JP2021098643A5 - - Google Patents

Download PDF

Info

Publication number
JP2021098643A5
JP2021098643A5 JP2020209982A JP2020209982A JP2021098643A5 JP 2021098643 A5 JP2021098643 A5 JP 2021098643A5 JP 2020209982 A JP2020209982 A JP 2020209982A JP 2020209982 A JP2020209982 A JP 2020209982A JP 2021098643 A5 JP2021098643 A5 JP 2021098643A5
Authority
JP
Japan
Prior art keywords
aqueous solution
slurry
mass
lithium
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020209982A
Other languages
Japanese (ja)
Other versions
JP2021098643A (en
Filing date
Publication date
Application filed filed Critical
Publication of JP2021098643A publication Critical patent/JP2021098643A/en
Publication of JP2021098643A5 publication Critical patent/JP2021098643A5/ja
Pending legal-status Critical Current

Links

Images

Description

即ち、上述の課題を解決する為の第1の発明は、
リチウムを、0.5質量%以上6.5質量%以下、
アルミニウムを、0質量%を超え25.0質量%以下、
ゲルマニウムを、0質量%を超え65.0質量%以下、
リンを、10質量%以上30質量%以下含有し、
BET一点法で計測される比表面積が15m2/g以上100m2/g以下である、非晶質リチウムイオン伝導酸化物粉末である。
第2の発明は、
リチウムを、1質量%以上4質量%以下、
アルミニウムを、0質量%を超え6質量%以下、
ゲルマニウムを、15質量%を超え35質量%以下含有する、第1の発明に記載の非晶質リチウムイオン伝導酸化物粉末である。
第3の発明は、
さらに、炭素を0.01質量%以上0.35質量%以下含有する、第1または第2の発明に記載の非晶質リチウムイオン伝導酸化物粉末である。
第4の発明は、
前記BET一点法で計測される比表面積が20m2/g以上100m2/g以下である、第1から第3の発明のいずれか一項に記載の非晶質リチウムイオン伝導酸化物粉末である。
第5の発明は、
さらに、チタン、ジルコニウム、ハフニウムから選択される、少なくとも一種の元素を含有する、第1から第4の発明のいずれか一項に記載の非晶質リチウムイオン伝導酸化物粉末である。
第6の発明は、
さらに、ケイ素を10質量%以下含有する、第1から第5の発明のいずれか一項に記載の非晶質リチウムイオン伝導酸化物粉末である。
第7の発明は、
前記非晶質リチウムイオン伝導酸化物粉末は、一般式Li1+x+w(Al1-yM1yx(Ge1-zM2z2-x3-wSiw12の式で表され、M1はガリウム、ランタン、インジウムおよびイットリウムから選ばれる1種以上であり、M2はチタン、ジルコニウムおよびハフニウムから選ばれる1種以上であり、xの範囲は0<x1.0、yの範囲は01.0、zの範囲は01.0、wの範囲は01.0である第1から第6の発明のいずれか一項に記載の非晶質リチウムイオン伝導酸化物粉末である。
第8の発明は、
さらに、ガリウム、ランタン、インジウムおよびイットリウムから選択される、少なくとも一種の元素を含有する、第1から第6の発明のいずれか一項に記載の非晶質リチウムイオン伝導酸化物粉末である。
第9の発明は、
リチウム化合物の水溶液と、アルミ二ウム化合物の水溶液と、ゲルマニウム化合物の水溶液と、リン酸アンモニウム塩の水溶液とを混合し共沈物の懸濁液を得るスラリー形成工程と、
前記スラリーを噴霧乾燥して、スラリー乾燥物を得る工程と、
前記スラリー乾燥物を300以上500以下で焼成する工程とを有する、非晶質リチウムイオン伝導酸化物粉末の製造方法である。
第10の発明は、
前記スラリー形成工程において、さらにガリウム、ランタン、インジウムおよびイットリウムから選択される少なくとも一種の元素を含む化合物の水溶液を混合し共沈物の懸濁液を得る、第9の発明に記載の非晶質リチウムイオン伝導酸化物粉末の製造方法である。
第11の発明は、
前記スラリー形成工程において、さらにチタン、ジルコニウムおよびハフニウムから選択される少なくとも一種の元素を含む化合物の水溶液を混合し共沈物の懸濁液を得る、第9または第10の発明に記載の非晶質リチウムイオン伝導酸化物粉末の製造方法である。
第12の発明は、
前記スラリー形成工程において、さらにケイ素化合物の水溶液を混合し共沈物の懸濁液を得る、第9から第11の発明のいずれか一項に記載の非晶質リチウムイオン伝導酸化物粉末の製造方法である。
第13の発明は、
前記スラリー形成工程における前記懸濁液の形成は、pH8以上に調整した前記ゲルマニウム化合物の水溶液を混合することにより行う、第9から第12の発明のいずれか一項に記載の非晶質リチウムイオン伝導酸化物粉末の製造方法である。
第14の発明は、
第1から第8の発明のいずれか一項に記載の非晶質リチウムイオン伝導酸化物粉末を500よりも高い温度で焼成する工程を有する、NASICON型結晶構造を有するリチウムイオン伝導酸化物粉末の製造方法である。
第15の発明は、
リチウム化合物の水溶液と、アルミ二ウム化合物の水溶液と、ゲルマニウム化合物の水溶液と、リン酸アンモニウム塩の水溶液とを混合し共沈物の懸濁液を得るスラリー形成工程と、
前記スラリーを噴霧乾燥して、スラリー乾燥物を得る工程と、
前記スラリー乾燥物を500よりも高い温度で焼成する工程とを有する、NASICON型結晶構造を有するリチウムイオン伝導酸化物粉末の製造方法である。
That is, the first invention for solving the above-mentioned problems is
Lithium is 0.5% by mass or more and 6.5% by mass or less,
Aluminum, more than 0% by mass and 25.0% by mass or less,
Germanium, more than 0% by mass and 65.0% by mass or less,
Contains 10% by mass or more and 30% by mass or less of phosphorus,
It is an amorphous lithium ion conductive oxide powder having a specific surface area of 15 m 2 / g or more and 100 m 2 / g or less measured by the BET one-point method.
The second invention is
Lithium, 1% by mass or more and 4% by mass or less,
Aluminum, more than 0% by mass and 6% by mass or less,
The amorphous lithium ion conductive oxide powder according to the first invention, which contains germanium in an amount of more than 15% by mass and 35% by mass or less.
The third invention is
Further, it is the amorphous lithium ion conduction oxide powder according to the first or second invention, which contains 0.01% by mass or more and 0.35% by mass or less of carbon.
The fourth invention is
The amorphous lithium ion conductive oxide powder according to any one of the first to third inventions, wherein the specific surface area measured by the BET one-point method is 20 m 2 / g or more and 100 m 2 / g or less. ..
