JP7425775B2 - Oxygen-containing Al4SiC4 powder and its manufacturing method - Google Patents

Oxygen-containing Al4SiC4 powder and its manufacturing method Download PDF

Info

Publication number
JP7425775B2
JP7425775B2 JP2021118425A JP2021118425A JP7425775B2 JP 7425775 B2 JP7425775 B2 JP 7425775B2 JP 2021118425 A JP2021118425 A JP 2021118425A JP 2021118425 A JP2021118425 A JP 2021118425A JP 7425775 B2 JP7425775 B2 JP 7425775B2
Authority
JP
Japan
Prior art keywords
powder
sic
oxygen
atomic percent
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021118425A
Other languages
Japanese (ja)
Other versions
JP2023014475A (en
Inventor
智洋 西川
智博 余多分
浩勝 八反田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2021118425A priority Critical patent/JP7425775B2/en
Publication of JP2023014475A publication Critical patent/JP2023014475A/en
Application granted granted Critical
Publication of JP7425775B2 publication Critical patent/JP7425775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、酸素含有AlSiC粉末及びその製造方法に関する。 The present invention relates to an oxygen-containing Al 4 SiC 4 powder and a method for producing the same.

AlSiC粉末は、アルミニウムとシリコンからなる炭化物であり、近年、炭素含有耐火物の新たな添加剤として注目されている。AlSiC粉末の添加効果として、耐火物組織の緻密化が挙げられている。耐火物組織の緻密化は、耐火物の組織中に存在するAlSiC粉末が雰囲気中のCOガスと反応することによって起こると推定されている。すなわち、(1)式に示すように、高温下でAlSiC粉末からAlを含むガスが発生して耐火物組織中の空隙に拡散し、COガスと反応して再びAlとして凝縮し、空隙を埋めることによってもたらされると推定されている。
AlSiC+6CO→2Al+SiC+9C (1)
Al 4 SiC 4 powder is a carbide made of aluminum and silicon, and has recently attracted attention as a new additive for carbon-containing refractories. One of the effects of adding Al 4 SiC 4 powder is densification of the refractory structure. It is estimated that the densification of the refractory structure occurs when Al 4 SiC 4 powder present in the refractory structure reacts with CO gas in the atmosphere. That is, as shown in equation (1), gas containing Al is generated from Al 4 SiC 4 powder at high temperatures, diffuses into the voids in the refractory structure, reacts with CO gas, and is converted back into Al 2 O 3 . It is assumed that this is caused by condensation and filling of voids.
Al 4 SiC 4 +6CO→2Al 2 O 3 +SiC+9C (1)

AlSiC粉末の製造方法として、特許文献1には、アルミニウム粉末、ケイ素粉末、炭素粉末を混合し、混合物を不活性ガス雰囲気下で焼成してAlSiC粉末を製造する方法が開示されている。 As a method for producing Al 4 SiC 4 powder, Patent Document 1 discloses a method for producing Al 4 SiC 4 powder by mixing aluminum powder, silicon powder, and carbon powder, and firing the mixture in an inert gas atmosphere. has been done.

AlSiCの合成は、以下の2段階で行われると推定されている。すなわち、加熱による温度上昇と共に、まず(2)式及び(3)式のようにAlとSiCが生成し、その後、(4)式のようにAlとSiCが反応してAlSiCが生成する。
4Al+3C→Al (2)
Si+C→SiC (3)
Al+SiC→AlSiC (4)
It is estimated that the synthesis of Al 4 SiC 4 is performed in the following two steps. That is, as the temperature rises due to heating, Al 4 C 3 and SiC are first generated as shown in equations (2) and (3), and then Al 4 C 3 and SiC react as shown in equation (4). Al 4 SiC 4 is produced.
4Al+3C→Al 4 C 3 (2)
Si+C→SiC (3)
Al4C3 + SiCAl4SiC4 ( 4 )

特開2020-29390号公報JP2020-29390A

ところで、近年、例えば炭素含有耐火物の添加剤として使用されるAlSiC粉末の機能を向上させることが要請されている。 Incidentally, in recent years, there has been a demand for improving the functionality of Al 4 SiC 4 powder used, for example, as an additive for carbon-containing refractories.

