JP2018094526A - Method and apparatus for treating amine-containing wastewater - Google Patents

Method and apparatus for treating amine-containing wastewater Download PDF

Info

Publication number
JP2018094526A
JP2018094526A JP2016243731A JP2016243731A JP2018094526A JP 2018094526 A JP2018094526 A JP 2018094526A JP 2016243731 A JP2016243731 A JP 2016243731A JP 2016243731 A JP2016243731 A JP 2016243731A JP 2018094526 A JP2018094526 A JP 2018094526A
Authority
JP
Japan
Prior art keywords
amine
water
reverse osmosis
osmosis membrane
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016243731A
Other languages
Japanese (ja)
Other versions
JP2018094526A5 (en
JP6853661B2 (en
Inventor
鳥羽 裕一郎
Yuichiro Toba
裕一郎 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2016243731A priority Critical patent/JP6853661B2/en
Priority to PCT/JP2017/028637 priority patent/WO2018074039A1/en
Publication of JP2018094526A publication Critical patent/JP2018094526A/en
Publication of JP2018094526A5 publication Critical patent/JP2018094526A5/ja
Application granted granted Critical
Publication of JP6853661B2 publication Critical patent/JP6853661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating amine-containing wastewater capable of obtaining a treated water with less residual amine, while suppressing thermal energy required for evaporation concentration in treating an amine-containing wastewater by an evaporation concentration method.SOLUTION: There is provided a method for treating an amine-containing wastewater, including: a first reverse osmosis membrane treatment process in which amine-containing wastewater having pH of 9 or more is passed through a reverse osmosis membrane of a first reverse osmosis membrane module 12, which is then separated into first permeated water and first concentrated water; a second reverse osmosis membrane treatment process in which the first permeated water is passed through a reverse osmosis membrane of a second reverse osmosis membrane module 14, which is then separated into a second permeated water and a second concentrated water; and an evaporation concentration process in which the first concentrated water is evaporated and concentrated by an evaporation concentrator 16.SELECTED DRAWING: Figure 1

Description

本発明は、アミン含有排水を蒸発濃縮してアミン処理するアミン含有排水の処理方法及び処理装置の技術に関する。   The present invention relates to a method for treating amine-containing wastewater and evaporating the amine-containing wastewater to treat it with amine.

有機窒素化合物であるアミンは、塩基または配位子として工業的に広く利用されている。アミンには様々な物質があり、例えば、エタノールアミン類等の脂肪族アミンやピペラジン類等の複素環式アミン等が挙げられる。エタノールアミン類やピペラジン類等は、その高い沸点と高い塩基性を有することから、酸性ガスの洗浄液などに用いられたり、あるいは塩基または配位子となる性質から金属キレート剤や金属配管等の防食剤などとして用いられたりしている。   Amines that are organic nitrogen compounds are widely used industrially as bases or ligands. There are various types of amines, and examples thereof include aliphatic amines such as ethanolamines and heterocyclic amines such as piperazines. Since ethanolamines and piperazines have high boiling points and high basicity, they are used in acid gas cleaning solutions, or because of their properties of bases or ligands, such as metal chelating agents and metal pipes. It is used as an agent.

エタノールアミン類は、例えば、モノエタノールアミン(2−アミノエタノール)、ジエタノールアミン(2,2−イミノジエタノール)、トリエタノールアミン、2,2−メチルイミノジエタノールなどがある。例えば、エタノールアミンは防食剤として、発電所の蒸気生成配管に添加される場合がある。また、近年では、化石燃料燃焼時に発生する二酸化炭素の排出を抑制する観点から、エタノールアミン類を各種配合した二酸化炭素吸収剤(例えば、特許文献1参照)に排ガスを接触させ排ガス中の二酸化炭素を吸収させることも行われている。   Examples of ethanolamines include monoethanolamine (2-aminoethanol), diethanolamine (2,2-iminodiethanol), triethanolamine, and 2,2-methyliminodiethanol. For example, ethanolamine may be added as an anticorrosive agent to the steam generation piping of a power plant. Further, in recent years, from the viewpoint of suppressing the emission of carbon dioxide generated during fossil fuel combustion, the carbon dioxide in the exhaust gas is brought into contact with a carbon dioxide absorbent containing various ethanolamines (for example, see Patent Document 1). Is also absorbed.

ピペラジン類は、例えば、ピペラジン、1−メチルピペラジン、2−メチルピペラジンなどがあり、酸性ガスの洗浄に使われたり(例えば、特許文献2)、エポキシ樹脂の硬化剤、キレート剤等に使われたりしている。   Piperazines include, for example, piperazine, 1-methylpiperazine, 2-methylpiperazine, etc., and are used for cleaning acidic gas (for example, Patent Document 2), used as an epoxy resin curing agent, chelating agent, etc. doing.

上記アミンは、例えば、使用時または使用後に水に混入し、アミン含有排水として排出される。排水中のアミンは、炭素、窒素、酸素、水素原子で構成され、炭素及び窒素はCOD源や富栄養化源となって河川や湖沼を汚染する。   The amine is, for example, mixed in water at the time of use or after use and discharged as amine-containing waste water. The amine in the wastewater is composed of carbon, nitrogen, oxygen and hydrogen atoms, and carbon and nitrogen become COD sources and eutrophication sources and pollute rivers and lakes.

アミンの用途によっては、排水中のアミン濃度が非常に高くなることもあり、高い場合には、有機物濃度として0.1w/v%以上となる場合がある。また、高濃度のアミン含有排水は、中和のための酸(塩酸、硫酸など)が多量に注入されない限り、概ねpH9以上のアルカリ性を示す。   Depending on the use of the amine, the amine concentration in the waste water may be very high. If it is high, the organic matter concentration may be 0.1 w / v% or more. High-concentration amine-containing wastewater generally exhibits an alkalinity of pH 9 or higher unless a large amount of neutralizing acid (hydrochloric acid, sulfuric acid, etc.) is injected.

そして、高濃度アミン含有排水は、高いCODや全窒素(T−N)を示すため、これらを低減する処理を行った上で、環境中に放流される。環境中に放流する場合、日本においては排水基準でCODMn120mg/L以下(日間平均)、全窒素60mg/L以下(日間平均)に低減する必要がある。   And since high concentration amine containing waste water shows high COD and total nitrogen (TN), after performing the process which reduces these, it is discharged | emitted in the environment. When discharged into the environment, in Japan, it is necessary to reduce CODMn to 120 mg / L or less (daily average) and total nitrogen to 60 mg / L or less (daily average) based on wastewater standards.

アミン含有排水の処理方法として、蒸発濃縮法を用いる方法がある。例えば、特許文献3には、高濃度のエタノールアミン含有排水をpH8以下に調整した後、蒸発濃縮装置で蒸留し、凝縮水に移行したエタノールアミンを、触媒を用いて酸化分解する方法が提案されている。この方法によれば、エタノールアミン含有排水をpH8以下にして蒸発濃縮することで、エタノールアミンの蒸発量を低減し、残留アミンが比較的少ない凝縮水を得ることが可能となる。   As a method for treating amine-containing wastewater, there is a method using an evaporation concentration method. For example, Patent Document 3 proposes a method in which ethanolamine-containing wastewater containing a high concentration is adjusted to pH 8 or lower, and then distilled using an evaporation concentrator and oxidatively decomposed ethanolamine transferred to condensed water using a catalyst. ing. According to this method, it is possible to reduce the amount of ethanolamine evaporation and obtain condensed water with relatively little residual amine by evaporating and concentrating the ethanolamine-containing wastewater to pH 8 or lower.

特開2015−24374号公報JP 2015-24374 A 特許5679995号公報Japanese Patent No. 5679995 特開平10−272478号公報Japanese Patent Laid-Open No. 10-272478

しかし、アミン含有排水の原水を直接蒸発濃縮する特許文献3の方法では、所望の濃縮倍率まで原水を蒸発濃縮するには、多量の原水が必要となるため、原水を蒸発濃縮するのに必要な熱エネルギーが多大となる。その結果、エネルギーコストが増大するという問題が生じる。   However, in the method of Patent Document 3 in which the raw water of amine-containing wastewater is directly evaporated and concentrated, a large amount of raw water is required to evaporate and concentrate the raw water up to a desired concentration ratio. Therefore, it is necessary to evaporate and concentrate the raw water. Thermal energy becomes enormous. As a result, there arises a problem that the energy cost increases.

そこで、本発明は、蒸発濃縮法によるアミン含有排水の処理において、蒸発濃縮に掛かる熱エネルギーを抑えながら、残留アミンの少ない処理水を得ることができるアミン含有排水の処理方法及び処理装置を提供することを目的としてなされたものである。   Therefore, the present invention provides an amine-containing wastewater treatment method and a treatment apparatus capable of obtaining treated water with little residual amine while suppressing thermal energy required for evaporation and concentration in the treatment of amine-containing wastewater by the evaporation concentration method. It was made for the purpose.

本発明のアミン含有排水の処理方法は、pH9以上のアミン含有排水を逆浸透膜に通水し、第1透過水と第1濃縮水とに分離する第1逆浸透膜処理工程と、前記第1透過水を逆浸透膜に通水し、第2透過水と第2濃縮水とに分離する第2逆浸透膜処理工程と、前記第1濃縮水を蒸発濃縮する蒸発濃縮工程と、を有することを特徴とする。   The method for treating amine-containing wastewater according to the present invention includes a first reverse osmosis membrane treatment step in which amine-containing wastewater having a pH of 9 or more is passed through a reverse osmosis membrane and separated into a first permeate and a first concentrated water, A second reverse osmosis membrane treatment step of passing 1 permeate through a reverse osmosis membrane and separating it into a second permeate and a second concentrated water; and an evaporation concentration step of evaporating and concentrating the first concentrated water. It is characterized by that.

