JP2021105218A - 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 - Google Patents
広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 Download PDFInfo
- Publication number
- JP2021105218A JP2021105218A JP2021066838A JP2021066838A JP2021105218A JP 2021105218 A JP2021105218 A JP 2021105218A JP 2021066838 A JP2021066838 A JP 2021066838A JP 2021066838 A JP2021066838 A JP 2021066838A JP 2021105218 A JP2021105218 A JP 2021105218A
- Authority
- JP
- Japan
- Prior art keywords
- silver
- silver nanoparticles
- particles
- particle size
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Of Electric Cables (AREA)
- Conductive Materials (AREA)
Abstract
Description
(1) 熱分解性を有する銀化合物(a)と、(a)と錯体形成しうるアミン化合物(b)とを有機溶媒(c)中で反応させて錯体を形成し、得られた錯体を加熱して熱分解させることにより、銀ナノ粒子を形成する銀ナノ粒子の製造方法であって、(b)が、直鎖状のアミノアルコールであり、その直鎖状分子の両末端にアミノ基と水酸基とを1つずつ持ち、直鎖状分子構造内に、エーテル結合を有するアミノアルコールであることを特徴とする銀ナノ粒子の製造方法。
(3) (b)が、ジグリコールアミンである上記(1)又は(2)記載の銀ナノ粒子の製造方法。
(4) (a)がシュウ酸銀である上記(1)〜(3)のいずれかに記載の銀ナノ粒子の製造方法。
(5) (a)と(b)との錯体形成反応時に、銀化合物(a)100重量部に対して5〜20重量部の水を存在させることを特徴とする上記(1)〜(4)のいずれかに記載の銀ナノ粒子の製造方法。
(6) (b)/[(a)に含まれる銀原子]のモル比が0.7〜2.0であることを特徴とする上記(5)記載の銀ナノ粒子の製造方法。
(7) (c)/(a)の重量比が0.8〜1.3であることを特徴とする上記(1)〜(6)のいずれかに記載の銀ナノ粒子の製造方法。
(9) 上記(1)〜(8)のいずれかに記載の方法により銀ナノ粒子を作製し、得られた銀ナノ粒子を有機溶媒に分散し、さらに有機バインダーを添加することを特徴とする、銀塗料組成物の製造方法。
(10) 上記(8)記載の方法により得られた銀ナノ粒子分散体又は上記(9)記載の方法により得られた銀塗料組成物を基板上に塗布し、焼成して銀導電層を形成する工程を含む銀導電材料の製造方法。
以下、詳細に説明する。
〔1.銀化合物(a)の説明〕
本発明の銀粒子の製造方法では、まず、出発原料として熱分解性を有する銀化合物を用いる。熱分解性を有する銀化合物とは、後述する成分(b)と錯体化して、通常の設備で可能な加熱条件下で熱分解する銀化合物をいう。具体的には、シュウ酸銀、硝酸銀、酢酸銀、炭酸銀、酸化銀、亜硝酸銀、安息香酸銀、シアン酸銀、クエン酸銀、乳酸銀等を適応できる。これら銀化合物のうち、特に好ましいのは、炭酸銀又はシュウ酸銀(Ag2C2O4)である。さらに好ましくはシュウ酸銀である。シュウ酸銀は、還元剤を要することなく比較的低温で分解して銀粒子を生成することができる。また、分解により生じる二酸化炭素はガスとして放出されることから、溶液中に不純物を残留させることもないためである。
次に、本発明においては、(b)成分として銀化合物と錯体形成しうるアミン化合物を用いる。この化合物は、銀化合物と錯体を形成して銀化合物の熱分解温度を下げ、低温で銀粒子を生成することを可能にする機能を有する。同時に、アミン化合物の有する有機基により、銀粒子の分散安定性の効果を持たせる保護剤の機能を有する。このようなアミン化合物としては、銀化合物と錯体を形成しうるアミン化合物であれば特に限定されない。特に、アミン化合物のアミノ基に結合する水素原子の数は、1つまたは2つ、すなわち、1級アミン(RNH2)、又は2級アミン(R2NH)が好ましい。
本発明者の検討により、これらの酸素原子を含むアミン化合物は、刺激臭が抑えられるだけでなく、そのうち特に以下に説明する特定のアミノアルコールは、得られる銀粒子の物性も優れていることが判明した。
次に、本発明においては、(b)成分である銀化合物と錯体形成しうるアミン化合物として、以下のものを使用することを特徴とする。すなわち、(i)直鎖状構造であって、(ii)アミノ基と水酸基が直鎖状分子の量末端に1つずつ持ち、かつ(iii)直鎖状構造内にエーテル結合を1つ以上有するアミノアルコール(b1)を使用することが特徴である。これらのアミン化合物は、銀化合物と錯体を形成することにより、銀化合物の熱分解温度を下げ、低温で銀粒子を生成することを可能にする機能を有する。さらに、本発明においては、得られる銀粒子の粒径を容易に大きくかつ広い分布のものとすることを可能にする。すなわち、上記の(b)成分を使用することにより、意外にも、得られる銀ナノ粒子は、粒径が比較的大きく、しかも粒度分布が広いものであることが本発明者らの検討により判明したのである。この大粒径で分布が広い銀ナノ粒子は、後述するように、優れた効果を有するものである。