本発明は上記課題を鑑みてなされたものであり、例えば炭素含有耐火物の添加剤として使用されるAlSiC粉末の機能を向上させることができるAlSiC粉末及びその製造方法を提供することを課題とする。 The present invention has been made in view of the above problems, and provides an Al 4 SiC 4 powder that can improve the functionality of Al 4 SiC 4 powder used as an additive for carbon-containing refractories, and a method for producing the same. The task is to do so.

上記課題を解決するために、本発明の一態様は、粉末X線回折においてAlSiCが検出され、かつ電子顕微鏡附属の元素分析器により酸素を3~10原子パーセント(at%)含有することが検出される酸素含有AlSiC粉末である。 In order to solve the above problems, one embodiment of the present invention provides a method for detecting Al 4 SiC 4 in powder X-ray diffraction and containing 3 to 10 atomic percent (at%) of oxygen using an elemental analyzer attached to an electron microscope. This is the oxygen-containing Al 4 SiC 4 powder detected.

本発明の他の態様は、アルミニウム粉末、ケイ素粉末、炭素粉末を混合し、混合物を純度99.99%以上99.999%以下のアルゴンガス雰囲気下で1800℃~1900℃の温度で1~10時間焼成し、電子顕微鏡附属の元素分析器により酸素を3~10原子パーセント(at%)含有することが検出される酸素含有AlSiC粉末の製造方法である。 Another aspect of the present invention is to mix aluminum powder, silicon powder, and carbon powder, and heat the mixture in an argon gas atmosphere with a purity of 99.99% or more and 99.999% or less at a temperature of 1800°C to 1900°C for 1 to 10 minutes. This is a method for producing oxygen-containing Al 4 SiC 4 powder which is fired for a period of time and is detected to contain 3 to 10 atomic percent (at%) of oxygen using an elemental analyzer attached to an electron microscope .

本発明によれば、AlSiCの結晶格子内に酸素が固溶状態で存在するので、AlSiCの結晶格子の安定性が高まり、AlSiCの結晶格子内の電子移動の特性が向上する。このため、例えば炭素含有耐火物の添加剤として使用されるAlSiC粉末の機能を向上させることができる。 According to the present invention, since oxygen exists in the crystal lattice of Al 4 SiC 4 in a solid solution state, the stability of the crystal lattice of Al 4 SiC 4 is increased, and the electron movement within the crystal lattice of Al 4 SiC 4 is improved. Characteristics improve. Therefore, it is possible to improve the functionality of Al 4 SiC 4 powder used as an additive for carbon-containing refractories, for example.

実施例1で製造したAlSiC粉末をX線回折分析して得られたチャートである。2 is a chart obtained by X-ray diffraction analysis of the Al 4 SiC 4 powder produced in Example 1. 実施例1で製造したAlSiC粉末のTEM写真である。1 is a TEM photograph of Al 4 SiC 4 powder produced in Example 1. 実施例1で製造したAlSiC粉末のエネルギー分散X線スペクトルである。1 is an energy dispersive X-ray spectrum of Al 4 SiC 4 powder produced in Example 1. アルゴンガスの純度と酸素含有量との関係を示すグラフである。It is a graph showing the relationship between the purity of argon gas and the oxygen content.

以下、添付図面に基づいて、本発明の実施形態の酸素含有AlSiC粉末及びその製造方法を詳細に説明する。ただし、本発明は種々の形態で具体化することができ、本明細書に記載される実施形態に限定されるものではない。本実施形態は、明細書の開示を十分にすることによって、当業者が発明を十分に理解できるようにする意図をもって提供されるものである。
(AlSiC粉末)
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an oxygen-containing Al 4 SiC 4 powder and a method for producing the same according to an embodiment of the present invention will be described in detail based on the accompanying drawings. However, the present invention can be embodied in various forms and is not limited to the embodiments described herein. Rather, these embodiments are provided with the intention that this disclosure will be thorough and thorough, and will fully convey the invention to those skilled in the art.
( Al4SiC4 powder )

まず、AlSiC粉末を説明する。本実施形態のAlSiC粉末は、アルミニウム粉末、ケイ素粉末、及び炭素粉末を混合し、混合物を焼成することで得られる。 First, Al 4 SiC 4 powder will be explained. The Al 4 SiC 4 powder of this embodiment is obtained by mixing aluminum powder, silicon powder, and carbon powder and firing the mixture.

