JPH06298515A - Alpha-silicon carbide and its production - Google Patents

Alpha-silicon carbide and its production

Info

Publication number
JPH06298515A
JPH06298515A JP5107680A JP10768093A JPH06298515A JP H06298515 A JPH06298515 A JP H06298515A JP 5107680 A JP5107680 A JP 5107680A JP 10768093 A JP10768093 A JP 10768093A JP H06298515 A JPH06298515 A JP H06298515A
Authority
JP
Japan
Prior art keywords
silicon carbide
type silicon
alpha
less
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5107680A
Other languages
Japanese (ja)
Other versions
JP2660650B2 (en
Inventor
Takao Sato
孝雄 佐藤
Hitoshi Murayama
▲ひとし▼ 村山
Ryoichi Hiroe
良市 広江
Ryuhei Makimura
隆平 牧村
Kenji Tsukamoto
憲治 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Rundum Co Ltd
Original Assignee
Pacific Rundum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Rundum Co Ltd filed Critical Pacific Rundum Co Ltd
Priority to JP5107680A priority Critical patent/JP2660650B2/en
Publication of JPH06298515A publication Critical patent/JPH06298515A/en
Application granted granted Critical
Publication of JP2660650B2 publication Critical patent/JP2660650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/984Preparation from elemental silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide alpha-type silicon carbide used for producing semiconductors including light-emitting elements and useful as a heat treatment material for devices used for producing semiconductors, such as diffusion ovens. CONSTITUTION:The alpha-type silicon carbide comprises impurities containing an iron content of <1.00ppm, a copper content of <1.00ppm and an aluminum content of <1.00ppm. A method for producing the alpha-type silicon carbide comprises charging metallic silicon and a carbonaceous raw material in a recrystallized silicon carbide crucible and subsequently holding the mixture at 2000-2200 deg.C in an inert gas atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、α型炭化珪素およびそ
の製造方法に関する。特に発光素子等を含む半導体素子
の製造や半導体製造用熱処理部材等に好適なα型炭化珪
素およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to α-type silicon carbide and a method for producing the same. In particular, the present invention relates to α-type silicon carbide suitable for manufacturing semiconductor devices including light emitting devices and the like, heat treatment members for manufacturing semiconductors, and the manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、炭化珪素は研削材料や発熱体の原
料として用いられており、その結晶構造としては、α型
とβ型の2種類に大別され、α型には多くの多形が存在
することが知られている。
2. Description of the Related Art Conventionally, silicon carbide has been used as a raw material for grinding materials and heating elements, and its crystal structure is roughly classified into two types, α type and β type. Is known to exist.

【0003】ところで、従来の炭化珪素の製造方法とし
ては、珪石とコークスの混合物を炉の両端に固定した電
極間をグラファイト等の炭素の抵抗芯で連結した電気抵
抗炉により高温で反応させる所謂アチソン法が知られて
おり、この製造法によれば炉芯の外周部にα型炭化珪素
からなる結晶塊が、またその結晶塊の外周にはβ型炭化
珪素結晶が生成される。
By the way, as a conventional method for producing silicon carbide, a so-called Acheson is used in which a mixture of silica stone and coke is fixed at both ends of the furnace and the electrodes are connected at a high temperature by an electric resistance furnace in which a resistance core made of carbon such as graphite is connected. A method is known, and according to this manufacturing method, a crystal mass made of α-type silicon carbide is formed on the outer peripheral portion of the furnace core, and a β-type silicon carbide crystal is generated on the outer periphery of the crystal mass.

【0004】このアチソン法によるα型炭化珪素から高
純度α型炭化珪素を得るためには、まず、炉芯の外周部
に生成したα型炭化珪素塊を適宜大に粉砕処理し酸化雰
囲気下で焼成して残留するカーボンを除去した後、弗酸
あるいは弗硝酸等の酸処理を繰り返して高純度化を行な
っている。
In order to obtain high-purity α-type silicon carbide from α-type silicon carbide by the Acheson method, first, the α-type silicon carbide lumps formed on the outer peripheral portion of the furnace core are appropriately pulverized and subjected to an oxidizing atmosphere. After baking to remove residual carbon, acid treatment with hydrofluoric acid or hydrofluoric nitric acid is repeated for high purification.

