JP2018065098A - Processing method and processing device for amine-containing drainage water - Google Patents

Processing method and processing device for amine-containing drainage water Download PDF

Info

Publication number
JP2018065098A
JP2018065098A JP2016205805A JP2016205805A JP2018065098A JP 2018065098 A JP2018065098 A JP 2018065098A JP 2016205805 A JP2016205805 A JP 2016205805A JP 2016205805 A JP2016205805 A JP 2016205805A JP 2018065098 A JP2018065098 A JP 2018065098A
Authority
JP
Japan
Prior art keywords
amine
water
reverse osmosis
osmosis membrane
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016205805A
Other languages
Japanese (ja)
Other versions
JP6853648B2 (en
JP2018065098A5 (en
Inventor
鳥羽 裕一郎
Yuichiro Toba
裕一郎 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2016205805A priority Critical patent/JP6853648B2/en
Priority to PCT/JP2017/028637 priority patent/WO2018074039A1/en
Publication of JP2018065098A publication Critical patent/JP2018065098A/en
Publication of JP2018065098A5 publication Critical patent/JP2018065098A5/ja
Application granted granted Critical
Publication of JP6853648B2 publication Critical patent/JP6853648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of processing amine-containing drainage water capable of providing processing water with low residual amine, while restraining the amount of chemicals used in processing of amine-containing drainage water.SOLUTION: A method of processing amine-containing drainage water comprises an evaporative concentration process of evaporating and concentrating amine-containing drainage water via an evaporative concentrator 12, a condensation process of condensing steam generated in the evaporative concentration process with a condenser 16, a pH adjustment process of adjusting a condensate resulting from the condensation process to pH8 or lower with a pH adjustment device 18, and a reverse osmosis membrane processing process of separating the condensate adjusted to pH8 or lower into permeable water and concentrated water at a reverse osmosis membrane module 20.SELECTED DRAWING: Figure 1

Description

本発明は、アミン含有排水を蒸発濃縮してアミン処理するアミン含有排水の処理方法及び処理装置の技術に関する。   The present invention relates to a method for treating amine-containing wastewater and evaporating the amine-containing wastewater to treat it with amine.

有機窒素化合物であるアミンは、塩基または配位子として工業的に広く利用されている。アミンには様々な物質があり、例えば、エタノールアミン類等の脂肪族アミンやピペラジン類等の複素環式アミン等が挙げられる。エタノールアミン類やピペラジン類等は、その高い沸点と高い塩基性を有することから、酸性ガスの洗浄液などに用いられたり、あるいは塩基または配位子となる性質から金属キレート剤や金属配管等の防食剤などとして用いられたりしている。   Amines that are organic nitrogen compounds are widely used industrially as bases or ligands. There are various types of amines, and examples thereof include aliphatic amines such as ethanolamines and heterocyclic amines such as piperazines. Since ethanolamines and piperazines have high boiling points and high basicity, they are used in acid gas cleaning solutions, or because of their properties of bases or ligands, such as metal chelating agents and metal pipes. It is used as an agent.

エタノールアミン類は、例えば、モノエタノールアミン(2−アミノエタノール)、ジエタノールアミン(2,2−イミノジエタノール)、トリエタノールアミン、2,2−メチルイミノジエタノールなどがある。例えば、エタノールアミンは防食剤として、発電所の蒸気生成配管に添加される場合がある。また、近年では、化石燃料燃焼時に発生する二酸化炭素の排出を抑制する観点から、エタノールアミン類を各種配合した二酸化炭素吸収剤(例えば、特許文献1参照)に排ガスを接触させ排ガス中の二酸化炭素を吸収させることも行われている。   Examples of ethanolamines include monoethanolamine (2-aminoethanol), diethanolamine (2,2-iminodiethanol), triethanolamine, and 2,2-methyliminodiethanol. For example, ethanolamine may be added as an anticorrosive agent to the steam generation piping of a power plant. Further, in recent years, from the viewpoint of suppressing the emission of carbon dioxide generated during fossil fuel combustion, the carbon dioxide in the exhaust gas is brought into contact with a carbon dioxide absorbent containing various ethanolamines (for example, see Patent Document 1). Is also absorbed.

ピペラジン類は、例えば、ピペラジン、1−メチルピペラジン、2−メチルピペラジンなどがあり、酸性ガスの洗浄に使われたり(例えば、特許文献2)、エポキシ樹脂の硬化剤、キレート剤等に使われたりしている。   Piperazines include, for example, piperazine, 1-methylpiperazine, 2-methylpiperazine, etc., and are used for cleaning acidic gas (for example, Patent Document 2), used as an epoxy resin curing agent, chelating agent, etc. doing.

上記アミンは、例えば、使用時または使用後に水に混入し、アミン含有排水として排出される。排水中のアミンは、炭素、窒素、酸素、水素原子で構成され、炭素及び窒素はCOD源や富栄養化源となって河川や湖沼を汚染する。   The amine is, for example, mixed in water at the time of use or after use and discharged as amine-containing waste water. The amine in the wastewater is composed of carbon, nitrogen, oxygen and hydrogen atoms, and carbon and nitrogen become COD sources and eutrophication sources and pollute rivers and lakes.

アミンの用途によっては、排水中のアミン濃度が非常に高くなることもあり、高い場合には、有機物濃度として0.1w/v%以上となる場合がある。また、高濃度のアミン含有排水は、中和のための酸(塩酸、硫酸など)が多量に注入されない限り、概ねpH9以上のアルカリ性を示す。   Depending on the use of the amine, the amine concentration in the waste water may be very high. If it is high, the organic matter concentration may be 0.1 w / v% or more. High-concentration amine-containing wastewater generally exhibits an alkalinity of pH 9 or higher unless a large amount of neutralizing acid (hydrochloric acid, sulfuric acid, etc.) is injected.

そして、高濃度アミン含有排水は、高いCODや全窒素(T−N)を示すため、これらを低減する処理を行った上で、環境中に放流される。環境中に放流する場合、日本においては排水基準でCODMn120mg/L以下(日間平均)、全窒素60mg/L以下(日間平均)に低減する必要がある。   And since high concentration amine containing waste water shows high COD and total nitrogen (TN), after performing the process which reduces these, it is discharged | emitted in the environment. When discharged into the environment, in Japan, it is necessary to reduce CODMn to 120 mg / L or less (daily average) and total nitrogen to 60 mg / L or less (daily average) based on wastewater standards.

例えば、特許文献3には、アミン等の有機窒素化合物を含む排水を金属担持触媒の存在下で、酸化剤として空気を用いて湿式酸化する排水処理方法が提案されている。しかし、この方法では、反応温度を100〜300℃にする必要があり、操作圧力も0.2〜5MPa以上にする必要がある。このため、加温加圧に要するエネルギーコストが高くなるとともに、高温・高圧に耐えられる装置が必要となり、装置コストが高くなるという問題がある。   For example, Patent Document 3 proposes a wastewater treatment method in which wastewater containing an organic nitrogen compound such as amine is wet-oxidized using air as an oxidizing agent in the presence of a metal-supported catalyst. However, in this method, the reaction temperature needs to be 100 to 300 ° C., and the operation pressure needs to be 0.2 to 5 MPa or more. For this reason, the energy cost required for heating and pressurization is increased, and an apparatus capable of withstanding high temperature and high pressure is required, resulting in an increase in apparatus cost.

