JP2021113939A - 少制御部光偏向器 - Google Patents

少制御部光偏向器 Download PDF

Info

Publication number
JP2021113939A
JP2021113939A JP2020007324A JP2020007324A JP2021113939A JP 2021113939 A JP2021113939 A JP 2021113939A JP 2020007324 A JP2020007324 A JP 2020007324A JP 2020007324 A JP2020007324 A JP 2020007324A JP 2021113939 A JP2021113939 A JP 2021113939A
Authority
JP
Japan
Prior art keywords
optical
core
cores
light
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020007324A
Other languages
English (en)
Other versions
JP7356918B2 (ja
Inventor
裕司 宮本
Yuji Miyamoto
裕司 宮本
雅人 三浦
Masato Miura
雅人 三浦
芳邦 平野
Yoshikuni Hirano
芳邦 平野
賢司 町田
Kenji Machida
賢司 町田
靖 本山
Yasushi Motoyama
靖 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2020007324A priority Critical patent/JP7356918B2/ja
Publication of JP2021113939A publication Critical patent/JP2021113939A/ja
Application granted granted Critical
Publication of JP7356918B2 publication Critical patent/JP7356918B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】光偏向の性能を向上させながら光の位相制御の煩雑さや消費電力の増大を抑制する。【解決手段】少制御部光偏向器1は、入射側のコアPS1〜PS4が第1ピッチで並設された位相制御部10と、出射側のコアC11〜C42の放射端O11〜O42が第2ピッチで並設された光出射部30と、第2ピッチが第1ピッチよりも小さくなるように出射側の光導波路が形成されたピッチ変換部50と、入射側のコアと出射側のコアとの間で光モード結合できるように、全ての入射側のコアのそれぞれの光出射側の一部分と全ての出射側のコアのそれぞれの光入射側の一部分とが配設された光結合部70と、を備え、光結合部では、2本の出射側のコアの間に1本の入射側のコアが配置され、光結合部において隣り合う2本の入射側のコアの間に配置された2本の出射側のコアによって、ピッチ変換部において交差する交差光導波路が形成されている。【選択図】図1