【0005】しかし、アチソン法により得られたα型炭
化珪素の高純度化は多大な労力を要し、しかも炭化珪素
中に固溶したアルミニウム等の不純物を完全に除去する
ことは極めて困難である。
However, purification of α-type silicon carbide obtained by the Acheson method requires a great deal of labor, and it is extremely difficult to completely remove impurities such as aluminum solid-solved in silicon carbide. .

【0006】また、このような炭化珪素の高純度化を阻
害する要因としては、具体的にはシリカ、遊離カーボ
ン、シリコン等の未反応原料の残留、また機械的粉砕処
理等による汚染により炭化珪素に含有される鉄、アルミ
ニウム、ニッケル等の金属不純物、更には炭化珪素の熱
的分解により生じるシリコン、遊離カーボン等が炭化珪
素の純度を低下せしめていることが挙げられる。
Further, as factors that hinder the purification of such silicon carbide, specifically, unreacted raw materials such as silica, free carbon, and silicon remain, and silicon carbide is caused by contamination due to mechanical pulverization. Metallic impurities such as iron, aluminum, and nickel contained in, as well as silicon, free carbon, and the like generated by thermal decomposition of silicon carbide reduce the purity of silicon carbide.

【0007】特開昭52−117899号公報には、高
純度珪石と高純度炭素粉とを混合し、これを黒鉛製密封
容器に充填し、管状炉内を連続的に移動させ炉内温度を
1800〜2200℃に保持して該容器内の珪石と炭素
とを反応せしめ高純度炭化珪素粉末を得る製造法が開示
されている。
In Japanese Unexamined Patent Publication No. 52-117899, high-purity silica stone and high-purity carbon powder are mixed and filled in a graphite hermetically sealed container, which is continuously moved in a tubular furnace to control the temperature in the furnace. A method for producing a high-purity silicon carbide powder by keeping the temperature of 1800 to 2200 ° C. and reacting silica in the container with carbon is disclosed.

【0008】しかし、この方法では合成される炭化珪素
の原料からの転換率は悪く、しかも黒鉛製密封容器内で
炭化珪素を合成するものの、その反応過程で多量の一酸
化炭素ガスが発生し耐環境上好ましいものではない。
However, according to this method, the conversion rate of the silicon carbide synthesized from the raw material is poor, and although silicon carbide is synthesized in the graphite sealed container, a large amount of carbon monoxide gas is generated in the reaction process, and it is resistant. Not environmentally friendly.

【0009】更に、高純度出発原料は黒鉛製密封容器に
充填されていることから、炭化珪素合成時に該容器に含
有されている不純物の昇華、揮散による合成炭化珪素へ
の不純物汚染を生じ易い。
Further, since the high-purity starting material is filled in the graphite hermetically sealed container, the synthetic silicon carbide is liable to be contaminated by sublimation or volatilization of impurities contained in the container during the synthesis of silicon carbide.

【0010】また、四塩化珪素とメタンによる気相合成
等やシリカとカーボンの固相反応等により合成されるβ
型炭化珪素では、比較的純度の高い出発原料を使用すれ
ば、得られるβ型炭化珪素は酸洗浄により高純度化も容
易である。
Further, β synthesized by vapor phase synthesis of silicon tetrachloride and methane or solid phase reaction of silica and carbon
For β-type silicon carbide, if a starting material having a relatively high purity is used, the obtained β-type silicon carbide can be easily purified to high purity by acid cleaning.

【0011】しかしながら、β型炭化珪素は粒子が細か
すぎるため、成形性に問題があるとともに、弗酸、塩
酸、硝酸、又はこれらの混酸に対して充分な耐食性を有
するα型炭化珪素に比して、酸に対する溶解性があり、
繰り返し酸洗浄を行なう半導体製造用熱処理部材におい
ては耐食性が劣るという欠点がある。
However, since β-type silicon carbide has too fine particles, it has a problem in moldability and has a sufficient corrosion resistance to hydrofluoric acid, hydrochloric acid, nitric acid, or a mixed acid thereof, compared to α-type silicon carbide. Is soluble in acid,
A heat treatment member for semiconductor manufacturing, which is repeatedly subjected to acid cleaning, has a drawback of poor corrosion resistance.