このアミン化合物(b1)は、(i)直鎖状構造を有する。ここで「直鎖状」とは、アミン化合物を構成する炭素原子とヘテロ原子とが、直鎖状につながっていて分岐を有さないことをいう。この炭素原子とヘテロ原子の直鎖状構造の両末端にそれぞれ、(ii)アミノ基と水酸基とを有している。そして直鎖状構造内に(iii)1つ以上のエーテル結合を有している。エーテル結合の数は1つ以上であれば限定されない。
これら(i)〜(iii)の特徴を有することにより、後述するメカニズムにより上述した優れた効果が得られていると考えられる。
以上説明した(b1)成分を銀化合物と錯体形成するアミン化合物を用いることにより、大粒径で分布の広い銀ナノ粒子を得ることのできるメカニズムは完全には明らかではない。しかし、本発明者は以下のように推測している。
アミン化合物と銀化合物の錯体形成は、アミン化合物のアミノ基の非共有電子対が、銀原子の空軌道に配位して形成される。アミン化合物中の水酸基についても、アミノ基と同様に極性がありマイナスに帯電していることから、銀原子へ接近しやすい挙動を示すと考えられる。この性質を踏まえ、(b1)成分である特定のアミノアルコールの銀原子の配位結合状態について、以下のモデルが考えられる。i)アミノ基が銀原子へ配位し、アルキル鎖が外側(分散媒側)へ直線状に配向するモデル(図1−1)、ii)アミノ基が銀原子へ配位し、水酸基や構造中のエーテル結合部分の酸素原子も銀原子側へ近づき安定化するモデル(図1−2)である。この2つの配位結合モデルが存在するために、銀原子周辺でのアミン化合物による立体障害が一様ではない。このため、出来上がる粒子径にバラつきが生まれ、大粒子径から小粒子径まで幅広く形成されると考えられる。
本発明では、(b1)成分と併用して、酸素原子を含むアミン化合物、特に炭素数3〜4のアミノアルコール(b2)を用いることができる。(b2)成分は、粒子径を大きく、かつ粒度分布を広くする効果を一層上げることができるので好ましい。
さらに好ましくは、(i)炭素数3〜4の分岐型1級アミノアルコールであって、(ii)アミノ基と水酸基とを1つずつ持ち、かつ(iii)炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されているもの、またはiv)炭素数3の直鎖状2級アミノアルコールである。このような特定のアミノアルコールを用いることにより、特に得られる銀粒子の粒径を容易に大きくかつ広い分布のものとすることを可能にする。
ここで、(i)「分岐型」とは、炭素原子とヘテロ原子とからなる骨格が直線状ではなく枝分かれしていることをいう。また(ii)アミノ基と水酸基とを1つずつ持つものであれば、その数は限定されないが、通常は各々1つずつが好ましい。(iii)「炭素数2のアルキル鎖を介して、アミノ基と水酸基が結合されている」とは、炭素原子とヘテロ原子とからなる骨格中、隣り合った2つの炭素原子に各々、アミノ基と水酸基とが結合していることをいう。
この条件を満たすアミノアルコール(b2)を併用することにより、アミン化合物(b1)のみを使用した場合と比べて、銀化合物との錯体反応をより促進させることができ、かつ一層大粒径で分布の広い粒子を得ることができる。
なお、以上の(b2)成分は、1種のみを用いても、2種以上混合して用いてもよい。
本発明ではさらに、(a)と(b)の錯体形成時に、以上説明した(b1)(b2)成分以外のアミン化合物を存在させることができる。
この成分は、立体障害効果により、銀粒子の分散安定性の効果を持たせる機能を有する。
(b1)(b2)成分以外のアミン化合物として、特に分子の長さが5Å以上のものが好ましい。すなわち、分子の長さが5Å以上であって、前述した(b1)及び(b2)の各要件にあてはまらないアミン化合物である。
ここで、分子の長さとは、水素原子を含まない最も距離の長い2原子の距離である。この分子の長さは計算により求めることができる。計算条件は、密度汎関数法、関数 ωB97X-D、基底関数 6-31+G*、環境 真空中 エネルギー状態 基底状態、で、SPARTAN`16V1,1,0 など各種の分子計算ソフトウェアで計算できる。
分子の長さは好ましくは7Å以上である。もっとも、あまり長いと沸点が高くなり、除去することが難しくなるので、好ましくは、8Å以下である。
中でも、アミン化合物を構成する原子が、N、C及びHであるもの、又はN、C、H及びOであるものが好ましい。
アミン化合物のアミノ基に結合する炭化水素基の数は限定されないが、1つまたは2つである1級アミン又は2級アミンが特に銀と配位結合しやすいので好ましい。
このような(b3)成分としては、例えば炭素総数4以上の脂肪族炭化水素モノアミンが挙げられる。
以上の(b3)成分は、1種類もしくは2種類以上併用しても可能である。
(b2)/(b)は、好ましくは0.3〜0.8(モル比)、好ましくは0.4〜0.8である。この範囲は、大粒子で高分布を持つ銀ナノ粒子を製造するのに、最も適している。前記モル比率が、0.3よりも小さくなると、分子の長さが長いアミン化合物の添加量が多くなり、粒子が全体に小さくなり、粒度分布も狭くなる傾向があり好ましくない。また、前記モル比率が0.8より大きくなると、保護剤としての立体障害効果が弱くなり、合成時に銀粒子の融着が起こるリスクが高くなる。
銀化合物の銀原子とアミン化合物(b)との混合量について、そのモル比(アミン化合物/銀化合物の銀原子)が、0.7〜2.0 となるようにしてアミン化合物(b)の量を調整するのが望ましい。そうすることにより、粒径にばらつきが生まれ、目的の粒径範囲の銀粒子を得ることが容易である。より好ましくは0.7〜1.5、さらに好ましくは0.7〜1.3もっとも好ましくは0.7〜1.3である。