また、アミン含有排水の処理方法として、蒸発濃縮法を用いる方法がある。例えば、特許文献4には、高濃度のエタノールアミン含有排水をpH8以下に調整した後、蒸発濃縮装置で蒸留し、凝縮水に移行したエタノールアミンを、触媒を用いて酸化分解する方法が提案されている。この方法によれば、エタノールアミン含有排水をpH8以下にして蒸発濃縮することで、エタノールアミンの蒸発量を低減し、残留アミンが比較的少ない凝縮水を得ることが可能となる。しかし、蒸発濃縮するエタノールアミン含有排水をpH8以下に調整するためには多量の酸が必要(すなわち塩基性のアミンを中和するために多量の酸が必要)となり、また、凝縮水中の残留アミンを酸化分解する際には、多量の酸化剤が必要となるため、薬品費が多大になるという問題がある。   Further, as a method for treating amine-containing wastewater, there is a method using an evaporation concentration method. For example, Patent Document 4 proposes a method in which ethanolamine-containing wastewater containing a high concentration is adjusted to pH 8 or less, and then distilled using an evaporation concentrator and oxidatively decomposes ethanolamine transferred to condensed water using a catalyst. ing. According to this method, it is possible to reduce the amount of ethanolamine evaporation and obtain condensed water with relatively little residual amine by evaporating and concentrating the ethanolamine-containing wastewater to pH 8 or lower. However, a large amount of acid is required to adjust the ethanolamine-containing wastewater to be evaporated to a pH of 8 or less (that is, a large amount of acid is necessary to neutralize the basic amine), and residual amine in the condensed water When oxidizing and decomposing, a large amount of oxidant is required, and thus there is a problem that chemical costs are increased.

特開2015−24374号公報JP 2015-24374 A 特許5679995号公報Japanese Patent No. 5679995 特開2011−224547号公報JP 2011-224547 A 特開平10−272478号公報Japanese Patent Laid-Open No. 10-272478

そこで、本発明は、蒸発濃縮法によるアミン含有排水の処理において使用する薬品使用量を抑えながら、残留アミンの少ない処理水を得ることができるアミン含有排水の処理方法及び処理装置を提供することを目的としてなされたものである。   Therefore, the present invention provides an amine-containing wastewater treatment method and a treatment apparatus capable of obtaining treated water with little residual amine while suppressing the amount of chemicals used in the treatment of amine-containing wastewater by the evaporation concentration method. It was made as a purpose.

本発明のアミン含有排水の処理方法は、アミン含有排水を蒸発濃縮する蒸発濃縮工程と、前記蒸発濃縮工程で発生した蒸気を凝縮する凝縮工程と、前記凝縮工程で得られた凝縮水をpH8以下に調整するpH調整工程と、pH8以下に調整した前記凝縮水を逆浸透膜に通水し、透過水と濃縮水とに分離する逆浸透膜処理工程と、を有することを特徴とする。   The method for treating amine-containing wastewater of the present invention includes an evaporation concentration step for evaporating and condensing amine-containing wastewater, a condensation step for condensing steam generated in the evaporation concentration step, and a condensed water obtained in the condensation step having a pH of 8 or less. And a reverse osmosis membrane treatment step of passing the condensed water adjusted to pH 8 or lower through a reverse osmosis membrane and separating it into permeate and concentrated water.

また、上記アミン含有排水の処理方法において、前記逆浸透膜処理工程で得られた濃縮水を前記アミン含有排水に供給することが好ましい。   In the method for treating amine-containing wastewater, the concentrated water obtained in the reverse osmosis membrane treatment step is preferably supplied to the amine-containing wastewater.

また、上記アミン含有排水の処理方法において、前記アミン含有排水中のアミン濃度は、全有機炭素濃度換算で35000mg/L以下であることが好ましい。   In the method for treating amine-containing wastewater, the amine concentration in the amine-containing wastewater is preferably 35000 mg / L or less in terms of total organic carbon concentration.

また、本発明のアミン含有排水の処理装置は、アミン含有排水を蒸発濃縮する蒸発濃縮手段と、前記蒸発濃縮手段で発生した蒸気を凝縮する凝縮手段と、前記凝縮手段で得られた凝縮水をpH8以下に調整するpH調整手段と、逆浸透膜を備え、pH8以下に調整された前記凝縮水を前記逆浸透膜に通水し、透過水と濃縮水とに分離する逆浸透膜処理手段と、を有することを特徴とする。   The amine-containing wastewater treatment apparatus according to the present invention includes an evaporative concentration means for evaporating and condensing the amine-containing wastewater, a condensing means for condensing steam generated by the evaporative concentration means, and condensed water obtained by the condensing means. pH adjusting means for adjusting the pH to 8 or less, and reverse osmosis membrane treatment means for providing a reverse osmosis membrane, allowing the condensed water adjusted to pH 8 or less to flow through the reverse osmosis membrane and separating it into permeated water and concentrated water. It is characterized by having.

また、上記アミン含有排水の処理装置において、前記逆浸透膜処理手段で得られた濃縮水を前記アミン含有排水に供給する供給手段を有することが好ましい。   The amine-containing wastewater treatment apparatus preferably includes supply means for supplying concentrated water obtained by the reverse osmosis membrane treatment means to the amine-containing wastewater.

また、上記アミン含有排水の処理装置において、前記アミン含有排水中のアミン濃度は、全有機炭素濃度換算で35000mg/L以下であることが好ましい。   In the above-described amine-containing wastewater treatment apparatus, the amine concentration in the amine-containing wastewater is preferably 35000 mg / L or less in terms of total organic carbon concentration.

本発明によれば、蒸発濃縮法によるアミン含有排水の処理において使用する薬品使用量を抑えながら、残留アミンの少ない処理水を得ることができるアミン含有排水の処理方法及び処理装置を提供することが可能となる。   According to the present invention, there is provided an amine-containing wastewater treatment method and a treatment apparatus capable of obtaining treated water with little residual amine while suppressing the amount of chemicals used in the treatment of amine-containing wastewater by the evaporation concentration method. It becomes possible.

本発明の実施形態に係るアミン含有排水の処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing apparatus of the amine containing waste water which concerns on embodiment of this invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本発明の実施形態に係るアミン含有排水の処理装置の構成の一例を示す模式図である。図1に示す排水処理装置1は、原水槽10、蒸発濃縮機12(蒸発濃縮手段)、濃縮水槽14、凝縮器16(凝縮手段)、pH調整装置18(pH調整手段)、逆浸透膜モジュール20(逆浸透膜処理手段)を備えている。蒸発濃縮機12は、蒸発缶22、熱媒体供給配管24を備えている。pH調整装置18は、pH調整槽26、pHセンサ28、pH調整剤添加配管30を備えている。   Drawing 1 is a mimetic diagram showing an example of the composition of the processing device of the amine content drainage concerning the embodiment of the present invention. The waste water treatment apparatus 1 shown in FIG. 1 includes a raw water tank 10, an evaporative concentrator 12 (evaporating and concentrating means), a concentrated water tank 14, a condenser 16 (condensing means), a pH adjusting device 18 (pH adjusting means), and a reverse osmosis membrane module. 20 (reverse osmosis membrane processing means). The evaporative concentrator 12 includes an evaporator 22 and a heat medium supply pipe 24. The pH adjusting device 18 includes a pH adjusting tank 26, a pH sensor 28, and a pH adjusting agent adding pipe 30.

以下に、図1に示す排水処理装置1の配管構成について説明する。図1に示す配管構成は一例であって、これに制限されるものではない。   Below, the piping structure of the waste water treatment apparatus 1 shown in FIG. 1 is demonstrated. The piping configuration shown in FIG. 1 is an example, and the present invention is not limited to this.