【0012】一方、発光素子材料としてのα型炭化珪素
の多形の一つである6H形炭化珪素は、その禁制帯幅が
約2.9eVと広く、又p型及びn型の両導電型とも安
定に存在する材料であることから、青色発光ダイオード
用の発光素子材料として期待されている。
On the other hand, 6H-type silicon carbide, which is one of the polymorphs of α-type silicon carbide as a light emitting device material, has a wide band gap of about 2.9 eV and has both p-type and n-type conductivity. Both are stable materials, and thus are expected as light emitting element materials for blue light emitting diodes.

【0013】ところが、この青色発光ダイオード用の発
光素子材料を得るためには、6H形炭化珪素単結晶のエ
ピタキシャル接合のn層中に窒素、またはアルミニウム
を添加するが、より高度に制御されたn層を形成するた
めに基板となる6H形炭化珪素単結晶は形成されるn層
への不純物拡散を生じせしめない結晶欠陥のない純度の
高い炭化珪素が必要とされ、6H形炭化珪素単結晶の成
長用原料として高純度炭化珪素が要望されている。
However, in order to obtain the light emitting device material for this blue light emitting diode, nitrogen or aluminum is added to the n layer of the epitaxial junction of the 6H type silicon carbide single crystal, but a more highly controlled n layer is used. The 6H-type silicon carbide single crystal serving as a substrate for forming the layer requires high-purity silicon carbide having no crystal defects that does not cause impurity diffusion into the n-layer to be formed. High-purity silicon carbide has been demanded as a raw material for growth.

【0014】[0014]

【発明が解決しようとする課題】本発明は、発光素子等
を含む半導体素子の製造や拡散炉等の半導体製造用熱処
理部材等に好適な高純度α型炭化珪素およびその製造方
法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is to provide a high-purity α-type silicon carbide suitable for manufacturing a semiconductor device including a light-emitting device, a heat treatment member for manufacturing a semiconductor such as a diffusion furnace, and a method for manufacturing the same. To do.

【0015】[0015]

【課題を解決するための手段】本発明は、不純物含有量
として、鉄1.00ppm未満、銅1.00ppm未
満、且つアルミニウム1.00ppm未満であることを
特徴とするα型炭化珪素であり、また炭素質原料および
金属シリコンを炭化珪素製坩堝に充填し、これを真空度
0.2mmHg以下の真空下で加熱した後、不活性ガス
雰囲気中で2000〜2200℃の温度に保持すること
を特徴とするα型炭化珪素の製造方法である。
The present invention is an α-type silicon carbide characterized in that the content of impurities is less than 1.00 ppm of iron, less than 1.00 ppm of copper, and less than 1.00 ppm of aluminum. In addition, a carbonaceous raw material and metallic silicon are filled in a silicon carbide crucible, which is heated under a vacuum with a vacuum degree of 0.2 mmHg or less, and then maintained at a temperature of 2000 to 2200 ° C. in an inert gas atmosphere. And a method for producing α-type silicon carbide.

【0016】[0016]

【作用】上記製造方法によれば、炭化珪素製坩堝に充填
された金属シリコンと炭素質原料とからなる出発原料中
の不純物元素は、各固有の蒸気圧により真空度が0.2
mmHg以下での加熱、好ましくは温度1000℃まで
の昇温過程において揮散し炭化珪素製坩堝に一部吸着さ
れる。
According to the above-mentioned manufacturing method, the impurity element in the starting material composed of the metallic silicon and the carbonaceous material with which the silicon carbide crucible is filled has a degree of vacuum of 0.2 due to the vapor pressure of each.
It is volatilized and partially adsorbed by the silicon carbide crucible during heating at a temperature of mmHg or less, preferably in the temperature rising process up to 1000 ° C.

【0017】次いで昇温過程において一旦炭化珪素前駆
体(β型炭化珪素)を生成し、そうして不活性ガス雰囲
気下2000〜2200℃にて高純度なα型炭化珪素が
合成される。
Next, in the temperature rising process, a silicon carbide precursor (β-type silicon carbide) is once generated, and high-purity α-type silicon carbide is synthesized at 2000 to 2200 ° C. in an inert gas atmosphere.