他方、モル比が0.7を下回ると、扁平状の粒子ができやすく凝集しやすいため、銀塗料組成物の分散安定性が低くなる。
本発明は、以上説明した銀化合物とアミン化合物の錯体形成反応を、有機溶媒の存在下で行うのが望ましい。
これらの有機溶媒の極性をコントロールすることで、銀ナノ粒子の粒子径もコントロールできるファクターの1つである。例えば、溶媒の極性を低くすることで、(b)または(d)のアミン化合物が銀原子側に近づきやすくなるので、合成される銀ナノ粒子のサイズは小さくなりやすい傾向を持つ。本発明では、極性の官能基を持っている溶媒が好ましく、具体的には、アルコール系溶媒、ケトン系溶媒、アルデヒド系溶媒、アミド系溶媒、エスエル系溶媒、ニトリル系溶媒が好ましい。特にアルコール系溶媒が好ましく、中でも炭素数3〜12のアルコールが好ましい。例えば、n−プロパノール(沸点bp:97℃)、イソプロパノール(bp:82℃)、n−ブタノール(bp:117℃)、イソブタノール(bp:107.89℃)、sec−ブタノール(bp:99.5℃)、tert−ブタノール(bp:82.45℃)、n−ペンタノール(bp:136℃)、n−ヘキサノール(bp:156℃)、n−オクタノール(bp:194℃)、2−オクタノール(bp:174℃)、n−ノナノール(bp:215℃)、5−ノナノール(bp:195℃)、n−デカノール(bp:232.9℃)、n−ウンデカノール(bp:243℃)、2−ウンデカノール(bp:131℃)、n−ドデカノール(bp:259℃)、2−ドデカノール(bp:250℃)等が挙げられる。
これらの中でも、後に行われる錯化合物の熱分解工程の温度を高くできること、銀ナノ粒子の形成後の後処理での利便性を考慮して、n−ブタノール、n−ヘキサノール、n−デカノールが好ましい。これら単独で用いても良いし、2種類以上混同して用いてもよい。
また、有機溶媒は、各成分の十分な撹拌操作のため、前記銀化合物(a)100重量部に対し、80〜130重量部(すなわち有機溶媒(c)と銀化合物(a)との重量比(c)/(a))が0.8〜1.3となるように有機溶媒を混合したものが好ましい。さらに好ましくは銀化合物100重量部に対し80〜125重量部である。
本発明において、アミン化合物(b)または(d)と銀化合物(a)とを銀化合物とアミン化合物の錯体形成反応を、有機溶媒の存在下で行うには、いくつかの形態をとり得る。
例えば、固体の銀化合物と有機溶媒特にアルコール溶媒とを混合して、銀化合物―アルコールスラリーを得て、次に得られた銀化合物−アルコールスラリーに、アミン化合物(b)または(d)を添加してもよい。本発明においてスラリーとは、固体の銀化合物が有機溶媒または有機溶媒とアミン化合物との混液中に分散されている混合物を表している。スラリーを得るには、反応容器に、固体の銀化合物を仕込み、それに有機溶媒または有機溶媒とアミン化合物との混液を添加しスラリーを得ると良い。
尚、シュウ酸銀については、乾燥状態において爆発性があることが報告されている。したがって、銀化合物としてシュウ酸銀を用いる場合には、湿潤状態にしたものを利用するのが好ましい。湿潤状態にすることで爆発性が著しく低下し、取扱い性が容易になるためである。そこで、水又は前述した有機溶媒を混合して湿潤状態にして用いればよい。
また、粒子径、粒度分布の調整のために、錯形成時に脂肪族カルボン酸を用いてもよい。脂肪族カルボン酸を添加することで、粒子径は小さく、粒度分布は狭くなる傾向にある。水分量と適宜調整し、利用することが望ましい。前記脂肪族カルボン酸は前記アミン類と共に用いるとよく、銀化合物とアミンを混合させる際に添加して用いることもできる。前記脂肪族カルボン酸としては、飽和又は不飽和の脂肪族カルボン酸が用いられる。例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸; オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。
前記脂肪族カルボン酸は、用いる場合には、原料の前記銀化合物の銀原子1モルに対して、例えば0.05〜10モル程度用いるとよく、好ましくは0.1〜5モル、より好ましくは0.5〜2モル用いるとよい。前記脂肪族カルボン酸の量が、前記銀原子1モルに対して、0.05モルよりも少ないと、前記脂肪族カルボン酸の添加による粒子径制御の効果が弱い。一方、前記脂肪族カルボン酸の量が10モルに達すると、粒子径が小さく揃いすぎる可能性もあるし、洗浄もしくは、表面保護剤置換工程においても、残存する可能性があるので、低温焼成での該脂肪族カルボン酸の除去がされにくくなる。ただし、脂肪族カルボン酸を用いなくてもよい。
本発明では、(b1)成分のアミン化合物とともに、水を用いてもよい。反応系の水分含有量は、銀化合物100重量部に対して5〜20重量部以下の範囲内とするのが好適である。特に好ましくは15重量部以下である。水分含有量については、錯形成に使用するアミン化合物の種類にもよるが、水分含有量が少ないと、得られる銀粒子の粒度分布が揃い、焼結体の空隙が生まれ、本発明で期待される効果が発現しにくいことがある。一方、銀化合物に対して20重量部を超える水分含有量の場合、銀粒子が粗大になりすぎ、粒子が焼結・合一する部分が生まれ、好ましくない。使用する水に関しては、金属イオン不純物を低減したイオン交換水が好ましい。水を添加するタイミングについては、加熱工程の前であればよく、銀−アミン錯体の形成前、あるいは錯体形成後の、いずれの段階で添加してもよい。
また、前述した有機溶媒(c)と水との比率は、水/有機溶媒の重量比が0.03〜0.3が好ましい。より好ましくは0.1〜0.25である。この範囲で特に、本発明の効果を得るのが容易である。