The fifth invention is
Further, the amorphous lithium ion conductive oxide powder according to any one of the first to fourth inventions, which contains at least one element selected from titanium, zirconium, and hafnium.
The sixth invention is
Further, the amorphous lithium ion conductive oxide powder according to any one of the first to fifth inventions, which contains 10% by mass or less of silicon.
The seventh invention is
The amorphous lithium ion conduction oxide powder has a general formula of Li 1 + x + w (Al 1-y M1 y ) x (Ge 1-z M2 z ) 2-x P 3-w Si w O 12 . Represented by, M1 is one or more selected from gallium, lanthanum, indium and yttrium, M2 is one or more selected from titanium, zirconium and hafnium, and the range of x is 0 <x 1.0, The range of y is 0 y 1.0, the range of z is 0 z 1.0, and the range of w is 0 w 1.0. The above-mentioned amorphous lithium ion conduction oxide powder.
The eighth invention is
Further, the amorphous lithium ion conductive oxide powder according to any one of the first to sixth inventions, which contains at least one element selected from gallium, lanthanum, indium and yttrium.
The ninth invention is
A slurry forming step of mixing an aqueous solution of a lithium compound, an aqueous solution of an aluminum compound, an aqueous solution of a germanium compound, and an aqueous solution of an ammonium phosphate salt to obtain a suspension of a co-precipitate.
The step of spray-drying the slurry to obtain a dried slurry, and
A method for producing an amorphous lithium ion conductive oxide powder, which comprises a step of calcining the dried slurry at a temperature of 300 ° C. or higher and 500 ° C. or lower.
The tenth invention is
Amorphous according to the ninth invention, wherein in the slurry forming step, an aqueous solution of a compound containing at least one element selected from gallium, lanthanum, indium and yttrium is further mixed to obtain a suspension of a co-precipitate. This is a method for producing a lithium ion conductive oxide powder.
The eleventh invention is
The amorphous according to the ninth or tenth invention, wherein in the slurry forming step, an aqueous solution of a compound containing at least one element selected from titanium, zirconium and hafnium is further mixed to obtain a suspension of a co-precipitate. It is a method for producing a quality lithium ion conductive oxide powder.
The twelfth invention is
The production of the amorphous lithium ion conductive oxide powder according to any one of the ninth to eleventh inventions, wherein in the slurry forming step, an aqueous solution of a silicon compound is further mixed to obtain a suspension of a co-precipitate. The method.
The thirteenth invention is
The amorphous lithium ion according to any one of the ninth to twelfth inventions, wherein the suspension is formed in the slurry forming step by mixing an aqueous solution of the germanium compound adjusted to pH 8 or higher. This is a method for producing a conductive oxide powder.
The fourteenth invention is
A lithium ion conductive oxide powder having a NASICON type crystal structure, which comprises a step of calcining the amorphous lithium ion conductive oxide powder according to any one of the first to eighth inventions at a temperature higher than 500 ° C. It is a manufacturing method of.
The fifteenth invention is
A slurry forming step of mixing an aqueous solution of a lithium compound, an aqueous solution of an aluminum compound, an aqueous solution of a germanium compound, and an aqueous solution of an ammonium phosphate salt to obtain a suspension of a co-precipitate.
The step of spray-drying the slurry to obtain a dried slurry, and
It is a method for producing a lithium ion conductive oxide powder having a NASICON type crystal structure, which comprises a step of calcining the dried slurry product at a temperature higher than 500 ° C.