また、前記アミン含有排水の処理方法において、前記第2濃縮水を前記アミン含有排水に返送する濃縮水返送工程を有することが好ましい。   Moreover, in the processing method of the said amine containing waste_water | drain, it is preferable to have a concentrated water return process which returns the said 2nd concentrated water to the said amine containing waste_water | drain.

また、前記アミン含有排水の処理方法において、前記第1透過水をpH8以下に調整するpH調整工程を有することが好ましい。   The amine-containing wastewater treatment method preferably includes a pH adjustment step of adjusting the first permeate to pH 8 or less.

また、前記アミン含有排水の処理方法において、前記蒸発濃縮工程で発生した蒸気を凝縮する凝縮工程と、前記凝縮工程で得られた凝縮水を前記アミン含有排水に返送する凝縮水返送工程と、を有することが好ましい。   Further, in the method for treating amine-containing wastewater, a condensation step for condensing steam generated in the evaporation and concentration step, and a condensed water return step for returning condensed water obtained in the condensation step to the amine-containing wastewater. It is preferable to have.

また、前記アミン含有排水の処理方法において、前記アミン含有排水中のアミン濃度は、全有機炭素濃度換算で2000mg/L〜35000mg/Lであることが好ましい。   Moreover, in the processing method of the said amine containing waste_water | drain, it is preferable that the amine concentration in the said amine containing waste_water | drain is 2000 mg / L-35000 mg / L in conversion of a total organic carbon density | concentration.

また、本発明のアミン含有排水の処理装置は、逆浸透膜を備え、pH9以上のアミン含有排水を前記逆浸透膜に通水し、第1透過水と第1濃縮水とに分離する第1逆浸透膜手段と、逆浸透膜を備え、前記第1透過水を前記逆浸透膜に通水し、第2透過水と第2濃縮水とに分離する第2逆浸透膜手段と、前記第1濃縮水を蒸発濃縮する蒸発濃縮手段と、を有することを特徴とする。   Moreover, the amine-containing wastewater treatment apparatus of the present invention includes a reverse osmosis membrane, and the amine-containing wastewater having a pH of 9 or more is passed through the reverse osmosis membrane to separate the first permeated water and the first concentrated water. A reverse osmosis membrane means; a reverse osmosis membrane; a second reverse osmosis membrane means for passing the first permeate through the reverse osmosis membrane and separating it into a second permeate and a second concentrated water; And evaporative concentration means for evaporating and concentrating the concentrated water.

また、前記アミン含有排水の処理装置において、前記第2濃縮水を前記アミン含有排水に返送する濃縮水返送手段を有することが好ましい。   Moreover, it is preferable that the processing apparatus of the said amine containing waste water has a concentrated water return means which returns the said 2nd concentrated water to the said amine containing waste water.

また、前記アミン含有排水の処理装置において、前記第1透過水をpH8以下に調整するpH調整手段を有することが好ましい。   The amine-containing wastewater treatment apparatus preferably has pH adjusting means for adjusting the first permeate to pH 8 or lower.

また、前記アミン含有排水の処理装置において、前記蒸発濃縮手段で発生した蒸気を凝縮する凝縮手段と、前記凝縮手段で得られた凝縮水を前記アミン含有排水に返送する凝縮水返送手段と、を有することが好ましい。   Further, in the amine-containing wastewater treatment apparatus, a condensing means for condensing steam generated by the evaporative concentration means, and a condensed water returning means for returning the condensed water obtained by the condensing means to the amine-containing wastewater, It is preferable to have.

また、前記アミン含有排水の処理装置において、前記アミン含有排水中のアミン濃度は、全有機炭素濃度換算で2000mg/L〜35000mg/Lであることが好ましい。   In the amine-containing wastewater treatment apparatus, the amine concentration in the amine-containing wastewater is preferably 2000 mg / L to 35000 mg / L in terms of total organic carbon concentration.

本発明によれば、蒸発濃縮法によるアミン含有排水の処理において、蒸発濃縮に掛かる熱エネルギー又は使用する薬品量を抑えながら、残留アミンの少ない処理水を得ることができるアミン含有排水の処理方法及び処理装置を提供することが可能となる。   According to the present invention, in the treatment of amine-containing wastewater by the evaporative concentration method, a method for treating amine-containing wastewater capable of obtaining treated water with little residual amine while suppressing the heat energy required for evaporative concentration or the amount of chemicals used, and A processing apparatus can be provided.

本発明の実施形態に係るアミン含有排水の処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing apparatus of the amine containing waste water which concerns on embodiment of this invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本発明の実施形態に係るアミン含有排水の処理装置の構成の一例を示す模式図である。図1に示す排水処理装置1は、原水槽10、第1逆浸透膜モジュール12(第1逆浸透膜処理手段)、第2逆浸透膜モジュール14(第2逆浸透膜処理手段)、蒸発濃縮機16(蒸発濃縮手段)、濃縮水槽18、凝縮器20(凝縮手段)、pH調整装置(pH調整手段)を備えている。   Drawing 1 is a mimetic diagram showing an example of the composition of the processing device of the amine content drainage concerning the embodiment of the present invention. 1 includes a raw water tank 10, a first reverse osmosis membrane module 12 (first reverse osmosis membrane treatment means), a second reverse osmosis membrane module 14 (second reverse osmosis membrane treatment means), and evaporation concentration. Machine 16 (evaporation concentration means), concentrated water tank 18, condenser 20 (condensation means), and pH adjustment device (pH adjustment means).

蒸発濃縮機16は、蒸発缶22、熱媒体供給配管24を備えている。pH調整装置は、混合器26、pHセンサ28、pH調整剤添加配管30を備えている。混合器26は、例えば、インラインミキサー等である。また、例えば、内部に撹拌機を設置した混合槽等でもよい。   The evaporation concentrator 16 includes an evaporator 22 and a heat medium supply pipe 24. The pH adjusting device includes a mixer 26, a pH sensor 28, and a pH adjusting agent addition pipe 30. The mixer 26 is, for example, an inline mixer. Moreover, for example, a mixing tank in which a stirrer is installed may be used.

以下に、図1に示す排水処理装置1の配管構成について説明する。図1に示す配管構成は一例であって、これに制限されるものではない。   Below, the piping structure of the waste water treatment apparatus 1 shown in FIG. 1 is demonstrated. The piping configuration shown in FIG. 1 is an example, and the present invention is not limited to this.

排水流入配管32の一端は原水槽10の排水出口に接続され、他端はポンプ34aを介して第1逆浸透膜モジュール12の入口に接続されている。第1透過水配管36の一端は、第1逆浸透膜モジュール12の透過水出口に接続され、他端は混合器26を介して第2逆浸透膜モジュール14の入口に接続されている。第1透過水配管36には、pH調整剤添加配管30が接続され、また、pHセンサ28が設置されている。第2逆浸透膜モジュール14の透過水出口には第2透過水配管38が接続されている。第2濃縮水配管42(濃縮水返送手段)の一端は、第2逆浸透膜モジュール14の濃縮水出口に接続され、他端は原水槽10の排水入口に接続されている。第2濃縮水配管42にはポンプやバルブ等が設置されていてもよい。第1濃縮水配管40の一端は、第1逆浸透膜モジュール12の濃縮水出口に接続され、他端は蒸発缶22側面の排水入口に接続されている。熱媒体供給配管24は、蒸発缶22内部に設けられた伝熱管44に接続されている。伝熱管44の一端は、前述したように熱媒体供給配管24に接続され、他端は蒸発缶22の外部に設けられたドレン部46に接続されている。ドレン配管48の一端は、ドレン部46に接続され、他端はポンプ34bを介して例えば系外に設けられた水槽に接続されている。循環配管50の一端は蒸発缶22の下部出口に接続され、他端はポンプ34cを介して蒸発缶22の上部入口に接続されている。濃縮水回収配管52の一端は循環配管50に接続され、他端は濃縮水槽18に接続されている。蒸気回収配管54の一端は蒸発缶22の側面上部口に接続され、他端は凝縮器20の蒸気入口に接続されている。凝縮器20内には、冷却水配管56が設置されている。凝縮水配管58(凝縮水返送手段)の一端は凝縮器20の凝縮水出口に接続され、他端は原水槽10の凝縮水入口に接続されている。凝縮水配管58にはポンプやバルブが設置されていてもよい。   One end of the drainage inflow pipe 32 is connected to the drainage outlet of the raw water tank 10, and the other end is connected to the inlet of the first reverse osmosis membrane module 12 via the pump 34a. One end of the first permeable water pipe 36 is connected to the permeable water outlet of the first reverse osmosis membrane module 12, and the other end is connected to the inlet of the second reverse osmosis membrane module 14 via the mixer 26. The first permeate pipe 36 is connected to a pH adjuster addition pipe 30 and a pH sensor 28 is installed. A second permeate pipe 38 is connected to the permeate outlet of the second reverse osmosis membrane module 14. One end of the second concentrated water pipe 42 (concentrated water return means) is connected to the concentrated water outlet of the second reverse osmosis membrane module 14, and the other end is connected to the drain inlet of the raw water tank 10. A pump, a valve, or the like may be installed in the second concentrated water pipe 42. One end of the first concentrated water pipe 40 is connected to the concentrated water outlet of the first reverse osmosis membrane module 12, and the other end is connected to the drain inlet on the side surface of the evaporator 22. The heat medium supply pipe 24 is connected to a heat transfer pipe 44 provided inside the evaporator 22. As described above, one end of the heat transfer tube 44 is connected to the heat medium supply pipe 24, and the other end is connected to a drain portion 46 provided outside the evaporator 22. One end of the drain pipe 48 is connected to the drain part 46, and the other end is connected to, for example, a water tank provided outside the system via the pump 34b. One end of the circulation pipe 50 is connected to the lower outlet of the evaporator 22 and the other end is connected to the upper inlet of the evaporator 22 via a pump 34c. One end of the concentrated water recovery pipe 52 is connected to the circulation pipe 50, and the other end is connected to the concentrated water tank 18. One end of the steam recovery pipe 54 is connected to the upper side port of the evaporator 22, and the other end is connected to the steam inlet of the condenser 20. A cooling water pipe 56 is installed in the condenser 20. One end of the condensed water pipe 58 (condensed water returning means) is connected to the condensed water outlet of the condenser 20, and the other end is connected to the condensed water inlet of the raw water tank 10. A pump or a valve may be installed in the condensed water pipe 58.

