JP2021116220A - Manufacturing method of silicon carbide powder - Google Patents

Manufacturing method of silicon carbide powder Download PDF

Info

Publication number
JP2021116220A
JP2021116220A JP2020012914A JP2020012914A JP2021116220A JP 2021116220 A JP2021116220 A JP 2021116220A JP 2020012914 A JP2020012914 A JP 2020012914A JP 2020012914 A JP2020012914 A JP 2020012914A JP 2021116220 A JP2021116220 A JP 2021116220A
Authority
JP
Japan
Prior art keywords
boron
silicon carbide
carbide powder
concentration
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020012914A
Other languages
Japanese (ja)
Other versions
JP7518593B2 (en
Inventor
美育 高野
Miku Takano
美育 高野
潔 野中
Kiyoshi Nonaka
潔 野中
加織 堀口
Kaori Horiguchi
加織 堀口
幸輝 一坪
Yukiteru Ichinotsubo
幸輝 一坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2020012914A priority Critical patent/JP7518593B2/en
Publication of JP2021116220A publication Critical patent/JP2021116220A/en
Application granted granted Critical
Publication of JP7518593B2 publication Critical patent/JP7518593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a manufacturing method of silicon carbide powder, that is capable of controlling contained boron to several tens of ppm.SOLUTION: There are included a first step in which reaction of doping boron to silicon carbide produces an incomplete precursor after starting thereof by mixing amorphous silica, carbon black, and boron carbide as raw material powder, and burning them in an inert gas atmosphere; and a second step in which silicon carbide powder containing no impurity is mixed in the precursor, and is burned in the inert gas atmosphere in such a manner that a concentration of boron is in a desired range. The concentration of boron contained in silicon carbide can be adjusted to several tens of ppm by manufacturing silicon carbide powder containing boron via such two-stage burning steps. Further, boron in the burning step can be prevented from being eliminated.SELECTED DRAWING: Figure 1

Description

本発明は、ホウ素を含有する炭化ケイ素粉末の製造方法に関する。 The present invention relates to a method for producing a silicon carbide powder containing boron.

従来、ホウ素を含有する炭化ケイ素粉末の製造方法が知られている。例えば、特許文献1記載の方法では、種結晶を用いた昇華再結晶法で成長雰囲気中の不純物としてホウ素原子を高濃度に含有させ、その結果、炭化珪素単結晶中にホウ素原子を所定量以上含有させている。また、特許文献2記載の方法では、無機ケイ酸質原料と炭素質原料とホウ素化合物とを混合した原料を2200℃以上で焼成し、得られた塊状物を粉砕することで粒子の全体にホウ素が0.8%〜6%含有されている炭化ケイ素粉末を製造している。 Conventionally, a method for producing a silicon carbide powder containing boron is known. For example, in the method described in Patent Document 1, a high concentration of boron atoms is contained as an impurity in the growth atmosphere by a sublimation recrystallization method using a seed crystal, and as a result, a predetermined amount or more of boron atoms are contained in the silicon carbide single crystal. It is contained. Further, in the method described in Patent Document 2, a raw material obtained by mixing an inorganic silicic acid raw material, a carbonaceous raw material and a boron compound is calcined at 2200 ° C. or higher, and the obtained agglomerate is pulverized to obtain boron as a whole. Is produced in silicon carbide powder containing 0.8% to 6%.

特開平9−157092号公報Japanese Unexamined Patent Publication No. 9-157092 特開2018−158871号公報Japanese Unexamined Patent Publication No. 2018-158871

しかしながら、上記の特許文献に記載された例における炭化ケイ素におけるホウ素濃度は、せいぜい0.1重量%程度であり、ホウ素濃度が数十ppmの例は記載されていない。また、特許文献に記載された方法で数十ppmのホウ素を含有する炭化ケイ素粉末を製造しようとしても、実際には計算通りにホウ素濃度を制御するのは容易ではない。 However, the boron concentration in silicon carbide in the examples described in the above patent documents is at most about 0.1% by weight, and no example in which the boron concentration is several tens of ppm is described. Further, even if an attempt is made to produce a silicon carbide powder containing several tens of ppm of boron by the method described in the patent document, it is not easy to actually control the boron concentration as calculated.