ここで、主な構成物質の含有割合について説明する。
リチウムは、リチウム元素として0.5質量%以上6.5質量%以下が含有されている。
これは、リチウムの含有量が0.5質量%以上であれば、リチウムイオン伝導度が担保されるからである。一方、リチウムの含有量が6.5質量%以下であれば、結晶化した際、リチウムイオン伝導酸化物粉末がNASICON型結晶構造となるからである。リチウムの含有量は好ましくは1.0質量%以上、より好ましくは1.5質量%以上、さらに好ましくは1.8質量%以上であり、一方、好ましくは4.0質量%以下、好ましくは3.5質量%以下、さらに好ましくは3.3質量%以下である。
Here, the content ratios of the main constituent substances will be described.
Lithium contains 0.5% by mass or more and 6.5% by mass or less as a lithium element.
This is because if the lithium content is 0.5% by mass or more, the lithium ion conductivity is guaranteed. On the other hand, when the lithium content is 6.5% by mass or less, the lithium ion conductive oxide powder has a NASICON type crystal structure when crystallized. The lithium content is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, still more preferably 1.8% by mass or more, while preferably 4.0% by mass or less, preferably 3 It is 5.5% by mass or less, more preferably 3.3% by mass or less.

一方、本発明に係る非晶質リチウムイオン伝導酸化物粉末は、リチウム元素、アルミニウム元素、ゲルマニウム元素、所望により添加された上述の置換金属元素、リン元素、炭素、酸素以外に、10質量%程度、好ましくは3.0質量%程度の不純物を含む場合がある。当該不純物は、当該非晶質リチウムイオン伝導酸化物粉末を製造する際に用いられたビーズのジルコニア等でると考えられるが、この程度の含有量であれば、NASICON型結晶構造のリチウムイオン伝導体となった際のリチウムイオン伝導特性に、特に悪影響を与えることはない。 On the other hand, the amorphous lithium ion conductive oxide powder according to the present invention is about 10% by mass in addition to the lithium element, the aluminum element, the germanium element, the above-mentioned substituted metal element added as desired, the phosphorus element, carbon and oxygen. It may contain impurities of about 3.0% by mass, preferably. The impurities are considered to be zirconia of beads used in producing the amorphous lithium ion conductive oxide powder, but if the content is at this level, lithium ions having a NASICON type crystal structure are considered to be present. It does not particularly adversely affect the lithium ion conduction characteristics when it becomes a conductor.