次に、本実施形態に係る排水処理装置1の動作について説明する。   Next, the operation of the waste water treatment apparatus 1 according to this embodiment will be described.

アミン含有排水は、通常、pH9以上のアルカリ性を呈しているので、原水槽10内のアミン含有排水は、pH調整されることなく、ポンプ34aにより、排水流入配管32に送液され、第1逆浸透膜モジュール12に供給される。アミン含有排水は、第1逆浸透膜モジュール12内の逆浸透膜により、アミンがある程度除去された第1透過水と、アミンが濃縮された第1濃縮水とに分離される(第1逆浸透膜処理工程)。   Since the amine-containing wastewater usually exhibits an alkalinity of pH 9 or higher, the amine-containing wastewater in the raw water tank 10 is sent to the drainage inflow pipe 32 by the pump 34a without being adjusted in pH, and the first reverse The osmosis membrane module 12 is supplied. The amine-containing wastewater is separated into first permeated water from which amine has been removed to a certain extent and first concentrated water from which amine has been concentrated by the reverse osmosis membrane in the first reverse osmosis membrane module 12 (first reverse osmosis). Membrane processing step).

第1透過水は第1透過水配管36を通り混合器26に導入され、また、pH調整剤は、pH調整剤添加配管30から第1透過水配管36を通り混合器26に導入される。そして、第1透過水とpH調整剤とは、混合器26により混合され、第2逆浸透膜モジュール14に供給される。具体的には、第1透過水のpHをpHセンサ28により計測し、その計測値に応じて設定された量のpH調整剤が添加され、混合器26を通る過程で、第1透過水のpHが8以下に調整され、第2逆浸透膜モジュール14に供給される(pH調整工程)。なお、残留アミンを含む第1透過水のpHは、通常、アルカリ性を呈するため、pH調整剤としては、硫酸、塩酸等の酸剤が用いられる。   The first permeate is introduced into the mixer 26 through the first permeate pipe 36, and the pH adjuster is introduced from the pH adjuster addition pipe 30 through the first permeate pipe 36 into the mixer 26. The first permeated water and the pH adjuster are mixed by the mixer 26 and supplied to the second reverse osmosis membrane module 14. Specifically, the pH of the first permeated water is measured by the pH sensor 28, and a pH adjusting agent in an amount set according to the measured value is added, and in the process of passing through the mixer 26, the first permeated water is added. The pH is adjusted to 8 or less and supplied to the second reverse osmosis membrane module 14 (pH adjustment step). In addition, since pH of the 1st permeated water containing a residual amine usually exhibits alkalinity, acid agents, such as a sulfuric acid and hydrochloric acid, are used as a pH adjuster.

第1透過水は、第2逆浸透膜モジュール14内の逆浸透膜により、残留アミンが除去された第2透過水と、残留アミンが濃縮された第2濃縮水とに分離される(第2逆浸透膜処理工程)。第2透過水は、第2透過水配管38から排出され、処理水として回収される。また、第2濃縮水は第2濃縮水配管42から原水槽10へ返送される(濃縮水返送工程)。   The first permeated water is separated by the reverse osmosis membrane in the second reverse osmosis membrane module 14 into the second permeated water from which the residual amine has been removed and the second concentrated water from which the residual amine has been concentrated (second Reverse osmosis membrane treatment process). The second permeated water is discharged from the second permeated water pipe 38 and recovered as treated water. The second concentrated water is returned from the second concentrated water pipe 42 to the raw water tank 10 (concentrated water returning step).

このように、第1逆浸透膜モジュール12で処理した第1透過水をさらに第2逆浸透膜モジュール14で処理することにより、残留アミンの少ない処理水(第2透過水)が得られる。特に、第1透過水のpHを8以下にして、第2逆浸透膜モジュール14で処理することにより、残留アミンをより低減させることが可能となり、より良好な水質の処理水を得ることができる。さらに、第1逆浸透膜モジュール12で処理した第1透過水に含まれるアミンの濃度は、処理条件にもよるが、例えば、原水(アミン含有排水)の1/10以下となる。したがって、第1逆浸透膜モジュール12で処理した第1透過水のpHを8以下にした方が、原水のpHを8以下にする場合と比較して、使用するpH調整剤の量を顕著に削減することができる(例えば、1/10以下)。例えば、特許文献3のようなアミン含有排水の原水をpH8以下に調整して蒸発濃縮する方法と比較して、薬品の使用量を顕著に削減することが可能となる。また、第2濃縮水は回収してもよいが、通常、原水(アミン含有排水)のアミン濃度よりも低いため、第2濃縮水配管42から原水槽10へ返送することが好ましい。これにより、処理水(第2透過水)の回収率を向上させることが可能となる。   In this way, by treating the first permeate treated with the first reverse osmosis membrane module 12 with the second reverse osmosis membrane module 14, treated water with less residual amine (second permeate) can be obtained. In particular, by treating the first permeate with a pH of 8 or less and treating with the second reverse osmosis membrane module 14, it becomes possible to further reduce the residual amine and obtain treated water with better water quality. . Furthermore, the concentration of the amine contained in the first permeated water treated by the first reverse osmosis membrane module 12 is, for example, 1/10 or less of the raw water (amine-containing wastewater), although depending on the treatment conditions. Therefore, when the pH of the first permeated water treated by the first reverse osmosis membrane module 12 is 8 or less, the amount of the pH adjusting agent to be used is significantly higher than when the pH of the raw water is 8 or less. Can be reduced (for example, 1/10 or less). For example, the amount of chemicals used can be significantly reduced as compared with a method in which the raw water of amine-containing wastewater such as Patent Document 3 is adjusted to pH 8 or lower and evaporated and concentrated. Although the second concentrated water may be recovered, it is usually preferably returned to the raw water tank 10 from the second concentrated water pipe 42 because it is lower than the amine concentration of the raw water (amine-containing wastewater). Thereby, the recovery rate of treated water (second permeated water) can be improved.

ところで、第1逆浸透膜モジュール12から排出された第1濃縮水は、第1濃縮水配管40を通って蒸発濃縮機16の蒸発缶22に供給される。また、蒸気等の熱媒体が、熱媒体供給配管24から伝熱管44に供給され、伝熱管44が加熱される。そして、ポンプ34cが稼働され、蒸発缶22の底部に貯留した第1濃縮水が循環配管50を通り、蒸発缶22の上部から、蒸気等の加熱媒体により加熱された伝熱管44に向けて噴射される。噴射された第1濃縮水は、伝熱管44からの熱により加熱され、一部は蒸発し、残部はアミン濃縮水として蒸発缶22の底部に貯留される(蒸発濃縮工程)。蒸発濃縮工程で所定の濃縮倍率に濃縮されたアミン濃縮水は、蒸発缶22から排出され、循環配管50、濃縮水回収配管52を通り濃縮水槽18に貯留される。濃縮水槽18に貯留されたアミン濃縮水は、産業廃棄物などとして処分される。なお、伝熱管44を通過した蒸気等の熱媒体は、ドレン部46に貯留され、必要に応じてポンプ34bを稼働させることで、ドレン配管48から系外へ排出される。また、蒸発缶22で蒸発した蒸気は、蒸気回収配管54を通り凝縮器20に供給される。凝縮器20に供給された蒸気は、凝縮器20内の冷却水配管56を流れる冷却液と熱交換されて凝縮され、凝縮水となる(凝縮工程)。凝縮水は、凝縮水配管58から原水槽10へ返送される(凝縮水返送工程)。   By the way, the first concentrated water discharged from the first reverse osmosis membrane module 12 is supplied to the evaporator 22 of the evaporation concentrator 16 through the first concentrated water pipe 40. Further, a heat medium such as steam is supplied from the heat medium supply pipe 24 to the heat transfer pipe 44, and the heat transfer pipe 44 is heated. Then, the pump 34c is operated, and the first concentrated water stored in the bottom of the evaporator 22 passes through the circulation pipe 50 and is sprayed from the upper part of the evaporator 22 toward the heat transfer tube 44 heated by a heating medium such as steam. Is done. The injected first concentrated water is heated by the heat from the heat transfer tube 44, part of it is evaporated, and the remainder is stored as amine concentrated water at the bottom of the evaporator 22 (evaporation and concentration step). The amine concentrated water concentrated at a predetermined concentration ratio in the evaporation concentration process is discharged from the evaporator 22 and stored in the concentrated water tank 18 through the circulation pipe 50 and the concentrated water recovery pipe 52. The amine concentrated water stored in the concentrated water tank 18 is disposed of as industrial waste. Note that the heat medium such as steam that has passed through the heat transfer tube 44 is stored in the drain portion 46 and is discharged from the drain pipe 48 to the outside by operating the pump 34b as necessary. Further, the vapor evaporated in the evaporator 22 is supplied to the condenser 20 through the vapor recovery pipe 54. The steam supplied to the condenser 20 is heat-exchanged with the coolant flowing through the cooling water pipe 56 in the condenser 20 to be condensed, and becomes condensed water (condensing step). The condensed water is returned from the condensed water pipe 58 to the raw water tank 10 (condensed water returning step).