本実施形態のAlSiC粉末は、粉末X線回折においてAlSiCが検出される。そして、本実施形態のAlSiC粉末は、電子顕微鏡附属の元素分析器により酸素を含有することが検出される。 In the Al 4 SiC 4 powder of this embodiment, Al 4 SiC 4 is detected in powder X-ray diffraction. The Al 4 SiC 4 powder of this embodiment is detected to contain oxygen by an elemental analyzer attached to an electron microscope.

本実施形態のAlSiC粉末において、AlSiCの結晶格子内に酸素が固溶状態で存在する。このため、AlSiCの結晶格子の安定性が高まり、結晶格子内の電子移動の特性が向上する。したがって、例えば炭素含有耐火物の添加剤として使用されるAlSiC粉末の機能を向上させることができる。 In the Al 4 SiC 4 powder of this embodiment, oxygen exists in the crystal lattice of Al 4 SiC 4 in a solid solution state. Therefore, the stability of the crystal lattice of Al 4 SiC 4 is increased, and the characteristics of electron movement within the crystal lattice are improved. Therefore, the functionality of Al 4 SiC 4 powder used, for example, as an additive for carbon-containing refractories can be improved.

これを詳述するに、AlSiCの結晶格子の安定性が高まると、AlSiC粉末の耐水和性が向上し(水分によって崩壊しにくくなり)、強度特性(靭性や耐スポール性)が向上する。このAlSiC粉末を耐火物に添加すると、耐火物の耐水和性が向上し、強度特性が向上する。また、AlSiCの結晶格子内の電子移動の特性が向上すると、導電性、熱伝導率が向上する。このAlSiC粉末を耐火物に添加すると、耐火物の熱伝導率が向上し、温度勾配に起因する耐火物の割れを防止することができる。 In detail, when the stability of the crystal lattice of Al 4 SiC 4 increases, the hydration resistance of Al 4 SiC 4 powder improves (it becomes less likely to disintegrate due to moisture), and its strength properties (toughness and spall resistance) improve. ) will be improved. When this Al 4 SiC 4 powder is added to a refractory, the hydration resistance of the refractory is improved and its strength properties are improved. Furthermore, when the electron transfer characteristics within the crystal lattice of Al 4 SiC 4 are improved, the electrical conductivity and thermal conductivity are improved. When this Al 4 SiC 4 powder is added to a refractory, the thermal conductivity of the refractory is improved, and cracking of the refractory due to temperature gradients can be prevented.

上記のように酸素は、AlSiCの結晶格子内に酸素が固溶状態で存在する。結晶格子内の酸素の位置には周期性がなく、酸素は結晶格子内にランダムに存在すると考えられる。なぜならば、結晶格子内の酸素の位置に周期性があれば、粉末X線回折において、Al-Si-O-C系化合物の鉱物相が実質的に検出されるが、Al-Si-O-C系化合物の鉱物相が実質的に検出されないからである。 As mentioned above, oxygen exists in the crystal lattice of Al 4 SiC 4 in a solid solution state. There is no periodicity in the position of oxygen within the crystal lattice, and it is thought that oxygen exists randomly within the crystal lattice. This is because if there is periodicity in the position of oxygen in the crystal lattice, the mineral phase of the Al-Si-O-C compound can be substantially detected in powder X-ray diffraction, but the Al-Si-O- This is because the mineral phase of the C-based compound is substantially not detected.

上記のように、本実施形態のAlSiC粉末は、粉末X線回折においてAlSiCが検出される。粉末X線回折には、CuKα線を用いた。粉末X線回折は、以下の条件で行った。

Figure 0007425775000001
As described above, in the Al 4 SiC 4 powder of this embodiment, Al 4 SiC 4 is detected in powder X-ray diffraction. CuKα radiation was used for powder X-ray diffraction. Powder X-ray diffraction was performed under the following conditions.
Figure 0007425775000001

上記のCuKα線による粉末X線回折は、株式会社リガク社製のRINT2000を用いて行い、横軸をX線入射角2θ(°)、縦軸を回折強度(cps)としたグラフに測定した回折強度をプロットした。鉱物組成の解析には、株式会社リガク社製の「統合粉末X線解析ソフトウェア PDXL」ver.2.7.3.0を用いた。 The above powder X-ray diffraction using CuKα rays was performed using RINT2000 manufactured by Rigaku Co., Ltd., and the diffraction measurements were made in a graph where the horizontal axis is the X-ray incident angle 2θ (°) and the vertical axis is the diffraction intensity (cps). The intensity was plotted. For analysis of mineral composition, "Integrated powder X-ray analysis software PDXL" ver. 2.7.3.0 manufactured by Rigaku Co., Ltd. was used.