本発明は、このような事情に鑑みてなされたものであり、含有されるホウ素を数十ppmに制御できる炭化ケイ素粉末の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a silicon carbide powder capable of controlling the contained boron to several tens of ppm.

(1)上記の目的を達成するため、本発明の炭化ケイ素粉末の製造方法は、非晶質シリカ、カーボンブラックおよび炭化ホウ素の各原料粉末を混合し、不活性ガス雰囲気で焼成することでホウ素を含有する炭化ケイ素の前駆体を生成する第一工程と、ホウ素の濃度が所望の範囲になるように前記前駆体と不純物を含まない炭化ケイ素粉末とを混合し、不活性ガス雰囲気で焼成する第二工程と、を含むことを特徴としている。 (1) In order to achieve the above object, in the method for producing a silicon carbide powder of the present invention, each raw material powder of amorphous silica, carbon black and boron carbide is mixed and calcined in an inert gas atmosphere to obtain boron. The first step of producing a silicon carbide precursor containing the above, the precursor and the silicon carbide powder containing no impurities are mixed so that the concentration of boron becomes a desired range, and the mixture is calcined in an inert gas atmosphere. It is characterized by including a second step.

このように二段階の焼成工程を経てホウ素を含有する炭化ケイ素粉末を製造することで、炭化ケイ素に含有されるホウ素の濃度を数十ppmに調整することができる。また、焼成工程におけるホウ素の消失を抑止することができる。 By producing the boron-containing silicon carbide powder through the two-step firing step in this way, the concentration of boron contained in the silicon carbide can be adjusted to several tens of ppm. In addition, the disappearance of boron in the firing step can be suppressed.

(2)また、本発明の炭化ケイ素粉末の製造方法は、前記前駆体には、ホウ素が100ppm以上含有されていることを特徴としている。これにより、高い再現性で最終生成物の炭化ケイ素のホウ素の濃度を数十ppmに制御することができる。 (2) Further, the method for producing a silicon carbide powder of the present invention is characterized in that the precursor contains 100 ppm or more of boron. This makes it possible to control the boron concentration of the final product silicon carbide to several tens of ppm with high reproducibility.

(3)また、本発明の炭化ケイ素粉末の製造方法は、前記第一工程では、1800℃以上2000℃以下で焼成を行うことを特徴としている。これにより、ホウ素ドープの反応を抑制しつつ炭化ホウ素の残留を抑えることができる。その結果、第一または第二工程におけるホウ素の消失量を低減できる。 (3) Further, the method for producing a silicon carbide powder of the present invention is characterized in that in the first step, firing is performed at 1800 ° C. or higher and 2000 ° C. or lower. Thereby, the residue of boron carbide can be suppressed while suppressing the reaction of boron doping. As a result, the amount of boron lost in the first or second step can be reduced.

本発明によれば、炭化ケイ素粉末に含有されるホウ素を数十ppmに調整できる。 According to the present invention, the amount of boron contained in the silicon carbide powder can be adjusted to several tens of ppm.

本発明の製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of this invention.

本発明者らは、鋭意研究の結果、二段階の焼成工程によりホウ素(B)を数十ppm含有する炭化ケイ素(SiC)粉末を得る方法を発明した。このような炭化ケイ素粉末は、ホウ素がドープされた炭化ケイ素単結晶の電気抵抗が適切な範囲に収まるため、パワー半導体向けの材料として好適である。以下に、本発明の実施形態について詳細に説明する。 As a result of diligent research, the present inventors have invented a method for obtaining silicon carbide (SiC) powder containing several tens of ppm of boron (B) by a two-step firing step. Such silicon carbide powder is suitable as a material for power semiconductors because the electrical resistance of the boron-doped silicon carbide single crystal falls within an appropriate range. Hereinafter, embodiments of the present invention will be described in detail.