このように、第1逆浸透膜モジュールで処理した第1濃縮水を蒸発濃縮することにより、蒸発濃縮する水量を減らして、所望の濃縮倍率のアミン濃縮水を得ることができる。したがって、アミン含有排水の原水を直接蒸発濃縮して、所望の濃縮倍率のアミン濃縮する場合と比較して、蒸発濃縮する水量が減るため、蒸発濃縮に必要な熱エネルギー(例えば、蒸気の供給量等)を抑えることが可能となり、エネルギーコストを削減することができる。また、凝縮工程で得られる凝縮水は、残留アミンが含まれるため、酸化触媒で酸化分解して系外へ排出してもよいが、凝縮水配管58から原水槽10へ返送することが好ましい。これにより、薬品使用量を削減すること、処理水(第2透過水)の回収率を向上させることが可能となる。   Thus, by evaporating and concentrating the first concentrated water treated by the first reverse osmosis membrane module, the amount of water to be evaporated and concentrated can be reduced, and amine concentrated water having a desired concentration ratio can be obtained. Therefore, the amount of water to be evaporated and concentrated is reduced compared with the case of directly evaporating and concentrating the raw water of amine-containing wastewater and concentrating the amine with the desired concentration ratio. Etc.) and the energy cost can be reduced. In addition, since the condensed water obtained in the condensing step contains residual amine, it may be oxidatively decomposed with an oxidation catalyst and discharged out of the system, but it is preferably returned from the condensed water pipe 58 to the raw water tank 10. Thereby, it becomes possible to reduce the amount of chemicals used and improve the recovery rate of treated water (second permeated water).

以下に、アミン含有排水の処理条件について説明する。   Below, the process conditions of an amine containing waste_water | drain are demonstrated.

本実施形態の処理対象であるアミンは、特に制限されるものではないが、大気圧下での沸点が130℃以上であり、25℃水溶液での酸解離定数pKaが8.5以上である物質等が挙げられ、例えば、モノエタノールアミン(例えば、2−アミノエタノール[HOCHCHNH])、ジエタノールアミン(例えば、2,2−イミノジエタノール[(HOCHCH)NH])、トリエタノールアミン(例えば、[(HOCHCH)N])、2,2−メチルイミノジエタノール、ピペラジン、1-メチルピペラジン、2−メチルピペラジン等が挙げられる。 The amine to be treated in this embodiment is not particularly limited, but is a substance having a boiling point of 130 ° C. or higher under atmospheric pressure and an acid dissociation constant pKa of 8.5 or higher in a 25 ° C. aqueous solution. For example, monoethanolamine (for example, 2-aminoethanol [HOCH 2 CH 2 NH 2 ]), diethanolamine (for example, 2,2-iminodiethanol [(HOCH 2 CH 2 ) 2 NH]), tri Examples include ethanolamine (for example, [(HOCH 2 CH 2 ) 3 N]), 2,2-methyliminodiethanol, piperazine, 1-methylpiperazine, 2-methylpiperazine and the like.

アミン含有排水中のアミン濃度は、例えば、全有機炭素濃度換算で30000mg/L以下であることが好ましく、2000mg/L〜30000mg/Lの範囲であることがより好ましい。アミン濃度が、30000mg/Lを超える排水に対しても処理は可能であるが、30000mg/Lを超える場合、アミンの種類にもよるがそれを含む排水の浸透圧が概ね3MPa以上と高くなり、濃縮水の浸透圧はさらにその2倍以上となるため、ろ過にかける圧力が逆浸透膜の耐圧を超えたり、高圧の通液ポンプが必要になると共に、高い透過流束が得られず多大な膜面積が必要になったりする場合がある。また、処理水においても排水基準を下回る良好な処理水質を得ることが困難となる場合がある。アミン濃度が全有機炭素濃度換算で2000mg/L未満の排水に対しても処理は可能であるが、pHを8以下にした逆浸透膜1段処理でも良好な処理水質が得られ、かつ、酸使用量低減の効果も少ないため、2000mg/L以上の排水を対象にすることが好ましい。   The amine concentration in the amine-containing wastewater is, for example, preferably 30000 mg / L or less in terms of total organic carbon concentration, and more preferably in the range of 2000 mg / L to 30000 mg / L. Treatment is also possible for wastewater with an amine concentration exceeding 30000 mg / L, but when it exceeds 30000 mg / L, the osmotic pressure of the wastewater containing it increases to about 3 MPa or more, depending on the type of amine, Since the osmotic pressure of the concentrated water is more than twice that, the pressure applied to the filtration exceeds the pressure resistance of the reverse osmosis membrane or a high-pressure liquid pump is required, and a high permeation flux cannot be obtained. The membrane area may be required. In addition, it may be difficult to obtain good treated water quality that is lower than the drainage standard even in treated water. Although it is possible to treat wastewater with an amine concentration of less than 2000 mg / L in terms of total organic carbon concentration, a good treated water quality can be obtained even with a reverse osmosis membrane one-stage treatment with a pH of 8 or less. Since the effect of reducing the amount used is small, it is preferable to target wastewater of 2000 mg / L or more.

アミン含有排水は、通常、pH9以上のアルカリ性を呈し、pH11を超える場合もある。但し、逆浸透膜には、適用pH上限値があるため、アミン含有排水のpHが逆浸透膜の適用pH上限値を超える場合には、pH9以上〜逆浸透膜の適用pH上限値未満にpH調整することが好ましい。また、排水中に含まれる酸解離定数(pKa)が8.5〜9.8のアミンの場合、pHを解離定数以下に下げるとすると、pH調整に必要な酸が多量に必要になるため、含まれるアミンの解離定数に応じて、上記pH範囲の間で、酸添加量の少ないpHとするのが良い。また、アミン含有排水にあらかじめ酸等が多量に混入して、pH9未満となっている場合には、アルカリ剤を加えて、pH9以上とする。具体的なpH調整は、例えば、原水槽10に設置されたpHセンサにより、原水槽10内のアミン含有排水のpHが測定され、その測定値に基づいて、原水槽10に接続されたpH調整剤添加配管からpH調整剤(酸剤、アルカリ剤)が添加されることにより行われる。   The amine-containing wastewater usually exhibits an alkalinity of pH 9 or higher and sometimes exceeds pH 11. However, since reverse osmosis membranes have an applicable pH upper limit value, when the pH of the amine-containing wastewater exceeds the applied pH upper limit value of the reverse osmosis membrane, the pH falls between pH 9 and below the applied pH upper limit value of the reverse osmosis membrane. It is preferable to adjust. Further, in the case of an amine having an acid dissociation constant (pKa) contained in the waste water of 8.5 to 9.8, if the pH is lowered below the dissociation constant, a large amount of acid necessary for pH adjustment is required. According to the dissociation constant of the amine contained, it is good to set it as pH with little acid addition amount within the said pH range. In addition, in the case where a large amount of acid or the like is mixed in the amine-containing wastewater in advance and the pH is less than 9, an alkaline agent is added to make the pH 9 or more. For example, the pH adjustment of the amine-containing wastewater in the raw water tank 10 is measured by a pH sensor installed in the raw water tank 10, and the pH adjustment connected to the raw water tank 10 based on the measured value. It is performed by adding a pH adjuster (acid agent, alkali agent) from the agent addition pipe.

本実施形態の処理では、アミン含有排水にシリカが含有される場合でも、シリカの溶解度が高くなるpH9以上の排水を、第1逆浸透膜モジュール12に通水しているため、逆浸透膜面上でのシリカの析出を抑制することができる。なお、大部分のシリカは第1濃縮水中に含まれる。   In the treatment of the present embodiment, even when silica is contained in the amine-containing wastewater, wastewater having a pH of 9 or higher where the solubility of silica is increased is passed through the first reverse osmosis membrane module 12, so that the reverse osmosis membrane surface Silica precipitation can be suppressed. Most of the silica is contained in the first concentrated water.

本実施形態で用いられる逆浸透膜は、特に制限されるものではないが、例えば、ポリアミド系、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)、ポリエーテルサルフォン(PES)、セルロースアセテート(CA)等の有機膜、セラミック製の無機膜等が挙げられる。また、逆浸透膜の形状は、特に制限されるものではなく、例えば、中空糸膜、管状膜、平膜、スパイラル等が挙げられる。また、逆浸透膜の通水方式は、内圧型、外圧型等のあらゆる通水方式が適用可能である。   The reverse osmosis membrane used in the present embodiment is not particularly limited. For example, polyamide-based, polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polyethersulfone (PES), cellulose acetate ( Examples thereof include organic films such as CA) and inorganic films made of ceramic. The shape of the reverse osmosis membrane is not particularly limited, and examples thereof include a hollow fiber membrane, a tubular membrane, a flat membrane, and a spiral. In addition, as the water flow method for the reverse osmosis membrane, any water flow method such as an internal pressure type and an external pressure type can be applied.

pH9以上のアミン含有排水を第1逆浸透膜モジュール12に通水する際には、使用する逆浸透膜の特性に応じた圧力をかけ、通水する量の一定の割合を第1濃縮水として取り出すことが望ましい。第1濃縮水として排出される水の量は、逆浸透膜の特性や流入する水質によって変わるが、概ね、逆浸透膜に流入する水量の10〜50%であることが好ましい。逆浸透膜に通水する際の圧力は、膜の特性にもよるが、例えば、数kg/cm〜70kg/cmの範囲である。 When amine-containing wastewater having a pH of 9 or more is passed through the first reverse osmosis membrane module 12, a pressure corresponding to the characteristics of the reverse osmosis membrane to be used is applied, and a certain proportion of the amount of water passed is used as the first concentrated water. It is desirable to take it out. The amount of water discharged as the first concentrated water varies depending on the characteristics of the reverse osmosis membrane and the quality of the inflowing water, but is generally preferably 10 to 50% of the amount of water flowing into the reverse osmosis membrane. Pressure when passed through the reverse osmosis membrane, depending on the characteristics of the film, for example, in the range of a few kg / cm 2 ~70kg / cm 2 .

