane as a separation membrane, constitutes at least a pair of chambers partitioned by the water selective permeable osmotic vaporization membrane, and one of the chambers (treatment liquid). A general method is to supply a highly hydrated quaternary ammonium hydroxide solution to the chamber) and vacuum or reduce the pressure in the other chamber (permeation chamber) to selectively permeate water through a membrane for dehydration. The permeated water may be recovered in a vaporized state, but is usually cooled and condensed by a cooling device and recovered as a liquid.

前記水選択透過性浸透気化膜の分離特性を表す一般的パラメーターは、透過係数Qと分離係数α(A/B)である。透過係数Qは、単位時間当り、単位膜面積当りに膜透過する液量で透過速度を示し、単位はg/(m・h)で与えられる。また、分離係数α(A/B)は、処理液室側の液体成分A、Bの濃度を[A]、[B]とし、浸透気化操作により膜透過した後の透過室側の各成分濃度を[A]’、[B]’とすると、分離係数α(A/B)は、α(A/B)=([A]’/[B]’)/([A]/[B])で表される。この場合、水選択透過性浸透気化膜がB成分よりA成分を透過させ易い時には、α(A/B)>1となる。従って、分離効率を良好にするためには、透過係数Qと分離係数α(A/B)ができるだけ大きな値の水選択透過性浸透気化膜を選択することが重要である。浸透気化法を用いると水と低沸点有機物の分離原理は、浸透気化膜内に選択的に水が取り込まれ圧力差を駆動力として水が膜内移動して起こるため、蒸留と異なり共沸組成以上の脱水が可能となる。 The general parameters representing the separation characteristics of the water-selective permeable osmotic vaporization membrane are the permeability coefficient Q and the separation coefficient α (A / B). The permeability coefficient Q indicates the permeation rate by the amount of liquid permeating the membrane per unit time and per unit membrane area, and the unit is given in g / (m 2 · h). For the separation coefficient α (A / B), the concentrations of the liquid components A and B on the treatment liquid chamber side are set to [A] and [B], and the concentration of each component on the permeation chamber side after permeation through the membrane by the permeation vaporization operation. Is [A]'and [B]', and the separation coefficient α (A / B) is α (A / B) = ([A]'/ [B]') / ([A] / [B]]. ). In this case, when the water-selective permeable osmotic vaporization membrane allows the A component to permeate more easily than the B component, α (A / B)> 1. Therefore, in order to improve the separation efficiency, it is important to select a water-selective permeable osmotic vaporization membrane in which the permeability coefficient Q and the separation coefficient α (A / B) are as large as possible. When the osmotic vaporization method is used, the principle of separation of water and low boiling point organic matter is that water is selectively taken into the osmotic vaporization film and the water moves in the film by the pressure difference as a driving force. The above dehydration is possible.

本発明に用いる水選択透過性浸透気化膜は、低沸点有機物成分Bに対する水Aの分離係数αが、α(A/B)>1である水選択透過性の膜であればよく、高分子膜、無機膜、高分子/無機複合膜などの何れの膜も適用できる。好ましくは、水と親和性の高いイオン交換基を有する水選択透過性浸透気化膜を用いると、水選択透過性を高めることができる。イオン交換基はイオン交換能を有する官能基であって、それ自体公知のものであり、例えばカチオン交換基としては、スルホン酸基、カルボン酸基、ホスホン酸基が代表的であり、アニオン交換基としては、2級或いは3級アミノ基、4級アンモニウム基が代表的である。これらのイオン交換基の中でもカチオン交換基としては、強酸性基であるスルホン酸基が好ましく、アニオン交換基としては、強塩基性基である第4級アンモニウム基が好ましい。 The water selective permeable osmotic vaporization membrane used in the present invention may be a water selective permeable membrane in which the separation coefficient α of water A with respect to the low boiling point organic substance component B is α (A / B)> 1, and is a polymer. Any membrane such as a membrane, an inorganic membrane, and a polymer / inorganic composite membrane can be applied. Preferably, a water selective permeable osmotic vaporization membrane having an ion exchange group having a high affinity for water can be used to enhance the water selective permeability. The ion exchange group is a functional group having an ion exchange ability and is known by itself. For example, as the cation exchange group, a sulfonic acid group, a carboxylic acid group and a phosphonic acid group are typical, and an anion exchange group is used. As a typical example, a secondary or tertiary amino group or a quaternary ammonium group is used. Among these ion exchange groups, the cation exchange group is preferably a sulfonic acid group which is a strongly acidic group, and the anion exchange group is preferably a quaternary ammonium group which is a strongly basic group.