排水流入配管32の一端は原水槽10の排水出口に接続され、他端は蒸発缶22側面の排水入口に接続されている。熱媒体供給配管24は、蒸発缶22内部に設けられた伝熱管34に接続されている。伝熱管34の一端は、前述したように熱媒体供給配管24に接続され、他端は蒸発缶22の外部に設けられたドレン部36に接続されている。ドレン配管38の一端は、ドレン部36に接続され、他端はポンプ40aを介して例えば系外に設けられた水槽に接続されている。循環配管42の一端は蒸発缶22の下部出口に接続され、他端はポンプ40bを介して蒸発缶22の上部入口に接続されている。濃縮水配管44の一端は循環配管42に接続され、他端は濃縮水槽14に接続されている。蒸気回収配管46の一端は蒸発缶22の側面上部口に接続され、他端は凝縮器16の蒸気入口に接続されている。凝縮器16内には、冷却水配管48が設置されている。凝縮水配管50aの一端は凝縮器16の凝縮水出口に接続され、他端はpH調整槽26の入口に接続されている。凝縮水配管50bの一端はpH調整槽26の出口に接続され、他端はポンプ40cを介して逆浸透膜モジュール20の入口に接続されている。逆浸透膜モジュール20の透過水出口には処理水配管52が接続されている。濃縮水供給配管54(濃縮水供給手段)の一端は逆浸透膜モジュール20の濃縮水出口に接続され、他端は原水槽10の濃縮水入口に接続されている。   One end of the drainage inflow pipe 32 is connected to the drainage outlet of the raw water tank 10, and the other end is connected to the drainage inlet on the side surface of the evaporator 22. The heat medium supply pipe 24 is connected to a heat transfer pipe 34 provided inside the evaporator 22. As described above, one end of the heat transfer tube 34 is connected to the heat medium supply pipe 24, and the other end is connected to a drain portion 36 provided outside the evaporator 22. One end of the drain pipe 38 is connected to the drain part 36, and the other end is connected to, for example, a water tank provided outside the system via a pump 40a. One end of the circulation pipe 42 is connected to the lower outlet of the evaporator 22, and the other end is connected to the upper inlet of the evaporator 22 via the pump 40 b. One end of the concentrated water pipe 44 is connected to the circulation pipe 42, and the other end is connected to the concentrated water tank 14. One end of the steam recovery pipe 46 is connected to the upper side port of the evaporator 22, and the other end is connected to the steam inlet of the condenser 16. A cooling water pipe 48 is installed in the condenser 16. One end of the condensed water pipe 50 a is connected to the condensed water outlet of the condenser 16, and the other end is connected to the inlet of the pH adjusting tank 26. One end of the condensed water pipe 50b is connected to the outlet of the pH adjustment tank 26, and the other end is connected to the inlet of the reverse osmosis membrane module 20 via the pump 40c. A treated water pipe 52 is connected to the permeate outlet of the reverse osmosis membrane module 20. One end of the concentrated water supply pipe 54 (concentrated water supply means) is connected to the concentrated water outlet of the reverse osmosis membrane module 20, and the other end is connected to the concentrated water inlet of the raw water tank 10.

次に、本実施形態に係る排水処理装置1の動作について説明する。   Next, the operation of the waste water treatment apparatus 1 according to this embodiment will be described.

原水槽10に貯留されたアミン含有排水は、排水流入配管32を通り、蒸発濃縮機12の蒸発缶22に供給される。また、蒸気等の熱媒体が、熱媒体供給配管24から伝熱管34に供給され、伝熱管34が加熱される。そして、ポンプ40bが稼働され、蒸発缶22の底部に貯留したアミン含有排水が循環配管42を通り、蒸発缶22の上部から、蒸気等の加熱媒体により加熱された伝熱管34に向けて噴射される。噴射されたアミン含有排水は、伝熱管34からの熱により加熱され、加熱された排水の一部は蒸発し、残部はアミン濃縮水として蒸発缶22の底部に貯留される(蒸発濃縮工程)。蒸発濃縮工程で所定の濃縮倍率に濃縮されたアミン濃縮水は、蒸発缶22から排出され、循環配管42、濃縮水配管44を通り濃縮水槽14に貯留される。アミン濃縮水は、その全量を濃縮水槽14に供給してもよいし、一部を濃縮水槽14に供給し、残部を蒸発缶22による蒸発濃縮に分配してもよい。なお、伝熱管34を通過した蒸気等の熱媒体は、ドレン部36に貯留され、必要に応じてポンプ40aを稼働させ、ドレン配管38から系外へ排出される。   The amine-containing wastewater stored in the raw water tank 10 passes through the wastewater inflow pipe 32 and is supplied to the evaporator 22 of the evaporation concentrator 12. Further, a heat medium such as steam is supplied from the heat medium supply pipe 24 to the heat transfer pipe 34, and the heat transfer pipe 34 is heated. Then, the pump 40b is operated, and the amine-containing wastewater stored at the bottom of the evaporator 22 passes through the circulation pipe 42 and is sprayed from the upper part of the evaporator 22 toward the heat transfer tube 34 heated by a heating medium such as steam. The The injected amine-containing waste water is heated by heat from the heat transfer pipe 34, a part of the heated waste water evaporates, and the remainder is stored as amine concentrated water at the bottom of the evaporator 22 (evaporation concentration step). The amine concentrated water concentrated at a predetermined concentration rate in the evaporation concentration step is discharged from the evaporator 22 and stored in the concentrated water tank 14 through the circulation pipe 42 and the concentrated water pipe 44. The total amount of the amine concentrated water may be supplied to the concentrated water tank 14, or a part of the amine concentrated water may be supplied to the concentrated water tank 14 and the remaining part may be distributed to the evaporation concentration by the evaporator 22. Note that the heat medium such as steam that has passed through the heat transfer pipe 34 is stored in the drain portion 36, and the pump 40 a is operated as necessary, and is discharged out of the system from the drain pipe 38.

また、蒸発缶22で蒸発したアミン含有排水の蒸気は、蒸気回収配管46を通り凝縮器16に供給される。凝縮器16に供給された蒸気は、凝縮器16内の冷却水配管48を流れる冷却液と熱交換されて凝縮し、凝縮水として凝縮水配管50aから排出される(凝縮工程)。   The amine-containing waste water vapor evaporated by the evaporator 22 is supplied to the condenser 16 through the steam recovery pipe 46. The steam supplied to the condenser 16 is condensed by exchanging heat with the coolant flowing through the cooling water pipe 48 in the condenser 16 and discharged as condensed water from the condensed water pipe 50a (condensing step).

凝縮水は、凝縮水配管50aからpH調整槽26に供給され、pH8以下に調整される(pH調整工程)。具体的には、pH調整槽26内の凝縮水のpHをpHセンサ28により計測し、その計測値に応じて、pH調整剤添加配管30から供給するpH調整剤の量を調整し、凝縮水のpHを8以下に調整する。ここで、凝縮水には、蒸発濃縮工程で蒸発したアミンが含まれる。この凝縮水に含まれるアミンの濃度は、蒸発濃縮工程での凝縮水の回収率にもよるが、例えば、原水(アミン含有排水)の1/10以下となる。したがって、添加するpH調整剤の量は、例えば、原水のpHを8以下にする場合の1/10以下となるため、蒸発濃縮法によるアミン含有排水の処理において使用する薬品の使用量を顕著に削減することが可能となる。なお、アミンを含む凝縮水のpHはアルカリ性を呈するため、pH調整剤としては、通常、硫酸、塩酸等の酸剤が用いられる。   The condensed water is supplied from the condensed water pipe 50a to the pH adjusting tank 26 and adjusted to pH 8 or less (pH adjusting step). Specifically, the pH of the condensed water in the pH adjusting tank 26 is measured by the pH sensor 28, and the amount of the pH adjusting agent supplied from the pH adjusting agent adding pipe 30 is adjusted according to the measured value. To a pH of 8 or less. Here, the condensed water contains amine evaporated in the evaporation concentration step. The concentration of the amine contained in the condensed water is, for example, 1/10 or less of the raw water (amine-containing wastewater) although it depends on the recovery rate of the condensed water in the evaporation concentration step. Therefore, since the amount of the pH adjuster to be added is, for example, 1/10 or less when the pH of the raw water is 8 or less, the amount of chemicals used in the treatment of amine-containing wastewater by the evaporation concentration method is remarkably increased. It becomes possible to reduce. In addition, since the pH of the condensed water containing an amine exhibits alkalinity, an acid agent such as sulfuric acid or hydrochloric acid is usually used as a pH adjuster.