第1逆浸透膜モジュール12により得られた第1透過水のpHは、8以下に調整されるのが好ましく、6.5〜7.5の範囲に調整されるのがより好ましい。第1透過水のpHを8以下とすることで、第1透過水中のアミンイオン化物質(例えばR−NH )の割合を増加させることができるため、後段の第2逆浸透膜モジュール14により、効率的にアミンを除去することが可能となる。なお、第1透過水のpHを酸性側にし過ぎると(例えば、pH2以下)、装置内が腐食される虞がある。 The pH of the first permeate obtained by the first reverse osmosis membrane module 12 is preferably adjusted to 8 or less, and more preferably adjusted to a range of 6.5 to 7.5. By setting the pH of the first permeate to 8 or less, the ratio of the amine ionized substance (for example, R—NH 3 + ) in the first permeate can be increased. It becomes possible to remove amine efficiently. Note that if the pH of the first permeate is too acidic (for example, pH 2 or less), the inside of the apparatus may be corroded.

第1透過水を第2逆浸透膜モジュール14に通水する際には、使用する膜の特性に応じた圧力をかけ、通水する量の一定の割合を第2濃縮水として取り出すことが望ましい。第2濃縮水として排出される水の量は、逆浸透膜の特性や流入する水質によって変わるが、概ね、膜に流入する水量の70〜90%であることが好ましい。逆浸透膜に通水する際の圧力は、逆浸透膜の特性にもよるが、例えば、数kg/cm〜40kg/cmの範囲である。 When passing the first permeate through the second reverse osmosis membrane module 14, it is desirable to apply a pressure according to the characteristics of the membrane to be used and to take out a certain proportion of the amount of water passed as the second concentrated water. . The amount of water discharged as the second concentrated water varies depending on the characteristics of the reverse osmosis membrane and the quality of the inflowing water, but is generally preferably 70 to 90% of the amount of water flowing into the membrane. Pressure when passed through the reverse osmosis membrane, depending on the characteristics of the reverse osmosis membrane, for example, in the range of a few kg / cm 2 ~40kg / cm 2 .

第1逆浸透膜モジュール12により得られる第1濃縮水の濃縮倍率は、例えば、2倍〜20倍の範囲が好ましく、2.5倍〜10倍の範囲がより好ましい。第1濃縮水の濃縮倍率が2倍未満であると、蒸発濃縮する水量が多く、上記範囲を満たす場合と比較して、所望の濃縮倍率を得るための蒸発濃縮に必要な熱エネルギーが高くなる場合がある。また、第1濃縮水の濃縮倍率が20倍を越えると、逆浸透膜モジュール内部で塩の析出が起こる場合がある。   For example, the concentration ratio of the first concentrated water obtained by the first reverse osmosis membrane module 12 is preferably in the range of 2 to 20 times, and more preferably in the range of 2.5 to 10 times. If the concentration rate of the first concentrated water is less than 2 times, the amount of water to be evaporated and concentrated is large, and the heat energy required for evaporation and concentration to obtain the desired concentration rate is higher than in the case where the above range is satisfied. There is a case. Moreover, when the concentration rate of 1st concentrated water exceeds 20 times, precipitation of a salt may occur inside a reverse osmosis membrane module.

第2逆浸透膜モジュール14により得られる第2濃縮水中のアミン濃度は、原水よりも希薄であるため(全有機炭素濃度換算で、例えば、数百〜数千mg/L程度)、第2濃縮水を回収又は蒸発濃縮するより、アミン含有排水に返送することが好ましい。これにより、処理水の回収率を上げることが可能となる。   Since the amine concentration in the second concentrated water obtained by the second reverse osmosis membrane module 14 is thinner than the raw water (for example, about several hundred to several thousand mg / L in terms of total organic carbon concentration), the second concentration is concentrated. Rather than collecting or evaporating and concentrating water, it is preferable to return it to amine-containing wastewater. Thereby, it becomes possible to raise the recovery rate of treated water.

本実施形態で用いた蒸発缶22は、アミン含有排水を加熱して蒸発させると共に、アミン含有排水を濃縮することができる構造を有していれば特に制限されるものではなく、例えば、自然循環式蒸発缶、強制循環式蒸発缶、液膜式蒸発缶、真空蒸発缶等の従来公知の蒸発缶を使用することができる。これらの中では、蒸発濃縮に掛かるエネルギーコストの点で、真空蒸発缶が好ましい。真空蒸発缶は、蒸発缶内を減圧する真空ポンプを備えており、例えば、真空ポンプで蒸発缶内を−0.05〜−0.02MPa(ゲージ圧)に減圧させる。これにより、高い沸点を有するアミン含有排水に対して、低い加熱温度(例えば、60〜90℃)で蒸発させることが可能となるため、熱エネルギーの増加を抑制し、エネルギーコストを抑えることが可能となる。   The evaporator 22 used in the present embodiment is not particularly limited as long as it has a structure capable of heating and evaporating the amine-containing wastewater and concentrating the amine-containing wastewater. For example, natural circulation Conventionally known evaporators such as a type evaporator, a forced circulation evaporator, a liquid film evaporator, and a vacuum evaporator can be used. Among these, vacuum evaporators are preferable from the viewpoint of energy cost for evaporation and concentration. The vacuum evaporator is equipped with a vacuum pump that depressurizes the inside of the evaporator. For example, the inside of the evaporator is reduced to -0.05 to -0.02 MPa (gauge pressure) with the vacuum pump. This makes it possible to evaporate amine-containing wastewater having a high boiling point at a low heating temperature (for example, 60 to 90 ° C.), thereby suppressing an increase in thermal energy and suppressing energy costs. It becomes.

蒸発濃縮工程におけるアミン濃縮水の濃縮倍率は、廃棄処分を考慮すれば、アミン濃縮水の水量が少なくなるように高めに設定することが望ましいが、その一方で、濃縮倍率が上がると、凝縮水に含まれるアミンが増加する。そうすると、アミン濃度の高い凝縮水を原水槽に返送することになり、第1逆浸透膜モジュール12に流入するアミン含有排水のアミン濃度及び浸透圧が高くなるため、第1逆浸透膜モジュール12に対して高い圧力を掛ける必要があったり、処理水の水質が悪化したり、処理水回収率が低下したりする場合がある。したがって、処理水質の悪化を抑える点で、蒸発濃縮工程におけるアミン濃縮水の濃縮倍率は、凝縮水のアミン濃度が原水(アミン含有排水)の濃度を超えない範囲であることが好ましく、例えば、15倍〜25倍の範囲である。なお、アミン濃縮水の濃縮倍率は、アミン含有排水に対する倍率である。すなわち、3倍濃縮の第1濃縮水を蒸発濃縮して5倍濃縮した場合、アミン濃縮液の濃縮倍率は15倍(3×5)となる。   In consideration of disposal, it is desirable to set the concentration rate of amine concentrated water in the evaporative concentration process higher so that the amount of amine concentrated water is reduced. The amine contained in increases. Then, condensed water having a high amine concentration is returned to the raw water tank, and the amine concentration and osmotic pressure of the amine-containing wastewater flowing into the first reverse osmosis membrane module 12 are increased. On the other hand, it may be necessary to apply a high pressure, the quality of the treated water may deteriorate, or the treated water recovery rate may decrease. Therefore, the concentration ratio of the amine concentrated water in the evaporative concentration step is preferably within a range in which the amine concentration of the condensed water does not exceed the concentration of the raw water (amine-containing wastewater) in order to suppress deterioration of the treated water quality, for example, 15 The range is from 25 times to 25 times. In addition, the concentration magnification of amine concentrated water is a magnification with respect to amine containing waste water. That is, when the first concentrated water concentrated three times is evaporated and concentrated five times, the concentration factor of the amine concentrate is 15 times (3 × 5).

蒸発濃縮工程により得られるアミン濃縮水は、例えば、廃棄物として処分しても良いし、あるいは燃焼装置において酸素を吹込みながら、高温でアミンを燃焼させ、二酸化炭素と窒素に分解しても良い。   The amine concentrated water obtained by the evaporative concentration step may be disposed of as waste, for example, or may be decomposed into carbon dioxide and nitrogen by burning the amine at a high temperature while blowing oxygen in the combustion apparatus. .

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1−1〜1−3>
アミン含有排水として、上記例示したアミン類のうち広範に使用される2−アミノエタノール6g/L、2,2−イミノジエタノール6g/L、ピペラジン6g/L、及び2−メチルピペラジン6g/Lを、工業用水に溶解した合成排水を調製した(有機物濃度24g/L)。この合成排水のpHは11.3、シリカ濃度(SiO)は60mg/Lであった。この合成排水のpHを塩酸(35%)で7.1に調整して測定した、全有機炭素濃度(TOC)は11,500mg/L、全窒素濃度(TN)は6,200mg/L、CODMnは13,000 mg/Lであった。なお、合成排水におけるTOC、TNは、島津製全有機炭素・窒素測定装置で測定したが、中性付近で測定する必要があるため、上記のような塩酸でのpH調整を行った。以下の排水処理では、pH調整していない合成排水(pH11.3)を用いている。
<Examples 1-1 to 1-3>
As amine-containing wastewater, 2-aminoethanol 6 g / L, 2,2-iminodiethanol 6 g / L, piperazine 6 g / L, and 2-methylpiperazine 6 g / L, which are widely used among the amines exemplified above, Synthetic waste water dissolved in industrial water was prepared (organic matter concentration 24 g / L). This synthetic wastewater had a pH of 11.3 and a silica concentration (SiO 2 ) of 60 mg / L. The pH of this synthetic wastewater was adjusted to 7.1 with hydrochloric acid (35%) and measured, the total organic carbon concentration (TOC) was 11,500 mg / L, the total nitrogen concentration (TN) was 6,200 mg / L, CODMn Was 13,000 mg / L. In addition, although TOC and TN in synthetic waste water were measured with the Shimadzu total organic carbon / nitrogen measuring apparatus, since it was necessary to measure in neutral vicinity, pH adjustment with the above hydrochloric acid was performed. In the following wastewater treatment, synthetic wastewater (pH 11.3) that is not pH-adjusted is used.