また、上記のように、本実施形態のAlSiC粉末は、電子顕微鏡附属の元素分析器により酸素を含有することが検出される。電子顕微鏡附属の元素分析器には、透過型電子顕微鏡(TEM)附属のエネルギー分散型X線分光装置(EDS)を用いた。そして、AlSiC粉末から試料を作成し、試料に電子ビームを照射し、発生するX線のエネルギーをスペクトル分析して、AlSiC粉末に含まれる元素(アルミニウム、ケイ素、炭素、酸素)を定性・定量分析した。試料の作成には、乳鉢で微粉砕したAlSiC粉末をエタノールを溶媒とする分散媒に展開し、TEM観察用のグリッドに粉末をすくい取ってキャストする分散法を採用した。TEM附属のEDSには、日本電子株式会社製のJED-2300 Seriesを用いた。元素の定性・定量分析には、日本電子株式会社製のソフトウェア「Standard Analysis」を用いた。 Further, as described above, the Al 4 SiC 4 powder of this embodiment is detected to contain oxygen by an elemental analyzer attached to an electron microscope. An energy dispersive X-ray spectrometer (EDS) attached to a transmission electron microscope (TEM) was used as an elemental analyzer attached to the electron microscope. Then, a sample is created from Al 4 SiC 4 powder, the sample is irradiated with an electron beam, and the energy of the generated X- rays is spectral analyzed to determine the elements (aluminum, silicon, carbon, oxygen, ) was analyzed qualitatively and quantitatively. To prepare the sample, a dispersion method was adopted in which Al 4 SiC 4 powder finely ground in a mortar was spread in a dispersion medium using ethanol as a solvent, and the powder was scooped and cast onto a grid for TEM observation. JED-2300 Series manufactured by JEOL Ltd. was used as the EDS attached to the TEM. For qualitative and quantitative analysis of elements, the software "Standard Analysis" manufactured by JEOL Ltd. was used.

TEM附属のEDSによって検出されるAlSiC粉末の酸素含有量は、3~10原子パーセント(at%)であることが望ましい。原子パーセントは、構成元素比(モル比)を百分率で表したものである。酸素含有量が3原子パーセント未満であると、酸素によるAlSiC結晶格子の固溶強化が十分に起こらず、耐水和性の低下や強度低下を招くおそれがあるのに対し、酸素含有量が3原子パーセント以上では、AlSiCの結晶格子の安定性が十分に高まり、結晶格子内の電子移動の特性が向上する。酸素含有量が10原子パーセントを超えると、酸素が結晶格子内に周期性を持って存在(すなわちAl-Si-O-C系化合物として存在)し易くなる。酸素含有量の最適な範囲は、3~10原子パーセントである。
(酸素含有AlSiC粉末の製造方法)
The oxygen content of the Al 4 SiC 4 powder detected by EDS attached to a TEM is preferably 3 to 10 atomic percent (at%). Atomic percent is the ratio of constituent elements (molar ratio) expressed as a percentage. If the oxygen content is less than 3 atomic percent, solid solution strengthening of the Al 4 SiC 4 crystal lattice by oxygen may not occur sufficiently, leading to a decrease in hydration resistance and strength. When the amount is 3 atomic percent or more, the stability of the crystal lattice of Al 4 SiC 4 is sufficiently increased, and the characteristics of electron movement within the crystal lattice are improved. When the oxygen content exceeds 10 atomic percent, oxygen tends to exist with periodicity in the crystal lattice (ie, exist as an Al--Si--O--C compound). The optimal range for oxygen content is 3 to 10 atomic percent.
(Method for producing oxygen - containing Al4SiC4 powder)

以下にAlSiC粉末の製造方法を説明する。出発原料には、アルミニウム粉末、ケイ素粉末、炭素粉末を用いる。純度と生産効率の面から、アルミニウム粉末には金属Al粉末を用い、ケイ素粉末には金属Si粉末を用い、炭素粉末には、カーボンブラック、鱗状黒鉛等を用いることが望ましい。 The method for producing Al 4 SiC 4 powder will be explained below. Aluminum powder, silicon powder, and carbon powder are used as starting materials. In terms of purity and production efficiency, it is desirable to use metallic Al powder for the aluminum powder, metallic Si powder for the silicon powder, and carbon black, scale graphite, etc. for the carbon powder.