pH8以下に調整された(アミン含有)凝縮水は、ポンプ40cにより、凝縮水配管50bから逆浸透膜モジュール20に通液される。凝縮水は、逆浸透膜モジュール20内の逆浸透膜により、アミンが除去された透過水と、アミンが濃縮された濃縮水とに分離される。透過水は、処理水として処理水配管52から排出され、濃縮水は濃縮水供給配管54から原水槽10に供給される。このように、(アミン含有)凝縮水のpHを8以下とすることで、凝縮水中のアミンの多くは、R−NH 等のイオン化物質として存在するため、逆浸透膜により効率的にアミンを除去すること可能となり、残留アミンの少ない処理水を得ることができる。また、アミン含有凝縮水を酸化触媒で酸化分解する際には、多量の酸化剤が必要であるが、逆浸透膜処理によれば、酸化剤を添加する必要が無いため、蒸発濃縮法によるアミン含有排水の処理において使用する薬品の使用量を顕著に削減することが可能となる。また、凝縮水の酸化分解では、凝縮水を100℃付近に加温する必要があるが、逆浸透膜処理によれば、凝縮水を加温せず処理することができるため、エネルギーコスト面でも有益である。 Condensed water adjusted to pH 8 or less (containing amine) is passed from the condensed water pipe 50b to the reverse osmosis membrane module 20 by the pump 40c. The condensed water is separated by the reverse osmosis membrane in the reverse osmosis membrane module 20 into permeated water from which the amine has been removed and concentrated water from which the amine has been concentrated. The permeated water is discharged from the treated water pipe 52 as treated water, and the concentrated water is supplied from the concentrated water supply pipe 54 to the raw water tank 10. Thus, by setting the pH of the condensed water (containing amine) to 8 or less, most of the amine in the condensed water exists as an ionized substance such as R-NH 3 +. Can be removed, and treated water with little residual amine can be obtained. Further, when oxidative decomposition of amine-containing condensed water with an oxidation catalyst, a large amount of oxidant is required, but according to the reverse osmosis membrane treatment, it is not necessary to add an oxidant. It is possible to significantly reduce the amount of chemicals used in the treatment of contained wastewater. In addition, in the oxidative decomposition of condensed water, it is necessary to heat the condensed water to around 100 ° C. However, according to the reverse osmosis membrane treatment, the condensed water can be processed without being heated, so the energy cost is also reduced. It is beneficial.

以下に、アミン含有排水の処理条件について説明する。   Below, the process conditions of an amine containing waste_water | drain are demonstrated.

本実施形態の処理対象であるアミンは、特に制限されるものではないが、大気圧下での沸点が130℃以上であり、25℃水溶液での酸解離定数pKaが8.5以上である物質等が挙げられ、例えば、モノエタノールアミン(例えば、2−アミノエタノール[HOCHCHNH])、ジエタノールアミン(例えば、2,2−イミノジエタノール[(HOCHCH)NH])、トリエタノールアミン(例えば、[(HOCHCH)N])、2,2−メチルイミノジエタノール、ピペラジン、1-メチルピペラジン、2−メチルピペラジン等が挙げられる。上記物性値を満たすアミンは、蒸発濃縮工程において、蒸気側に移行するものがアルカリ性でも比較的少ない傾向にあるため、凝縮水のpH調整に使用するpH調整剤の添加量は、排水のpH調整に必要な添加量より少なくなる。したがって、上記物性値を満たすアミンを含む排水を本実施形態の処理方法に適用すれば、蒸発濃縮法によるアミン含有排水の処理において使用する薬品の使用量をより削減することが可能となる。 The amine to be treated in this embodiment is not particularly limited, but is a substance having a boiling point of 130 ° C. or higher under atmospheric pressure and an acid dissociation constant pKa of 8.5 or higher in a 25 ° C. aqueous solution. For example, monoethanolamine (for example, 2-aminoethanol [HOCH 2 CH 2 NH 2 ]), diethanolamine (for example, 2,2-iminodiethanol [(HOCH 2 CH 2 ) 2 NH]), tri Examples include ethanolamine (for example, [(HOCH 2 CH 2 ) 3 N]), 2,2-methyliminodiethanol, piperazine, 1-methylpiperazine, 2-methylpiperazine and the like. The amine that satisfies the above physical property values tends to be relatively little even if it is alkaline in the evaporative concentration step, so the amount of the pH adjuster used for adjusting the pH of the condensed water is adjusted to the pH of the wastewater. Less than the amount required for Therefore, if wastewater containing amine that satisfies the above physical property values is applied to the treatment method of this embodiment, the amount of chemicals used in the treatment of amine-containing wastewater by the evaporation concentration method can be further reduced.

アミン含有排水中のアミン濃度は、例えば、全有機炭素濃度換算で35000mg/L以下であることが好ましく、5000〜35000mg/Lの範囲であることが好ましい。アミン濃度が、35000mg/Lを超える排水に対しても処理は可能であるが、良好な処理水質を得るのに、逆浸透膜を複数段設置することが必要になる場合があり、設備費やろ過に要するエネルギーコストが大きくなる場合がある。   The amine concentration in the amine-containing wastewater is, for example, preferably 35000 mg / L or less in terms of total organic carbon concentration, and preferably in the range of 5000 to 35000 mg / L. Although it is possible to treat wastewater with an amine concentration exceeding 35000 mg / L, it may be necessary to install multiple stages of reverse osmosis membranes in order to obtain good treated water quality. The energy cost required for filtration may increase.

本実施形態の処理方法において、蒸発濃縮工程前のアミン含有排水に対してpH調整を行っても良い。通常、アミン含有排水は、pH9以上のアルカリ性を呈しているが、例えば、排水にあらかじめ酸等が多量に混入し装置材質に腐食等の影響を与える恐れのある低いpHになっている場合は、その影響が少ないとされるpHになるまでアルカリ剤を加えても良い。また、pH9以上のアルカリ性を示すアミン含有排水に対しては、酸剤を添加せず蒸発濃縮工程を実施する方が望ましいが、酸剤を添加してpH9未満に調整してもよい。アミン含有排水をpH9未満に調整して、蒸発濃縮工程を行うことで、蒸気側に移行するアミン量を低減させることができるため、逆浸透膜の負荷が低減し、設備費やろ過に要するエネルギーコストを削減することができる場合がある。なお、アミン含有排水をpH調整しても、本実施形態の処理方法によれば、逆浸透膜処理の実施により、酸化剤の添加が不要になるため、蒸発濃縮法によるアミン含有排水の処理において使用する薬品の使用量の削減は担保される。   In the treatment method of the present embodiment, pH adjustment may be performed on the amine-containing wastewater before the evaporation and concentration step. Usually, amine-containing wastewater is alkaline with a pH of 9 or more.For example, if the wastewater has a low pH that may affect the material of the device due to a large amount of acid or the like mixed in advance, An alkaline agent may be added until the pH is less affected. In addition, for amine-containing wastewater having an alkalinity of pH 9 or higher, it is desirable to perform the evaporation and concentration step without adding an acid agent, but an acid agent may be added to adjust the pH to less than 9. By adjusting the amine-containing wastewater to less than pH 9 and performing the evaporation and concentration step, the amount of amine transferred to the steam side can be reduced, reducing the load on the reverse osmosis membrane and reducing the equipment cost and energy required for filtration. In some cases, costs can be reduced. Even if the pH of the amine-containing wastewater is adjusted, according to the treatment method of the present embodiment, the reverse osmosis membrane treatment makes it unnecessary to add an oxidizing agent. Reduction of the amount of chemicals used is guaranteed.