一方で、耐久性の観点から、水酸化第4級アンモニウムは強塩基性なので、第4級アンモニウム塩基などのアニオン交換基はホフマン分解によるイオン交換基の脱離が懸念されるため、カチオン交換基を有する浸透気化膜を用いることが長期安定運転を確保する上で、好適である。 On the other hand, from the viewpoint of durability, since quaternary ammonium hydroxide is strongly basic, anion exchange groups such as quaternary ammonium bases are concerned about elimination of ion exchange groups by Hofmann decomposition, and thus cation exchange groups. It is preferable to use a permeation vaporizing film having the above in order to ensure long-term stable operation.

上記水選択透過性浸透気化膜として、イオン交換基を有するものを使用することにより、不純物量は、著しく低減する理由としては、浸透気化膜のイオン交換基と水酸化第4級アンモニウム溶液中のイオン性不純物との親和性が高く、イオン性不純物が膜内に取り込まれるためと考えられる。従って、不純物金属を少なくするためにはカチオン交換基を有する水選択透過性浸透気化膜を使うとより効果的である。 The reason why the amount of impurities is remarkably reduced by using the water selective permeable osmotic vaporization film having an ion exchange group is that the ion exchange group of the osmotic vaporization film and the quaternary ammonium hydroxide solution are used. It has a high affinity with ionic impurities, and it is considered that the ionic impurities are incorporated into the film. Therefore, in order to reduce the amount of impurity metals, it is more effective to use a water-selective permeable osmotic vaporization membrane having a cation exchange group.

また、本発明に用いる膜の形態は、平膜状、筒状、スパイラル状、中空糸状等用いる装置の形状に応じて適宜選択すればよい。 Further, the form of the film used in the present invention may be appropriately selected depending on the shape of the device to be used, such as a flat film shape, a tubular shape, a spiral shape, and a hollow thread shape.

本発明において、浸透気化法の操作条件は特に限定されないが、処理液室の圧力は、0.1〜1MPaの範囲がよく、好ましくは大気圧かその近傍の圧力がよい。一方透過室の圧力は、大気圧以下がよく、好ましくは0.01MPa以下の真空が好ましい。即ち、浸透気化法においては、透過側の膜面で、膜透過してきた液体成分を蒸発させ、蒸気の状態で取り出すことが必要なので、透過側の圧力は膜透過する物質の蒸気圧より低い圧力にすることが好ましい。また、本発明において、処理液室の高含水水酸化第4級アンモニウム溶液の温度は、特に限定されないが透過係数からみると高い温度が好ましい。しかし、高温すぎると膜の耐久性に悪影響を及ぼすので、一般的には10〜100℃望ましくは30〜70℃の範囲がよい。 In the present invention, the operating conditions of the permeation vaporization method are not particularly limited, but the pressure in the treatment liquid chamber is preferably in the range of 0.1 to 1 MPa, preferably atmospheric pressure or its vicinity. On the other hand, the pressure in the permeation chamber is preferably atmospheric pressure or less, preferably 0.01 MPa or less. That is, in the permeation vaporization method, it is necessary to evaporate the liquid component that has permeated the film on the film surface on the permeation side and take it out in the state of vapor, so the pressure on the permeation side is lower than the vapor pressure of the substance that permeates the film. Is preferable. Further, in the present invention, the temperature of the highly hydrous quaternary ammonium hydroxide solution in the treatment liquid chamber is not particularly limited, but a high temperature is preferable from the viewpoint of the permeability coefficient. However, if the temperature is too high, the durability of the film is adversely affected. Therefore, the temperature is generally in the range of 10 to 100 ° C, preferably 30 to 70 ° C.