Description

本発明は、複数の放射光を合成した光ビームの方向を制御する光偏向器に係り、特に、少制御部光偏向器に関する。
近年、空間光通信や距離センサ、レーダ、3Dディスプレイなどへの応用を目的に、光ビームの方向を制御する素子(光偏向素子)の研究開発が進められている。このうち、光の位相制御と多光束干渉を基本原理とする光フェーズドアレイ(OPA:Optical Phased Array)は、機械的な走査なしに光ビーム偏向が可能であり、小型・軽量なデバイスに応用できるものと期待されている(例えば特許文献1参照)。
例えば導波路型光フェーズドアレイでは、各導波路(以下、チャネルともいう)の放射端が水平方向に配列されていれば、放射端の正面から水平方向に光ビームを偏向する。この導波路型光フェーズドアレイは、その位相制御部で各導波路の位相を制御することによって正面の中央に強い光強度を有する光ビームを形成する。
以下では、導波路の放射端の正面の方向を0°とする出射角度θを導入し、出射角度θの2倍の値を光ビームの偏向角度と称する。ここで、出力光ビームが出射角度θの方向に形成される条件を説明する。この条件は、各導波路の放射端から放射された光の強度が均一であると仮定した場合、隣接チャネル間の位相差Δφが等しく、以下の式(1)を満たすこととして与えられる。式(1)において、λは入力光の波長を表し、prは光導波路の放射端のピッチを表す。
Figure 2021113939
式(1)を満たす出射角度θの値が最大値となる角度を最大出射角度θmaxと称する。この最大出射角度θmaxは、式(1)におけるΔφ/2πの値が1/2のとき、すなわち、Δφ=πのときの出射角度θであり、以下の式(2)として与えられる。
Figure 2021113939
また、放射される光ビームの幅に対応する光ビーム広がり角度Φは、近似的に以下の式(3)で与えられる。式(3)において、Nは導波路の放射端の数を表す。
Figure 2021113939
特許6513885号公報
光偏向器において重要な性能指数に光線数(以下、NLと表記する)がある。この光線数NLは、異なる方向に出射された弁別可能な光ビームの最大本数を表し、光フェーズドアレイ素子の解像度限界ともなる。そのため、光偏向デバイスの性能向上のためには、光線数NLの増加が不可欠である。光線数NLは、以下の式(4)で示すことができる。式(4)において、θmaxは最大出射角度を示し、Φは光ビーム広がり角度を示す。式(4)の右辺の分子である最大出射角度θmaxの2倍の値のことを以下では光ビームの最大偏向角度と称する。
Figure 2021113939
前記した式(3)によれば、導波路の放射端の数Nを大きくすると、光ビーム広がり角度Φは小さくなることが分かる。つまり、出力される光ビームの幅は、チャネル数を増加するほど細くすることが可能である。また、前記した各式の関係から以下のことが導かれる。例えば式(4)によれば、光ビームの最大偏向角度が一定のときに光ビーム広がり角度Φを小さくすれば光線数NLは大きくなることが分かる。したがって、光線数NLを増加させるためには、光ビーム広がり角度Φを小さくすること、言い換えると、導波路の放射端の数Nを増加させなければならない。また、前記した式(2)および式(4)によれば、ピッチprを狭めることで、光ビームの最大偏向角度を大きくすることも可能である。光ビームの最大偏向角度が大きくなれば、光線数NLも大きくなる。
上述のように、前記した式(3)によれば、理論的には、光偏向器において、光導波路チャネルの本数を増加することで光ビームの広がりを抑制して細くすることが可能である。一方で、光導波路チャネルの本数を増加することは、位相制御を行うべき光導波路の本数を増加することになる。すなわち、位相制御を行う操作の回数が増加し位相制御が複雑になる、という問題があった。また、位相制御を行うべき光導波路の本数が増加すると、電気的制御に要する消費電力も増加する、という問題もあった。
本発明は、以上のような問題点に鑑みてなされたものであり、光偏向の性能を向上させながら光の位相制御の煩雑さや消費電力の増大を抑制する少制御部光偏向器を提供することを課題とする。
前記課題を解決するために、本発明に係る少制御部光偏向器は、入射側の光導波路を形成する複数本の入射側のコアが第1ピッチで並設された位相制御部と、出射側の光導波路を形成する複数本の出射側のコアの放射端が第2ピッチで並設された光出射部と、前記第2ピッチが前記第1ピッチよりも小さくなるように前記出射側の光導波路が形成されたピッチ変換部と、前記入射側のコアと前記出射側のコアとの間で光モード結合できるように、全ての前記入射側のコアのそれぞれの光出射側の一部分と全ての前記出射側のコアのそれぞれの光入射側の一部分とが配設された光結合部と、を備え、前記光結合部では、2本の前記出射側のコアの間に1本の前記入射側のコアが配置され、前記光結合部において隣り合う2本の前記入射側のコアの間に配置された2本の前記出射側のコアによって、前記ピッチ変換部において交差する交差光導波路が形成されている、こととした。
本発明は、以下に示す優れた効果を奏するものである。
少制御部光偏向器によれば、光導波路の放射端の数を増加させて光偏向の性能を向上させながら、光導波路の放射端の数を増加させることによる光の位相制御の煩雑さや消費電力の増大を抑制することができる。
本発明の実施形態に係る少制御部光偏向器を模式的に示す構成図である。 図1のG−G線断面矢視図である。 図1の少制御部光偏向器の部分的な構成図である。 図3においてHで示す領域を拡大して示す模式図である。 図3においてHで示す領域の他の構成例を示す模式図である。 図3においてHで示す領域の他の構成例を示す模式図である。 図3のA−A線断面におけるコアの配置を示す模式図である。 図3のB−B線断面におけるコアの配置を示す模式図である。 図3のC−C線断面におけるコアの配置を示す模式図である。 図3のD−D線断面におけるコアの配置を示す模式図である。 図3のE−E線断面におけるコアの配置を示す模式図である。 隣接光導波路間の位相差が0の場合の光ビーム遠視野像である。 隣接光導波路間の位相差が0の場合の1次元プロファイルである。 隣接光導波路間の位相差がπの場合の光ビーム遠視野像である。 隣接光導波路間の位相差がπの場合の1次元プロファイルである。 光出射部における光導波路ピッチと最大偏向角度との関係を示すグラフである。 光出射部におけるチャネル数と光ビーム広がり角度との関係を示すグラフである。 図1の少制御部光偏向器を適用した光フェーズドアレイを模式的に示す構成図である。
[少制御部光偏向器の構成]
まず、少制御部光偏向器の構成について図1〜図5を参照して説明する。なお、各図面に示される部材のサイズや位置関係は、説明を明確にするため誇張していることがある。図1および図2に示す少制御部光偏向器1は、複数の放射光を合成した光ビームの方向を制御する光偏向器であって、例えば光スイッチや光フェーズドアレイに適用されるものである。ここでは、図1に示すように、少制御部光偏向器の光ビーム出射方向におけるデバイス中心軸をZ軸に一致させ、Z軸の正の方向を正面としており、複数の放射光を放射する複数の放射端がX軸上に並べられているものとして説明する。
少制御部光偏向器1はアレイ状の複数(n本)の入射側の光導波路と複数(n×2本)の出射側の光導波路とを備えている。以下では、n=4であるものとして説明する。また、光導波路をチャネルとも呼ぶ。光導波路は、シングルモードで光の伝搬を行うことを前提としており、また、TM(Transverse Magnetic)モードの偏光を伝搬する。つまり、伝搬する光は、電界の振幅方向が、進行方向に対して垂直方向となる。導波路は、コアとクラッドから形成され、コアはクラッドに比較して屈折率が大きい。