後述する熱分解による銀粒子形成の反応中、水を存在させることにより、形成される銀ナノ粒子の粒径に特にバラつきが生じ、高分布な銀粒子が得られる。そのメカニズムについては、不明な部分もあるが、水が銀化合物、特にシュウ酸銀に近づき、銀アミン錯体形成または、加熱分解する際に、アミン化合物が銀原子へ吸着するのを阻害し、阻害された部分が粒子成長すると考えられる。さらに、この水分子のシュウ酸銀への吸着量も偏りがある(局在化している)ことから、粒径に適度なバラつきが生じると考える。このための適切な量が、銀化合物100重量部に対して5重量部以上である。逆に、銀化合物100重量部に対して20重量部よりも多い量の水を添加すると、銀粒子自体が肥大化し、隣の粒子とも焼結・合一を起こしてしまうことがある。これは、水がアミンの銀原子の吸着を阻害して銀粒子が肥大化するためと推測される。
〔7.液体原料の混合〕
本発明において、通常は、前記極性溶媒(c)の中に、前記錯体形成するアミン化合物(b)を入れ、混合する。必要に応じて、脂肪族カルボン酸、水を添加・混合し、反応に必要な液体原料を調整することができる。
液体原料で、常温で固体の物質があった場合は、適宜加熱を行い混合する事もできる。加熱する温度としては、100℃以下、好ましくは、80℃以下、さらに好ましくは、60℃以下で加熱し、液状化する液体原料の構成が望ましい。前記温度域よりも高い温度だと、銀化合物と混ぜてスラリー化する場合に、先に一部錯体化・シュウ酸分解反応が始まってしまい、系内の均一性が確保されないまま銀ナノ粒子が生成されてしまう可能性がある。
前記銀化合物(a)と前記液体原料を混合し、銀化合物スラリーを調製する。または、先に極性溶媒と前記銀化合物(a)のみを混合し、前記アミン化合物を後で添加してもよい。
生成する錯化合物が一般にその構成成分に応じた色を呈するので、反応混合物の色の変化から、錯化合物の生成反応の進行を検知することができる。また、色の変化で確認がとりにくい場合、反応混合物の粘性の変化や、温度の変化などで生成状態を検知することができる。このようにして、極性溶媒及びアミン化合物を主体とする媒体中に銀アミン錯体が得られる。
反応系の加熱工程において、加熱速度は析出する銀粒子の粒径に影響を及ぼすことから、加熱工程の加熱速度の調整により銀粒子の粒径をコントロールすることができる。ここで、加熱工程の速度は、設定した分解温度まで、3.0〜50℃/minの範囲で調整することが望ましい。昇温時間が遅い方が、粒子成長が起こりやすく大粒子径が形成されやすいが、3.0℃/minよりも遅い昇温速度であると、粒子成長が促進されやすく、隣の粒子とも同一してしまい、好ましくない。
銀化合物の熱分解により、得られた粒子の粒子径により、色が異なるが、黒褐色からグレーまでの色に呈する懸濁液となる。この懸濁液から極性溶媒や過剰のアミン化合物等の除去操作、例えば、銀ナノ粒子の沈降、適切な溶媒(水または、有機溶媒)によるデカンテーション・洗浄操作を行うことによって、目的とする保護剤としてアミン化合物が結合した銀ナノ粒子が得られる。
この銀粒子の洗浄は、溶媒としてメタノール、エタノール、プロパノール等の沸点が150℃以下のアルコールを適応するのが好ましい。そして、洗浄の詳細な方法としては、銀粒子合成後の溶液に溶媒を加え、懸濁するまで撹拌した後、デカンテーションで上澄み液を除去することが好ましい。アミンの除去量は、加える溶媒の体積と洗浄回数で制御可能である。上述の一連の作業を線回数1回とする場合、好ましくは、銀粒子合成後の溶液に対して1/20〜3倍の体積の溶媒を使用し、1〜5回洗浄する。
さらに、上記の銀ナノ粒子に対して、必要に応じて炭素数4以上のアミン化合物(酸素原子を含むものも可)に表面保護剤を置換させる工程により、用途に合ったアミン化合物へ置換してもよい。最終的に置換するアミン化合物は、銀ナノ粒子を製造する際に用いたものでもよいし、用いていないものを新たに使用してもよい。洗浄後の銀粒子を最終的に置換したいアミン化合物の中で、一定時間撹拌・懸濁することで、銀粒子の表面保護剤が置換される。その際、含まれている純銀分に対して、最終的に置換したいアミン化合物を50〜100wt%添加して、約1h常温下で撹拌・懸濁させる。表面保護剤置換工程の前後の違いについては、DTA測定での焼結由来ピークの違いや、ヘッドスペースGC/MSなどで、表面保護剤の確認は可能である。上述した表面保護剤の置換工程後、再度洗浄工程を経て、目的の銀粒子を得る。
このようにして、用いたアミン化合物が保護剤として結合された銀ナノ粒子が形成される。銀ナノ粒子とは、以下の方法で製造されうる、銀成分を主体として通常1〜1000nmの粒径を有する微細な粒子をいう。
また、平均粒子径が70〜350nm、好ましくは70〜300nm、さらに好ましくは80〜200nmである。
粒子径のばらつきを示す変動係数は30〜80%、好ましくは40〜70%、さらに好ましくは50〜60%で構成されている。
変動係数(%)={標準偏差(nm)/平均粒子径(nm)}×100
なお粒子径測定の機材は、上記の方法と同等の結果を得られるものであれば制限されない。
また、変動係数が30%未満だと、粒子が揃ってしまい、粒子間の空隙を埋めることができず、塗膜の体積抵抗率を低くすることが難しくなる。他方、変動係数が80%を超えると、粒子のばらつきがあっても、粒子サイズが異なりすぎるため、この場合も粒子間の空隙を埋めることが難しくなり、この場合も塗膜の体積抵抗率を低くすることが難しくなる。