本実施形態で用いた蒸発缶22は、アミン含有排水を加熱して蒸発させると共に、アミン含有排水を濃縮することができる構造を有していれば特に制限されるものではなく、例えば、自然循環式蒸発缶、強制循環式蒸発缶、液膜式蒸発缶、真空蒸発缶等の従来公知の蒸発缶を使用することができる。これらの中では、蒸発濃縮に掛かるエネルギーコストの点で、真空蒸発缶が好ましい。真空蒸発缶は、蒸発缶内を減圧する真空ポンプを備えており、例えば、真空ポンプで蒸発缶内を−0.05〜−0.02MPa(ゲージ圧)に減圧させる。これにより、高い沸点を有するアミン含有排水に対して、低い加熱温度(例えば、60〜90℃)で蒸発させることが可能となるため、エネルギーコストを抑えることが可能となる。   The evaporator 22 used in the present embodiment is not particularly limited as long as it has a structure capable of heating and evaporating the amine-containing wastewater and concentrating the amine-containing wastewater. For example, natural circulation Conventionally known evaporators such as a type evaporator, a forced circulation evaporator, a liquid film evaporator, and a vacuum evaporator can be used. Among these, vacuum evaporators are preferable from the viewpoint of energy cost for evaporation and concentration. The vacuum evaporator is equipped with a vacuum pump that depressurizes the inside of the evaporator. For example, the inside of the evaporator is reduced to -0.05 to -0.02 MPa (gauge pressure) with the vacuum pump. Thereby, it becomes possible to evaporate the amine-containing wastewater having a high boiling point at a low heating temperature (for example, 60 to 90 ° C.), so that the energy cost can be suppressed.

蒸発濃縮工程におけるアミン濃縮液の濃縮倍率は、廃棄処分を考慮すれば、アミン濃縮液の水量が少なくなるように高めに設定することが望ましいが、その一方で、濃縮倍率が上がると、凝縮水に含まれるアミンが増加するため、凝縮水のpH調整に必要なpH調整剤量が増加する場合がある。したがって、廃棄処分費やpH調整剤の使用量を抑える点で、蒸発濃縮工程におけるアミン濃縮液の濃縮倍率は、25倍以下であることが好ましく、15倍〜25倍の範囲であることがより好ましい。   In consideration of disposal, it is desirable to set the concentration rate of the amine concentrate in the evaporation concentration process higher so that the amount of water in the amine concentrate is reduced. As the amine contained in the water increases, the amount of the pH adjusting agent necessary for adjusting the pH of the condensed water may increase. Therefore, the concentration ratio of the amine concentrate in the evaporative concentration step is preferably 25 times or less, more preferably in the range of 15 times to 25 times, in order to reduce the disposal costs and the amount of pH adjuster used. preferable.

蒸発濃縮工程により得られるアミン濃縮水は、例えば、廃棄物として処分しても良いし、あるいは燃焼装置において酸素を吹込みながら、高温でアミンを燃焼させ、二酸化炭素と窒素に分解しても良い。   The amine concentrated water obtained by the evaporative concentration step may be disposed of as waste, for example, or may be decomposed into carbon dioxide and nitrogen by burning the amine at a high temperature while blowing oxygen in the combustion apparatus. .

凝縮器16により得られた凝縮水のpHは8以下に調整されればよいが、好ましくは7.5以下、より好ましくは6.5〜7.5の範囲に調整される。凝縮水のpHを8以下とすることで、凝縮水中のアミンイオン化物質(例えばR−NH )の割合を増加させることができるため、後段の逆浸透膜処理により、効率的にアミンを除去することが可能となる。なお、凝縮水のpHを酸性側にし過ぎると(例えば、pH4以下)、装置内が腐食される虞がある。 Although the pH of the condensed water obtained by the condenser 16 should just be adjusted to 8 or less, Preferably it is 7.5 or less, More preferably, it adjusts in the range of 6.5-7.5. By setting the pH of the condensed water to 8 or less, the ratio of amine ionized substances (for example, R-NH 3 + ) in the condensed water can be increased, so that the amine is efficiently removed by the reverse osmosis membrane treatment in the subsequent stage. It becomes possible to do. If the pH of the condensed water is too acidic (for example, pH 4 or less), the inside of the apparatus may be corroded.

凝縮水を逆浸透膜に通水する際には、使用する膜の特性に応じた圧力をかけ、通水する量の一定の割合を濃縮水として取り出すことが望ましい。濃縮水として排出される水の量は、逆浸透膜の特性や流入する水質によって変わるが、概ね、膜に流入する水量の70〜90%であることが好ましい。逆浸透膜に通水する際の圧力は、膜の特性にもよるが、例えば、数kg/cm〜70kg/cmの範囲である。 When the condensed water is passed through the reverse osmosis membrane, it is desirable to apply a pressure according to the characteristics of the membrane to be used, and to take out a certain proportion of the amount of water passed as concentrated water. The amount of water discharged as concentrated water varies depending on the characteristics of the reverse osmosis membrane and the inflowing water quality, but is generally preferably 70 to 90% of the amount of water flowing into the membrane. Pressure when passed through the reverse osmosis membrane, depending on the characteristics of the film, for example, in the range of a few kg / cm 2 ~70kg / cm 2 .

本実施形態で用いられる逆浸透膜は、特に制限されるものではないが、例えば、ポリアミド系、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)、ポリエーテルサルフォン(PES)、セルロースアセテート(CA)等の有機膜、セラミック製の無機膜等が挙げられる。また、逆浸透膜の形状は、特に制限されるものではなく、例えば、中空糸膜、管状膜、平膜、スパイラル等が挙げられる。また、逆浸透膜の通水方式は、内圧型、外圧型等のあらゆる通水方式が適用可能である。   The reverse osmosis membrane used in the present embodiment is not particularly limited. For example, polyamide-based, polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polyethersulfone (PES), cellulose acetate ( Examples thereof include organic films such as CA) and inorganic films made of ceramic. The shape of the reverse osmosis membrane is not particularly limited, and examples thereof include a hollow fiber membrane, a tubular membrane, a flat membrane, and a spiral. In addition, as the water flow method for the reverse osmosis membrane, any water flow method such as an internal pressure type and an external pressure type can be applied.

逆浸透膜処理により得られる濃縮水中のアミン濃度は、全有機炭素濃度換算で、例えば数千〜2万mg/L程度になっているため、当該濃縮水を蒸発濃縮工程前の原水(アミン含有排水)に返送することが好ましい。これにより、処理水の回収率を上げることが可能となる。また、逆浸透膜処理により得られる濃縮水には、pH調整工程で添加した酸も残るため(pH調整工程で添加した酸はほとんど逆浸透膜を透過しない)、蒸発濃縮工程前の原水に濃縮水を供給することで、原水のpHを下げることも可能となる。これにより、原水中のアミンイオン化物質(例えばR−NH )の割合が増加し、蒸発濃縮工程で蒸気側に移行するアミン量が低減するため、後段の凝縮水のpH調整に必要なpH調整剤量をさらに低減させることが可能となる。なお、逆浸透膜処理により得られる濃縮水を濃縮水槽14に供給してもよい。 The amine concentration in the concentrated water obtained by the reverse osmosis membrane treatment is, for example, about several thousand to 20,000 mg / L in terms of the total organic carbon concentration. It is preferable to return to the waste water). Thereby, it becomes possible to raise the recovery rate of treated water. In addition, since the acid added in the pH adjustment step remains in the concentrated water obtained by the reverse osmosis membrane treatment (the acid added in the pH adjustment step hardly permeates the reverse osmosis membrane), it is concentrated in the raw water before the evaporation concentration step. By supplying water, the pH of the raw water can be lowered. As a result, the ratio of amine ionized substances (for example, R—NH 3 + ) in the raw water is increased, and the amount of amine transferred to the vapor side in the evaporative concentration step is reduced. It becomes possible to further reduce the amount of the adjusting agent. Note that the concentrated water obtained by the reverse osmosis membrane treatment may be supplied to the concentrated water tank 14.