上記のアルミニウム粉末、ケイ素粉末、炭素粉末は、それぞれに含まれるアルミニウム、ケイ素、炭素のモル比が4:1:4になるような量に秤量される。 The above aluminum powder, silicon powder, and carbon powder are weighed in amounts such that the molar ratio of aluminum, silicon, and carbon contained in each powder is 4:1:4.

次に、アルミニウム源、ケイ素源、炭素源を乾式ヘンシェルミキサー等の混合機を用いて混合する。混合時間は特に限定されるものではないが、原料を充分に混合するために5分以上混合するのが望ましい。 Next, the aluminum source, silicon source, and carbon source are mixed using a mixer such as a dry Henschel mixer. Although the mixing time is not particularly limited, it is desirable to mix for 5 minutes or more in order to mix the raw materials sufficiently.

次に、混合原料を坩堝に装填し、坩堝を抵抗加熱炉、管状炉等のバッチ炉又はトンネル炉等の連続炉に入れ、混合原料を1650~1900℃の温度で1~10時間、アルゴンガス雰囲気下で焼成する。 Next, the mixed raw materials are loaded into a crucible, and the crucible is placed in a resistance heating furnace, a batch furnace such as a tube furnace, or a continuous furnace such as a tunnel furnace, and the mixed raw materials are heated at a temperature of 1650 to 1900°C for 1 to 10 hours using argon gas. Firing in an atmosphere.

アルゴンガスの純度は、99.99%以上99.99994%以下、望ましくは99.99%以上99.999%以下である。AlSiC粉末に存在する酸素は、アルゴンガスに不純物として含まれる酸素に由来する。アルゴンガスの純度を99.999%以下にすると、アルゴンガスに不純物として含まれる酸素量が増えるので、AlSiC粉末の酸素含有量を3原子パーセント以上にすることができる。アルゴンガスの純度を99.99%未満にすると、アルゴンガスに不純物として含まれる酸素や窒素によって炉が傷むおそれがある。アルゴンガスの純度の最適範囲は、99.99%以上99.999%以下である。 The purity of the argon gas is 99.99% or more and 99.99994% or less, preferably 99.99% or more and 99.999% or less. The oxygen present in the Al 4 SiC 4 powder originates from oxygen contained in argon gas as an impurity. When the purity of the argon gas is set to 99.999% or less, the amount of oxygen contained in the argon gas as an impurity increases, so the oxygen content of the Al 4 SiC 4 powder can be set to 3 atomic percent or more. If the purity of the argon gas is less than 99.99%, the furnace may be damaged by oxygen and nitrogen contained as impurities in the argon gas. The optimum range of purity of argon gas is 99.99% or more and 99.999% or less.

焼成によってAlSiCが合成される。AlSiCの合成は、以下の2段階で行われると推定される。すなわち、焼成による温度上昇と共に、まず(2)式及び(3)式のようにAlとSiCが生成し、その後、1300℃以上において(4)式のようにAlとSiCが反応してAlSiCが生成する。
4Al+3C→Al (2)
Si+C→SiC (3)
Al+SiC→AlSiC (4)
Al 4 SiC 4 is synthesized by firing. It is estimated that the synthesis of Al 4 SiC 4 is performed in the following two steps. That is, as the temperature rises due to firing, Al 4 C 3 and SiC are first generated as shown in equations (2) and (3), and then at 1300°C or higher, Al 4 C 3 and SiC are formed as shown in equation (4). reacts to produce Al 4 SiC 4 .
4Al+3C→Al 4 C 3 (2)
Si+C→SiC (3)
Al4C3 + SiCAl4SiC4 ( 4 )

AlSiCの合成後、炉から坩堝を取り出し、坩堝からAlSiC組成物を取り出す。AlSiC組成物をロールクラッシャーで乾式粉砕すれば、AlSiC粉末が得られる。 After the synthesis of Al 4 SiC 4 , the crucible is removed from the furnace and the Al 4 SiC 4 composition is removed from the crucible. Dry crushing of the Al 4 SiC 4 composition with a roll crusher yields Al 4 SiC 4 powder.

本実施形態のAlSiC粉末は、炭素含有耐火物の添加剤として使用でき、また、例えば酸化防止剤としても使用することもできる。 The Al 4 SiC 4 powder of this embodiment can be used as an additive for carbon-containing refractories, and can also be used, for example, as an antioxidant.