[炭化ケイ素粉末の製造方法]
図1は、本発明の製造工程の一例を示す図である。図1に示す製造方法は、第一工程と第二工程とからなる。第一工程では、ホウ素を数百〜数千ppm含有する炭化ケイ素粉末の前駆体を初めに合成する。前駆体とは、炭化ケイ素へホウ素がドープされる反応が開始後未完了で得られる中間生成物である。そして、第二工程では、得られた前駆体を炭化ケイ素粉末と混合して焼成する。このようにして、ホウ素を数十ppm含有するホウ素含有炭化ケイ素粉末を得る。各工程の詳細を次に説明する。
[Manufacturing method of silicon carbide powder]
FIG. 1 is a diagram showing an example of a manufacturing process of the present invention. The manufacturing method shown in FIG. 1 includes a first step and a second step. In the first step, a precursor of silicon carbide powder containing hundreds to thousands of ppm of boron is first synthesized. The precursor is an intermediate product obtained after the reaction of doping silicon carbide with boron is incomplete. Then, in the second step, the obtained precursor is mixed with the silicon carbide powder and fired. In this way, a boron-containing silicon carbide powder containing several tens of ppm of boron is obtained. Details of each step will be described below.

(1)第一工程
非晶質シリカ(SiO)、カーボンブラック(C)および炭化ホウ素(BC)を所定量測り取る。炭化ホウ素は、ホウ素源として用いる。非晶質シリカとカーボンブラックとは、C/Si=3(モル比)となるように配合する。これにより、過不足なく式(1)に示す反応が進行し、炭化ケイ素が生成される。このような反応を用いることで炭化ケイ素の分子骨格にホウ素が置き換わりやすくなる。
(1) First step Amorphous silica (SiO 2 ), carbon black (C) and boron carbide (B 4 C) are measured in predetermined amounts. Boron carbide is used as a source of boron. Amorphous silica and carbon black are blended so that C / Si = 3 (molar ratio). As a result, the reaction represented by the formula (1) proceeds without excess or deficiency, and silicon carbide is produced. By using such a reaction, boron is easily replaced with the molecular skeleton of silicon carbide.

炭化ホウ素の混合量は、式(2)により算出できる。なお、仕込みのホウ素濃度とは、対象となる工程を行う前の混合原料中のホウ素濃度を指す。測り取った原料は、ホバートミキサ、ハドルミキサ、ヘンシェルミキサなどの混合機を用いて混合する。得られた混合原料は黒鉛製のるつぼに仕込み、閉鎖系の高温炉を用い不活性ガス雰囲気下で焼成する。不活性ガス雰囲気としてはアルゴン雰囲気の下で行うのが好ましい。 The mixed amount of boron carbide can be calculated by the formula (2). The boron concentration of the charged material refers to the boron concentration in the mixed raw material before the target step is performed. The measured raw materials are mixed using a mixer such as a Hobart mixer, a huddle mixer, or a Henschel mixer. The obtained mixed raw material is placed in a graphite crucible and fired in a closed high-temperature furnace in an inert gas atmosphere. The inert gas atmosphere is preferably carried out in an argon atmosphere.

焼成は、1800℃以上2000℃以下の温度で3時間以上維持するのが好ましい。これにより、ホウ素ドープの反応を完全に進め切らずに抑制しつつ炭化ホウ素の残留を抑えることができる。その結果、前駆体を得ることができ、第一または第二工程におけるホウ素の消失量を低減できる。

Figure 2021116220
Figure 2021116220
The firing is preferably maintained at a temperature of 1800 ° C. or higher and 2000 ° C. or lower for 3 hours or longer. As a result, it is possible to suppress the residual boron carbide while suppressing the boron-doped reaction without completely proceeding. As a result, a precursor can be obtained, and the amount of boron lost in the first or second step can be reduced.
Figure 2021116220
Figure 2021116220

第一工程で得られた前駆体と炭化ケイ素粉末を所定量測り取る。前駆体には、ホウ素が100ppm以上含有されていることが好ましい。これにより、高い再現性で最終生成物の炭化ケイ素のホウ素の濃度を数十ppmに制御することができる。前駆体のホウ素の濃度は、300ppm以上500ppm以下であることがさらに好ましい。前駆体のホウ素以外の不純物の濃度は、100ppm以下である。炭化ケイ素粉末は不純物を含まないものを用いる。用いられる炭化ケイ素粉末の粒度は500μm以上850μm以下であることが好ましい。なお、前駆体の混合量は、式(3)により求めることができる。 A predetermined amount of the precursor and the silicon carbide powder obtained in the first step are measured. The precursor preferably contains 100 ppm or more of boron. This makes it possible to control the boron concentration of the final product silicon carbide to several tens of ppm with high reproducibility. The concentration of boron in the precursor is more preferably 300 ppm or more and 500 ppm or less. The concentration of impurities other than boron in the precursor is 100 ppm or less. Use silicon carbide powder that does not contain impurities. The particle size of the silicon carbide powder used is preferably 500 μm or more and 850 μm or less. The mixing amount of the precursor can be obtained by the formula (3).