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1−1〜1−3>
アミン含有排水として、上記例示したアミン類のうち広範に使用される2-アミノエタノール6g/L、2,2-イミノジエタノール6g/L、ピペラジン6g/L、及び2−メチルピペラジン6g/Lを水道水に溶解した合成排水を調製した(有機物濃度24g/L)。この合成排水のpHは11.3であった。この合成排水のpHを塩酸(35%)で7.1に調整して測定した、全有機炭素濃度(TOC)は11,500mg/L、全窒素濃度(T−N)は6,200mg/L、CODMnは13,000 mg/Lであった。なお、合成排水におけるTOC、T−Nは、島津製全有機炭素・窒素測定装置で測定したが、中性付近で測定する必要があるため、上記のような塩酸でのpH調整を行った。以下の排水処理では、pH調整していない合成排水(pH11.3)を用いている。
<Examples 1-1 to 1-3>
As amine-containing wastewater, 2-aminoethanol 6 g / L, 2,2-iminodiethanol 6 g / L, piperazine 6 g / L, and 2-methylpiperazine 6 g / L, which are widely used among the above-exemplified amines, are used as tap water. Synthetic waste water dissolved in water was prepared (organic matter concentration 24 g / L). The pH of this synthetic waste water was 11.3. The pH of this synthetic wastewater was adjusted to 7.1 with hydrochloric acid (35%) and measured, the total organic carbon concentration (TOC) was 11,500 mg / L, and the total nitrogen concentration (TN) was 6,200 mg / L. CODMn was 13,000 mg / L. In addition, although TOC and TN in synthetic | combination waste_water | drain were measured with the Shimadzu total organic carbon and nitrogen measuring apparatus, since it is necessary to measure in neutral vicinity, pH adjustment with the above hydrochloric acid was performed. In the following wastewater treatment, synthetic wastewater (pH 11.3) that is not pH-adjusted is used.

表1に、合成排水中の各アミンの沸点(760mmHg)とpKa(25℃)を示す。   Table 1 shows the boiling point (760 mmHg) and pKa (25 ° C.) of each amine in the synthetic waste water.

Figure 2018065098
Figure 2018065098

pH11.3の合成排水500mLを、ロータリーエバポレータの濃縮部フラスコに導入し、この濃縮部フラスコが80℃の湯浴に底部から半分程度まで浸漬した状態で濃縮部フラスコを回転させた。凝縮部に22℃の冷却水を通水しながら、真空ポンプを稼働し、濃縮部フラスコを含むエバポレータ内部の圧力が−0.07MPaとなるように調整した。凝縮部で冷却された凝縮水を底部の凝縮水フラスコで集水し、凝縮水が475mLとなるまで濃縮した(凝縮水回収率95%)。この蒸留操作を3回行って得られた凝縮水(1425mL)、濃縮水(75mL)の水質(pH、TOC、T−N、CODMn)を測定した。   500 mL of synthetic waste water having a pH of 11.3 was introduced into a concentrator flask of a rotary evaporator, and the concentrator flask was rotated with the concentrator flask immersed in an 80 ° C. hot water bath from the bottom to about half. While passing cooling water of 22 ° C. through the condensing part, the vacuum pump was operated, and the pressure inside the evaporator including the concentrating part flask was adjusted to −0.07 MPa. The condensed water cooled in the condensing part was collected in the bottom condensate flask and concentrated until the condensed water reached 475 mL (condensed water recovery rate 95%). The water quality (pH, TOC, TN, CODMn) of condensed water (1425 mL) and concentrated water (75 mL) obtained by performing this distillation operation three times was measured.

次に、凝縮水を300mL×4個に分け、うち3個には塩酸を添加し、それぞれpHを4.0、7.1、 8.0に調整し(実施例1−1、1−2、1−3)、この時調整に要した塩酸添加量を記録した。残り1つはpH無調整とした(pH10.5、比較例1)。   Next, the condensed water was divided into 4 × 300 mL, and hydrochloric acid was added to 3 of them, and the pH was adjusted to 4.0, 7.1, and 8.0, respectively (Examples 1-1, 1-2). 1-3) The amount of hydrochloric acid added for adjustment was recorded. The remaining one was not adjusted for pH (pH 10.5, Comparative Example 1).

耐圧容器(内部容量300mL)の底部に逆浸透膜(日東電工製、LFC−3)を配し、容器内に、上記pH調整済み凝縮水又はpH無調整の凝縮水を導入して密閉し、撹拌翼を回転させながら、容器内部に圧縮窒素を導入して内部圧力を1MPaとし、透過水が252mL(回収率84%)となるまでろ過を継続した。得られた透過水の水質(TOC、T−N、CODMn)を測定した。なお、合成排水量に対する透過水量(処理水量)の割合(回収率)は80%(95%×84%)である。   A reverse osmosis membrane (manufactured by Nitto Denko, LFC-3) is arranged at the bottom of the pressure vessel (internal capacity 300 mL), and the above-mentioned pH adjusted condensed water or pH non-adjusted condensed water is introduced and sealed in the container, While rotating the stirring blade, compressed nitrogen was introduced into the container to make the internal pressure 1 MPa, and filtration was continued until the permeated water reached 252 mL (recovery rate 84%). The quality of the obtained permeated water (TOC, TN, CODMn) was measured. In addition, the ratio (recovery rate) of the permeated water amount (treated water amount) to the synthetic waste water amount is 80% (95% × 84%).

表2に、実施例1−1〜1−3及び比較例1の水質結果を示す。   Table 2 shows the water quality results of Examples 1-1 to 1-3 and Comparative Example 1.

Figure 2018065098
Figure 2018065098

実施例1−1〜1−3のように、蒸発濃縮により得られた凝縮水のpHを8以下に調整して、逆浸透膜ろ過処理することで、比較例1のように凝縮水のpHを8以下に調整しなかった場合と比較して、良好な水質の透過水(処理水)を得ることができた。すなわち残留アミンの少ない透過水(処理水)を得ることができた。   As in Examples 1-1 to 1-3, the pH of the condensed water obtained by evaporation and concentration was adjusted to 8 or less, and the pH of the condensed water as in Comparative Example 1 was subjected to reverse osmosis membrane filtration treatment. Compared to the case where the water content was not adjusted to 8 or less, permeated water (treated water) with good water quality could be obtained. That is, permeated water (treated water) with little residual amine could be obtained.

<実施例2>
実施例1-2と同様の操作を行って得られた逆浸透膜処理後の濃縮水と実施例1−2の逆浸透膜処理後の濃縮水の残液を混合し、そのうち76mL(1回の蒸発濃縮操作で得られた凝縮水の16%)の濃縮水Aを合成排水500mLに混合した。この混合水576mLを蒸発濃縮し、551mLの凝縮水Bを得た。凝縮水Bの一部は分析に供し、残りの凝縮水Bのうち300mLに、塩酸800mgHCl/Lを添加してpH7.1に調整し、実施例1−2と同様の操作で、逆浸透膜処理を行い、252mL(凝縮水Bの84%)の透過水Cを得た。上記濃縮水A、凝縮水B及び透過水Cの水質を測定し、その結果を表3に示す。
<Example 2>
The concentrated water after the reverse osmosis membrane treatment obtained by performing the same operation as in Example 1-2 and the residual liquid of the concentrated water after the reverse osmosis membrane treatment of Example 1-2 were mixed, and 76 mL (one time) Concentrated water A (16% of condensed water obtained by evaporative concentration operation) was mixed with 500 mL of synthetic waste water. 576 mL of this mixed water was evaporated and concentrated to obtain 551 mL of condensed water B. A part of the condensed water B is subjected to analysis, and 800 mg HCl / L hydrochloric acid is added to 300 mL of the remaining condensed water B to adjust to pH 7.1, and the reverse osmosis membrane is operated in the same manner as in Example 1-2. Processing was performed to obtain 252 mL of permeated water C (84% of condensed water B). The water quality of the concentrated water A, condensed water B and permeated water C was measured, and the results are shown in Table 3.