金属Al粉末(-75μm)、金属Si粉末(-45μm)、カーボンブラック(60~280nm)をAl:Si:C=4:1:4のモル理論比で配合し、乾式ヘンシェルミキサーで10分間混合した。混合原料を坩堝に装填し、混合原料を99.99%の純度のアルゴンガスの気流(3L/min)中で1800℃まで加熱し、1800℃を10時間保持した。 Metal Al powder (-75 μm), metal Si powder (-45 μm), and carbon black (60 to 280 nm) were mixed in a theoretical molar ratio of Al:Si:C=4:1:4, and mixed for 10 minutes with a dry Henschel mixer. did. The mixed raw materials were loaded into a crucible, and the mixed raw materials were heated to 1800° C. in a flow of 99.99% pure argon gas (3 L/min) and held at 1800° C. for 10 hours.

炉への電力の供給を停止し、坩堝を周囲温度まで冷却した。冷却後、炉から坩堝を取り出し、坩堝から合成したAlSiCを取り出し、ロールクラッシャーで乾式粉砕した。 Power to the furnace was removed and the crucible was allowed to cool to ambient temperature. After cooling, the crucible was taken out from the furnace, and the synthesized Al 4 SiC 4 was taken out from the crucible and dry crushed using a roll crusher.

得られたAlSiC粉末の物性を粉末X線回折によって測定した。粉末X線回折による測定方法は、上述の方法に従った。 The physical properties of the obtained Al 4 SiC 4 powder were measured by powder X-ray diffraction. The measurement method using powder X-ray diffraction followed the method described above.

図1は、AlSiC粉末をX線回折分析して得られたチャートである。横軸は入射角2θ(単位:°)、縦軸は回折強度(単位:cps)である。図1に示すように、鉱物相としてAlSiCが検出される。その一方、Al-Si-O-C系化合物が検出されなかった。なお、図1の△Kβの微小ピークはKβ(X線由来)の微小ピークである。 FIG. 1 is a chart obtained by X-ray diffraction analysis of Al 4 SiC 4 powder. The horizontal axis is the incident angle 2θ (unit: °), and the vertical axis is the diffraction intensity (unit: cps). As shown in FIG. 1, Al 4 SiC 4 is detected as a mineral phase. On the other hand, no Al-Si-OC compounds were detected. Note that the small peak of ΔK β in FIG. 1 is a small peak of K β (derived from X-rays).

次に、TEM附属のEDSによってAlSiC粉末の元素を定性・定量分析した。TEM附属のEDSによる分析方法は、上述の方法に従った。 Next, the elements of the Al 4 SiC 4 powder were qualitatively and quantitatively analyzed using EDS attached to a TEM. The analysis method using EDS attached to TEM was as described above.

図2は、計測粒子のTEM写真を示す。図3は、図2の×の箇所のエネルギー分散X線スペクトルを示す。図3に示すように、構成元素は、炭素、酸素、アルミニウム、ケイ素であった。 FIG. 2 shows a TEM photograph of the measured particles. FIG. 3 shows an energy-dispersive X-ray spectrum at the location marked with x in FIG. As shown in FIG. 3, the constituent elements were carbon, oxygen, aluminum, and silicon.

各元素の含有量は、図3の各元素のスペクトルのピークを積算することで定量化される。含有量の平均値をとるために、図2の×の箇所を20箇所変化させた。定量化の結果、酸素含有量は4.80原子パーセント、アルミニウム含有量は43.89原子パーセント、ケイ素含有量は11.95原子パーセント、炭素含有量は45.98原子パーセントであった。AlSiCの理論構成を原子パーセントで表すと、アルミニウム含有量:ケイ素含有量:炭素含有量=44:11:44である。定量化したこれらの含有量は概ね理論構成に一致した。 The content of each element is quantified by integrating the peaks of the spectrum of each element in FIG. In order to obtain the average value of the content, 20 locations marked with x in FIG. 2 were changed. As a result of quantification, the oxygen content was 4.80 atomic percent, the aluminum content was 43.89 atomic percent, the silicon content was 11.95 atomic percent, and the carbon content was 45.98 atomic percent. The theoretical composition of Al 4 SiC 4 expressed in atomic percent is aluminum content: silicon content: carbon content = 44:11:44. These quantified contents generally agreed with the theoretical structure.