測り取った原料は袋、容器や混合機などで混合して黒鉛製のるつぼに仕込み、閉鎖系の高温炉を用い不活性ガス雰囲気下で焼成する。焼成は、アルゴン雰囲気下において2200℃以上で6時間以上維持することが好ましい。得られる生成物は焼結しているため、粉砕する。粉砕後の粒度は、50μm以上1000μm以下であることが好ましい。粉砕された生成物は塩酸や硝酸などの酸によって洗浄し、粉砕によるコンタミネーションを除去する。このようにして、ホウ素を含有する炭化ケイ素粉末を得ることができる。なお、生成された炭化ケイ素粉末のホウ素以外の不純物の濃度は、100ppm以下であるため、パワー半導体向けの材料として好ましい。

Figure 2021116220
The measured raw materials are mixed in a bag, container, mixer, etc., charged in a graphite crucible, and fired in a closed high-temperature furnace in an inert gas atmosphere. The firing is preferably maintained at 2200 ° C. or higher for 6 hours or longer in an argon atmosphere. The resulting product is sintered and is therefore ground. The particle size after pulverization is preferably 50 μm or more and 1000 μm or less. The pulverized product is washed with an acid such as hydrochloric acid or nitric acid to remove contamination due to pulverization. In this way, a silicon carbide powder containing boron can be obtained. Since the concentration of impurities other than boron in the produced silicon carbide powder is 100 ppm or less, it is preferable as a material for power semiconductors.
Figure 2021116220

このように二段階の焼成工程を経てホウ素を含有する炭化ケイ素粉末を製造することで、炭化ケイ素に含有されるホウ素の濃度を数十ppmに調整することができる。また、焼成工程におけるホウ素の消失を抑止することができる。 By producing the boron-containing silicon carbide powder through the two-step firing step in this way, the concentration of boron contained in the silicon carbide can be adjusted to several tens of ppm. In addition, the disappearance of boron in the firing step can be suppressed.

[実施例]
(実施例1〜5、比較例1〜2共通)
上記の製造方法に沿って、条件を変えて第一工程および第二工程を行なった。第一工程では、非晶質シリカ、カーボンブラックおよび炭化ホウ素を所定量測り取り、混合した。得られた混合原料は黒鉛製のるつぼに仕込み、富士電波工業社製多目的高温炉「ハイマルチ(登録商標)」を用いて焼成した。焼成はアルゴン雰囲気下で2000℃、3時間の条件で行なった。
[Example]
(Common to Examples 1 to 5 and Comparative Examples 1 and 2)
The first step and the second step were carried out under different conditions according to the above manufacturing method. In the first step, amorphous silica, carbon black and boron carbide were measured in predetermined amounts and mixed. The obtained mixed raw material was placed in a graphite crucible and fired using a multipurpose high-temperature furnace "Hi-Multi (registered trademark)" manufactured by Fuji Dempa Kogyo Co., Ltd. The firing was carried out in an argon atmosphere at 2000 ° C. for 3 hours.

第一工程で十分な前駆体が生成された場合に第二工程を行なった。第二工程では、所定量の前駆体と炭化ケイ素粉末500gを測り取った。炭化ケイ素粉末として、不純物を含まず粒度500μm〜850μmのものを用いた。測り取った原料は袋混合して黒鉛製のるつぼに仕込み、富士電波工業社製多目的高温炉「ハイマルチ(登録商標)」を用いて焼成した。焼成はアルゴン雰囲気下で2200℃、6時間の条件で行った。焼結した生成物を粉砕して100μm〜850μmの粒度に調整した。また、塩酸によって洗浄を行い、粉砕によるコンタミネーションを除去した。 The second step was performed when sufficient precursors were produced in the first step. In the second step, a predetermined amount of precursor and 500 g of silicon carbide powder were measured. As the silicon carbide powder, one containing no impurities and having a particle size of 500 μm to 850 μm was used. The measured raw materials were mixed in a bag, placed in a graphite crucible, and fired in a multipurpose high-temperature furnace "Hi-Multi (registered trademark)" manufactured by Fuji Dempa Kogyo Co., Ltd. The firing was carried out in an argon atmosphere at 2200 ° C. for 6 hours. The sintered product was pulverized to adjust the particle size to 100 μm to 850 μm. In addition, washing was performed with hydrochloric acid to remove contamination due to pulverization.