Figure 2018065098
Figure 2018065098

実施例2の透過水Cの水質は、pH調整工程で同等の酸添加量である実施例1−2と比較してわずかに高いが、排水基準は十分満たす値であった。また、実施例2では、500mLの合成排水から463mLの透過水(処理水)を回収することができた。すなわち、実施例2の回収率は93%であり、実施例1−1〜1−3より高い回収率となった。   The quality of the permeated water C of Example 2 was slightly higher than that of Example 1-2, which was the same amount of acid added in the pH adjustment step, but the drainage standard was sufficiently satisfied. In Example 2, 463 mL of permeated water (treated water) could be recovered from 500 mL of synthetic waste water. That is, the recovery rate of Example 2 was 93%, which was higher than that of Examples 1-1 to 1-3.

<比較例2>
上記合成排水に塩酸を添加してpH8.6に調整し、この時の塩酸添加量を記録した(表4には、1リットル当たりの添加量で表記)。pH調整後の合成排水500mLをロータリーエバポレータの濃縮部フラスコに導入し、実施例1−1〜1−3と同様の蒸発濃縮操作で約6倍濃縮(=凝縮水回収率84%)を行った。得られた凝縮水の水質を測定し、その結果を表4に示す。
<Comparative example 2>
Hydrochloric acid was added to the synthetic waste water to adjust the pH to 8.6, and the amount of hydrochloric acid added at this time was recorded (in Table 4, expressed as the amount added per liter). Synthetic waste water 500 mL after pH adjustment was introduced into a concentration flask of a rotary evaporator, and concentrated about 6 times (= condensate recovery rate 84%) by the same evaporation concentration operation as in Examples 1-1 to 1-3. . The quality of the condensed water obtained was measured, and the results are shown in Table 4.

Figure 2018065098
Figure 2018065098

比較例2は排水基準(T−N60mg/L、CODMn120mg/L)を満たす水質の凝縮水(処理水)が得られているが、pH調整に要した塩酸の量は6700mg/Lであり、上記各実施例の6.5〜10.3倍であった。すなわち、実施例は、比較例2よりも良好な水質の処理水を得るのに、酸使用量を著しく低減することができ、大幅な薬品費の低減ができることが示された。   In Comparative Example 2, water quality condensed water (treated water) satisfying drainage standards (T-N 60 mg / L, CODMn 120 mg / L) is obtained, but the amount of hydrochloric acid required for pH adjustment is 6700 mg / L, It was 6.5 to 10.3 times of each Example. In other words, it was shown that, in the example, the amount of acid used can be remarkably reduced and the chemical cost can be greatly reduced in order to obtain treated water with better water quality than Comparative Example 2.

<実施例3>
アミン含有排水として、2-アミノエタノール18g/L、2,2−イミノジエタノール18g/L、ピペラジン18g/L、及び2−メチルピペラジン18g/Lを水道水に溶解した合成排水を調製した(有機物濃度72g/L)。この合成排水のpHは11.6であり、塩酸(35%)でpHを7.1に調整して測定した、全有機炭素濃度(TOC)は34,600mg/L、全窒素濃度(T−N)は18,500mg/L、CODMnは38,700mg/Lであった。
<Example 3>
As amine-containing wastewater, synthetic wastewater was prepared by dissolving 2-aminoethanol 18 g / L, 2,2-iminodiethanol 18 g / L, piperazine 18 g / L, and 2-methylpiperazine 18 g / L in tap water (organic concentration). 72 g / L). The pH of this synthetic wastewater was 11.6, and the total organic carbon concentration (TOC) measured by adjusting the pH to 7.1 with hydrochloric acid (35%) was 34,600 mg / L, and the total nitrogen concentration (T- N) was 18,500 mg / L and CODMn was 38,700 mg / L.

pH11.6の合成排水500mLを、ロータリーエバポレータの濃縮部フラスコに導入し、この濃縮部フラスコが80℃の湯浴に底部から半分程度まで浸漬した状態で濃縮部フラスコを回転させた。凝縮部に22℃の冷却水を通水しながら、真空ポンプを稼働し、濃縮部フラスコを含むエバポレータ内部の圧力が−0.07MPaとなるよう調整した。凝縮部で冷却された凝縮水を底部の凝縮水フラスコで集水し、凝縮水が425mLとなるまで濃縮した(凝縮水回収率85%)。得られた凝縮水の水質(pH、TOC、T−N及びCODMn)を測定した。   500 mL of synthetic waste water having a pH of 11.6 was introduced into a concentrator flask of a rotary evaporator, and the concentrator flask was rotated with the concentrator flask immersed in an 80 ° C. hot water bath from the bottom to about half. The vacuum pump was operated while passing cooling water at 22 ° C. through the condensing part, and the pressure inside the evaporator including the concentrating part flask was adjusted to −0.07 MPa. The condensed water cooled in the condensing part was collected in a condensate flask at the bottom and concentrated until the condensed water reached 425 mL (condensed water recovery rate 85%). The quality of the condensed water obtained (pH, TOC, TN and CODMn) was measured.

凝縮水300mLに塩酸を添加し、pHを7.1に調整し、この時調整に要した塩酸添加量を記録した。その後、実施例1−2と同様に耐圧容器の底部に逆浸透膜(日東電工製、LFC−3)を配し、容器内にpHを調整した凝縮水を導入して密閉し、容器内部に圧力窒素を導入して内部圧力を1.1MPaとし、ろ過水が252mL(回収率84%)となるまでろ過を継続した。得られた透過水の水質を測定した。   Hydrochloric acid was added to 300 mL of condensed water to adjust the pH to 7.1, and the amount of hydrochloric acid added required for the adjustment was recorded. Thereafter, as in Example 1-2, a reverse osmosis membrane (manufactured by Nitto Denko, LFC-3) is arranged at the bottom of the pressure vessel, and condensed water whose pH is adjusted is introduced into the vessel and sealed, and the vessel is sealed. Pressure nitrogen was introduced to adjust the internal pressure to 1.1 MPa, and filtration was continued until the filtrate water reached 252 mL (recovery rate 84%). The quality of the obtained permeated water was measured.

表5に、実施例3の水質結果を示す。   Table 5 shows the water quality results of Example 3.

Figure 2018065098
Figure 2018065098

表5に示すようにTOC34500mg/Lのアミンを含む合成排水に対しても、CODMn、T−Nとも排水基準を満たす処理水(透過水)が得られた。また、実施例3の処理水質は、実施例3の合成排水より有機物濃度の低い合成排水を処理対象とした比較例2よりも良好であった。また、実施例3の塩酸添加量は、比較例2よりも低く、薬品使用量を低減できることが示された。   As shown in Table 5, treated water (permeated water) satisfying the drainage standard was obtained for both CODMn and TN even for synthetic wastewater containing TOC 34500 mg / L amine. The treated water quality of Example 3 was better than that of Comparative Example 2 in which synthetic wastewater having a lower organic matter concentration than the synthetic wastewater of Example 3 was treated. In addition, the amount of hydrochloric acid added in Example 3 was lower than that in Comparative Example 2, indicating that the amount of chemical used can be reduced.

1 排水処理装置、10 原水槽、12 蒸発濃縮機、14 濃縮水槽、16 凝縮器、18 pH調整装置、20 逆浸透膜モジュール、22 蒸発缶、24 熱媒体供給配管、26 pH調整槽、28 pHセンサ、30 pH調整剤添加配管、32 排水流入配管、34 伝熱管、36 ドレン部、38 ドレン配管、40a〜40c ポンプ、42 循環配管、44 濃縮水配管、46 蒸気回収配管、48 冷却水配管、50a〜50b 凝縮水配管、52 処理水配管、54 濃縮水供給配管。

DESCRIPTION OF SYMBOLS 1 Waste water treatment apparatus, 10 Raw water tank, 12 Evaporation concentration machine, 14 Concentration water tank, 16 Condenser, 18 pH adjustment apparatus, 20 Reverse osmosis membrane module, 22 Evaporator, 24 Heat medium supply piping, 26 pH adjustment tank, 28 pH Sensor, 30 pH adjuster addition pipe, 32 Drain inflow pipe, 34 Heat transfer pipe, 36 Drain part, 38 Drain pipe, 40a-40c Pump, 42 Circulation pipe, 44 Concentrated water pipe, 46 Steam recovery pipe, 48 Cooling water pipe, 50a-50b Condensate water piping, 52 treated water piping, 54 concentrated water supply piping.

Claims (6)

アミン含有排水を蒸発濃縮する蒸発濃縮工程と、
前記蒸発濃縮工程で発生した蒸気を凝縮する凝縮工程と、
前記凝縮工程で得られた凝縮水をpH8以下に調整するpH調整工程と、
pH8以下に調整した前記凝縮水を逆浸透膜に通水し、透過水と濃縮水とに分離する逆浸透膜処理工程と、を有することを特徴とするアミン含有排水の処理方法。
An evaporation concentration process for evaporating and condensing amine-containing wastewater;
A condensation step of condensing the vapor generated in the evaporation concentration step;
A pH adjustment step of adjusting the condensed water obtained in the condensation step to pH 8 or less;
and a reverse osmosis membrane treatment step of passing the condensed water adjusted to pH 8 or lower through a reverse osmosis membrane and separating it into permeated water and concentrated water.
前記逆浸透膜処理工程で得られた濃縮水を前記アミン含有排水に供給することを特徴とする請求項1に記載のアミン含有排水の処理方法。   The method for treating amine-containing wastewater according to claim 1, wherein the concentrated water obtained in the reverse osmosis membrane treatment step is supplied to the amine-containing wastewater. 前記アミン含有排水中のアミン濃度は、全有機炭素濃度換算で35000mg/L以下であることを特徴とする請求項1又は2に記載のアミン含有排水の処理方法。   The method for treating amine-containing wastewater according to claim 1 or 2, wherein the amine concentration in the amine-containing wastewater is 35000 mg / L or less in terms of total organic carbon concentration. アミン含有排水を蒸発濃縮する蒸発濃縮手段と、
前記蒸発濃縮手段で発生した蒸気を凝縮する凝縮手段と、
前記凝縮手段で得られた凝縮水をpH8以下に調整するpH調整手段と、
逆浸透膜を備え、pH8以下に調整された前記凝縮水を前記逆浸透膜に通水し、透過水と濃縮水とに分離する逆浸透膜処理手段と、を有することを特徴とするアミン含有排水の処理装置。
Evaporative concentration means for evaporating and condensing amine-containing wastewater;
Condensing means for condensing the vapor generated by the evaporative concentration means;
PH adjusting means for adjusting the condensed water obtained by the condensing means to pH 8 or less;
A reverse osmosis membrane treatment means comprising a reverse osmosis membrane and passing the condensed water adjusted to pH 8 or less through the reverse osmosis membrane and separating it into permeated water and concentrated water. Wastewater treatment equipment.
前記逆浸透膜処理手段で得られた濃縮水を前記アミン含有排水に供給する供給手段を有することを特徴とする請求項4に記載のアミン含有排水の処理装置。   5. The amine-containing wastewater treatment apparatus according to claim 4, further comprising a supply unit that supplies the concentrated water obtained by the reverse osmosis membrane treatment unit to the amine-containing wastewater. 前記アミン含有排水中のアミン濃度は、全有機炭素濃度換算で35000mg/L以下であることを特徴とする請求項4又は5に記載のアミン含有排水の処理装置。

The amine concentration in the amine-containing wastewater is 35000 mg / L or less in terms of total organic carbon concentration, and the amine-containing wastewater treatment apparatus according to claim 4 or 5.

JP2016205805A 2016-10-20 2016-10-20 Amine-containing wastewater treatment method and treatment equipment Active JP6853648B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016205805A JP6853648B2 (en) 2016-10-20 2016-10-20 Amine-containing wastewater treatment method and treatment equipment
PCT/JP2017/028637 WO2018074039A1 (en) 2016-10-20 2017-08-07 Method and apparatus for treating amine-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205805A JP6853648B2 (en) 2016-10-20 2016-10-20 Amine-containing wastewater treatment method and treatment equipment

Publications (3)

Publication Number Publication Date
JP2018065098A true JP2018065098A (en) 2018-04-26
JP2018065098A5 JP2018065098A5 (en) 2019-11-14
JP6853648B2 JP6853648B2 (en) 2021-03-31

Family

ID=62085391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205805A Active JP6853648B2 (en) 2016-10-20 2016-10-20 Amine-containing wastewater treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP6853648B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905577A (en) * 2020-08-12 2020-11-10 浙江奥氏环境科技有限公司 Method for reducing content of residual amine of reverse osmosis membrane
JP2022535175A (en) * 2020-04-29 2022-08-05 蘇州蘇震生物工程有限公司 A method of extracting polyhydric alcohol by a kind of fermentation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142697A (en) * 1992-11-09 1994-05-24 Fuji Photo Film Co Ltd Treatment method for photograph development treatment waste liquid
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
US20090261039A1 (en) * 2008-04-18 2009-10-22 Veolia Eau - Compagnie Generale Des Eaux method of treating water effluent from purging or cleaning steam generator circuits, and a mobile unit enabling the method to be implemented
US20130220792A1 (en) * 2012-02-29 2013-08-29 Alstom Technology Ltd. Method of treatment of amine waste water and a system for accomplishing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142697A (en) * 1992-11-09 1994-05-24 Fuji Photo Film Co Ltd Treatment method for photograph development treatment waste liquid
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
US20090261039A1 (en) * 2008-04-18 2009-10-22 Veolia Eau - Compagnie Generale Des Eaux method of treating water effluent from purging or cleaning steam generator circuits, and a mobile unit enabling the method to be implemented
US20130220792A1 (en) * 2012-02-29 2013-08-29 Alstom Technology Ltd. Method of treatment of amine waste water and a system for accomplishing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022535175A (en) * 2020-04-29 2022-08-05 蘇州蘇震生物工程有限公司 A method of extracting polyhydric alcohol by a kind of fermentation method
CN111905577A (en) * 2020-08-12 2020-11-10 浙江奥氏环境科技有限公司 Method for reducing content of residual amine of reverse osmosis membrane

Also Published As

Publication number Publication date
JP6853648B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP5636163B2 (en) Wastewater treatment method and wastewater treatment facility
TWM526569U (en) Recovery apparatus for sewage treatment
WO2016063578A1 (en) Ammonia-containing wastewater treatment apparatus and treatment method
JP6853648B2 (en) Amine-containing wastewater treatment method and treatment equipment
JP6853661B2 (en) Amine-containing wastewater treatment method and treatment equipment
JP2004108240A (en) Power generation plant and power generation method
TWI717517B (en) Water treatment method and apparatus, method of modifying water treatment apparatus, and kit for modifying water treatment apparatus
JP3922935B2 (en) Water treatment system
JP2005066544A (en) Method for recovering monoethanolamine
JP2011131209A (en) Method and apparatus for treating acidic solution
WO2018074039A1 (en) Method and apparatus for treating amine-containing waste water
JP2016078014A (en) Treatment method and treatment device for ammonia-containing waste water
JP4571086B2 (en) Water purification equipment and treatment method
TW201711964A (en) Apparatus and method for the production of solution by concentrating volatile substances from steam stripping of wastewater
JP6513874B1 (en) Water treatment method and water treatment apparatus
JP6832124B2 (en) Amine-containing wastewater treatment method and treatment equipment
CN204897462U (en) Industrial wastewater treatment device
CN103787539B (en) A kind of method of membrane separation nitro-chlorobenzene hot wastewater
JPH0380991A (en) Method and apparatus for treating supplied water to boiler
JPH09294974A (en) Water treatment apparatus
JPH08224572A (en) Ultra pure water production and wastewater treatment in closed system
JP6882076B2 (en) Carbon dioxide capture system and carbon dioxide capture method
JP2007090299A (en) Electric deionization apparatus and secondary system line water treating apparatus of pressurized water type nuclear power plant using the same
JP2016087504A (en) Desalination system and desalination method
WO2024203967A1 (en) Condenser and boiler system comprising condenser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6853648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250