表1に、合成排水中の各アミンの沸点(760mmHg)とpKa(25℃)を示す。   Table 1 shows the boiling point (760 mmHg) and pKa (25 ° C.) of each amine in the synthetic waste water.

Figure 2018094526
Figure 2018094526

合成排水(pH11.3)に塩酸を添加し、pHを9.9に調整した。耐圧容器(内部容量300mL)の底部に逆浸透膜(日東電工製、LFC3−LD)を配し、容器内に、上記pH調整済み合成排水を導入して密閉し、撹拌翼を回転させながら、容器内部に圧縮窒素を導入して内部圧力を2.0MPaとし、第1透過水が180mL(回収率60%)、第1濃縮水が120mLとなるまでろ過を継続した(第1逆浸透膜処理工程)。ろ過時の水温は25℃であった。同様の操作を4回行い、得られた第1透過水(合計720mL)及び第1濃縮水(合計480mL)の水質(pH、TOC、TN、CODMn、SiO)を測定した。 Hydrochloric acid was added to the synthetic waste water (pH 11.3) to adjust the pH to 9.9. A reverse osmosis membrane (manufactured by Nitto Denko, LFC3-LD) is placed at the bottom of a pressure vessel (internal capacity 300 mL), and the pH adjusted synthetic waste water is introduced and sealed in the vessel, while rotating the stirring blade, Compressed nitrogen was introduced into the container to adjust the internal pressure to 2.0 MPa, and filtration was continued until the first permeated water became 180 mL (recovery rate 60%) and the first concentrated water became 120 mL (first reverse osmosis membrane treatment) Process). The water temperature during filtration was 25 ° C. The same operation was performed 4 times, and water quality (pH, TOC, TN, CODMn, SiO 2 ) of the obtained first permeated water (total 720 mL) and first concentrated water (total 480 mL) was measured.

第1透過水を180mL×3個に分け、塩酸を添加し、pH6.7、8.0、10.0に調整した(実施例1−1、1−2、1−3)。   The first permeated water was divided into 180 mL × 3 pieces, and hydrochloric acid was added to adjust the pH to 6.7, 8.0, 10.0 (Examples 1-1, 1-2, 1-3).

次に、耐圧容器(内部容量300mL)の底部に逆浸透膜(日東電工製、LFC−3)を配し、容器内に、上記pH調整済みの第1透過水180mLを導入して密閉し、撹拌翼を回転させながら、容器内部に圧縮窒素を導入して内部圧力を1.1MPaとし、第2透過水が156mL(回収率87%、7.5倍濃縮)、第2濃縮水が24mLとなるまでろ過を継続した(第2逆浸透膜処理工程)。ろ過時の水温は25℃であった。得られた第2透過水及び第2濃縮水の水質(pH、TOC、TN、CODMn、SiO)を測定した。 Next, a reverse osmosis membrane (manufactured by Nitto Denko, LFC-3) is placed at the bottom of the pressure vessel (internal capacity 300 mL), and the above-adjusted first permeated water 180 mL is introduced and sealed in the vessel, While rotating the stirring blade, compressed nitrogen was introduced into the container to set the internal pressure to 1.1 MPa, the second permeated water was 156 mL (recovery rate 87%, 7.5 times concentrated), and the second concentrated water was 24 mL. Filtration was continued until it reached (second reverse osmosis membrane treatment step). The water temperature during filtration was 25 ° C. The water quality (pH, TOC, TN, CODMn, SiO 2 ) of the obtained second permeated water and second concentrated water was measured.

次に、第1濃縮水300mLを、pH調整剤を加えることなく、ロータリーエバポレータの濃縮部フラスコに導入し、この濃縮部フラスコが80℃の湯浴に底部から半分程度まで浸漬した状態で濃縮部フラスコを回転させた。凝縮部に22℃の冷却水を通水しながら、真空ポンプを稼働し、濃縮部フラスコを含むエバポレータ内部の圧力が−0.07MPaとなるように調整した。凝縮部で冷却された凝縮水を底部の凝縮水フラスコで集水し、凝縮水が255mL、アミン濃縮水が45mLとなるまで濃縮した(濃縮倍率6.7倍、凝縮水回収率85%)。この操作で得られた凝縮水及びアミン濃縮水の水質(pH、TOC、TN、CODMn)を測定した。   Next, 300 mL of the first concentrated water was introduced into the rotary evaporator concentration section flask without adding a pH adjuster, and the concentration section was immersed in an 80 ° C. hot water bath from the bottom to about half. The flask was rotated. While passing cooling water of 22 ° C. through the condensing part, the vacuum pump was operated, and the pressure inside the evaporator including the concentrating part flask was adjusted to −0.07 MPa. The condensed water cooled in the condensing part was collected in the bottom condensate flask and concentrated until the condensed water became 255 mL and the amine concentrated water became 45 mL (concentration magnification 6.7 times, condensed water recovery rate 85%). The water quality (pH, TOC, TN, CODMn) of the condensed water and the amine concentrated water obtained by this operation was measured.

表2に、第1透過水、第1濃縮水、第2透過水、及び第2濃縮水の水質結果を示す。また、表3に、凝縮水及びアミン濃縮水の水質結果を示す。   Table 2 shows the water quality results of the first permeated water, the first concentrated water, the second permeated water, and the second concentrated water. Table 3 shows the water quality results of condensed water and amine concentrated water.

Figure 2018094526
Figure 2018094526

Figure 2018094526
Figure 2018094526

第1逆浸透膜処理により得られた第1透過水の水質は、排水基準を満たしていないが、その第1透過水をpH8.0以下に調整して、第2逆浸透膜処理を行った実施例1−1〜1−2では、排水基準(CODMn120mg/L、全窒素濃度(TN)60mg/L)を十分満たす水質の処理水(第2透過水)が得られた。実施例1−3では、全窒素は排水基準より若干高かったが、CODMnは排水基準を満たす水質の処理水(第2透過水)が得られたので、残留アミンの少ない処理水が得られたと言える。   The quality of the first permeated water obtained by the first reverse osmosis membrane treatment does not satisfy the drainage standard, but the first permeated water was adjusted to pH 8.0 or lower and the second reverse osmosis membrane treatment was performed. In Examples 1-1 to 1-2, water-treated treated water (second permeate) that sufficiently satisfies the drainage standard (CODMn 120 mg / L, total nitrogen concentration (TN) 60 mg / L) was obtained. In Example 1-3, the total nitrogen was slightly higher than the drainage standard, but CODMn obtained water quality treated water (second permeate) that satisfies the drainage standard, so that treated water with little residual amine was obtained. I can say that.

第1逆浸透膜処理により得られた第1濃縮水のシリカ濃度は148mg/Lであった。pH9.9におけるシリカの溶解度(25℃)は156mg/Lであるので、第1濃縮水中でシリカは析出していないと言える。なお、合成排水に添加した塩酸は564mgHCl/300mL、第1透過水に添加した塩酸は28〜218mgHCl/180mLであり、合計592〜782mgHClであった。   The silica concentration of the 1st concentrated water obtained by the 1st reverse osmosis membrane process was 148 mg / L. Since the solubility (25 degreeC) of the silica in pH9.9 is 156 mg / L, it can be said that the silica does not precipitate in 1st concentrated water. The hydrochloric acid added to the synthetic waste water was 564 mg HCl / 300 mL, and the hydrochloric acid added to the first permeated water was 28 to 218 mg HCl / 180 mL, for a total of 592 to 782 mg HCl.

蒸発濃縮工程では、第1濃縮水300mLを凝縮水255mL、濃縮水45mLになるまで濃縮した(濃縮倍率6.7倍)。したがって、合成排水に対する濃縮倍率は16.7倍(2.5×6.7倍)であり、凝縮水の水量は合成排水の34%であった。   In the evaporation concentration step, 300 mL of the first concentrated water was concentrated to 255 mL of condensed water and 45 mL of concentrated water (concentration magnification: 6.7 times). Therefore, the concentration ratio with respect to the synthetic wastewater was 16.7 times (2.5 × 6.7 times), and the amount of condensed water was 34% of the synthetic wastewater.

実施例における第1濃縮水の水量は、合成排水の40%であるので、合成排水を直接蒸発濃縮して、16.7倍まで濃縮する場合より、少ない水量で16.7倍まで濃縮することができる。したがって、蒸発濃縮に掛かる熱エネルギーを削減することができる。   Since the amount of the first concentrated water in the examples is 40% of the synthetic wastewater, it is concentrated to 16.7 times with a smaller amount of water than when the synthetic wastewater is directly evaporated and concentrated to 16.7 times. Can do. Therefore, it is possible to reduce the heat energy required for evaporation and concentration.

凝縮水の水質はTOC1,610mg/L、TN853mg/L、CODMn1,690mg/Lであった。これは合成排水の水質より良好であった。   The water quality of the condensed water was TOC1,610 mg / L, TN853 mg / L, and CODMn1,690 mg / L. This was better than the quality of synthetic wastewater.