少制御部光偏向器1は、光導波路を形成するコアの周囲にクラッドを備えているが、図1、図3、図4および図5では図示を省略した。図2は、少制御部光偏向器1の光結合部70を含む断面図であって、所定の基板110上に形成されたコアPSn(n=1〜4)と、コアPSn(n=1〜4)の両側に配置されたコアCn1,Cn2(n=1〜4)と、クラッド90と、を例示した模式図である。
図1に示すように、少制御部光偏向器1は、複数の入射側の光導波路を並べた位相制御部10と、複数の出射側の光導波路を並べた光出射部30と、位相制御部10と光出射部30との間に設けられたピッチ変換部50と、位相制御部10とピッチ変換部50との間に設けられた光結合部70と、を備えている。なお、隣接する位相制御部10と光出射部30、光出射部30とピッチ変換部50、および、ピッチ変換部50と光結合部70は、それぞれ互いに同じ光導波路の一部を保有しているため、隣接する各部で共有する光導波路の構成については、重複する説明を省略する。
(位相制御部)
位相制御部10は、入射側の光導波路を形成する複数本の入射側のコアPSn(n=1〜4)が第1ピッチで並設されたものである。以下では、PSn(n=1〜4)を、単にPSnと表記する。位相制御部10には、入射側のコアPSnが所定の第1ピッチで並設されている。例えばコアPS1とコアPS2とは、図3に示すように、光導波路の幅方向にピッチp1で並設されている。位相制御部10は、光の位相を制御可能なアレイ状の光導波路を有している。位相制御部10は、図示しない電極線を介して送られる電圧や電流などの外部信号によって光導波路を形成するコアの屈折率を変化させる。
位相制御部10の光導波路を形成する入射側のコアPS1〜PS4の材料は、外部信号の印加により屈折率が変化する材料である。例えば印加電圧によって屈折率が変化する液晶材料や電気光学材料、あるいは、印加電流に伴うジュール熱によって屈折率が変化する熱光学材料などが利用できる。本実施形態では、位相制御部10の光導波路を形成するコアの材料は、例えば電気光学効果を発現する電気光学ポリマー(EOポリマー)であるものとする。クラッドの材料としては、例えばSiO2等の酸化物や、ポリマー材料を用いることができる。ポリマー材料には、ポリメチルメタクリレート(PMMA)や、ポリイミド系等を用いることができる。ポリイミド系としては、ポリイミドやフッ化ポリイミドを挙げることができる。
(光出射部)
光出射部30は、出射側の光導波路を形成する複数本の出射側のコアCn1,Cn2(n=1〜4)の放射端On1,On2(n=1〜4)が第2ピッチで並設されたものである。以下、Cn1,Cn2(n=1〜4)を単にCn1,Cn2と表記し、On1,On2(n=1〜4)を単にOn1,On2と表記する。光出射部30はアレイ状の光導波路を有している。図3に示すように、例えば放射端O11と放射端O21とは、光導波路の幅方向にピッチp2で並設されている。また、放射端O21と放射端O12とはピッチp2で並設されており、放射端O12と放射端O22とはピッチp2で並設されている。なお、ピッチp2は、前記した式(1)〜式(3)に記載されたピッチprのことである。
光出射部30は、位相制御部10を形成する入射側のコアPSnの本数の2倍の数の放射端を有する。出射側のコアCn1,Cn2の材料は、例えばシリコン(Si)や窒化シリコン(SiN)等の高い屈折率を有する材料であることが好ましい。このようにすることで、光導波路のコアCn1,Cn2の屈折率と、クラッドの屈折率との差が大きくなり、光導波路のコアCn1,Cn2内部への光閉じ込め効果を高めることができる。その結果、放射端On1,On2のピッチを狭めても、隣接する光導波路間において光の浸み出しを抑えクロストークの影響を抑制することができる。
(ピッチ変換部)
ピッチ変換部50は、第2ピッチ(ピッチp2)が第1ピッチ(ピッチp1)よりも小さくなるように出射側の光導波路が形成されたものである。ピッチ変換部50は、複数本の出射側のコアCn1,Cn2を有している。出射側のコアCn1,Cn2における放射端On1,On2のピッチp2は、入射側のコアPSnのピッチp1よりも小さく形成されている。
ピッチ変換部50において、出射側の光導波路は曲げ光導波路を含んでいる。図3に示すように、例えば出射側のコアC11等は曲げ光導波路である。これによれば、仮に直線状の光導波路によって出射側のコアC11を形成した場合に比べて、所望の第2ピッチ(p2)を設定する際に、出射側のコアC11の長さを短くすることができ、装置を小型化する効果を奏する。
(光結合部)
光結合部70は、入射側のコアPSnと出射側のコアCn1,Cn2との間で光モード結合できるように、全ての入射側のコアPSnのそれぞれの光出射側の一部分と全ての出射側のコアCn1,Cn2のそれぞれの光入射側の一部分とが配設されたものである。
また、光結合部70では、2本の出射側のコアCn1,Cn2の間に1本の入射側のコアPSnが配置されている。言い換えると、位相制御部10の入射側のコアPSnの両隣に、1本ずつ出射側のコアCn1,Cn2が並列している。例えば入射側のコアPS1の両隣に1本ずつ出射側のコアC11,C12が並列している。また、入射側のコアPS2の両隣に1本ずつ出射側のコアC21,C22が並列している。
光結合部70では、図1に示すように、入射側のコアPSnの部分領域と出射側のコアCn1,Cn2の部分領域とが平行に配置されている。例えば1つの入射側のコアPS1を伝搬する光は、モード結合により、隣接する出射側のコアC11,C12にそれぞれ乗り移ることができる。つまり、光結合部70は、位相制御部10のコアを伝搬してきた光を、隣接する光導波路に光分配させる。
なお、分配に要する光結合部70のZ軸方向の長さや、対向する光導波路の間の長さd(図4A参照)は、光電磁界分布の空間的な重なり積分とモード結合理論より算出することができる。導波路間の光結合は、導波路を伝播するモードフィールド(光振幅分布)の相互作用に依存する。結合度を示す結合係数は、モードの空間的な重なりを表す重なり積分χとして次の式(5)で与えられる。式(5)において、fEOは、入射側のコアPSn中のモードフィールド(光振幅分布)を示し、fSiNは、出射側のコアCn1,Cn2中のモードフィールド(光振幅分布)を示す。
Figure 2021113939
光結合部70における断面構造について図2を参照して説明する。図2は図1のG−G線断面矢視図である。ここでは、クラッド90は、コアPSnの上下左右の全周囲と、コアCn1,Cn2のそれぞれの上下左右の全周囲とを覆うように形成されている。また、クラッド90は、基板110側から、下部クラッド91と、中層クラッド92と、上部クラッド93と、をこの順に備えているものとして説明する。
下部クラッド91は、コアPSnやコアCn1,Cn2の下に配置されるクラッドである。ここでは、入射側のコアPSnの下に設けられたクラッドと、出射側のコアCn1,Cn2の下に設けられたクラッドとは、同じ厚みで連続的に形成されている。つまり、下部クラッド91は、コアPSnやコアCn1,Cn2に共有化されている。ただし、これに限らず、コア毎にそれぞれ個別のクラッドとしてもよい。ここで個別のクラッドとは、サイズが互いに異なるクラッドや、材料が互いに異なるクラッドでもよい。
中層クラッド92は、下部クラッド91の上に、コアの高さまで積層されてコアの側面を覆うクラッドである。ここでは、コアPSnの高さが、コアCn1,Cn2の高さよりも高いこととしており、中層クラッド92は、コアCn1,Cn2の上面を完全に被覆し、コアPSnの上面と同じ高さまで積層されている。コアPSnとコアCn1との間は、クラッド材料で埋められている。また、コアPSnとコアCn2との間は、クラッド材料で埋められている。さらに、コアCn1とコアCn2との間もクラッド材料で埋められている(図1参照)。
上部クラッド93は、中層クラッド92の上に、コアの上面を完全に覆って光を閉じ込めるのに十分な厚さで積層されたクラッドである。ここでは、上部クラッド93は、コアPSnの上面を完全に被覆している。