各工程で得られた生成物中のホウ素濃度および不純物濃度は湿式分析により測定した。アルカリ溶融法または加圧酸分解によって測定溶液を調製し、堀場製作所社製のICP発光分光分析装置「ULTIMA2」を用いてホウ素濃度を測定した。表1および表2に、実験データを示す。なお、表中の「仕込み」、「生成物」は、各工程に対する仕込みや生成物を指す。例えば、第一工程に対する生成物は中間生成物であり、第二工程に対する生成物は最終生成物である。

Figure 2021116220
Figure 2021116220
The boron concentration and impurity concentration in the product obtained in each step were measured by wet analysis. A measurement solution was prepared by an alkaline melting method or pressurized acid decomposition, and the boron concentration was measured using an ICP emission spectroscopic analyzer "ULTIMA2" manufactured by Horiba Seisakusho. Table 1 and Table 2 show the experimental data. In addition, "preparation" and "product" in the table refer to the preparation and product for each process. For example, the product for the first step is an intermediate product and the product for the second step is the final product.
Figure 2021116220
Figure 2021116220

(実施例1)
第一工程として、カーボンブラックを180g、非晶質シリカを300g、炭化ホウ素を0.43g測り取って混合し前駆体を合成した。混合した原料の仕込みのホウ素濃度は1700ppmである。混合した原料をアルゴン雰囲気下で2000℃、3時間の条件で焼成し、前駆体を得た。得られた前駆体を分析したところ、ホウ素は1211ppm含まれていることが分かった。
(Example 1)
In the first step, 180 g of carbon black, 300 g of amorphous silica, and 0.43 g of boron carbide were weighed and mixed to synthesize a precursor. The boron concentration of the mixed raw material is 1700 ppm. The mixed raw materials were calcined in an argon atmosphere at 2000 ° C. for 3 hours to obtain a precursor. Analysis of the obtained precursor revealed that it contained 1211 ppm of boron.

第二工程として、得られた前駆体8.4gと炭化ケイ素粉末500gを混合し、アルゴン雰囲気下において2200℃で6時間焼成し、ホウ素を含有する炭化ケイ素粉末を得た。これを分析したところ、仕込みのホウ素濃度が20.0ppmであったのに対し、実際のホウ素濃度は17.8ppmであった。このようにして仕込みの濃度とほぼ同等の濃度のホウ素を含有する炭化ケイ素粉末を得ることができた。なお、生成された炭化ケイ素粉末の不純物濃度は、表3に示すように100ppm以下であった。

Figure 2021116220
As a second step, 8.4 g of the obtained precursor and 500 g of silicon carbide powder were mixed and calcined at 2200 ° C. for 6 hours in an argon atmosphere to obtain a silicon carbide powder containing boron. When this was analyzed, the boron concentration of the charge was 20.0 ppm, whereas the actual boron concentration was 17.8 ppm. In this way, it was possible to obtain a silicon carbide powder containing boron at a concentration substantially equal to the concentration of the charge. The impurity concentration of the produced silicon carbide powder was 100 ppm or less as shown in Table 3.
Figure 2021116220

(実施例2〜4)
表1、表2に示すように、仕込みのホウ素濃度を変化させ、実施例1と同様にホウ素を含有する炭化ケイ素を合成した。仕込みの濃度とほぼ同等の濃度のホウ素を含有する炭化ケイ素を得ることができた。
(Examples 2 to 4)
As shown in Tables 1 and 2, the boron concentration of the charge was changed, and silicon carbide containing boron was synthesized in the same manner as in Example 1. It was possible to obtain silicon carbide containing boron at a concentration almost equal to the concentration of the charge.