第2逆浸透膜処理により得られた第2濃縮水、及び蒸発濃縮処理により得られた凝縮水はいずれも合成排水よりもアミン含有量が少なかった。したがって、これらを合成排水に混合して逆浸透膜処理をしても、処理水(第2透過水)の水質は、表2の第2透過水の水質よりも高くなることはないと言える。   Both the second concentrated water obtained by the second reverse osmosis membrane treatment and the condensed water obtained by the evaporation concentration treatment had a lower amine content than the synthetic waste water. Therefore, even if these are mixed with synthetic waste water and subjected to the reverse osmosis membrane treatment, it can be said that the quality of the treated water (second permeated water) does not become higher than the quality of the second permeated water shown in Table 2.

<比較例1>
前記合成排水300mLに塩酸を添加して、pH8.1に調整した。耐圧容器(内部容量300mL)の底部に逆浸透膜(日東電工製、LFC3−LD)を配し、容器内に、上記pH調整済み合成排水を導入して密閉し、撹拌翼を回転させながら、容器内部に圧縮窒素を導入して内部圧力を2.0MPaとして、ろ過を行った。実施例の第1逆浸透膜処理と同様に、透過水が180mL、濃縮水が120mLとなるまでろ過を行おうとしたが、透過水が165mL(排水の55%)、濃縮水が135mL(45%)となった時点で透過水が得られなくなったため、ろ過を終了し、透過水及び濃縮水の水質(pH、TOC、TN、CODMn、SiO)を測定した。なお、ろ過時の水温は25℃であった。
<Comparative Example 1>
Hydrochloric acid was added to 300 mL of the synthetic waste water to adjust to pH 8.1. A reverse osmosis membrane (manufactured by Nitto Denko, LFC3-LD) is placed at the bottom of a pressure vessel (internal capacity 300 mL), and the pH adjusted synthetic waste water is introduced and sealed in the vessel, while rotating the stirring blade, Compressed nitrogen was introduced into the container and the internal pressure was set to 2.0 MPa, and filtration was performed. As with the first reverse osmosis membrane treatment of the example, filtration was performed until the permeated water became 180 mL and the concentrated water became 120 mL, but the permeated water was 165 mL (55% of the wastewater) and the concentrated water was 135 mL (45%). ), Permeated water could not be obtained, and filtration was terminated, and the quality of the permeated water and concentrated water (pH, TOC, TN, CODMn, SiO 2 ) was measured. In addition, the water temperature at the time of filtration was 25 degreeC.

表4に透過水及び濃縮水の水質結果を示す。   Table 4 shows the quality of the permeated water and concentrated water.

Figure 2018094526
Figure 2018094526

透過水の水質は排水基準(CODMn120mg/L、全窒素(TN)60mg/L)よりも高かった。また、合成排水のpHを調整するのに要した塩酸は、排水300mLあたり2,480mgHClであった。これは、実施例1−1で要した塩酸量の3.2倍であった。   The quality of the permeated water was higher than the drainage standard (CODMn 120 mg / L, total nitrogen (TN) 60 mg / L). Further, the hydrochloric acid required for adjusting the pH of the synthetic wastewater was 2,480 mg HCl per 300 mL of wastewater. This was 3.2 times the amount of hydrochloric acid required in Example 1-1.

濃縮水の溶存シリカは130mg/Lであり、pH8.0におけるシリカの溶解度128mg/Lとほぼ同等であった。そして、透過水にシリカはほとんどないこと、排水量の45%の濃縮水では、全シリカ濃度は計算上133mg/Lとなり、pH8.0におけるシリカ溶解度を超えていることから、一部のシリカは逆浸透膜面上に析出したと考えられる。   The dissolved silica in the concentrated water was 130 mg / L, which was almost equal to the solubility of silica at 128 mg / L at pH 8.0. And since there is almost no silica in the permeated water, and the concentrated water with 45% of the drainage amount, the total silica concentration is calculated to be 133 mg / L, exceeding the silica solubility at pH 8.0, so some silicas are reversed. It is thought that it was deposited on the surface of the osmotic membrane.

比較例1において、実施例と同じ圧力で、実施例よりも少ない透過水しか得られなかったのは、塩酸を実施例よりも多量に加えて排水の浸透圧が上昇したこと、膜面上でシリカの析出が生じたこと等が考えられる。また、比較例1の濃縮水を蒸発濃縮処理する場合、濃縮水の水量は実施例の第1濃縮水の水量よりも多いため、その分、所望の濃色倍率を得るために必要な熱エネルギーが多くなる。   In Comparative Example 1, only the permeated water less than the Example was obtained at the same pressure as the Example, because the osmotic pressure of the drainage was increased by adding hydrochloric acid in a larger amount than the Example, on the membrane surface. It is conceivable that silica is precipitated. Further, when the concentrated water of Comparative Example 1 is subjected to evaporation concentration treatment, the amount of concentrated water is larger than the amount of the first concentrated water of Example, and accordingly, the heat energy necessary for obtaining a desired dark color magnification. Will increase.

<比較例2>
前記合成排水500mLに塩酸を添加して、pH8.0に調整した後、ロータリーエバポレータの濃縮部フラスコに導入し、この濃縮部フラスコが80℃の湯浴に底部から半分程度まで浸漬した状態で濃縮部フラスコを回転させた。凝縮部に冷却水22℃の冷却水を通水しながら、真空ポンプを稼働し、濃縮部フラスコを含むエバポレータ内部の圧力が−0.07MPaとなるよう調整した。凝縮部で冷却された凝縮水を冷却部底部の凝縮水フラスコで集水し、凝縮水が470mL、濃縮水が30mLとなるまで濃縮した(16.7倍濃縮)。得られた凝縮水及び濃縮水の水質(pH、TOC、TN、CODMn)を測定した。
<Comparative example 2>
Hydrochloric acid is added to 500 mL of the synthetic waste water to adjust the pH to 8.0, and then introduced into a rotary evaporator concentration section flask. The concentration section flask is concentrated in a state where it is immersed in a hot water bath at 80 ° C. from the bottom to about half. The partial flask was rotated. While passing cooling water of 22 ° C. through the condensing part, the vacuum pump was operated to adjust the pressure inside the evaporator including the concentrating part flask to −0.07 MPa. The condensed water cooled in the condensing part was collected in a condensate flask at the bottom of the cooling part, and concentrated until the condensed water became 470 mL and the concentrated water became 30 mL (16.7 times concentration). The quality of the obtained condensed water and concentrated water (pH, TOC, TN, CODMn) was measured.

表5に、凝縮水及び濃縮水の水質結果を示す。   Table 5 shows the water quality results of condensed water and concentrated water.

Figure 2018094526
Figure 2018094526

凝縮水の水質は、排水基準(CODMn120mg/L、全窒素(TN)60mg/L)を十分に満たすものであった。しかしながら、排水をpH調整するのに要した塩酸は、排水500mLあたり4170mgHCl(排水300mLあたりでは2500mgHCl)であり、実施例1−2で要した塩酸量の3.3倍であった。   The water quality of the condensed water sufficiently satisfied the drainage standard (CODMn 120 mg / L, total nitrogen (TN) 60 mg / L). However, the hydrochloric acid required to adjust the pH of the wastewater was 4170 mg HCl per 500 mL of wastewater (2500 mg HCl per 300 mL of wastewater), which was 3.3 times the amount of hydrochloric acid required in Example 1-2.

合成排水を16.7倍まで濃縮するのに蒸発させた水量は、実施例では102mL(300mLあたり)であるのに対し、比較例2では282mL(300mLあたり)である。したがって、実施例の方が、所望の濃縮倍率を得るのに必要な熱エネルギーを削減することができることを示している。   The amount of water evaporated to concentrate the synthetic wastewater to 16.7 times is 102 mL (per 300 mL) in the example, whereas it is 282 mL (per 300 mL) in the comparative example 2. Therefore, the Example shows that the thermal energy required to obtain a desired concentration ratio can be reduced.

1 排水処理装置、10 原水槽、12 第1逆浸透膜モジュール、14 第2逆浸透膜モジュール、16 蒸発濃縮機、18 濃縮水槽、20 凝縮器、22 蒸発缶、24 熱媒体供給配管、26 混合器、28 pHセンサ、30 pH調整剤添加配管、32 排水流入配管、34a〜34c ポンプ、36 第1透過水配管、38 第2透過水配管、40 第1濃縮水配管、42 第2濃縮水配管、44 伝熱管、46 ドレン部、48 ドレン配管、50 循環配管、52 濃縮水回収配管、54 蒸気回収配管、56 冷却水配管、58 凝縮水配管。   DESCRIPTION OF SYMBOLS 1 Waste water treatment apparatus, 10 Raw water tank, 12 1st reverse osmosis membrane module, 14 2nd reverse osmosis membrane module, 16 Evaporation concentration machine, 18 Concentrated water tank, 20 Condenser, 22 Evaporator, 24 Heat medium supply piping, 26 Mixing , 28 pH sensor, 30 pH adjuster addition pipe, 32 drainage inflow pipe, 34a to 34c pump, 36 first permeate pipe, 38 second permeate pipe, 40 first concentrated water pipe, 42 second concentrated water pipe , 44 Heat transfer pipe, 46 Drain part, 48 Drain pipe, 50 Circulation pipe, 52 Concentrated water recovery pipe, 54 Steam recovery pipe, 56 Cooling water pipe, 58 Condensate water pipe.