上部クラッド93と中層クラッド92は、形式的に区分したものであり、同じハッチングで示すように同じ材料で同じタイミングで形成することができ、総称して上側クラッドと呼称する。下部クラッド91のハッチングは、上側クラッドのハッチングと異なるが、同じ材料で形成することができる。
前記したように入射側のコアPSnは有機材料からなり、出射側のコアCn1,Cn2は無機材料からなる。具体的には、入射側のコアPSnの材料は、例えばEOポリマーである。また、出射側のコアCn1,Cn2の材料は、例えばSiNである。また、クラッドは、例えばSiO2である。
光結合部70における平面構造について図4Aを参照して説明する。図4Aは、図3においてHで示す領域を拡大して示す模式図である。入射側のコアPS2の両隣に、1本ずつ出射側のコアC21,C22が並列している。出射側のコアC21,C22は、入射側のコアPS2から間隔dだけ離してそれぞれ対称に配置されている。
図4Aに示すように平面視では、光結合部70において、出射側のコアCn1,Cn2は、端部71から幅が広がる勾配を有した形状である。例えば出射側のコアC21において入射側のコアPS2と対向する側(図4Aにおいて下側)に配置された側面は、入射側のコアPS2の側面に平行に配置され、端部71の幅が最も小さい。そして、出射側のコアC21において、端部71から光出射側(図4Aにおいて右側)に向かってコア幅は徐々にリニアに大きくなっている。
また、出射側のコアC22において入射側のコアPS2と対向する側(図4Aにおいて上側)に配置された側面は、入射側のコアPS2の側面に平行に配置され、端部71の幅が最も小さい。そして、出射側のコアC22において、端部71から光出射側(図4Aにおいて右側)に向かってコア幅は徐々にリニアに大きくなっている。
このように、光結合部70において、入射側のコアPSnを両側から挟むように配置された2本の出射側のコアCn1,Cn2は全体として端部71が先細りの形状である。このように出射側のコアC21の勾配および端部71の輪郭と、出射側のコアC22の端部71および勾配の輪郭と、を仮想的に繋げてできる形状を持った構造を以下ではテーパ構造と称する。
なお、図4Bに示すように、光結合部70において、入射側のコアPS2を両側から挟むように配置された2本の出射側のコアC21,C22の幅が均一であっても構わない。ただし、出射側のコアC21,C22の先端にテーパ構造を備えていると、結合効率を高める効果がある。また、光結合部70において、出射側のコアC21,C22と、入射側のコアPS2と、が接触するように配置しても構わない。その場合、図4Cに示すように、テーパ構造を有することが好ましい。
(光ビーム成形)
少制御部光偏向器1における光ビーム成形について図1および図3を参照して説明する。導波路型光フェーズドアレイにおいて、光ビームを成形する条件の1つとして、最大出射角度方向に光ビームを出射する際には、光出射部30において隣接光導波路間の位相差をπとしなければならない。ところが、少制御部光偏向器1における光結合部70において、例えば入射側のコアPS1から出射側のコアC11,C12へ分岐したそれぞれの光は同位相であり、これら隣接しているコアC11,C12間には位相差を与えることができない。また、例えば入射側のコアPS2から出射側のコアC21,C22へ分岐したそれぞれの光は同位相であり、これら隣接しているコアC21,C22間には位相差を与えることができない。
しかしながら、本実施形態では、図1に示すように交差光導波路を適用したことで、光の入れ替えを行うことができる。すなわち、光結合部70において隣り合う2本の入射側のコアの間に配置された2本の出射側のコアによって、ピッチ変換部50において交差する交差光導波路が形成されている。また、Z軸を対称軸として、交差光導波路のペアが形成されている。言い換えると、光結合部70において隣り合う2本の入射側のコアの間に配置された2本の出射側のコアに対して、デバイス中心軸(Z軸)に対称な位置に、同様の2本の出射側のコアが形成されている。
具体的には、光結合部70において隣り合うコアPS1とコアPS2との間には、コアC12とコアC21が配置されており、これらコアC12とコアC21は、ピッチ変換部50において交差している。この交差光導波路によって、コアC12の放射端O12の位置と、コアC21の放射端O21の位置と、を入れ替えることができる。そのため、コアC11,C12間と、コアC21,C22間とに対して実質的に位相差を与えたことと等価な効果を奏することができる。
また、コアPS1およびコアPS2の位置からZ軸に対称な位置では、光結合部70において隣り合うコアPS3とコアPS4との間に、コアC32とコアC41が配置されており、これらコアC32とコアC41は、ピッチ変換部50において交差している。
一方、隣り合う2本の入射側のコア自体が、デバイス中心軸(Z軸)に対称な位置に配置されている場合、2つの光導波路は交差していない。具体的には、光結合部70において隣り合うコアPS2とコアPS3との間には、コアC22とコアC31が配置されており、これらコアC22とコアC31は、ピッチ変換部50において交差していない。
ピッチ変換部50において交差する2本の出射側のコアCn1,Cn2は、交差する箇所を含めて同じ厚みで形成されている。交差光導波路は、2つの光導波路が同一平面上で交差した光導波路構造である。図3に示す角度θの値によっては、伝搬する光はクロストークを生じる。クロストークが生じる角度は、光導波路に適用するコアおよびクラッドの屈折率や形状によって変化する。一般には、交差する角度が20度以上であれば、クロストークを生じないことが知られている(参考特許文献:特許第3253007号公報)。また、交差する角度が5度であっても、クロストークを抑制できる構造についての報告も知られている(参考非特許文献:橋本俊和、他3名、“波面整合法による光導波路形状とデバイスの新しい設計法”、レーザー研究、2007、35巻、Supplement号、p.178-179)。したがって、光導波路の材料や構造次第で、交差する角度θが20度以下であってもクロストークを生じないレイアウトは実現可能である。なお、クロストークを生じないとは、光結合部70において例えばコアPS1からコアC21に分配された光は、導波路を交差した後、放射端O21に進み、コアC21からの光が放射端O12から出ることはないことを意味する。
少制御部光偏向器1において、位相制御された光は、入射側のコアPSnから光モード結合によって、出射側のコアCn1,Cn2を伝搬し、放射端On1,On2から各光導波路の外部の自由空間上へ出射する。自由空間に出射された光が回折・干渉することによって光干渉パターンが生じる。少制御部光偏向器1によって形成される光ビームパターンは、この自由空間に出射された光が回折・干渉することによって作られる光干渉パターンである。少制御部光偏向器1は、位相制御部10で各導波路の位相を制御することによって、例えば中央に強い光強度を有する光ビームを形成することができる。また、少制御部光偏向器1は、位相制御部10で各導波路の位相を制御することによって、例えば最大出射角度方向に光ビームを出射することができる。
[少制御部光偏向器の製造方法]
少制御部光偏向器1は、一般的な半導体装置製造プロセスにより製造することができる。例えば基板110上に下部クラッド91を製膜し、出射側のコアの材料を積層してエッチングすることで出射側のコアCn1,Cn2を形成する。そして、出射側のコアをマスクして入射側のコアの材料を積層してエッチングすることで入射側のコアPSnを形成する。そして、下部クラッド91および各コアの上から、上側クラッドを積層することで、少制御部光偏向器1を製造することができる。
[シミュレーション]
本願発明者らは、以下のシミュレーションを行うことで、少制御部光偏向器1の効果を確認した。まず、図1〜図5を適宜参照してシミュレーションの条件について説明する。
<全体構成の条件>
少制御部光偏向器1では、入射側の光導波路の数n=4、出射側の光導波路の数=8、前記した式(3)におけるN(放射端の数)=8とした。位相制御部10は、4本の入射側のコアPSnからなる光導波路である。以下、シミュレーションにおいて入射側のコアを有機コアと呼ぶ。ピッチ変換部50は、8本の出射側のコアCn1,Cn2からなる光導波路とする。以下、シミュレーションにおいて出射側のコアを無機コアと呼ぶ。光出射部30は、8本の無機コアCn1,Cn2からなる光導波路の放射端On1,On2とする。光結合部70は、第n番目の1つの有機コアPSnに対して2つの無機コアCn1,Cn2に光を等分配する。
<構造・材料構成の条件>
(位相制御部10の条件)
ピッチp1=10μm(図5Aを参照)
有機コアPSnの材料:EOポリマー(屈折率1.66)
有機コアPSnの断面形状:正方形(幅1.5μm、厚み1.5μm)
クラッド90の材料:SiO(屈折率1.48)
下部クラッド91の厚み:3μm
クラッド90全体の厚み:7μm
無機コアCn1,Cn2の上に積層されたクラッドの厚み:3.5μm
下部クラッド91の上に積層されたクラッドの厚み:4μm
無機コアCn1,Cn2の材料:SiN(屈折率2.01)
無機コアCn1,Cn2の断面形状:長方形(幅1.0μm、厚み0.5μm)
(光結合部70の条件)
有機コアPSnと無機コアCn1,Cn2で下部クラッド91を共通とした。ここで、各コアは、厚み3μmの下部クラッド上にあり、コアの周囲はSiOで覆われている。また、無機コアは、有機コアと同じ下部クラッド上にある。有機コアPSnの両隣に無機コアCn1,Cn2を並列させた構造とした。
有機コアPSnと無機コアCn1,Cn2との間隔d:0.4μm(一定)
無機コアCn1,Cn2には、図4Aに示すテーパ構造を適用した(図5B、図5Cを参照)。
テーパ先端での幅:0.5μm(図5Bを参照)
テーパ終端での幅:1.0μm(図5Cを参照)
テーパの長さ:500μm
テーパの厚み:0.5μm(一定)
テーパ終端は、ピッチ変換部50の無機コアにそれぞれ接続されている。有機コアPSnは、テーパの終端地点で途切れており、その先へは延長しない構造とした。
(ピッチ変換部50の条件)
無機コアCn1,Cn2については、位相制御部10と同じ材料・断面形状とした。
無機コアCn1,Cn2の材料:SiN(屈折率2.01)
無機コアCn1,Cn2の断面形状:長方形(幅1.0μm、厚み0.5μm)
交差光導波路は、面内で交差する構造である(図5D、図5Eを参照)。図5Dに示すように、無機コアC12と無機コアC21は、交差地点の手前で各導波路の側面部が接触して一体化しており同じ層内で合流している(図5Dを参照)。また、無機コアC12と無機コアC21は、同じ層内で合流した地点から先の放射端側では、X軸方向における配置が入れ替わっている(図5Eを参照)。
交差光導波路の交差角度θ:4°(図3を参照)
ピッチ変換部50では、無機コアCn1,Cn2のすべての光路長を均一にするように、曲げ光導波路等を適用し、長さを調節した。
(光出射部30の条件)
ピッチp2=2μm(図5Eを参照)
<シミュレーション結果>
前記したシミュレーションの条件の下、少制御部光偏向器1の出力光ビームについて、ビーム伝播法(BPM:Beam Propagation Method)によるシミュレーションを行った結果について図6A、図6B、図7A、図7B、図8Aおよび図8Bを参照(適宜各図面参照)して説明する。
(光の方向についての概略)
少制御部光偏向器1は、光出射部30における導波路の位相の分布によって、光の方向を決めることが可能である。導波路間の位相をすべて同位相にすると、図6Aおよび図6Bに示すように、真ん中に鋭いビームを出すことができる。また、導波路間に位相差π(180°)を与えることで、図7Aおよび図7Bに示すように、最大方向にビームを出すことができる。これにより、少制御部光偏向器1は、光ビームを成形しつつ偏向面を大きくすることができることを確認できた。
なお、図6Bおよび図7Bに示すグラフの横軸は、光の出射方向の角度を示しており、縦軸は光強度を示している。ここで、光の出射方向の角度は、図1のX軸とZ軸の交点からX軸の正の方向に測ったプラスの角度と、X軸の負の方向に測ったマイナスの角度とを示している。また、光の各出射方向の角度における光強度については、図1のZ軸上の方向、すなわち少制御部光偏向器1の正面方向における値(最大値)を1、最小値を0に正規化して表わしている。
(隣接光導波路間の位相差が0の場合)
隣接光導波路間の位相差が0の場合の光ビーム遠視野像について図6Aを参照して説明する。図6Aに示す画像は、隣接光導波路間の位相差が0の場合に、光出射部30から得られた光ビームの遠視野像を示す。図6Aでは、光強度を濃淡で示し、濃い領域ほど光強度が高くなっている。これは、位相制御部10の有機コアPS1〜PS4に、同位相となるような光を伝搬させたときの結果である。すなわち、有機コアPS1,PS2といった隣接する光導波路間の位相差が0となっている。この場合、図6Aに示すように、中央にピークを有する光ビームが確認された。この光ビーム幅、すなわち光ビーム広がり角度は7.3°であった。ここで、光ビーム広がり角度の値(7.3°)は、図6Bに示す1次元プロファイルの半値幅から求められたものである。この光ビーム広がり角度の結果についての考察は後記する。
(隣接光導波路間の位相差がπの場合)
隣接光導波路間の位相差がπの場合の光ビーム遠視野像について図7Aを参照して説明する。図7Aに示す画像は、隣接光導波路間の位相差がπの場合に、光出射部30から得られた光ビームの遠視野像を示す。図7Aでは、光強度を濃淡で示し、濃い領域ほど光強度が高くなっている。
このケースでは、位相制御部10の有機コアPS1,PS3には0.5πの位相となるような光を伝搬させ、また、有機コアPS2,PS4には1.5πの位相となるような光を伝搬させている。すなわち、位相制御部10において、奇数番目の有機コアと偶数番目の有機コアとの位相差をπとした。これにより、また、ピッチ変換部50に交差導波路が存在するため、光出射部30において、すべての隣接光導波路間の位相差をπにすることができる。この場合、図7Aに示すように、最大出射方向に光ビームのピークが確認された。最大出射角度は±21°、つまり最大偏向角度は42°であった。ここで、最大偏向角度(42°)は、図7Bに示す1次元プロファイルにおける2つのピークの間の角度として求められたものである。
(最大偏向角度について)
ここで、少制御部光偏向器1の光出射部30における導波路の放射端のピッチ(p2)と最大偏向角度との関係について図8Aを参照して説明する。図8Aに示すグラフの横軸は、放射端のピッチ[μm]であり、縦軸は、前記した式(4)の右辺の分子である最大偏向角度[°]であって、前記した式(2)で示される最大出射角度θmaxの2倍の値である。図8Aに示すグラフは、前記した式(2)および式(4)を用いて、入力光の波長λ=1550nmとする計算条件から計算した理論値を図示したものである。このグラフから、導波路の放射端のピッチが狭くなるほど、最大偏向角度が大きくなることが分かる。本シミュレーションでは、光出射部30の条件として、ピッチp2=2μmとしており、シミュレーション結果の最大偏向角度(42°)は、図8Aにおいてピッチが2μmの場合の最大偏向角度の理論値とよく一致するものとなった。
(光ビーム広がり角度について)
ここで、少制御部光偏向器1の光出射部30におけるチャネル数と光ビーム広がり角度との関係について図8Bを参照して説明する。光出射部30におけるチャネル数とは、光出射部30における導波路の放射端On1,On2の数Nのことである。図8Bに示すグラフの横軸は、光出射部におけるチャネル数、つまり光出射部30における導波路の放射端On1,On2の数Nである。また、縦軸は、前記した式(3)で示される光ビーム広がり角度Φ、つまりビームの細さである。図8Bに示すグラフは、前記した式(3)を用いて、入力光の波長λ=1550nm、および、ピッチpr=2μmとする各計算条件から計算した理論値を図示したものである。このグラフから、光の出てくるチャネル数、すなわち放射端の数Nが増加するほど、広がり角度を減らしてビームの収束性が良くなることが分かる。本シミュレーションでは、入射側の光導波路の数n=4、放射端の数N=8の条件としており、シミュレーション結果の光ビーム広がり角度の値(7.3°)は、図8Bにおいてチャネル数が8の場合の光ビーム広がり角度の理論値とよく一致するものとなった。
これに対して、従来構造の光偏向器では、入射側の光導波路の数nと放射端の数Nとが等しい。従来構造の光偏向器において、位相制御部における光導波路の数が4であれば、光ビーム広がり角度は、図8Bにおいてチャネル数が4の場合の理論値(18°以上)と同じになってしまう。一方、少制御部光偏向器1は、位相制御部において従来構造の光偏向器が保持するのと同じ数の光導波路を備えていても、ビームの収束性が良くなる。つまり、少制御部光偏向器1は、位相制御部10において少ない本数の光導波路を保持して光の位相制御の煩雑さを抑制しつつ、より多くのチャネル数(放射端の数N)を確保することができる。また、少制御部光偏向器1は、位相制御部10にn本の入射側のコアを備えているときに、光出射部30から出射する光ビーム広がり角度Φについて、従来構造の光偏向器において位相制御部に2n本の入射側のコアを備えているものに相当する性能を発揮することができる。
また、少制御部光偏向器1は、光出射部30におけるチャネル数(放射端の数)がN本の場合に成形される光ビームを、N/2本の光導波路を備えた位相制御部10で制御することができる。ここで、位相制御部10における1本の光導波路の時間当たりの消費電力をx[W]とすると、少制御部光偏向器1であれば、x×N/2[W]の電力で位相制御部10の全体が動作可能である。つまり、従来構造の光偏向器に必要なx×N[W]の電力に比べて1/2に抑えることが可能である。
さらに、少制御部光偏向器1は、光結合部70の有機コアPSnを両側から挟む無機コアCn1,Cn2に図4Aに示すテーパ構造を適用したことにより、有機コアPSnと無機コアCn1,Cn2との結合効率を85%にすることができた。なお、無機コアCn1,Cn2に、図4Bに示す構造を適用した場合、結合効率は65%であり、テーパ構造を適用した場合と比べて低下した。
[応用例]
光フェーズドアレイについて図9を参照して説明する。図9は、図1の少制御部光偏向器を適用した光フェーズドアレイを模式的に示す構成図である。なお、光フェーズドアレイ100は、光導波路を形成するコアの周囲にクラッドを備えているが、図9では図示を省略している。また、図1の少制御部光偏向器1と同じ構成には同じ符号を付して説明を省略する。
光フェーズドアレイ100は、導波路型光フェーズドアレイであって、基板110と、光入射部120と、光スプリッタ130と、複数の電極線140と、少制御部光偏向器1と、を備えている。
基板110は、様々な材料を用いて形成することができる。例えば、基板110の材料としては、ソーダガラス、SiO2、石英、メチルアクリレート、シリコン、LiNbO3、LiTaO3、アルミナ、GaAlAs、InP等を用いることが可能である。基板110の一方の面には、光入射部120と、光スプリッタ130と、複数の電極線140と、少制御部光偏向器1と、が形成されている。
光入射部120は、外部から光を入射する部分であり、1本以上の光導波路から形成される。光源としては、レーザー光源や発光ダイオード(LED)等を適用することができる。光フェーズドアレイ100には、さらに必要に応じて、光源と光入射部120との間に、ボールレンズやシリンドリカルレンズ等を備えるようにしてもよい。光スプリッタ130は、光入射部120を導波した光を、アレイ状に配列した各光導波路に分配する光学素子である。一例として、多モード干渉を利用したMMI(Multi Mode Interference)やY分岐などが挙げられる。
複数の電極線140は、少制御部光偏向器1の位相制御部10の各チャネルにそれぞれ電気的に接続されている。位相制御部10は、複数の電極線140から各チャネルに電圧や電流を加えることによって、位相制御部10の光導波路内を伝搬する光の位相が制御可能になっている。なお、位相制御部10における必要な電力消費量は、チャネル数の増加に伴って増大するため、チャネル当たりの消費電力を小さくすることが望ましい。電極線140の材料としては、例えば、Al、Cu、Au、Ti、Crなどの金属を用いることができる。電極線140を透明電極としてもよく、その場合、材料としては、IZO(Indium Zinc Oxide:インジウム亜鉛酸化物)やITO(Indium Tin Oxide:インジウム−スズ酸化物)などを挙げることができる。
光フェーズドアレイは、複数の放射端から1本のビームを作るときに、放射端のピッチを狭くすると、最大偏向角度が大きくなり、また、放射端の本数を多くすると、出力光ビームを細く絞ることができる。ただし、従来構造の光フェーズドアレイでは、光導波路の放射端と位相制御部の光導波路とが1対1で対応している。そのため、放射端のピッチを狭くすると、位相制御部の光導波路を非常に緻密に作らなくてはならず、また、放射端の本数を多くすると、位相制御部における位相制御にかかる消費電力も増加してしまう。
一方、光フェーズドアレイ100は、位相制御部10の光導波路の数nに対して光出射部30における光導波路の放射端の数を2nに増加させた構造を有している。
また、従来構造の光フェーズドアレイでは、光出射部にN本の放射端を備えている場合、位相制御部にも同じくN本の光導波路が必要である。
一方、光フェーズドアレイ100は、位相制御部10の光導波路の数をN/2本に低減しても、N本の放射端を備えた光フェーズドアレイと同じ光ビーム広がり角度Φを有するビーム光線が得られる性能を発揮すると共に消費電力を抑制することができる。
[変形例]
前記実施形態に係る少制御部光偏向器において、交差光導波路は平面交差することとして説明したが、一方の光導波路が他方の光導波路の上に乗り上げて立体交差することも可能である。ただし、交差光導波路は平面交差する方が、製造の容易性から好ましい。また、ピッチ変換部50で無機コアの長さを調節する代わりに、放射端の位置で光路長が等しくなるように、位相制御部10において、伝搬する光の位相を調節するようにしてもよい。また、光出射部30から出力する光ビームをZX水平面内から上方(Y軸方向)に出射するために、放射端に回折格子をさらに設けるようにしてもよい。また、少制御部光偏向器として、入射側の光導波路の本数nが4本である形態を説明したが、これに限らず、本数nは例えば8本や16本、あるいはそれ以上でも構わない。
以上、本発明の実施形態に係る少制御部光偏向器について説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変などしたものも本発明の趣旨に含まれることはいうまでもない。
1 少制御部光偏向器
10 位相制御部
30 光出射部
50 ピッチ変換部
70 光結合部
71 端部
90 クラッド
91 下部クラッド
92 中層クラッド
93 上部クラッド
100 光フェーズドアレイ
110 基板
120 光入射部
130 光スプリッタ
140 電極線
PS1,PS2,PS3,PS4 コア(入射側のコア)
C11,C12,C21,C22,C31,C32,C41,C42 コア(出射側のコア)
O11,O12,O21,O22,O31,O32,O41,O42 放射端