以下、本発明に係る非晶質リチウムイオン伝導酸化物粉末、並びに、NASICON型結晶構造を有するリチウムイオン伝導酸化物粉末の製造方法について、当該非晶質リチウムイオン伝導酸化物粉末の製造工程を示すフロー図である図1を参照しながら、(1)原料水溶液調製、(2)混合、(3)噴霧乾燥、(4)焼成、(5)粉砕、(6)乾燥、(7)焼成、(8)NASICON型結晶構造を有するリチウムイオン伝導酸化物粉末の製造、の順に説明する。 Hereinafter, the manufacturing process of the amorphous lithium ion conductive oxide powder according to the present invention and the method for manufacturing the lithium ion conductive oxide powder having a NASICON type crystal structure will be shown. With reference to FIG. 1, which is a flow diagram, (1) raw material aqueous solution preparation, (2) mixing, (3) spray drying , (4) firing, (5) pulverization, (6) drying, (7) firing, ( 8) Production of a lithium ion conductive oxide powder having a NASICON type crystal structure will be described in this order.

(2)混合(スラリー化)
前記(1)にて調製した原料水溶液を、ねらいのリチウムイオン伝導酸化物粉末の組成に合わせて混合し、共沈法によりリチウムイオン伝導体の構成元素を含むスラリーを得る工程である。例えば、アンモニアで溶解させたアルカリ性のゲルマニウム水溶液に、硝酸リチウム、硝酸アルミニウム9水和物、りん酸二水素アンモニウムを溶解させた酸性の水溶液を添加すると直後に濁り、共沈法によってリチウム、アルミニウム、ゲルマニウム、ン等を含有したスラリーを得ることが出来る。この混合工程では液温は特に検討する必要はなく、加温しても、しなくても良い。当該スラリー中には、水酸化物として析出した構成元素と、イオンとして存在している構成元素とが存在していると考えられる。尚、スラリー中における炭酸由来の炭素量を低減する為に、当該スラリーを窒素パージすることも好ましい構成である。
(2) Mixing (slurry)
This is a step of mixing the raw material aqueous solution prepared in (1) according to the composition of the target lithium ion conductive oxide powder and obtaining a slurry containing the constituent elements of the lithium ion conductor by the coprecipitation method. For example, when an acidic aqueous solution in which lithium nitrate, aluminum nitrate nine hydrate, and ammonium dihydrogen phosphate are dissolved is added to an alkaline germanium aqueous solution dissolved in ammonia, it becomes turbid immediately and becomes turbid immediately, and lithium, aluminum, by the co-precipitation method. A slurry containing germanium, phosphorus and the like can be obtained. In this mixing step, the liquid temperature does not need to be particularly examined and may or may not be heated. It is considered that the constituent elements precipitated as hydroxides and the constituent elements existing as ions are present in the slurry. In order to reduce the amount of carbonic acid-derived carbon in the slurry, it is also preferable to purge the slurry with nitrogen.

これに対し、構成元素を完全に溶解させた原料水溶液から脱水することとした場合は、溶解度の変化による析出であって、上述した共沈法のようにpH変化による急激な過飽和態を経過しない。この結果、生成する沈殿物の核数の数は減少し、析出する沈殿物の粒子径は大きくなる。さらに構成元素により溶解度が異なるため、脱水の過程において溶解度の低い構成元素は先に析出し、溶解度の高い構成元素は後に析出することになる為、生成した粒子の不均一性が生じる可能性もある。 On the other hand, when dehydration is performed from the raw material aqueous solution in which the constituent elements are completely dissolved, the precipitation is due to a change in solubility, and a rapid supersaturation state due to a pH change is elapsed as in the coprecipitation method described above. do not do. As a result, the number of nuclei of the precipitate produced decreases, and the particle size of the precipitate increases. Furthermore, since the solubility differs depending on the constituent elements, the constituent elements with low solubility are precipitated first and the constituent elements with high solubility are precipitated later in the process of dehydration, which may cause non-uniformity of the generated particles. be.