Claims (10)

pH9以上のアミン含有排水を逆浸透膜に通水し、第1透過水と第1濃縮水とに分離する第1逆浸透膜処理工程と、
前記第1透過水を逆浸透膜に通水し、第2透過水と第2濃縮水とに分離する第2逆浸透膜処理工程と、
前記第1濃縮水を蒸発濃縮する蒸発濃縮工程と、を有することを特徴とするアミン含有排水の処理方法。
a first reverse osmosis membrane treatment step of passing amine-containing wastewater having a pH of 9 or more through a reverse osmosis membrane and separating it into a first permeate and a first concentrated water;
A second reverse osmosis membrane treatment step of passing the first permeate through a reverse osmosis membrane and separating it into a second permeate and a second concentrated water;
An evaporative concentration step of evaporating and concentrating the first concentrated water.
前記第2濃縮水を前記アミン含有排水に返送する濃縮水返送工程を有することを特徴とする請求項1に記載のアミン含有排水の処理方法。   2. The method for treating amine-containing wastewater according to claim 1, further comprising a concentrated water returning step of returning the second concentrated water to the amine-containing wastewater. 前記第1透過水をpH8以下に調整するpH調整工程を有することを特徴とする請求項1又は2に記載のアミン含有排水の処理方法。   The method for treating amine-containing wastewater according to claim 1 or 2, further comprising a pH adjustment step of adjusting the first permeate to pH 8 or less. 前記蒸発濃縮工程で発生した蒸気を凝縮する凝縮工程と、
前記凝縮工程で得られた凝縮水を前記アミン含有排水に返送する凝縮水返送工程と、を有することを特徴とする請求項1〜3のいずれか1項に記載のアミン含有排水の処理方法。
A condensation step of condensing the vapor generated in the evaporation concentration step;
The method for treating amine-containing wastewater according to any one of claims 1 to 3, further comprising: a condensed water return step for returning the condensed water obtained in the condensation step to the amine-containing wastewater.
前記アミン含有排水中のアミン濃度は、全有機炭素濃度換算で2000mg/L〜35000mg/Lであることを特徴とする請求項1〜4のいずれか1項に記載のアミン含有排水の処理方法。   The amine concentration in the said amine containing waste water is 2000 mg / L-35000 mg / L in conversion of total organic carbon concentration, The processing method of the amine containing waste water of any one of Claims 1-4 characterized by the above-mentioned. 逆浸透膜を備え、pH9以上のアミン含有排水を前記逆浸透膜に通水し、第1透過水と第1濃縮水とに分離する第1逆浸透膜手段と、
逆浸透膜を備え、前記第1透過水を前記逆浸透膜に通水し、第2透過水と第2濃縮水とに分離する第2逆浸透膜手段と、
前記第1濃縮水を蒸発濃縮する蒸発濃縮手段と、を有することを特徴とするアミン含有排水の処理装置。
A first reverse osmosis membrane means comprising a reverse osmosis membrane and passing amine-containing wastewater having a pH of 9 or higher through the reverse osmosis membrane to separate the first permeate and the first concentrated water;
A second reverse osmosis membrane means comprising a reverse osmosis membrane, passing the first permeate through the reverse osmosis membrane and separating it into a second permeate and a second concentrated water;
And an evaporative concentration means for evaporating and concentrating the first concentrated water.
前記第2濃縮水を前記アミン含有排水に返送する濃縮水返送手段を有することを特徴とする請求項6に記載のアミン含有排水の処理装置。   The apparatus for treating amine-containing wastewater according to claim 6, further comprising a concentrated water returning means for returning the second concentrated water to the amine-containing wastewater. 前記第1透過水をpH8以下に調整するpH調整手段を有することを特徴とする請求項6又は7に記載のアミン含有排水の処理装置。   The treatment apparatus for amine-containing wastewater according to claim 6 or 7, further comprising pH adjusting means for adjusting the first permeate to pH 8 or lower. 前記蒸発濃縮手段で発生した蒸気を凝縮する凝縮手段と、
前記凝縮手段で得られた凝縮水を前記アミン含有排水に返送する凝縮水返送手段と、を有することを特徴とする請求項6〜8のいずれか1項に記載のアミン含有排水の処理装置。
Condensing means for condensing the vapor generated by the evaporative concentration means;
The apparatus for treating amine-containing wastewater according to any one of claims 6 to 8, further comprising condensed water returning means for returning condensed water obtained by the condensing means to the amine-containing wastewater.
前記アミン含有排水中のアミン濃度は、全有機炭素濃度換算で2000mg/L〜35000mg/Lであることを特徴とする請求項6〜9のいずれか1項に記載のアミン含有排水の処理装置。   The amine concentration in the said amine containing waste water is 2000 mg / L-35000 mg / L in conversion of a total organic carbon concentration, The processing apparatus of the amine containing waste water of any one of Claims 6-9 characterized by the above-mentioned.
JP2016243731A 2016-10-20 2016-12-15 Amine-containing wastewater treatment method and treatment equipment Active JP6853661B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016243731A JP6853661B2 (en) 2016-12-15 2016-12-15 Amine-containing wastewater treatment method and treatment equipment
PCT/JP2017/028637 WO2018074039A1 (en) 2016-10-20 2017-08-07 Method and apparatus for treating amine-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243731A JP6853661B2 (en) 2016-12-15 2016-12-15 Amine-containing wastewater treatment method and treatment equipment

Publications (3)

Publication Number Publication Date
JP2018094526A true JP2018094526A (en) 2018-06-21
JP2018094526A5 JP2018094526A5 (en) 2020-01-09
JP6853661B2 JP6853661B2 (en) 2021-03-31

Family

ID=62632056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243731A Active JP6853661B2 (en) 2016-10-20 2016-12-15 Amine-containing wastewater treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP6853661B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789101A (en) * 2018-10-19 2021-05-11 奥加诺株式会社 System and method for treating liquid containing tetraalkylammonium hydroxide
CN115676975A (en) * 2022-11-29 2023-02-03 厚德食品股份有限公司 Water purification machine system water storage system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142697A (en) * 1992-11-09 1994-05-24 Fuji Photo Film Co Ltd Treatment method for photograph development treatment waste liquid
JP2007083152A (en) * 2005-09-21 2007-04-05 Kurita Water Ind Ltd Method and apparatus for recovering water from cmp waste water containing high toc
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
JP2010036094A (en) * 2008-08-04 2010-02-18 Kurita Water Ind Ltd Method and device for recovering water-soluble organic solvent having amino group
WO2010061811A1 (en) * 2008-11-27 2010-06-03 栗田工業株式会社 Apparatus and method for separating and recovering aqueous organic solvent having amino group
US20130220792A1 (en) * 2012-02-29 2013-08-29 Alstom Technology Ltd. Method of treatment of amine waste water and a system for accomplishing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142697A (en) * 1992-11-09 1994-05-24 Fuji Photo Film Co Ltd Treatment method for photograph development treatment waste liquid
JP2007083152A (en) * 2005-09-21 2007-04-05 Kurita Water Ind Ltd Method and apparatus for recovering water from cmp waste water containing high toc
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
JP2010036094A (en) * 2008-08-04 2010-02-18 Kurita Water Ind Ltd Method and device for recovering water-soluble organic solvent having amino group
WO2010061811A1 (en) * 2008-11-27 2010-06-03 栗田工業株式会社 Apparatus and method for separating and recovering aqueous organic solvent having amino group
US20130220792A1 (en) * 2012-02-29 2013-08-29 Alstom Technology Ltd. Method of treatment of amine waste water and a system for accomplishing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789101A (en) * 2018-10-19 2021-05-11 奥加诺株式会社 System and method for treating liquid containing tetraalkylammonium hydroxide
JPWO2020080008A1 (en) * 2018-10-19 2021-09-09 オルガノ株式会社 Treatment system and treatment method for tetraalkylammonium hydroxide-containing liquid
US11524261B2 (en) 2018-10-19 2022-12-13 Organo Corporation System for treating tetraalkylammonium hydroxide-containing liquid and method for treating same
JP7357635B2 (en) 2018-10-19 2023-10-06 オルガノ株式会社 Treatment system and method for liquid containing tetraalkylammonium hydroxide
CN115676975A (en) * 2022-11-29 2023-02-03 厚德食品股份有限公司 Water purification machine system water storage system
CN115676975B (en) * 2022-11-29 2024-03-22 厚德食品股份有限公司 Water storage system for pure water machine

Also Published As

Publication number Publication date
JP6853661B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
AU2013227295B2 (en) Method of treatment of amine waste water and a system for accomplishing the same
JP5636163B2 (en) Wastewater treatment method and wastewater treatment facility
KR101915066B1 (en) Method and arrangement for operating a steam turbine plant in combination with thermal water treatment
TWM526569U (en) Recovery apparatus for sewage treatment
US20150027937A1 (en) Seawater desalination system
WO2016063578A1 (en) Ammonia-containing wastewater treatment apparatus and treatment method
CN109836020B (en) Treatment system and method for zero discharge of old landfill leachate
CN106517632A (en) Concentration device and method for reverse osmosis membrane concentrated ammonium nitrate waste water
JP6853661B2 (en) Amine-containing wastewater treatment method and treatment equipment
JP6853648B2 (en) Amine-containing wastewater treatment method and treatment equipment
JP2004108240A (en) Power generation plant and power generation method
WO2011132427A1 (en) Method for fluid membrane-separation power generation and system for fluid membrane-separation power generation
TWI717517B (en) Water treatment method and apparatus, method of modifying water treatment apparatus, and kit for modifying water treatment apparatus
JP2011131209A (en) Method and apparatus for treating acidic solution
WO2018074039A1 (en) Method and apparatus for treating amine-containing waste water
CN104724776A (en) Device and method for mixing secondary steam into pressurized water in pressurized evaporation
JP4571086B2 (en) Water purification equipment and treatment method
CN109847549A (en) A kind of technique that ocean platform efficiently utilizes seawater
TWI558667B (en) Apparatus and method for the production of solution by concentrating volatile substances from steam stripping of wastewater
TW201615557A (en) Processing method and processing device for ammonia-containing drainage water
CN204897462U (en) Industrial wastewater treatment device
JP6832124B2 (en) Amine-containing wastewater treatment method and treatment equipment
İnce et al. The effects of pretreatment on membrane distillation of cooling tower blowdown water
JP2014034022A (en) Fresh water generator
CN103787539B (en) A kind of method of membrane separation nitro-chlorobenzene hot wastewater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6853661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250