アルゴンガスに純度99.999%のものを用いた。これ以外は、実施例1と同様の方法を用いてAlSiC粉末を得た。 Argon gas with a purity of 99.999% was used. Except for this, Al 4 SiC 4 powder was obtained using the same method as in Example 1.

得られたAlSiC粉末の酸素含有量は3.34原子パーセント、アルミニウム含有量は47.21原子パーセント、ケイ素含有量は10.47原子パーセント、炭素含有量は44.58原子パーセントであった。 The obtained Al 4 SiC 4 powder had an oxygen content of 3.34 atomic percent, an aluminum content of 47.21 atomic percent, a silicon content of 10.47 atomic percent, and a carbon content of 44.58 atomic percent. Ta.

アルゴンガスに純度99.9999%のものを用いた。これ以外は、実施例1と同様の方法を用いてAlSiC粉末を得た。 Argon gas with a purity of 99.9999% was used. Except for this, Al 4 SiC 4 powder was obtained using the same method as in Example 1.

得られたAlSiC粉末の酸素含有量は2.88原子パーセント、アルミニウム含有量は44.23原子パーセント、ケイ素含有量は9.58原子パーセント、炭素含有量は41.28原子パーセントであった。 The obtained Al 4 SiC 4 powder had an oxygen content of 2.88 atomic percent, an aluminum content of 44.23 atomic percent, a silicon content of 9.58 atomic percent, and a carbon content of 41.28 atomic percent. Ta.

アルゴンガスに純度99.99994%のものを用いた。これ以外は、実施例1と同様の方法を用いてAlSiC粉末を得た。 Argon gas with a purity of 99.99994% was used. Except for this, Al 4 SiC 4 powder was obtained using the same method as in Example 1.

得られたAlSiC粉末の酸素含有量は2.61原子パーセント、アルミニウム含有量は42.53原子パーセント、ケイ素含有量は10.25原子パーセント、炭素含有量は42.83原子パーセントであった。
以上の結果を表1にまとめた。
The obtained Al 4 SiC 4 powder had an oxygen content of 2.61 atomic percent, an aluminum content of 42.53 atomic percent, a silicon content of 10.25 atomic percent, and a carbon content of 42.83 atomic percent. Ta.
The above results are summarized in Table 1.

Figure 0007425775000002
Figure 0007425775000002

実施例1~4で得られたAlSiC粉末は、酸素を含有した。実施例1,2で得られたAlSiC粉末は、酸素含有量が3原子パーセント以上であった。 The Al 4 SiC 4 powders obtained in Examples 1 to 4 contained oxygen. The Al 4 SiC 4 powder obtained in Examples 1 and 2 had an oxygen content of 3 atomic percent or more.

図4のグラフにアルゴンガスの純度と酸素含有量との関係をプロットした。横軸はアルゴンガスの純度であり、縦軸は酸素含有量である。図4に示すように、アルゴンガスの純度と酸素含有量には、アルゴンガスの純度が高くなると酸素含有量が低くなるという相関関係があった。 The relationship between the purity of argon gas and the oxygen content is plotted in the graph of FIG. The horizontal axis is the purity of argon gas, and the vertical axis is the oxygen content. As shown in FIG. 4, there was a correlation between the purity of argon gas and the oxygen content, such that the higher the purity of argon gas, the lower the oxygen content.

Claims (2)

粉末X線回折においてAlSiCが検出され、
かつ電子顕微鏡附属の元素分析器により酸素を3~10原子パーセント(at%)含有することが検出される酸素含有AlSiC粉末。
Al4SiC4 was detected in powder X - ray diffraction,
Oxygen-containing Al 4 SiC 4 powder that is detected to contain 3 to 10 atomic percent (at%) of oxygen by an elemental analyzer attached to an electron microscope.
アルミニウム粉末、ケイ素粉末、炭素粉末を混合し、混合物を純度99.99%以上99.999%以下のアルゴンガス雰囲気下で1800℃~1900℃の温度で1~10時間焼成し、電子顕微鏡附属の元素分析器により酸素を3~10原子パーセント(at%)含有することが検出される酸素含有AlSiC粉末の製造方法。 Aluminum powder, silicon powder, and carbon powder were mixed, and the mixture was fired at a temperature of 1800°C to 1900°C for 1 to 10 hours in an argon gas atmosphere with a purity of 99.99% to 99.999%. A method for producing oxygen-containing Al 4 SiC 4 powder that is detected to contain 3 to 10 atomic percent (at%) of oxygen by an elemental analyzer .
JP2021118425A 2021-07-19 2021-07-19 Oxygen-containing Al4SiC4 powder and its manufacturing method Active JP7425775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021118425A JP7425775B2 (en) 2021-07-19 2021-07-19 Oxygen-containing Al4SiC4 powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021118425A JP7425775B2 (en) 2021-07-19 2021-07-19 Oxygen-containing Al4SiC4 powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2023014475A JP2023014475A (en) 2023-01-31
JP7425775B2 true JP7425775B2 (en) 2024-01-31