(3)噴霧乾燥
前記(2)にて得られたスラリーを、スプレードライヤー等を用いて噴霧乾燥して前記スラリー中の水分を蒸発させ、粉体を得る工程である。
ここで、乾燥工程を設けるのは、前記(2)にて得られたスラリー中には構成元素であるリチウム、アルミニウム、ゲルマニウム、リン、および、所望により添加された上述の置換金属元素の大部分が共沈しているが、イオンで存在しているものもある為である。例えば、当該スラリーから濾過工程によって回収された粉体を用いると、目論見の組成を有するリチウムイオン伝導体を得ることが出来ないと考えられる。
(3) Spray drying
This is a step of spray-drying the slurry obtained in (2) above using a spray dryer or the like to evaporate the water content in the slurry to obtain a powder.
Here, the drying step is provided in the slurry obtained in (2) above, which are the constituent elements lithium, aluminum, germanium, phosphorus, and most of the above-mentioned substituted metal elements added as desired. Is coprecipitating, but some are present as ions. For example, if the powder recovered from the slurry by the filtration step is used, it is considered that a lithium ion conductor having the intended composition cannot be obtained.

(2)混合(スラリー化)
前記アルカリ性であるゲルマニウム水溶液720gを分取し攪拌しながら40℃に加温し、そこへ前記酸性であるリチウム、アルミニウム、リン含有水溶液の全量(283.7g)を添加しところ、水溶液は当該添加直後に白濁し、白色スラリーを得た。得られた白色スラリーのpH値は4.3であった。
(2) Mixing (slurry)
720 g of the alkaline germanium aqueous solution was separated and heated to 40 ° C. with stirring, and the entire amount (283.7 g) of the acidic lithium, aluminum and phosphorus-containing aqueous solution was added thereto. Immediately after the addition, it became cloudy and a white slurry was obtained. The pH value of the obtained white slurry was 4.3.

(3)噴霧乾燥
前記白色スラリーを、噴霧乾燥機(東京理化器械株式会社製 SD-1000)を用いて噴霧乾燥して、前記白色スラリー中の水分を蒸発させて一気に固相析出させ、白色の粉末を得た。尚、噴霧乾燥の条件としては、入口温度180℃、出口温度90℃、前記白色スラリーの添加速度10g/minとした。
(3) Spray drying
The white slurry was spray-dried using a spray dryer (SD-1000 manufactured by Tokyo Rika Kikai Co., Ltd.) to evaporate the water content in the white slurry and precipitate it in a solid phase at once to obtain a white powder. The conditions for spray drying were an inlet temperature of 180 ° C., an outlet temperature of 90 ° C., and an addition rate of the white slurry of 10 g / min.

(2)混合(スラリー化)
前記アルカリ性であるゲルマニウム水溶液816gを分取し攪拌しながら40℃に加温し、そこへ前記酸性であるリチウム、アルミニウム、リン含有水溶液の全量を添加しところ、水溶液は当該添加直後に白濁し、白色スラリーを得た。得られた白色スラリーのpH値は6.7であった。
(2) Mixing (slurry)
When 816 g of the alkaline germanium aqueous solution was separated and heated to 40 ° C. while stirring, and the entire amount of the acidic lithium, aluminum, and phosphorus-containing aqueous solution was added thereto, the aqueous solution became cloudy immediately after the addition. , A white slurry was obtained. The pH value of the obtained white slurry was 6.7.

(2)混合(スラリー化)
前記アルカリ性であるゲルマニウム水溶液816gを分取し攪拌しながら40℃に加温し、そこへ前記酸性であるリチウム、アルミニウム、リン含有水溶液の全量を添加しところ、水溶液は当該添加直後に白濁し、白色スラリーを得た。得られた白色スラリーのpH値は4.1であった。
(2) Mixing (slurry)
When 816 g of the alkaline germanium aqueous solution was separated and heated to 40 ° C. while stirring, and the entire amount of the acidic lithium, aluminum, and phosphorus-containing aqueous solution was added thereto, the aqueous solution became cloudy immediately after the addition. , A white slurry was obtained. The pH value of the obtained white slurry was 4.1.

(2)混合(スラリー化)
前記アルカリ性であるゲルマニウム水溶液600gを分取し攪拌しながら40℃に加温し、そこへ前記酸性であるリチウム、アルミニウム、リン含有水溶液の全量を添加しところ、水溶液は当該添加直後に白濁し、白色スラリーを得た。得られた白色スラリーのpH値は3.9であった。
(2) Mixing (slurry)
When 600 g of the alkaline germanium aqueous solution was separated and heated to 40 ° C. while stirring, and the entire amount of the acidic lithium, aluminum, and phosphorus-containing aqueous solution was added thereto, the aqueous solution became cloudy immediately after the addition. , A white slurry was obtained. The pH value of the obtained white slurry was 3.9.

(2)混合(スラリー化)
前記アルカリ性であるゲルマニウム水溶液684gを分取し攪拌しながら40℃に加温し、そこへ前記酸性であるリチウム、アルミニウム、リン、チタン含有水溶液の全量を添加しところ、水溶液は当該添加直後に白濁し、白色スラリーを得た。得られた白色スラリーのpH値は6.7であった。
(2) Mixing (slurry)
684 g of the alkaline germanium aqueous solution was separated and heated to 40 ° C. with stirring, and the entire amount of the acidic lithium, aluminum, phosphorus, and titanium-containing aqueous solution was added thereto. The aqueous solution was immediately after the addition. It became cloudy and a white slurry was obtained. The pH value of the obtained white slurry was 6.7.

(II)リチウム、アルミニウム、リン含有水溶液
純水150gへ、硝酸リチウム21.7gと硝酸アルミニウム9水和物39.4gとリン酸二水素アンモニウム72.5gとを加え、リチウム、アルミニウム、リン含有水溶液を調製した。調製したリチウム、アルミニウム、リン含有水溶液におけるpH値は0.9であり、酸性であった。
(2)混合(スラリー化)
前記アルカリ性であるゲルマニウム水溶液684gを分取し攪拌しながら40℃に加温し、オキシ硝酸ジルコニウム4.1gを加え完全に溶解させた。そこへ前記酸性であるリチウム、アルミニウム、リン含有水溶液の全量を添加しところ、水溶液は当該添加直後に白濁し、白色スラリーを得た。得られた白色スラリーのpH値は3.9であった。
(II) Lithium, aluminum, phosphorus-containing aqueous solution To 150 g of pure water, 21.7 g of lithium nitrate, 39.4 g of aluminum nitrate nine hydrate, and 72.5 g of ammonium dihydrogen phosphate are added, and an aqueous solution containing lithium, aluminum, and phosphorus is added. Was prepared. The pH value of the prepared lithium, aluminum, and phosphorus-containing aqueous solution was 0.9, which was acidic.
(2) Mixing (slurry)
684 g of the alkaline aqueous germanium solution was separated and heated to 40 ° C. with stirring, and 4.1 g of zirconium oxynitrite was added to completely dissolve the solution. When the entire amount of the acidic lithium, aluminum, and phosphorus-containing aqueous solution was added thereto, the aqueous solution became cloudy immediately after the addition, and a white slurry was obtained. The pH value of the obtained white slurry was 3.9.

(I)酸素量計算
非晶質リチウムイオン伝導酸化物粉末に含まれるジルコニウムに係る酸素量を以下の通り算出した。
4価であるジルコニウムの酸化物はZrO2であることから、ジルコニウム酸化物に係る酸素量は以下の式で標記される。
ジルコニウム酸化物に係る酸素量=(Zr濃度×(ZrO2の式量/ZrO2のZr原子の個数)÷Zrの式量)-Zr濃度・・・(式)
一方、ジルコニウム濃度のICPの分析結果は1.5質量%であるから、
ジルコニウム酸化物に係る酸素量=(1.5×(123.22/1)÷91.22)-1.5=0.53質量%
となる。
(I) Oxygen amount calculation The oxygen amount related to zirconium contained in the amorphous lithium ion conductive oxide powder was calculated as follows.
Since the tetravalent zirconium oxide is ZrO 2 , the amount of oxygen related to the zirconium oxide is described by the following formula.
Amount of oxygen related to zirconium oxide = (Zr concentration × (formula of ZrO 2 / number of Zr atoms of ZrO 2 ) ÷ formula of Zr) -Zr concentration ... (formula)
On the other hand, the analysis result of ICP of zirconium concentration is 1.5% by mass.
Amount of oxygen related to zirconium oxide = (1.5 × (123.22 / 1) ÷ 91.22) -1.5 = 0.53% by mass
Will be.

(2)混合(スラリー化)
前記アルカリ性であるゲルマニウム水溶液720gを分取し、Li211Si5溶液(シグマアルドリッチ製)を10.2g添加した。その液を攪拌しながら40℃に加温し、そこへ前記酸性であるリチウム、アルミニウム、リン含有水溶液の全量を添加しところ、水溶液は当該添加直後に白濁し、白色スラリーを得た。
(2) Mixing (slurry)
720 g of the alkaline aqueous germanium solution was dispensed, and 10.2 g of a Li 2 O 11 Si 5 solution (manufactured by Sigma-Aldrich) was added. The solution was heated to 40 ° C. with stirring, and the entire amount of the acidic lithium, aluminum, and phosphorus-containing aqueous solution was added thereto. The aqueous solution became cloudy immediately after the addition, and a white slurry was obtained.

(II)リチウム、アルミニウム、リン含有水溶液
純水150gへ、酸リチウム22.9gと硝酸アルミニウム9水和物39.4gとリン酸二水素アンモニウム72.5gとを加え、リチウム、アルミニウム、リン含有水溶液を調製した。調製したリチウム、アルミニウム、リン含有水溶液におけるpH値は1.8であり、酸性であった。
(II) Lithium, aluminum, phosphorus-containing aqueous solution To 150 g of pure water, 22.9 g of lithium nitrate , 39.4 g of aluminum nitrate nine hydrate, and 72.5 g of ammonium dihydrogen phosphate are added, and lithium, aluminum, and phosphorus are contained. An aqueous solution was prepared. The pH value of the prepared lithium, aluminum, and phosphorus-containing aqueous solution was 1.8, which was acidic.

(2)混合(スラリー化)
前記アルカリ性であるゲルマニウム水溶液720gを分取し攪拌しながら40℃に加温し、そこへ前記酸性であるリチウム、アルミニウム、リン含有水溶液の全量を添加しところ、水溶液は当該添加直後に白濁し、白色スラリーを得た。得られた白色スラリーのpH値は4.5であった。
(2) Mixing (slurry)
When 720 g of the alkaline germanium aqueous solution was separated and heated to 40 ° C. while stirring, and the entire amount of the acidic lithium, aluminum, and phosphorus-containing aqueous solution was added thereto, the aqueous solution became cloudy immediately after the addition. , A white slurry was obtained. The pH value of the obtained white slurry was 4.5.

JP2020209982A 2019-12-20 2020-12-18 Amorphous lithium ion-conductive oxide powder and method for producing the same, and method for producing lithium ion-conductive powder having nasicon-type crystal structure Pending JP2021098643A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019230658 2019-12-20
JP2019230658 2019-12-20

Publications (2)

Publication Number Publication Date
JP2021098643A JP2021098643A (en) 2021-07-01
JP2021098643A5 true JP2021098643A5 (en) 2022-06-21

Family

ID=76477388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020209982A Pending JP2021098643A (en) 2019-12-20 2020-12-18 Amorphous lithium ion-conductive oxide powder and method for producing the same, and method for producing lithium ion-conductive powder having nasicon-type crystal structure

Country Status (5)

Country Link
JP (1) JP2021098643A (en)
KR (1) KR20220024859A (en)
CN (1) CN114867685B (en)
TW (1) TWI758019B (en)
WO (1) WO2021125344A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024070986A (en) * 2022-11-14 2024-05-24 株式会社オハラ Lithium-ion conductive glass-ceramic precursor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001808A1 (en) * 2010-07-01 2012-01-05 トヨタ自動車株式会社 Method for producing ceramic laminate, and ceramic laminate produced by the production method
US20130183589A1 (en) * 2010-09-28 2013-07-18 Toyota Jidosha Kabushiki Kaisha Battery sintered body, producing method of battery sintered body and all solid lithium battery
DE112012006000T5 (en) * 2012-03-09 2014-11-20 Toyota Jidosha Kabushiki Kaisha Secondary battery with non-aqueous electrolyte
JP6121525B2 (en) * 2012-06-01 2017-04-26 ナンヤン テクノロジカル ユニヴァーシティー Glass ceramic electrolyte system
WO2015001631A1 (en) * 2013-07-03 2015-01-08 株式会社日立製作所 Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
KR101655278B1 (en) * 2013-10-04 2016-09-07 주식회사 엘지화학 Lithium secondary battery with improved safety
CN104810545B (en) * 2014-01-24 2017-08-11 江西赣锋电池科技有限公司 Phosphate lithium fast-ionic conductor material and preparation method thereof
CN105762414B (en) * 2014-12-16 2018-04-03 中国科学院大连化学物理研究所 A kind of preparation method of the phosphoric acid germanium lithium based solid electrolyte of ion doping
KR101840541B1 (en) * 2015-04-30 2018-03-20 주식회사 엘지화학 Positive electrode material for lithium secondary battery, method for preparing the same and secondary battery comprising the same
JP6411959B2 (en) * 2015-06-29 2018-10-24 トヨタ自動車株式会社 Positive electrode mixture and all-solid-state lithium battery
CN105609881B (en) * 2015-12-18 2019-10-11 中国科学院青岛生物能源与过程研究所 Inorganic solid electrolyte material and preparation method thereof
JP6767209B2 (en) * 2016-09-01 2020-10-14 Fdk株式会社 Manufacturing method of all-solid-state battery
JP6955862B2 (en) 2016-12-19 2021-10-27 Fdk株式会社 Manufacturing method of all-solid-state battery and all-solid-state battery
JP6886822B2 (en) * 2017-01-24 2021-06-16 Fdk株式会社 Manufacturing method of all-solid-state battery
JP6864104B2 (en) * 2017-08-28 2021-04-21 三井金属鉱業株式会社 Positive electrode active material for all-solid-state lithium secondary batteries
JP6971089B2 (en) * 2017-08-30 2021-11-24 Fdk株式会社 A method for manufacturing a solid electrolyte, a method for manufacturing an electrode material for an all-solid-state battery, and a method for manufacturing an all-solid-state battery.
CN109659603B (en) * 2017-10-11 2021-12-03 贝特瑞新材料集团股份有限公司 Superfine solid electrolyte and preparation method thereof
JP2019164980A (en) * 2017-10-20 2019-09-26 セントラル硝子株式会社 Composite electrode and all-solid lithium battery
KR102224126B1 (en) * 2018-04-05 2021-03-08 주식회사 세븐킹에너지 Synthesis Process of Ceramic Solid Electrolyte for Lithium Secondary Batteries

Similar Documents

Publication Publication Date Title
JP5016993B2 (en) Magnesium oxide particle aggregate and method for producing the same
Luo et al. Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives
JP7021795B2 (en) Method for preparing indium oxide spherical powder with controllable grain shape
Taguchi et al. Simple and rapid synthesis of ZrO 2 nanoparticles from Zr (OEt) 4 and Zr (OH) 4 using a hydrothermal method
JP6599249B2 (en) Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2021098643A5 (en)
JP2017114700A (en) Titanium oxide and production process therefor
JP2011116645A (en) Calcium titanate and method for producing the same
US9409789B2 (en) Strontium titanate powder and method of preparing the same
CN108529672A (en) Chemical coprecipitation produces yttrium stable zirconium oxide spherical powder production technology used for hot spraying
TWI758019B (en) Amorphous lithium ion conducting oxide powder and method for production thereof, and method for production of lithium ion conducting oxide powder having nasicon-type crystal structure
JP2002020122A (en) Gallium compound powder, gallium oxide powder and method for producing the same
KR101747901B1 (en) Preparation method of yttria-stabilized zirconia
JP4671618B2 (en) Calcium titanate and method for producing the same
JP5967264B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7126922B2 (en) Method for producing gallium oxide powder
TWI531537B (en) Indium-gallium-zinc oxide, method for producing the same, and its application
CN109019676A (en) A kind of method that the precipitation method prepare high-purity Nano-class barium titanate
RU2411185C1 (en) Method for synthesis of monophase barium fluoride nanopowder doped with fluoride of rare-earth metal
KR100531137B1 (en) Method for Preparation of Piezoelectric Ceramics by Coprecipitation
JPS61251516A (en) Production of perovskite type oxide
JPH06234522A (en) Electrically conductive material and its production
JP7126920B2 (en) Method for producing indium oxide powder
JP7126921B2 (en) Method for producing indium oxide powder
KR20170124173A (en) Synthesis method of oxide powder with perovskite structure and oxide powder formed by the synthesis method