スクリーン印刷用インクの粘度においては、0.1〜500Pa・sの範囲(ずり速度5 1/sec 時)が好ましい。高すぎると、流動性がなく印刷不良を起こしやすい、また低すぎると印刷したインクがダレて、線幅が広がってしまうためである。そこで、粘度を高くするには、通常、有機バインダーを添加することが多いが、有機バインダーは得られる塗膜の抵抗値を上げてしまう。これに対し、本発明の銀粒子は、有機バインダーとしてエトセル45(日新化成製)を純銀分に対し、1wt%添加した状態でも比較的高粘度とすることができ、例えば粒度を平均粒子径約80nm、変動係数約35%に調整することにより、30〜40Pa・s程度の粘度に調整できる。したがって有機バインダーの添加量が純銀分に対し、1wt%以下でも上記のスクリーン印刷に適した粘度にすることができる。このように、粒度の調整で粘度をコントロールできるので、有機バインダーの添加量の自由度が上がり、少なくすることもできるため、非常に優れている。
〔15.銀ナノ粒子分散体及び銀塗料組成物及びこれらの製造方法〕
上記に記載の方法で得られた銀ナノ粒子を用いて、銀ナノ粒子分散体を作製することができる。ここで、銀ナノ粒子分散体とは、少なくとも銀ナノ粒子及び分散媒を含有する組成物をいう。このような銀ナノ粒子分散体は、制限されることなく、種々の形態をとり得る。例えば、銀ナノ粒子を適切な有機溶媒(分散媒体)中に懸濁状態で分散させることにより、銀ナノ粒子分散体を得ることができる。
本発明で得られる銀ナノ粒子は分散性に優れているため、高濃度で分散媒中に安定に存在させることができる。例えば、組成物中の銀ナノ粒子の含有量として、70〜95重量%、さらに好ましくは75〜80重量%の高濃度で含有させることができ、いわゆるペースト状態とすることができる。
さらに、銀ナノ粒子及び分散媒のほか、いわゆるバインダー成分を含有させた銀塗料組成物を作製することができる。70〜95重量%、さらに好ましくは75〜80重量%の高濃度で銀ナノ粒子を含有させることにより、印刷性が良好で、厚膜な導電膜が作製しやすい銀塗料組成物とすることができる。
銀ナノ粒子分散体又は銀塗料組成物を得るための分散媒としては各種の有機溶媒、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶媒; シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン、メシチレン等のような芳香族炭化水素溶媒; メタノール、エタノール、プロパノール、n−ブタノール、n−ペンタノール、n−ヘキサノール、n−ヘプタノール、n−オクタノール、n−ノナノール、n−デカノール、n−ドデカノール等のようなアルコール溶媒等が挙げられる。
所望の銀塗料組成物又は銀ナノ粒子分散体の濃度や粘性に応じて、有機溶媒の種類や量を適宜定めると良い。
銀塗料組成物に対して、銀粒子の分散性の補助、又は基材との密着性を付与する目的で、有機バインダーを添加しても良い。有機バインダーの添加量としては、含有している銀100重量部に対して、0.1〜10重量部が好ましい。
上記バインダー樹脂の導電性インク中における存在形態は、溶媒に対して溶解していてもよいし、エマルジョン、またはサスペンションであってもよい。上記バインダー樹脂としては特に限定されないが、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリアクリルアミド樹脂、ポリエーテル樹脂、アクリル樹脂、メラミン樹脂、ビニル樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、酢酸ビニル樹脂、ポリブタジエン樹脂、塩化ビニル酢酸ビニル共重合体樹脂、フッ素樹脂、シリコン樹脂、ロジン、ロジンエステル、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂、塩素化ポリウレタン樹脂、セルロース系樹脂、ポリエチレングリコール、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリビニルプチラール、ポリビニルピロリドンなどを挙げることができる。
使用するバインダー樹脂は1種単独で用いてもよいし、2種以上を併用して用いてもよい。
調製された銀塗料組成物を基板上に塗布し、その後、焼成するのが一般的である。
塗布は、スピンコート、インクジェット印刷、スクリーン印刷、ディスペンサ印刷、凸版印刷(フレキソ印刷)、昇華型印刷、オフセット印刷、レーザープリンタ印刷(トナー印刷)、凹版印刷(グラビア印刷)、コンタクト印刷、マイクロコンタクト印刷などの公知の方法により行うことができる。印刷技術を用いると、パターン化された銀塗料組成物層が得られ、焼成により、パターン化された銀導電層が得られる。また、この銀導電層は導電性・熱伝導性に優れた接合材料としての応用が可能であり、パワーデバイス等の大電流を取扱う電気機器の接合材としても有用である。
銀ナノ粒子は上記のように構成されているので、このような低温短時間での焼成工程によっても、銀粒子の焼結が十分に進行する。その結果、平均粒子径が200nmを超えても優れた導電性(低い抵抗値)が発現する。低い抵抗値(例えば20〜30μΩ・cm)を有する銀導電層が形成される。バルク銀の抵抗値は1.6μΩcmである。
低温での焼成が可能であるので、基板として、ガラス製基板、ポリイミド系フィルムのような耐熱性プラスチック基板の他に、ポリエチレンテレフタラート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルムなどのポリエステル系フィルム、ポリプロピレンなどのポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板をも好適に用いることができる。また、短時間の焼成は、これら耐熱性の低い汎用プラスチック基板に対する負荷を軽減するし、生産効率を向上させる。
実施例及び比較例で用いたアミン化合物の名称、構造式等の特徴を、表−1〜2に示す。
(銀粒子の製造)