Claims (7)

  1. 入射側の光導波路を形成する複数本の入射側のコアが第1ピッチで並設された位相制御部と、
    出射側の光導波路を形成する複数本の出射側のコアの放射端が第2ピッチで並設された光出射部と、
    前記第2ピッチが前記第1ピッチよりも小さくなるように前記出射側の光導波路が形成されたピッチ変換部と、
    前記入射側のコアと前記出射側のコアとの間で光モード結合できるように、全ての前記入射側のコアのそれぞれの光出射側の一部分と全ての前記出射側のコアのそれぞれの光入射側の一部分とが配設された光結合部と、を備え、
    前記光結合部では、2本の前記出射側のコアの間に1本の前記入射側のコアが配置され、
    前記光結合部において隣り合う2本の前記入射側のコアの間に配置された2本の前記出射側のコアによって、前記ピッチ変換部において交差する交差光導波路が形成されている、少制御部光偏向器。
  2. 前記出射側の光導波路は曲げ光導波路を含む、請求項1に記載の少制御部光偏向器。
  3. 前記ピッチ変換部において交差する2本の前記出射側のコアは、交差する箇所を含めて同じ厚みで形成されている、請求項1または請求項2に記載の少制御部光偏向器。
  4. 前記光結合部において、前記出射側のコアは、端部から幅が広がる勾配を有した形状である、請求項1から請求項3のいずれか一項に記載の少制御部光偏向器。
  5. 前記光結合部において、前記入射側のコアを両側から挟むように配置された2本の前記出射側のコアは全体として前記端部が先細りの形状である、請求項4に記載の少制御部光偏向器。
  6. 前記入射側のコアは有機材料からなり、前記出射側のコアは無機材料からなる、請求項1から請求項5のいずれか一項に記載の少制御部光偏向器。
  7. 前記入射側のコアの下に設けられたクラッドと、前記出射側のコアの下に設けられたクラッドとは、同じ厚みで連続的に形成されている、請求項1から請求項6のいずれか一項に記載の少制御部光偏向器。
JP2020007324A 2020-01-21 2020-01-21 少制御部光偏向器 Active JP7356918B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020007324A JP7356918B2 (ja) 2020-01-21 2020-01-21 少制御部光偏向器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007324A JP7356918B2 (ja) 2020-01-21 2020-01-21 少制御部光偏向器

Publications (2)

Publication Number Publication Date
JP2021113939A true JP2021113939A (ja) 2021-08-05
JP7356918B2 JP7356918B2 (ja) 2023-10-05

Family

ID=77076928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007324A Active JP7356918B2 (ja) 2020-01-21 2020-01-21 少制御部光偏向器

Country Status (1)

Country Link
JP (1) JP7356918B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084681A1 (ja) * 2022-10-21 2024-04-25 株式会社アドバンテスト 光導波路、および、光導波路の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886926A (ja) * 1994-09-19 1996-04-02 Nhk Spring Co Ltd 光分岐ディバイス
US20170131615A1 (en) * 2015-11-10 2017-05-11 Korea Advanced Institute Of Science And Technology Photonic Phased Array Antenna
JP2019100932A (ja) * 2017-12-06 2019-06-24 日本放送協会 光偏向素子の性能評価装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886926A (ja) * 1994-09-19 1996-04-02 Nhk Spring Co Ltd 光分岐ディバイス
US20170131615A1 (en) * 2015-11-10 2017-05-11 Korea Advanced Institute Of Science And Technology Photonic Phased Array Antenna
JP2019100932A (ja) * 2017-12-06 2019-06-24 日本放送協会 光偏向素子の性能評価装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HATORI, NOBUAKI ET AL.: "A Novel Spot Size Convertor for Hybrid Integrated Light Sources on Photonics-Electronics Convergence", THE 9TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP), JPN6023034710, August 2012 (2012-08-01), ISSN: 0005138429 *
HIRANO, YOSHIKUNI ET AL.: "Beam deflection on optical phased arrays with electro-optic polymer waveguides.", 2017 IEEE PHOTONICS CONFERENCE (IPC), JPN6023034709, October 2017 (2017-10-01), ISSN: 0005138428 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084681A1 (ja) * 2022-10-21 2024-04-25 株式会社アドバンテスト 光導波路、および、光導波路の製造方法

Also Published As

Publication number Publication date
JP7356918B2 (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
JP5433919B2 (ja) 光機能素子、その駆動方法及び製造方法
JP6596201B2 (ja) 光偏向素子
EP1653260A1 (en) Photonic crystal waveguide, homogeneous medium waveguide, and optical device
JP2007072433A (ja) 光集積素子及び光制御素子
JP2009048021A (ja) 光偏向素子および光偏向モジュール
JP6028339B2 (ja) 波長選択性経路切換素子
JP6370505B1 (ja) 光合波器
JP2018010118A (ja) 光偏向装置
JP3200629B2 (ja) フォトニックバンドギャップ構造を用いた光変調器及び光変調方法
JP7356918B2 (ja) 少制御部光偏向器
US7580594B2 (en) Optical modulation element and optical modulation device having the same
JP4327064B2 (ja) 光制御素子
JP2017198986A (ja) 回折構造体、回折格子、回折格子アレイ、光フェーズドアレイ、光変調器、光フィルタ、及びレーザ光源
JP2008065104A (ja) マルチモード干渉光カプラ
JP3936865B2 (ja) 光スイッチ
JP2004045709A (ja) 結合光導波路
JP3660021B2 (ja) 空間型光偏向素子
JP6539195B2 (ja) 光回路
JP2023114588A (ja) 光偏向素子およびその製造方法
WO2021200335A1 (ja) 光変調器
WO2023026390A1 (ja) モード変換器、モード変換装置および光デバイス
JP2019101299A (ja) 光偏向装置
JP2018194630A (ja) 光偏向素子の性能指数の測定装置、及び、光偏向素子の性能指数の測定プログラム
JPWO2006049031A1 (ja) 光スイッチ及び経路切り替え方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7356918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150