Family

ID=85130748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021118425A Active JP7425775B2 (en) 2021-07-19 2021-07-19 Oxygen-containing Al4SiC4 powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7425775B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190961A (en) 2008-02-12 2009-08-27 Okayama Ceramics Gijutsu Shinko Zaidan Compound carbide, and method for synthesizing the same
JP2017030980A (en) 2015-07-28 2017-02-09 太平洋セメント株式会社 Silicon carbide powder
WO2019049784A1 (en) 2017-09-08 2019-03-14 国立研究開発法人物質・材料研究機構 SiC CERAMIC USING COATED SiC NANOPARTICLES AND PRODUCTION METHOD THEREFOR
JP2020029390A (en) 2018-08-24 2020-02-27 国立研究開発法人産業技術総合研究所 Method for producing aluminum silicon carbide
JP2020100522A (en) 2018-12-20 2020-07-02 一般財団法人岡山セラミックス技術振興財団 METHOD FOR PRODUCING Al4SiC4

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190961A (en) 2008-02-12 2009-08-27 Okayama Ceramics Gijutsu Shinko Zaidan Compound carbide, and method for synthesizing the same
JP2017030980A (en) 2015-07-28 2017-02-09 太平洋セメント株式会社 Silicon carbide powder
WO2019049784A1 (en) 2017-09-08 2019-03-14 国立研究開発法人物質・材料研究機構 SiC CERAMIC USING COATED SiC NANOPARTICLES AND PRODUCTION METHOD THEREFOR
JP2020029390A (en) 2018-08-24 2020-02-27 国立研究開発法人産業技術総合研究所 Method for producing aluminum silicon carbide
JP2020100522A (en) 2018-12-20 2020-07-02 一般財団法人岡山セラミックス技術振興財団 METHOD FOR PRODUCING Al4SiC4

Also Published As

Publication number Publication date
JP2023014475A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
Zhang et al. Intermediate phases in synthesis of Ti3SiC2 and Ti3Si (Al) C2 solid solutions from elemental powders
Mishra et al. Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis
Radhakrishnan et al. Synthesis and high-temperature stability of Ti3SiC2
Chen et al. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides
Zhong et al. Synthesis of silicon carbide nanopowder using silica fume
Rawn et al. The crystal structure and thermal expansion of Mo5SiB2
Wu et al. In situ neutron powder diffraction study of Ti3SiC2 synthesis
Sonber et al. Synthesis, densification and oxidation study of lanthanum hexaboride
Wang et al. Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering
Niu et al. Salt-assisted combustion synthesis of β-SiAlON fine powders
Orthner et al. Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling
TW201829299A (en) Method for producing high-purity silicon nitride powder
Yeh et al. Effects of TiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis
Suri et al. Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume
Zhou et al. Fabrication of high-purity ternary carbide Ti3SiC2 by spark plasma sintering technique
Wang et al. Effect of in-situ formed CrB2 on pressureless sintering of B4C
Yang et al. Mechanical-activation-assisted combustion synthesis of SiC
JP2024023759A (en) Al4SiC4 composition or Al4SiC4 powder
JP5477751B2 (en) Aluminum oxycarbide composition and method for producing the same
Gao et al. Synthesis of Al8B4C7 ceramic powder from Al/B4C/C mixtures
Yang et al. Fabrication and characterization of amorphous SiBCN powders
JP7425775B2 (en) Oxygen-containing Al4SiC4 powder and its manufacturing method
Arai et al. Thermoelectric properties of Sb-doped Mg2 (Si0. 95Ge0. 05) synthesized by spark plasma sintering
Yang et al. Preparation and antioxidant mechanism of TiSi2–Si–SiC/SiC bilayer coating on matrix graphite
CN102211937B (en) Method for synthesizing high-purity aluminum silicon carbon superfine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240119

R150 Certificate of patent or registration of utility model

Ref document number: 7425775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150