アルミブロック式加熱攪拌機にセットした試験管に原料となる銀化合物としてシュウ酸銀の乾燥品7.58g(24.95mmol) と、極性溶媒としてn−ヘキサノール9.21g(90.14mmol)とを撹拌し、シュウ酸銀を湿潤状態にさせた。その後、DL-‐1‐アミノ−2−プロパノール2.11g(28.09mmol)、オレイン酸0.30g(1.06mmol)を添加した。その後、1時間撹拌し、銀―アミン錯体を製造した。その後、昇温速度3℃/minで加熱し100℃でシュウ酸銀の分解反応が起こったと思われる二酸化炭素の発生を確認した。二酸化炭素の発生が止まるまで加熱を継続し、銀粒子が懸濁された液体を得た。銀粒子の析出後、反応液にメタノール20ccを添加して洗浄し、これを遠心分離した。この洗浄と遠心分離は3回行った。このようにして、銀ナノ粒子を得た。
得られたメタノールで湿った状態の銀ナノ粒子をn−ヘキサノール中へボルテックスミキサーを用いて懸濁させ、その液をコロジオン膜等の支持体へ滴下し、溶媒を乾燥させて試料を得た。FE−SEM観察にて、倍率20000〜70000倍で観察・撮影し、画像の中で400個以上粒子が存在している倍率の画像を選定する。その後、FE−SEMにて粒子形状の観察を行った。その後画像解析ソフトSCANDIUM(OLYMPUS製)を用いて、粒子数400個以上をカウントし、粒子径の測長、平均粒径、粒度分布等の解析を実施した。粒子に長径とそれ以外の径がある場合は粒子径の測長は長径を測長した。
粒子の100〜200nmの粒子割合(%)、平均粒径(nm)、変動係数(%)を表−5に示す。FE−SEM写真を図3に示す。粒度分布ヒストグラムを図21に示す。
次に、回収した銀ナノ粒子に、溶媒としてテキサノールを銀分75wt%になるよう添加し、混合した。さらに銀粒子に対して添加量が1wt%になるように、有機バインダーとしてエトセル45(日新化成製)を添加し、最終的に銀分約70wt%の銀ナノ粒子ペーストインクを作製した。このペーストをスライドガラス上でキャストし、送風乾燥機にて、150℃で1h加熱した。乾燥後の塗膜厚みは10~30μmになるようにした。
得られた塗膜は、4端子法により表面抵抗値を測定し、得られた塗膜の厚みを乗じて、体積抵抗率を得た。
体積抵抗率の値を表−4に示す。
(銀粒子の製造)
使用材料及び配合割合を表−5〜12に示すものに代え、銀―アミン錯体化合物生成後の昇温速度を表−5〜12に示すものに代え、反応容器/加熱装置を表−5〜13に示すものに代えた以外は実施例1の(銀粒子の製造)と同様にして、銀粒子を作製した。
表−7に示すとおり、実施例8については、後述の内容の(保護剤置換処理)を行った。保護剤置換行程を以下に示す。シュウ酸銀のシュウ酸分解反応により、得られた銀ナノ粒子中のアミン化合物をn−ヘキシルアミンに置換するため、得られた銀ナノ粒子の純銀分に対して71.8wt%のn−ヘキシルアミンと銀ナノ粒子を常温で1時間撹拌し、上記と同様に洗浄と遠心分離を3回繰り返し、ヘキシルアミンを保護剤とした銀ナノ粒子を得た。
また、実施例2〜8、比較例1、2、11、12については、得られた子を用いて実施例1と同様の方法で(銀ナノ粒子ペースト、インクの調製と焼成)を行った。
なお実施例8については、保護剤置換処理前の粒子と保護剤置換処理後の粒子を用いて各々(銀ナノ粒子ペースト、インクの調製と焼成)を行った。
また、比較例3及び、4については、特許文献1及び、2のように、銀分55wt%になるようにし、イソオクタン/n−ブタノール=4/1(体積比)の混合溶媒中に分散させた銀ナノ粒子分散体をスピンコートすることにより、ガラス上に塗工した。
また、実施例3、4では、ジグリコールアミンの添加量を増減させているが、添加量が多い実施例4において、実施例3よりも大きな粒子径の粒子が得られた。しかも、平均粒子径が大きくなったにも関わらず、各焼成温度での焼結塗膜の体積抵抗率はほぼ変わらない結果となった。
実施例7、8については、AMP、ジグリコールアミンを用いており、実施例8はさらに水を併用した。すると、さらに大粒子径化ができた。しかも大粒子径化しても、各温度における焼結塗膜の体積抵抗率は低下することはなかった。また実施例8については、へキシルアミン置換処理前後の焼結塗膜の体積抵抗率を評価したところ、ほぼ同等の性能であった。保護基の極性を変化することができるので、各種溶媒への分散性についても対応できる幅が広い粒子を合成することができた。
以上の結果からわかるように、(b1)成分のアミン化合物、特にジグリコールアミンを使用することにより、本発明の方法で本発明の銀ナノ粒子は、平均粒子径200nm以上の粒子を形成しやすくなり、粒度分布に適度なバラつきを持たせることで、低抵抗な厚膜導電膜を得られやすい銀塗料組成物を作製することが可能であることがわかる。
Claims (10)
- 熱分解性を有する銀化合物(a)と、(a)と錯体形成しうるアミン化合物(b)とを有機溶媒(c)中で反応させて錯体を形成し、得られた錯体を加熱して熱分解させることにより、銀ナノ粒子を形成する銀ナノ粒子の製造方法であって、(b)が、直鎖状のアミノアルコールであり、その直鎖状分子の両末端にアミノ基と水酸基とを1つずつ持ち、直鎖状分子構造内に、エーテル結合を有するアミノアルコール(b1)であることを特徴とする銀ナノ粒子の製造方法であって、かつ有機溶媒(c)が、アルコール系溶媒、ケトン系溶媒、アルデヒド系溶媒、アミド系溶媒、エスエル系溶媒、ニトリル系溶媒のうちいずれか一種以上から選ばれることを特徴とする銀ナノ粒子の製造方法。
- 有機溶媒(c)が、炭素数3〜12のアルコールであることを特徴とする請求項1記載の銀ナノ粒子の製造方法。
- (b1)が、ジグリコールアミンである請求項1又は2記載の銀ナノ粒子の製造方法。