また、処理時間は、処理される高含水水酸化第4級アンモニウム溶液の水含量に応じて適宜設定される。 The treatment time is appropriately set according to the water content of the highly hydrous quaternary ammonium hydroxide solution to be treated.

本発明の製造方法によれば、水酸化第4級アンモニウムの濃度が1〜30質量%、水含量が2.0質量%未満の低含水水酸化第4級アンモニウム溶液を調製することができる。また、水選択透過性浸透気化膜としてイオン交換基を有する高分子膜を使用した場合は、不純物金属等の除去も効果的に実施されるため、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの不純物金属の総量が50ppb以下、個々の不純物金属の含量が5ppb以下、特に、4ppb以下不純物であるハロゲン含量が50ppb以下、特に、40ppb以下の低含水水酸化第4級アンモニウム溶液を調製することができる。 According to the production method of the present invention, a low water content quaternary ammonium hydroxide solution having a concentration of quaternary ammonium hydroxide of 1 to 30% by mass and a water content of less than 2.0% by mass can be prepared. Further, when a polymer film having an ion exchange group is used as the water selective permeable permeation vaporization film, impurity metals and the like are effectively removed. Therefore, Na, Mg, Al, K, Ca, Ti, The total amount of impurity metals of Cr, Mn, Fe, Ni, Cu, and Zn is 50 ppb or less, the content of each impurity metal is 5 ppb or less, especially the halogen content of 4 ppb or less impurities is 50 ppb or less, especially 40 ppb or less. A hydrous quaternary ammonium hydroxide solution can be prepared.

また、本発明の方法によれば、水含量が、2.0質量%未満、特に、1.5質量%未満、更には1.0質量%未満の低含水水酸化第4級アンモニウム溶液を得ることが可能であるが、水含量をあまり低く設定し過ぎると水選択透過性浸透気化膜の水の透過係数、分離係数の低下が顕著となり脱水効率が低下する。それ故、得られる低含水水酸化第4級アンモニウム溶液の含水量は、0.05質量%以上、特に、0.1質量%以上とすることが好ましい。 Further, according to the method of the present invention, a low water content quaternary ammonium hydroxide solution having a water content of less than 2.0% by mass, particularly less than 1.5% by mass, and further less than 1.0% by mass is obtained. However, if the water content is set too low, the water permeation coefficient and separation coefficient of the water selective permeable osmotic vaporization film will decrease significantly, and the dehydration efficiency will decrease. Therefore, the water content of the obtained low water content quaternary ammonium hydroxide solution is preferably 0.05% by mass or more, particularly 0.1% by mass or more.

以下、本発明を具体的に説明するために実施例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, examples will be shown in order to specifically explain the present invention, but the present invention is not limited thereto.

実施例1
(浸透気化に供する高含水水酸化第4級アンモニウム溶液の調製)
WO98−003466公報記載の方法に従って、塩化テトラメチルアンモニウムから電解透析により水酸化テトラメチルアンモニウム水溶液を調製した。得られた水溶液の水酸化テトラメチルアンモニウム濃度は酸による中和滴定により求めた結果、25質量%であった。
Example 1
(Preparation of highly hydrous quaternary ammonium hydroxide solution for osmotic vaporization)
An aqueous solution of tetramethylammonium hydroxide was prepared from tetramethylammonium chloride by electrodialysis according to the method described in WO98-0034666. The concentration of tetramethylammonium hydroxide in the obtained aqueous solution was 25% by mass as a result of determination by neutralization titration with an acid.

次いで、当該水酸化テトラメチルアンモニウム水溶液100重量部に対して、メタノールを100重量部混合し、水酸化テトラメチルアンモニウム濃度12.5%、含水量37.5%の高含水水酸化テトラメチルアンモニウム溶液を調製した。尚、メタノールは、使用前に蒸留精製を行い、不純物金属を予め除去したものを用いた。 Next, 100 parts by weight of methanol is mixed with 100 parts by weight of the tetramethylammonium hydroxide aqueous solution to obtain a highly hydrous tetramethylammonium hydroxide solution having a tetramethylammonium hydroxide concentration of 12.5% and a water content of 37.5%. Was prepared. The methanol used was one in which impurity metals had been removed in advance by distillation purification before use.

このようにして得られた高含水水酸化テトラメチルアンモニウム溶液について、ハロゲン含量はイオンクロマト分析、不純物金属は誘導結合プラズマ質量分析法(ICP−MS)によって測定した結果、ハロゲン濃度 50ppb、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの中で、最大含量を示した不純物金属の含量は6ppb、および不純物金属の総量は、53ppbであった。 Regarding the highly hydrous tetramethylammonium hydroxide solution thus obtained, the halogen content was measured by ion chromatography analysis, and the impurity metal was measured by inductively coupled plasma mass spectrometry (ICP-MS). As a result, the halogen concentration was 50 ppb, Na, Mg. Among Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn, the content of the impurity metal showing the maximum content was 6 ppb, and the total amount of the impurity metal was 53 ppb.

(水選択透過性浸透気化膜の調製)
1.カチオン交換基を有する膜の調製
ポリスルホンを1,2−ジクロロエタンに溶解させ、所定量のクロロスルホン酸を滴下してスルホン化反応を行い、スルホン酸基を導入した。1,2−ジクロロエタンをメタノールと置換し、次いで乾燥させた後、得られた高分子をN−メチル−2−ピロリドンに15質量%濃度で溶解させ、ガラス板上にキャストし、次いで水に浸漬して相変化させることにより膜状物を得た。得られた膜状物は、厚み201μm、膜の片面に10μmの緻密層を有する非対象構造で、スルホン酸基容量は、0.8mmol/g−乾燥膜であった。
(Preparation of water-selective permeable osmotic vaporization membrane)
1. 1. Preparation of a film having a cation exchange group Polysulfone was dissolved in 1,2-dichloroethane, and a predetermined amount of chlorosulfonic acid was added dropwise to carry out a sulfonate reaction to introduce a sulfonic acid group. After replacing 1,2-dichloroethane with methanol and then drying, the obtained polymer was dissolved in N-methyl-2-pyrrolidone at a concentration of 15% by mass, cast on a glass plate, and then immersed in water. A film-like substance was obtained by changing the phase. The obtained film-like substance had an asymmetric structure having a thickness of 201 μm and a dense layer of 10 μm on one side of the film, and had a sulfonic acid group capacity of 0.8 mmol / g-dry film.

(浸透気化法)
有効膜面積40cmの浸透気化膜で処理液室と透過室に区画した浸透気化装置に前述の調製膜の緻密層が処理液室側に向くように組み込み、処理液室側に先に調製した高含水水酸化テトラメチルアンモニウム溶液を膜面流速10cm/s、液温50℃、常圧下で供給した。一方、透過室側は真空ポンプで、0.001MPaになるように減圧にして、浸透気化操作を行なった。実験は、所定時間連続して行い、透過室側の気体状物を蒸気トラップで捕集し、透過係数Q(g/(m・h))と分離係数α(水/有機溶媒)=([透過室側の水質量%]/[透過室側の有機溶媒質量%])/([処理液室側の水質量%]/[処理液室側の有機溶媒質量%])を測定値より求めた。
(Penetration vaporization method)
An osmotic vaporizer having an effective membrane area of 40 cm 2 divided into a treatment liquid chamber and a permeation chamber was incorporated so that the dense layer of the above-mentioned preparation membrane was directed toward the treatment liquid chamber side, and was prepared first on the treatment liquid chamber side. A highly hydrous tetramethylammonium hydroxide solution was supplied at a membrane surface flow velocity of 10 cm / s, a liquid temperature of 50 ° C., and under normal pressure. On the other hand, the permeation chamber side was depressurized to 0.001 MPa with a vacuum pump, and the permeation vaporization operation was performed. The experiment was carried out continuously for a predetermined time, and the gaseous substance on the permeation chamber side was collected by a steam trap, and the permeation coefficient Q (g / (m 2 · h)) and the separation coefficient α (water / organic solvent) = ( [Water mass% on the permeation chamber side] / [Organic solvent mass% on the permeation chamber side]) / ([Water mass% on the treatment liquid chamber side] / [Organic solvent mass% on the treatment liquid chamber side]) from the measured values I asked.

(低含水水酸化第4級アンモニウム溶液の分析)
浸透気化法で脱水した低含水水酸化テトラメチルアンモニウム溶液の水酸化テトラメチルアンモニウム濃度は酸による中和滴定、含水量は、カールフィッシャー滴定法、ハロゲン含量はイオンクロマト分析法、不純物金属は誘導結合プラズマ質量分析法(ICP−MS)によって測定した。尚、不純物金属は、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnを測定し、各不純物金属の中の最大値濃度、および不純物金属の総量の結果を示した。
(Analysis of low water content quaternary ammonium hydroxide solution)
The concentration of tetramethylammonium hydroxide in the low water content tetramethylammonium hydroxide solution dehydrated by the permeation vaporization method is neutralized titrated with acid, the water content is Karl Fischer titration, the halogen content is ion chromatograph, and the impurity metal is inductively coupled. It was measured by inductively coupled plasma mass spectrometry (ICP-MS). As the impurity metal, Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn were measured, and the maximum concentration in each impurity metal and the total amount of the impurity metal were measured. The results are shown.

結果を表1に示す。 The results are shown in Table 1.

実施例2
実施例1において、水選択透過性浸透気化膜を、以下の方法により調製した第4級アンモニウム塩基導入膜に代えた以外は同様にして低含水水酸化第4級アンモニウム溶液を製造した。その結果を表1に示す。
Example 2
In Example 1, a low hydration quaternary ammonium hydroxide solution was produced in the same manner except that the water selective permeable osmotic vaporization membrane was replaced with a quaternary ammonium base introduction membrane prepared by the following method. The results are shown in Table 1.

(水選択透過性浸透気化膜の調製)
ポリスルホンを1,2−ジクロロエタンに溶解させた後、塩化スズを触媒としてクロロメチルメチルエーテルをポリスルホンと反応させてクロロメチル基を導入した。1,2−ジクロロエタンをメタノールと置換し、次いで乾燥させた後、得られた高分子をN−メチル−2−ピロリドンに15質量%濃度で溶解させて、ガラス板上にキャストし、次いで水に浸漬して相変化させることにより膜状物を得た。その膜状物をトリメチルアミン水溶液に浸漬して、第4級アンモニウム塩基を導入した。得られた膜状物は、厚み198μm、膜の片面に11μmの緻密層を有する非対象構造で、第4級アンモニウム塩基容量は、0.8mmol/g−乾燥膜であった。
(Preparation of water-selective permeable osmotic vaporization membrane)
After dissolving polysulfone in 1,2-dichloroethane, chloromethyl methyl ether was reacted with polysulfone using tin chloride as a catalyst to introduce a chloromethyl group. After replacing 1,2-dichloroethane with methanol and then drying, the obtained polymer is dissolved in N-methyl-2-pyrrolidone at a concentration of 15% by mass, cast on a glass plate, and then in water. A film-like substance was obtained by immersing and changing the phase. The film was immersed in an aqueous trimethylamine solution to introduce a quaternary ammonium base. The obtained film-like substance had an asymmetric structure having a thickness of 198 μm and a dense layer of 11 μm on one side of the film, and had a quaternary ammonium base capacity of 0.8 mmol / g-dry film.

実施例3
実施例1において、有機溶媒をイソプロパノールとした以外は、同様にして、低含水水酸化第4級アンモニウム溶液を製造した。尚、イソプロパノールは、使用前に蒸留精製を行い、不純物金属を予め除去したものを用いた。その結果を表1に示す。
Example 3
In Example 1, a low water content quaternary ammonium hydroxide solution was produced in the same manner except that the organic solvent was isopropanol. The isopropanol used was one in which impurity metals were removed in advance by distillation purification before use. The results are shown in Table 1.

実施例4
実施例3おいて、水選択透過性浸透気化膜を実施例2で調製した第4級アンモニウム塩基導入膜に代えた以外は、同様にして、低含水水酸化第4級アンモニウム溶液を製造した。その結果を表1に示す。
Example 4
In Example 3, a low hydration quaternary ammonium hydroxide solution was produced in the same manner except that the water selective permeable osmotic vaporization membrane was replaced with the quaternary ammonium base introduction membrane prepared in Example 2. The results are shown in Table 1.

Figure 2021116236
Figure 2021116236

実施例5、6
実施例1において、有機溶媒として、メタノール(実施例5)、イソプロパノール(実施例6)を使用し、水選択透過性浸透気化膜として、以下の方法により調整されたイオン交換基が導入されていない膜を用いた以外は、同様にして、低含水水酸化第4級アンモニウム溶液を製造した。その結果を表2に示す。
Examples 5 and 6
In Example 1, methanol (Example 5) and isopropanol (Example 6) were used as the organic solvent, and the ion exchange group prepared by the following method was not introduced as the water-selective permeable osmotic vaporization membrane. A low hydrated quaternary ammonium hydroxide solution was produced in the same manner except that a membrane was used. The results are shown in Table 2.

(イオン交換基が導入されていない膜の調製)
ポリスルホンをN−メチル−2−ピロリドンに15質量%濃度で溶解させ、ガラス板上にキャストし、次いで水に浸漬して相転換させることにより膜状物を得た。得られた膜状物は、厚み195μm、膜の片面に10μmの緻密層を有する非対象構造膜であった。
(Preparation of membrane without ion exchange group introduced)
Polysulfone was dissolved in N-methyl-2-pyrrolidone at a concentration of 15% by mass, cast on a glass plate, and then immersed in water for phase conversion to obtain a film-like substance. The obtained film-like material was an asymmetric structural film having a thickness of 195 μm and a dense layer of 10 μm on one side of the film.

Figure 2021116236
Figure 2021116236

実施例7、8
実施例1において、浸透気化の処理時間を1.5倍(実施例7)、2倍(実施例8)に変更した以外は、同様にして、低含水水酸化第4級アンモニウム溶液を製造した。その結果を表3に示す。
Examples 7 and 8
A low water content quaternary ammonium hydroxide solution was produced in the same manner except that the treatment time for osmotic vaporization was changed to 1.5 times (Example 7) and 2 times (Example 8) in Example 1. .. The results are shown in Table 3.

Figure 2021116236
Figure 2021116236

Claims (6)

低沸点有機物を溶媒とし、溶質として水酸化第4級アンモニウムを含み、且つ、水を2.0質量%以上含む高含水水酸化第4級アンモニウム溶液を、水選択透過性浸透気化膜を用いる浸透気化法により脱水することを特徴とする低含水水酸化第4級アンモニウム溶液の製造方法。 A highly hydrated quaternary ammonium hydroxide solution containing a low boiling point organic substance as a solvent, containing quaternary ammonium hydroxide as a solute, and containing 2.0% by mass or more of water is permeated using a water selective permeable osmotic vaporization film. A method for producing a low-hydration quaternary ammonium hydroxide solution, which comprises dehydration by a vaporization method. 前記低沸点有機物が、アルコールである請求項1記載の低含水水酸化第4級アンモニウムアンモニウム溶液の製造方法。 The method for producing a low-hydration quaternary ammonium ammonium hydroxide solution according to claim 1, wherein the low-boiling organic substance is an alcohol. 前記水選択透過性浸透気化膜がイオン交換基を有する高分子膜である請求項1又は2に記載の低含水水酸化第4級アンモニウム溶液の製造方法。 The method for producing a low hydration quaternary ammonium hydroxide solution according to claim 1 or 2, wherein the water-selective permeable osmotic vaporization membrane is a polymer membrane having an ion exchange group. 低沸点有機物を溶媒とし、溶質として水酸化第4級アンモニウムを1〜30質量%の濃度で含み、且つ、水含量が2.0質量%未満であることを特徴とする低含水水酸化第4級アンモニウム溶液。 A low boiling point organic substance is used as a solvent, quaternary ammonium hydroxide is contained as a solute at a concentration of 1 to 30% by mass, and the water content is less than 2.0% by mass. Quaternary ammonium solution. 前記低沸点有機物が、アルコールである請求項4記載の低含水水酸化第4級アンモニウム溶液。 The low water content quaternary ammonium hydroxide solution according to claim 4, wherein the low boiling point organic substance is an alcohol. ハロゲン含量が、100ppb以下であり、かつ、Na、Mg、Al、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、及びZnの不純物金属の総量が50ppb以下、個々の不純物金属の含量が5ppb以下である、請求項4又は5に記載の低含水水酸化第4級アンモニウム溶液。 The halogen content is 100 ppb or less, and the total amount of impurity metals of Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, and Zn is 50 ppb or less, and the content of each impurity metal. The low hydrated quaternary ammonium hydroxide solution according to claim 4 or 5, wherein the amount is 5 ppb or less.
JP2020008414A 2020-01-22 2020-01-22 Method for producing low hydrous quaternary ammonium hydroxide solution Active JP7426836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020008414A JP7426836B2 (en) 2020-01-22 2020-01-22 Method for producing low hydrous quaternary ammonium hydroxide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020008414A JP7426836B2 (en) 2020-01-22 2020-01-22 Method for producing low hydrous quaternary ammonium hydroxide solution

Publications (2)

Publication Number Publication Date
JP2021116236A true JP2021116236A (en) 2021-08-10
JP7426836B2 JP7426836B2 (en) 2024-02-02

Family

ID=77174011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020008414A Active JP7426836B2 (en) 2020-01-22 2020-01-22 Method for producing low hydrous quaternary ammonium hydroxide solution

Country Status (1)

Country Link
JP (1) JP7426836B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139042A (en) * 1981-02-20 1982-08-27 Sumitomo Chem Co Ltd Preparation of metal-free organic alkali solution
JPS5874041A (en) * 1981-10-29 1983-05-04 Hitachi Chem Co Ltd Etchant for polyimide resin
JPS5892417A (en) * 1981-11-30 1983-06-01 Asahi Glass Co Ltd Separation of liquid mixture
JPS61161109A (en) * 1984-12-29 1986-07-21 Tokuyama Soda Co Ltd Preparation of separating membrane
JPH0256224A (en) * 1988-08-23 1990-02-26 Tsusho Sangiyoushiyou Kiso Sangiyoukiyokuchiyou Production of laminated hollow fiber membrane
JPH04222623A (en) * 1990-12-20 1992-08-12 Tokuyama Soda Co Ltd Prevaporation separation membrane
JPH06145083A (en) * 1992-11-02 1994-05-24 Nippon Gosei Arco-Le Kk Production of dehydrated ethanol
JP2004315375A (en) * 2003-04-11 2004-11-11 Mitsubishi Gas Chem Co Inc Method for producing tetraalkylammonium hydroxide
WO2010073430A1 (en) * 2008-12-26 2010-07-01 神戸天然物化学株式会社 Method for producing concentrated solution for photoresist stripper having low water content
JP2016511299A (en) * 2013-01-11 2016-04-14 セイケム インコーポレイテッド Color suppressant for quaternary ammonium hydroxide in non-aqueous solvent
JP2020145406A (en) * 2019-02-28 2020-09-10 株式会社トクヤマ Manufacturing method for quaternary ammonium hydroxide organic solvent solution

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139042A (en) * 1981-02-20 1982-08-27 Sumitomo Chem Co Ltd Preparation of metal-free organic alkali solution
JPS5874041A (en) * 1981-10-29 1983-05-04 Hitachi Chem Co Ltd Etchant for polyimide resin
JPS5892417A (en) * 1981-11-30 1983-06-01 Asahi Glass Co Ltd Separation of liquid mixture
JPS61161109A (en) * 1984-12-29 1986-07-21 Tokuyama Soda Co Ltd Preparation of separating membrane
JPH0256224A (en) * 1988-08-23 1990-02-26 Tsusho Sangiyoushiyou Kiso Sangiyoukiyokuchiyou Production of laminated hollow fiber membrane
JPH04222623A (en) * 1990-12-20 1992-08-12 Tokuyama Soda Co Ltd Prevaporation separation membrane
JPH06145083A (en) * 1992-11-02 1994-05-24 Nippon Gosei Arco-Le Kk Production of dehydrated ethanol
JP2004315375A (en) * 2003-04-11 2004-11-11 Mitsubishi Gas Chem Co Inc Method for producing tetraalkylammonium hydroxide
WO2010073430A1 (en) * 2008-12-26 2010-07-01 神戸天然物化学株式会社 Method for producing concentrated solution for photoresist stripper having low water content
JP2016511299A (en) * 2013-01-11 2016-04-14 セイケム インコーポレイテッド Color suppressant for quaternary ammonium hydroxide in non-aqueous solvent
JP2020145406A (en) * 2019-02-28 2020-09-10 株式会社トクヤマ Manufacturing method for quaternary ammonium hydroxide organic solvent solution

Also Published As

Publication number Publication date
JP7426836B2 (en) 2024-02-02

Similar Documents

Publication Publication Date Title
JP2013503034A (en) Reverse osmosis composite membrane for boron removal
DE2225283B2 (en) Process for the production of anisotropic, semi-permeable membranes from polyaryl ethers / sulfones
JP6857184B2 (en) Purification process for hydrophilic organic solvents
KR20100051104A (en) Process and apparatus for purification of industrial brine
KR101522681B1 (en) Preparation method of nanofiltration composite membrane impregnated graphene oxide and the nanofiltration composite membrane thereby
JP6088268B2 (en) NMP purification system
JP6415159B2 (en) Organic solvent purification system and method
JP2018034149A (en) Ionic liquid used in forward osmosis processing and forward osmosis processing using the same
JP2014144936A (en) Nmp purification system and nmp purification method
KR100742479B1 (en) Method for the purification of hydrogen peroxide solutions
KR101590218B1 (en) Polyamide type Nano separator membrane for seawater-pretreatment of seawater desalination and preparation method thereof
JP7426836B2 (en) Method for producing low hydrous quaternary ammonium hydroxide solution
JP3922935B2 (en) Water treatment system
KR950006683B1 (en) Pervaporation of phenols
JP7106474B2 (en) N-methyl-2-pyrrolidone purification method, purification device, recovery purification method, and recovery purification system
KR101317643B1 (en) Polyamide nanofiltration composite membrane and manufacturing method thereof
JP2021524429A (en) Method for preparing lithium bis (fluorosulfonyl) imide salt
Aghaeinejad-Meybodi et al. Silica membrane application for desalination process
JP3434848B2 (en) Treatment method for phenol-containing wastewater
US20050035060A1 (en) Process for purifying glyphosate solutions by nanofiltration
JP2009011891A5 (en)
JP2018065098A (en) Processing method and processing device for amine-containing drainage water
Sata New applications of ion exchange membranes
JP2018094526A (en) Method and apparatus for treating amine-containing wastewater
JP5032631B2 (en) Method for producing lithium borofluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240123

R150 Certificate of patent or registration of utility model

Ref document number: 7426836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150