【0018】一方、従来技術の多くに見られるシリコ
ン、またはシリカとカーボンとの配合出発原料を黒鉛坩
堝に充填し焼成して炭化珪素を生成する製造方法では、
黒鉛坩堝が出発原料と同質のカーボン系であることか
ら、出発原料の配合比率を厳重に管理しても、生成され
る炭化珪素に付する遊離カーボン、シリコン、シリカ等
の残存を避けることが困難であり炭化珪素の反応収率を
低下させるとともに高純度化を妨げていた。
On the other hand, in the manufacturing method of forming silicon carbide by filling a graphite crucible with a starting material of silicon or a compounding material of silica and carbon, which is found in most of the prior arts, and firing.
Since the graphite crucible is a carbon-based material of the same quality as the starting material, it is difficult to avoid leaving free carbon, silicon, silica, etc. attached to the generated silicon carbide even if the mixing ratio of the starting material is strictly controlled. Therefore, the reaction yield of silicon carbide was reduced and high purification was hindered.

【0019】しかしながら本発明によれば、炭化珪素合
成用容器は炭化珪素製坩堝であることから出発原料と黒
鉛坩堝との不要な反応を防止することができ、その結果
シリコン、カーボン等の残留を防ぐことが可能となる。
However, according to the present invention, since the container for synthesizing silicon carbide is a crucible made of silicon carbide, unnecessary reaction between the starting material and the graphite crucible can be prevented, and as a result, residual of silicon, carbon, etc. can be prevented. It becomes possible to prevent it.

【0020】以下、本発明を詳細に説明する。出発原料
の金属シリコンとしては、高純度金属シリコンを用いる
が、例えば半導体製造用多結晶シリコンを粉砕し精製し
た市販のシリコン粉等、粉末状のものが好ましい。また
酸、例えば塩酸、弗酸、弗硝酸等の無機酸で予め洗浄さ
れたものが好ましい。
The present invention will be described in detail below. High-purity metallic silicon is used as the starting material metallic silicon, but powdery materials such as commercially available silicon powder obtained by crushing and purifying polycrystalline silicon for semiconductor production are preferable. Further, it is preferable to wash the product with an acid, for example, an inorganic acid such as hydrochloric acid, hydrofluoric acid, or hydrofluoric nitric acid in advance.

【0021】炭素質原料としては、黒鉛粉末、あるいは
ファーネスブラック、サーマルブラックまたはアセチレ
ンブラック等のカーボンブラックが挙げられ、好ましく
はカーボンブラックである。
Examples of the carbonaceous raw material include graphite powder and carbon black such as furnace black, thermal black or acetylene black, and carbon black is preferable.

【0022】金属シリコンと炭素質原料の配合比はモル
比でSi/Cが通常0.8〜1.2、好ましくは0.9
〜1.1、特には0.95〜1.05である。金属シリ
コンと炭素質原料の混合物は、炭化珪素製坩堝に充填さ
れる。炭化珪素製坩堝は再結晶させたものが好ましい。
The molar ratio of the metallic silicon and the carbonaceous raw material is Si / C of usually 0.8 to 1.2, preferably 0.9.
˜1.1, especially 0.95 to 1.05. A mixture of metallic silicon and a carbonaceous raw material is filled in a silicon carbide crucible. The silicon carbide crucible is preferably recrystallized.

【0023】次にこれを加熱炉内にて真空度が0.2m
mHg以下の真空下で加熱する。次に好ましくは100
0℃より不活性ガスを加熱炉内に導入し、不活性ガス雰
囲気に保持し2000〜2200℃の温度にて、出発配
合原料量によって一概に限定できないが適時間(6〜9
時間)保持してα型炭化珪素を合成させる。不活性ガス
としては、窒素雰囲気での焼成は窒化珪素が生成するた
め、アルゴンガス、ヘリウムガス、ネオンガス等の希ガ
スが好ましい。
Next, this is placed in a heating furnace at a vacuum degree of 0.2 m.
Heat under vacuum below mHg. Next preferably 100
An inert gas is introduced into the heating furnace from 0 ° C., the atmosphere is maintained in an inert gas atmosphere, and the temperature is 2000 to 2200 ° C., but it cannot be unequivocally limited depending on the amount of the raw material to be mixed, but the time is appropriate (6 to 9
Hold for a time) to synthesize α-type silicon carbide. As the inert gas, a rare gas such as an argon gas, a helium gas, or a neon gas is preferable because silicon nitride is generated by firing in a nitrogen atmosphere.