- (a)がシュウ酸銀である請求項1〜3のいずれかに記載の銀ナノ粒子の製造方法。
- (a)と(b)との錯体形成反応時に、銀化合物(a)100重量部に対して5〜20重量部の水を存在させることを特徴とする請求項1〜4のいずれかに記載の銀ナノ粒子の製造方法。
- (b)/[(a)に含まれる銀原子]のモル比が0.7〜2.0であることを特徴とする請求項5記載の銀ナノ粒子の製造方法。
- (c)/(a)の重量比が0.8〜1.3であることを特徴とする請求項1〜6のいずれかに記載の銀ナノ粒子の製造方法。
- 請求項1〜7のいずれかに記載の方法により銀ナノ粒子を作製し、得られた銀ナノ粒子を有機溶媒に分散することを特徴とする、銀ナノ粒子分散体の製造方法。
- 請求項1〜8のいずれかに記載の方法により銀ナノ粒子を作製し、得られた銀ナノ粒子を有機溶媒に分散し、さらに有機バインダーを添加することを特徴とする、銀塗料組成物の製造方法。
- 請求項8記載の方法により得られた銀ナノ粒子分散体又は請求項9記載の方法により得られた銀塗料組成物を基板上に塗布し、焼成して銀導電層を形成する工程を含む銀導電材料の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017158278 | 2017-08-18 | ||
JP2017158278 | 2017-08-18 | ||
JP2019536423A JP6912692B2 (ja) | 2017-08-18 | 2018-04-12 | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019536423A Division JP6912692B2 (ja) | 2017-08-18 | 2018-04-12 | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021105218A true JP2021105218A (ja) | 2021-07-26 |
JP7283703B2 JP7283703B2 (ja) | 2023-05-30 |
Family
ID=65362199
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019536423A Active JP6912692B2 (ja) | 2017-08-18 | 2018-04-12 | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 |
JP2021066838A Active JP7283703B2 (ja) | 2017-08-18 | 2021-04-11 | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019536423A Active JP6912692B2 (ja) | 2017-08-18 | 2018-04-12 | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6912692B2 (ja) |
WO (1) | WO2019035246A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006213955A (ja) * | 2005-02-02 | 2006-08-17 | Dowa Mining Co Ltd | 銀の粒子粉末およびその製造法 |
JP2007063579A (ja) * | 2005-08-29 | 2007-03-15 | Osaka City | 貴金属ナノ粒子の製造方法 |
JP2008084620A (ja) * | 2006-09-26 | 2008-04-10 | Dowa Electronics Materials Co Ltd | 銀粒子粉末およびその製造法 |
WO2014021461A1 (ja) * | 2012-08-02 | 2014-02-06 | 国立大学法人山形大学 | 被覆銀微粒子の製造方法及び当該製造方法で製造した被覆銀微粒子 |
JP2014152337A (ja) * | 2013-02-04 | 2014-08-25 | Yamagata Univ | 金属銀の析出方法、および被覆銀微粒子、細線状の被覆金属銀 |
JP2016135916A (ja) * | 2013-11-20 | 2016-07-28 | 国立大学法人山形大学 | 銀ナノ粒子及び銀ナノ粒子インク |
JP2017066501A (ja) * | 2015-10-02 | 2017-04-06 | アルプス電気株式会社 | 被覆銀粒子の製造方法、液状組成物、被覆銀粒子、被覆銀粒子含有組成物、導電部材、導電部材の製造方法、電気・電子部品および電気・電子機器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4852272B2 (ja) * | 2005-07-25 | 2012-01-11 | ナミックス株式会社 | 金属ペースト |
JP5732520B1 (ja) * | 2013-12-11 | 2015-06-10 | 田中貴金属工業株式会社 | 銀粒子の製造方法及び当該方法により製造される銀粒子 |
JP2017524829A (ja) * | 2014-06-20 | 2017-08-31 | ローディア オペレーションズ | 安定剤を含まない金属ナノ粒子合成およびそれから合成される金属ナノ粒子の使用 |
-
2018
- 2018-04-12 WO PCT/JP2018/015456 patent/WO2019035246A1/ja active Application Filing