(実施例5)
第一工程において、表1に示すように仕込みのホウ素濃度を100ppmとして焼成を行ったところ、生成物中のホウ素濃度の減少が49.1ppmまでで止まった。この生成物を用いて第二工程を行なえば数十ppmのホウ素濃度の炭化ケイ素を得ることが見込まれる。しかしながら、第一工程での減少幅が大きく、実施例1〜4と比較するとホウ素濃度の制御の再現性が十分に高いとはいえない。
(Example 5)
In the first step, as shown in Table 1, when the preparation was performed with the boron concentration set to 100 ppm, the decrease in the boron concentration in the product stopped at 49.1 ppm. If the second step is carried out using this product, it is expected that silicon carbide having a boron concentration of several tens of ppm can be obtained. However, the amount of decrease in the first step is large, and it cannot be said that the reproducibility of controlling the boron concentration is sufficiently high as compared with Examples 1 to 4.

(比較例1〜2)
第一工程において、表1に示すように仕込みのホウ素濃度を20ppm〜50ppmとして焼成を行ったところ、生成物中のホウ素濃度が仕込みの濃度と比較して大きく減少した。非晶質シリカの一部が炭化ホウ素と反応することで、ホウ素が取り込まれると推測されるが、カーボンブラックと非晶質シリカとが反応する際、非晶質シリカの一部は揮発する。よって、仕込みのホウ素源の量が少ない場合、ホウ素を取り込んだ非晶質シリカの揮発の影響が大きくなり、仕込みの濃度と同等のホウ素濃度の前駆体を合成できなかったと考えられる。
(Comparative Examples 1-2)
In the first step, as shown in Table 1, when firing was performed with the boron concentration of the charge set to 20 ppm to 50 ppm, the boron concentration in the product was significantly reduced as compared with the concentration of the charge. It is presumed that boron is taken in by reacting a part of amorphous silica with boron carbide, but when carbon black reacts with amorphous silica, a part of amorphous silica volatilizes. Therefore, when the amount of the boron source charged is small, the effect of volatilization of the amorphous silica incorporating boron becomes large, and it is considered that a precursor having a boron concentration equivalent to the concentration of the charged boron could not be synthesized.

(比較例3、4)
上記の第二工程に準拠した工程で、炭化ケイ素粉末と炭化ホウ素とを混合して焼成した。この工程では、前駆体に代えて炭化ホウ素を用いた。炭化ホウ素の混合量は式(4)によって求めた。このとき、生成物中のホウ素濃度が仕込みの濃度と比較して大きく減少した。カーボンブラックと非晶質シリカから合成したときと比較してホウ素が取り込まれにくいためと考えられる。

Figure 2021116220

Figure 2021116220
(Comparative Examples 3 and 4)
In a step based on the second step described above, silicon carbide powder and boron carbide were mixed and fired. In this step, boron carbide was used instead of the precursor. The mixing amount of boron carbide was calculated by the formula (4). At this time, the concentration of boron in the product was greatly reduced as compared with the concentration of the charged material. This is considered to be because boron is less likely to be incorporated as compared with the case of synthesizing carbon black and amorphous silica.
Figure 2021116220

Figure 2021116220

Claims (3)

非晶質シリカ、カーボンブラックおよび炭化ホウ素の各原料粉末を混合し、不活性ガス雰囲気で焼成することでホウ素を含有する炭化ケイ素の前駆体を生成する第一工程と、
ホウ素の濃度が所望の範囲になるように前記前駆体と不純物を含まない炭化ケイ素粉末とを混合し、不活性ガス雰囲気で焼成する第二工程と、を含むことを特徴とする炭化ケイ素粉末の製造方法。
The first step of mixing amorphous silica, carbon black, and boron carbide raw material powders and firing them in an inert gas atmosphere to produce a boron-containing silicon carbide precursor, and the first step.
A silicon carbide powder comprising a second step of mixing the precursor and a silicon carbide powder containing no impurities so that the concentration of boron becomes a desired range, and firing in an inert gas atmosphere. Production method.
前記前駆体には、ホウ素が100ppm以上含有されていることを特徴とする請求項1記載の炭化ケイ素粉末の製造方法。 The method for producing a silicon carbide powder according to claim 1, wherein the precursor contains 100 ppm or more of boron. 前記第一工程では、1800℃以上2000℃以下で焼成を行うことを特徴とする請求項1または請求項2記載の炭化ケイ素粉末の製造方法。 The method for producing a silicon carbide powder according to claim 1 or 2, wherein in the first step, firing is performed at 1800 ° C. or higher and 2000 ° C. or lower.
JP2020012914A 2020-01-29 2020-01-29 Manufacturing method of silicon carbide powder Active JP7518593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012914A JP7518593B2 (en) 2020-01-29 2020-01-29 Manufacturing method of silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012914A JP7518593B2 (en) 2020-01-29 2020-01-29 Manufacturing method of silicon carbide powder

Publications (2)

Publication Number Publication Date
JP2021116220A true JP2021116220A (en) 2021-08-10
JP7518593B2 JP7518593B2 (en) 2024-07-18

Family

ID=77173963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012914A Active JP7518593B2 (en) 2020-01-29 2020-01-29 Manufacturing method of silicon carbide powder

Country Status (1)

Country Link
JP (1) JP7518593B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223214A (en) * 1983-05-28 1984-12-15 Central Glass Co Ltd Manufacture of hyperfine-grained sic powder
JPS61168514A (en) * 1985-01-17 1986-07-30 Bridgestone Corp Production of easily sinterable silicon carbide
JP2012525313A (en) * 2009-04-29 2012-10-22 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for preparing a powder comprising carbon, silicon and boron
WO2013027790A1 (en) * 2011-08-24 2013-02-28 太平洋セメント株式会社 Silicon carbide powder and method for producing same
JP2014047105A (en) * 2012-08-31 2014-03-17 Shinano Denki Seiren Kk Method for producing silicon carbide powder
JP2018158871A (en) * 2017-03-23 2018-10-11 太平洋セメント株式会社 Silicon carbide powder, method for producing the same, and method for producing silicon carbide single crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223214A (en) * 1983-05-28 1984-12-15 Central Glass Co Ltd Manufacture of hyperfine-grained sic powder
JPS61168514A (en) * 1985-01-17 1986-07-30 Bridgestone Corp Production of easily sinterable silicon carbide
JP2012525313A (en) * 2009-04-29 2012-10-22 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for preparing a powder comprising carbon, silicon and boron
WO2013027790A1 (en) * 2011-08-24 2013-02-28 太平洋セメント株式会社 Silicon carbide powder and method for producing same
JP2014047105A (en) * 2012-08-31 2014-03-17 Shinano Denki Seiren Kk Method for producing silicon carbide powder
JP2018158871A (en) * 2017-03-23 2018-10-11 太平洋セメント株式会社 Silicon carbide powder, method for producing the same, and method for producing silicon carbide single crystal

Also Published As

Publication number Publication date
JP7518593B2 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
US9534316B2 (en) Silicon carbide powder and method for manufacturing the same
KR102579987B1 (en) Semiconductor sintered body, electrical/electronic components, and semiconductor sintered body manufacturing method
KR20090115931A (en) Aluminum nitride sinter and process for producing the same
Yang et al. Mechanical-activation-assisted combustion synthesis of SiC
JP2024023759A (en) Al4SiC4 composition or Al4SiC4 powder
JP2021116220A (en) Manufacturing method of silicon carbide powder
WO2023162721A1 (en) Silicon carbide powder, and production method thereof
JPH0323206A (en) Aluminum nitride powder and its production
JP6920962B2 (en) Al4SiC4 powder and antioxidant
JP5891637B2 (en) Polycrystalline diamond and method for producing the same
US20180087186A1 (en) Method of producing carbide raw material
JPH0812306A (en) Silicon nitride powder
Zhao et al. A new route for the synthesis of boron-rich rare-earth boride NdB6 under high pressure and high temperature
JPH09156912A (en) Silicon diimide
JP2021116203A (en) Hexagonal boron nitride powder, and method for producing hexagonal boron nitride powder
JP3669406B2 (en) Silicon nitride powder
KR20110022424A (en) High efficiency silicon carbide manufacturing method
JPH06298515A (en) Alpha-silicon carbide and its production
JPH082907A (en) Powdery silicon nitride
US20140127512A1 (en) Method of fabricating silicon carbide powder
JP2872528B2 (en) Silicon nitride powder
CN110832650B (en) Thermoelectric material and thermoelectric device comprising same
JP2019026548A (en) Silicon carbide powder
JP7425775B2 (en) Oxygen-containing Al4SiC4 powder and its manufacturing method
JP6968653B2 (en) Method for manufacturing Al4SiC4 powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240703

R150 Certificate of patent or registration of utility model

Ref document number: 7518593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150