【0024】得られるα型炭化珪素は、従来のものに比
較し極めて高純度であり、不純物含量が、鉄1ppm未
満、好ましくは0.05〜0.30ppm、銅1.00
ppm未満、好ましくは0.00〜0.03ppm、ア
ルミニウム1.00ppm未満、好ましくは0.03〜
0.40ppmであり、半導体および半導体素子製造
上、極めて有用な材料となる。
The obtained α-type silicon carbide has an extremely high purity as compared with the conventional one, and the impurity content is less than 1 ppm of iron, preferably 0.05 to 0.30 ppm, and copper 1.00.
less than ppm, preferably 0.00 to 0.03 ppm, aluminum less than 1.00 ppm, preferably 0.03 to
The content is 0.40 ppm, which is an extremely useful material for manufacturing semiconductors and semiconductor elements.

【0025】[0025]

【実施例】【Example】

(実施例1)15%塩酸に24時間浸漬し酸洗浄した平
均粒径300μmの金属シリコン粉末と平均粒径0.0
4μmのアセチレンブラックとを、モル比Si/C=
1.00で配合し出発原料とした。この出発原料を再結
晶炭化珪素製坩堝に充填し、加熱炉にて1000℃まで
0.2mmHg以下の真空度で加熱した後、アルゴンガ
スを加熱炉内に導入しアルゴンガス雰囲気に保持して2
200℃に加熱し8時間保持して炭化珪素を合成した。
Example 1 Metallic silicon powder having an average particle size of 300 μm, which was soaked in 15% hydrochloric acid for 24 hours and washed with an acid, and an average particle size of 0.0
4 μm of acetylene black with a molar ratio Si / C =
It was compounded at 1.00 and used as a starting material. This starting material was filled in a recrystallized silicon carbide crucible and heated in a heating furnace up to 1000 ° C. at a vacuum degree of 0.2 mmHg or less, and then argon gas was introduced into the heating furnace and maintained in an argon gas atmosphere.
It was heated to 200 ° C. and kept for 8 hours to synthesize silicon carbide.

【0026】得られた炭化珪素の結晶の同定を粉末X線
回折法、また不純物の測定には誘導結合高周波プラズマ
発光分光法にて実施した。その結果を表1に示す。
The crystals of silicon carbide thus obtained were identified by powder X-ray diffractometry, and impurities were measured by inductively coupled high frequency plasma emission spectroscopy. The results are shown in Table 1.

【表1】 [Table 1]

【0027】(実施例2)実施例1において金属シリコ
ンとアセチレンブラックのモル比Si/Cを1.03に
混合したものを出発原料とした以外は、実施例1と同じ
にして炭化珪素を合成した。
Example 2 Silicon carbide was synthesized in the same manner as in Example 1 except that the starting material was a mixture of metallic silicon and acetylene black in a molar ratio Si / C of 1.03. did.

【0028】(比較例1)実施例1において出発原料を
黒鉛製坩堝に充填し炭化珪素を合成した。
(Comparative Example 1) In Example 1, a starting material was filled in a graphite crucible to synthesize silicon carbide.

【0029】(比較例2)実施例2において出発原料を
黒鉛製坩堝に充填し炭化珪素を合成した。
(Comparative Example 2) In Example 2, a starting material was filled in a graphite crucible to synthesize silicon carbide.

【0030】(比較例3)珪砂とコークスとの混合原料
をアチソン法で加熱して得られた炭化珪素を粉砕し平均
粒径110μmに調整した炭化珪素粉末を弗酸と硝酸の
混酸にて酸洗浄を行い比較用試料とした。
(Comparative Example 3) Silicon carbide obtained by heating a mixed raw material of silica sand and coke by the Acheson method was crushed to obtain a silicon carbide powder having an average particle size of 110 μm, which was acidified with a mixed acid of hydrofluoric acid and nitric acid. It was washed and used as a comparative sample.

【0031】表1に、実施例及び比較例で得られた炭化
珪素の不純物含有量並びにその結晶型を示す。この表か
ら本発明の炭化珪素は著しく高純度であることが認めら
れる。
Table 1 shows the content of impurities in the silicon carbide obtained in Examples and Comparative Examples and the crystal form thereof. From this table, it is recognized that the silicon carbide of the present invention has extremely high purity.

【0032】[0032]

【発明の効果】従来、高純度α型炭化珪素を得るために
煩雑な酸処理工程を伴っていた操作に対し、本発明によ
れば金属シリコンと炭素質原料を再結晶炭化珪素製坩堝
に充填し、不活性ガス雰囲気下で加熱することにより、
高純度α型炭化珪素を合成することができ、半導体素子
の製造や半導体製造用熱処理部材の製造用原料として提
供することができ、広くその利用分野が期待できる。
According to the present invention, the recrystallized silicon carbide crucible is filled with metallic silicon and a carbonaceous raw material, in contrast to the conventional operation involving a complicated acid treatment step for obtaining high-purity α-type silicon carbide. By heating in an inert gas atmosphere,
High-purity α-type silicon carbide can be synthesized and can be provided as a raw material for the production of semiconductor elements and heat treatment members for semiconductor production, and its field of application can be expected widely.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧村 隆平 富山県富山市岩瀬赤田町1番地 大平洋ラ ンダム株式会社岩瀬工場内 (72)発明者 塚本 憲治 富山県富山市岩瀬赤田町1番地 大平洋ラ ンダム株式会社岩瀬工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Ryuhei Makimura, 1st Iwase Akada-cho, Toyama City, Toyama Prefecture Hiroshi Ohira Randam Co., Ltd. Iwase Factory (72) Kenji Tsukamoto 1st place, Iwase-Akatacho, Toyama City, Toyama Prefecture Hiroshi Ohira Random Co., Ltd. Iwase factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】不純物含有量として、鉄1.00ppm未
満、銅1.00ppm未満、且つアルミニウム1.00
ppm未満であることを特徴とするα型炭化珪素。
1. Impurity contents of less than 1.00 ppm iron, less than 1.00 ppm copper, and 1.00 aluminum.
Alpha-type silicon carbide characterized by being less than ppm.
【請求項2】炭素質原料および金属シリコンを炭化珪素
製坩堝に充填し、これを真空度0.2mmHg以下の真
空下で加熱した後、不活性ガス雰囲気中で2000〜2
200℃の温度に保持することを特徴とする請求項1記
載のα型炭化珪素の製造方法。
2. A carbonaceous raw material and metallic silicon are filled in a silicon carbide crucible, which is heated under a vacuum with a vacuum degree of 0.2 mmHg or less, and then 2000-2 in an inert gas atmosphere.
The method for producing α-type silicon carbide according to claim 1, wherein the temperature is maintained at 200 ° C.
JP5107680A 1993-04-08 1993-04-08 Manufacturing method of α-type silicon carbide Expired - Lifetime JP2660650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5107680A JP2660650B2 (en) 1993-04-08 1993-04-08 Manufacturing method of α-type silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5107680A JP2660650B2 (en) 1993-04-08 1993-04-08 Manufacturing method of α-type silicon carbide

Publications (2)

Publication Number Publication Date
JPH06298515A true JPH06298515A (en) 1994-10-25
JP2660650B2 JP2660650B2 (en) 1997-10-08

Family

ID=14465257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5107680A Expired - Lifetime JP2660650B2 (en) 1993-04-08 1993-04-08 Manufacturing method of α-type silicon carbide

Country Status (1)

Country Link
JP (1) JP2660650B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826646A1 (en) * 1996-08-27 1998-03-04 Asahi Glass Company Ltd. Highly corrosion-resistant silicon carbide product
JP2000281328A (en) * 1999-03-30 2000-10-10 Toshiba Ceramics Co Ltd Purified silicon carbide powder for member of semiconductor device, its purification, sintered compact for member of semiconductor device obtained from the powder, and its production
CN102701208A (en) * 2012-06-21 2012-10-03 上海硅酸盐研究所中试基地 High-temperature solid-phase synthesis method of high-purity silicon carbide powder
US20130309496A1 (en) * 2005-12-07 2013-11-21 Ii-Vi Incorporated "Method for Synthesizing Ultrahigh-Purity Silicon Carbide"
JP2015107901A (en) * 2013-12-06 2015-06-11 太平洋セメント株式会社 Method for manufacturing silicon carbide powder
CN114515561A (en) * 2022-03-11 2022-05-20 合肥世纪金光半导体有限公司 Low-cost preparation device and preparation method of high-purity silicon carbide powder capable of realizing mass production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117899A (en) * 1976-03-31 1977-10-03 Toshiba Ceramics Co Method of making high purity silicon carbide particle
JPS6197126A (en) * 1984-10-18 1986-05-15 Mitsubishi Heavy Ind Ltd Manufacture of fine particle of silicon carbide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117899A (en) * 1976-03-31 1977-10-03 Toshiba Ceramics Co Method of making high purity silicon carbide particle
JPS6197126A (en) * 1984-10-18 1986-05-15 Mitsubishi Heavy Ind Ltd Manufacture of fine particle of silicon carbide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826646A1 (en) * 1996-08-27 1998-03-04 Asahi Glass Company Ltd. Highly corrosion-resistant silicon carbide product
US5942454A (en) * 1996-08-27 1999-08-24 Asahi Glass Company Ltd. Highly corrosion-resistant silicon carbide product
JP2000281328A (en) * 1999-03-30 2000-10-10 Toshiba Ceramics Co Ltd Purified silicon carbide powder for member of semiconductor device, its purification, sintered compact for member of semiconductor device obtained from the powder, and its production
US20130309496A1 (en) * 2005-12-07 2013-11-21 Ii-Vi Incorporated "Method for Synthesizing Ultrahigh-Purity Silicon Carbide"
US9388509B2 (en) * 2005-12-07 2016-07-12 Ii-Vi Incorporated Method for synthesizing ultrahigh-purity silicon carbide
CN102701208A (en) * 2012-06-21 2012-10-03 上海硅酸盐研究所中试基地 High-temperature solid-phase synthesis method of high-purity silicon carbide powder
JP2015107901A (en) * 2013-12-06 2015-06-11 太平洋セメント株式会社 Method for manufacturing silicon carbide powder
CN114515561A (en) * 2022-03-11 2022-05-20 合肥世纪金光半导体有限公司 Low-cost preparation device and preparation method of high-purity silicon carbide powder capable of realizing mass production

Also Published As

Publication number Publication date
JP2660650B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
KR101413653B1 (en) A method for manufacturing SiC powders with high purity
US20090220788A1 (en) Method for synthesizing ultrahigh-purity silicon carbide
CN109502589A (en) A method of preparing high-purity silicon carbide powder
JPH06316499A (en) Production of sic single crystal
JPH10500933A (en) Method for producing silicon carbide
CN102958834A (en) Silicon carbide powder and method for producing silicon carbide powder
JPS6112844B2 (en)
US4619905A (en) Process for the synthesis of silicon nitride
CN109553105A (en) A kind of high-pure SiC power and preparation method thereof
WO2014132561A1 (en) Method for producing silicon carbide and silicon carbide
KR102574046B1 (en) Low-temperature production method of boron carbide
JP2660650B2 (en) Manufacturing method of α-type silicon carbide
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US20210163301A1 (en) Method for producing large granular alpha-phase silicon carbide powders with a high-purity
JPS6111886B2 (en)
JPS58120599A (en) Production of beta-silicon carbide whisker
JP2000044223A (en) Production of silicon carbide
EP0225412B1 (en) Production of silicon imides and of silicon nitride thereof
JPS6111885B2 (en)
JPS60122706A (en) Manufacture of silicon nitride powder
JPS6126600A (en) Preparation of beta type silicon carbide whisker
JPS6362450B2 (en)
JPS58176109A (en) Production of alpha-type silicon nitride
JPS6259049B2 (en)
RU2240979C2 (en) Silicon carbide production process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 16