- 2018-04-12 JP JP2019536423A patent/JP6912692B2/ja active Active
-
2021
- 2021-04-11 JP JP2021066838A patent/JP7283703B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006213955A (ja) * | 2005-02-02 | 2006-08-17 | Dowa Mining Co Ltd | 銀の粒子粉末およびその製造法 |
JP2007063579A (ja) * | 2005-08-29 | 2007-03-15 | Osaka City | 貴金属ナノ粒子の製造方法 |
JP2008084620A (ja) * | 2006-09-26 | 2008-04-10 | Dowa Electronics Materials Co Ltd | 銀粒子粉末およびその製造法 |
WO2014021461A1 (ja) * | 2012-08-02 | 2014-02-06 | 国立大学法人山形大学 | 被覆銀微粒子の製造方法及び当該製造方法で製造した被覆銀微粒子 |
JP2014152337A (ja) * | 2013-02-04 | 2014-08-25 | Yamagata Univ | 金属銀の析出方法、および被覆銀微粒子、細線状の被覆金属銀 |
JP2016135916A (ja) * | 2013-11-20 | 2016-07-28 | 国立大学法人山形大学 | 銀ナノ粒子及び銀ナノ粒子インク |
JP2017066501A (ja) * | 2015-10-02 | 2017-04-06 | アルプス電気株式会社 | 被覆銀粒子の製造方法、液状組成物、被覆銀粒子、被覆銀粒子含有組成物、導電部材、導電部材の製造方法、電気・電子部品および電気・電子機器 |
Also Published As
Publication number | Publication date |
---|---|
JP7283703B2 (ja) | 2023-05-30 |
JPWO2019035246A1 (ja) | 2020-04-02 |
WO2019035246A1 (ja) | 2019-02-21 |
JP6912692B2 (ja) | 2021-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7262059B2 (ja) | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 | |
CN107921533B (zh) | 低温烧结性优异的金属浆料及该金属浆料的制造方法 | |
CN109789482B (zh) | 接合材料及使用该接合材料的接合方法 | |
JP6976597B2 (ja) | 銅粒子混合物及びその製造方法、銅粒子混合物分散液、銅粒子混合物含有インク、銅粒子混合物の保存方法及び銅粒子混合物の焼結方法 | |
JP2008198595A (ja) | 金属微粒子インクペースト及び有機酸処理金属微粒子 | |
EP3260503B1 (en) | Use of a silver particle coating composition for screen printing | |
JP5738464B1 (ja) | 銀微粒子分散液 | |
JP6673352B2 (ja) | 金属ナノ微粒子製造用組成物 | |
JP6842836B2 (ja) | 銅ペースト及び銅の焼結体の製造方法 | |
JP2006348345A (ja) | 銀超微粒子の製造方法及び銀粉末、銀超微粒子分散液 | |
JP2019002054A (ja) | 銅粒子 | |
JPWO2016185728A1 (ja) | 銀ナノ粒子分散体の製造方法及び銀ナノ粒子インクの製造方法 | |
TWI682007B (zh) | 銀微粒子分散液 | |
JP2009068035A (ja) | 低温焼結性銀微粉および銀塗料ならびにそれらの製造法 | |
JP6912692B2 (ja) | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 | |
KR20160120716A (ko) | 금속 나노 미립자의 제조 방법 | |
JP7097032B2 (ja) | 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子 | |
JP6968543B2 (ja) | 銅粒子構造体及び銅インク | |
JP6387794B2 (ja) | 有機被覆金属ナノ粒子及びその製造方法 | |
TWI819082B (zh) | 銀奈米粒子、導電性接著劑、燒結體、及構件間具備燒結體的裝置 | |
JP2020164926A (ja) | 接合用金属ペースト及びそれを用いた接合方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221227 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20221227 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20230207 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230217 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7283703 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |